09.05.2013 Views

On the Derived Length of Lie Solvable Group Algebras

On the Derived Length of Lie Solvable Group Algebras

On the Derived Length of Lie Solvable Group Algebras

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.2 THE BASIC GROUP IS NOT NILPOTENT 27<br />

and<br />

vl+1<br />

≡ t (l)<br />

u t(l) w [ba(x−1 − 1) sl−2 sl−2+1 −1 sl−2 sl−2+1<br />

(x − 1) , a(x − 1) (x − 1) ]<br />

≡ t (l)<br />

u t(l)<br />

−1 2sl−2+1 2sl−2+1<br />

w b(x − 1) (x − 1)<br />

− aba(x −1 − 1) 2sl−2+1 2sl−2+1<br />

(x − 1) <br />

≡ t (l)<br />

u t (l)<br />

w b(x −1 − 1) sl−1+1 (x − 1) sl−1 (mod I(G ′ ) sl+2 ),<br />

wl+1<br />

≡ t (l)<br />

w t(l) v [a(x−1 − 1) sl−2 sl−2+1 −1 −1 sl−2 sl−2+1<br />

(x − 1) , b (x − 1) (x − 1) ]<br />

≡ t (l)<br />

w t(l)<br />

−1 −1 2sl−2 2sl−2+2<br />

v ab (x − 1) (x − 1)<br />

− b −1 a(x −1 − 1) 2sl−2+1 2sl−2+1<br />

(x − 1) <br />

≡ t (l)<br />

w t (l)<br />

v (−2)b −1 a(x −1 − 1) sl−1+1 (x − 1) sl−1 (mod I(G ′ ) sl+2 ).<br />

Supposing <strong>the</strong> truth <strong>of</strong> (3.10) for some even l, we apply Lemma 3.2.2<br />

(with m = 1) and (3.8) to get <strong>the</strong> congruence<br />

ul+1 ≡ t (l)<br />

u t(l)<br />

v [a(x−1 − 1) sl−2 (x − 1) sl−2 , b(x −1 − 1) sl−2+1 (x − 1) sl−2 ]<br />

(mod I(G ′ ) sl+2 ).<br />

Hence<br />

ul+1 ≡ t (l)<br />

u t(l)<br />

<br />

−1 2sl−2+1 2sl−2<br />

v ab(x − 1) (x − 1)<br />

− ba(x −1 − 1) 2sl−2 2sl−2+1<br />

(x − 1) <br />

≡ t (l)<br />

u t(l)<br />

v (−2)ba(x−1 − 1) sl−1 (x − 1) sl−1+1<br />

(mod I(G ′ ) sl+2 ).<br />

Similar calculations give us <strong>the</strong> required congruences for vl+1 and wl+1.<br />

So, (3.9) and (3.10) hold for all l ≥ 0.<br />

Let d be <strong>the</strong> minimal integer such that sd ≥ p n . According to<br />

<strong>the</strong> congruences (3.9) and (3.10), ud is a nonzero element <strong>of</strong> δ [d] (F G),<br />

because sd−1 < p n . So dlL(F G) > d, from which <strong>the</strong> statement follows.<br />

Let H = 〈h | hpn = 1〉 be a subgroup <strong>of</strong> a group G and char(F )=p.<br />

Then ω(F H) is nilpotent and ωpn(F H) = 0. Evidently, for g ∈ G \ H

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!