05.05.2013 Views

gear drive - ABM

gear drive - ABM

gear drive - ABM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Application and Development in Large<br />

Scale Grinding Mill Gear Drive


1 Foreword


1<br />

SABC(ABC) will<br />

replace the<br />

traditional three<br />

sections of crushing<br />

/ball-milling<br />

Simplifying process,<br />

Saving investment,<br />

Increasing output.<br />

Process Optimization<br />

1.1 Development Tendency<br />

2<br />

Ball Mill<br />

Ф 26 (28)<br />

Ф 7.9m (8.5m)<br />

AG/SAG Mill<br />

Ф 40 (44)<br />

Ф 12.2m(13.4m)<br />

Large in Specification<br />

3<br />

Various <strong>drive</strong><br />

modes and<br />

various bearing<br />

types.<br />

Optimization of<br />

Auxiliary<br />

Equipment.<br />

Structure Diversification<br />

4<br />

DCS system<br />

becomes more<br />

perfect<br />

and achieves<br />

closed-loop<br />

control of<br />

process<br />

optimization.<br />

Operation Automation


Mill Diameter D0 (m)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Mill Diameter.<br />

1960 1970 1980 1990 2000 2010<br />

Years<br />

Ball Mill SAG Mill<br />

1.2 Large in Specification<br />

Power P0 (MW)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Mill Power<br />

1960 1970 1980 1990 2000 2010<br />

Years<br />

Ball Mill SAG Mill


The specification of equipment tends to large which can achieve<br />

-- Expanding the scale of production<br />

-- Reducing the initial investment and operation costs<br />

-- Saving energy<br />

-- Improving the components reliability and service life<br />

-- Reducing down time and improving operation efficiency<br />

-- Increasing recovery<br />

-- Maximizing benefits


Drive mode<br />

Single motor <strong>gear</strong><br />

<strong>drive</strong><br />

Double motors <strong>gear</strong><br />

<strong>drive</strong><br />

Ring motor<br />

<strong>gear</strong>less <strong>drive</strong><br />

1.3 Drive Mode<br />

The large in specification requires diversification of <strong>drive</strong> mode which<br />

mainly depends on <strong>gear</strong> manufacturing capacity<br />

Maximum power<br />

P 0MW<br />

8.511.5<br />

1723<br />

1723


Single motor <strong>drive</strong><br />

synchronous motorair clutch asynchronous motorreducer


Double motors <strong>drive</strong><br />

Double synchronous motors <strong>drive</strong> Double asynchronous motors <strong>drive</strong>


Low speed<br />

Synchronous motor and asynchronous motor<br />

synchronous<br />

motor<br />

+ Air clutch<br />

+ Open <strong>gear</strong><br />

Gear Gear <strong>drive</strong> <strong>drive</strong><br />

<strong>drive</strong><br />

High speed<br />

asynchronous<br />

motor<br />

+ Reducer<br />

+ Open <strong>gear</strong>


Advantages<br />

of<br />

synchronous<br />

<strong>drive</strong><br />

1 Without reducer, reducing in failure rate and increasing in <strong>drive</strong><br />

efficiency<br />

2 Advancing in power factor which can make up for grid power factor<br />

of concentrator and reduce operation cost<br />

3 Brushless excitation increases its reliability<br />

4 Large air gap makes its ventilation cooling conditions well<br />

5 With air clutch, motor can be no-load startup, which reduces<br />

starting current and torque, and also plays a safety protection role


Key factors of double motor <strong>drive</strong>


The key problem of double motors <strong>drive</strong> is equilibrium loadings:<br />

1 Double synchronous motors <strong>drive</strong><br />

GE Quadramatic system adopts double low speed synchronous motor and double air<br />

clutchs.<br />

Special air clutch pulse technology can correct disequilibrium loadings and realize<br />

coarse adjustment; Q winding and regulating device of motor can correct motor load<br />

angle and realize coarse adjustment.<br />

ABB ACS system adopts double high-speed synchronous motors whose frequency<br />

conversion technology can relize the double motors equilibrium loadings.<br />

2 Double asynchronous motors <strong>drive</strong><br />

due to its soft features, it easily realize equilibrium loadings.


The restriction of <strong>gear</strong> processing technology creates high power <strong>gear</strong>less <strong>drive</strong><br />

technology (ring motor) which has the features that it is not limited by power, its<br />

<strong>drive</strong> system relatively simple and high efficiency.<br />

1 The initial investment will be higher about 25% than that of <strong>gear</strong> <strong>drive</strong>.<br />

2 Dimension of ring motor is large, so it needs large lifting equipment and long<br />

installation period.<br />

3 The equipment need special maintenance personnel.


Gearless Drive (Ring Motor)


For the reasons above,<br />

Advantages of <strong>gear</strong> <strong>drive</strong><br />

<strong>gear</strong> <strong>drive</strong> is the preferred choice of grinding mill.<br />

1 Initial investment and operation cost are reduced;<br />

2 Successful operation of thousands of equipment proved the<br />

reliability and durability of <strong>gear</strong> <strong>drive</strong>;<br />

3 At present, we can provide 23MW <strong>gear</strong> assembly which can<br />

replace <strong>gear</strong>less <strong>drive</strong>(ring motor) in a wide range.


Total Power P0 (MW)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1.4 The limits of <strong>gear</strong> <strong>drive</strong><br />

P0 = f(D0)<br />

0 2 4 6 8 10 12 14<br />

Diameter D0 (m)<br />

SAG Mill Ball MILL Single Pinion Limit Dual Pinion Limit


All kinds of <strong>drive</strong> ratio


Based on Stuart M. Jones and Jr. Moris Fresko's world statistical data of AG/SAG<br />

calculated according to total power( to 2010)<br />

ring motor 26% power>23MW 7%<br />

power


2 Design


Gear failure forms<br />

2.1 Gear failure forms<br />

--Teeth broken caused by overload and fatigue<br />

-- Wear normal wearabrasive wearscratchglue together<br />

scuffing corrosive wear<br />

-- Pitting Initial pitting destructive pittingfatigue pitting flaking<br />

-- Crack quenching/solidification cracking materials crack<br />

shallow crackfatigue crack<br />

-- Distortion dent rippleroll extrusionheat flow<br />

-- Corrosion chemical corrosionabrasion<br />

-- Other types of damage galvanic corrosionoxidationoverheating


Main forms of grinding mill <strong>gear</strong> failure<br />

-- pinion tooth broken (Poor heat treatment or fatigue toothbroken)<br />

-- <strong>gear</strong> pitting (contact fatigue)<br />

pinion tooth broken <strong>gear</strong>wheel pitting


Reasons of <strong>gear</strong> failure<br />

-- caused by design and manufacturing:<br />

design mistakes<br />

material selection<br />

manufacturing quality<br />

-- caused by usage and maintenance:<br />

faulty lubrication<br />

installation mistakes<br />

bad operation


2.2 Gear strength calculation AGMA standard<br />

Internationally accepted AGMA standard for open <strong>gear</strong> strength calculation,<br />

there are 3 versions:<br />

1970 1988 2006<br />

AGMA321.05 AGMA6004-F88 ANSI/AGMA6114-A06


Correction factors


2006 version Adding content<br />

Material (SGI, ADI)<br />

Check (M1,M2)<br />

Service life<br />

Flange thickness<br />

Profile modification<br />

Instantaneous overload<br />

Supporting type<br />

Service coefficient<br />

Other coefficients


Comparison of three strength calculation standard<br />

Comparison of three strength calculation standard<br />

1 AGMA 321.05 (1970 version)<br />

more conservative it has been used for more than40 years, not appear<br />

failure, and approved by many companies, but its service coefficient has<br />

been corrected;<br />

2 AGMA 6004-F88 (1988 version)<br />

calculated by Q8 and manufactured by Q10, its result is equal to 1970<br />

version;<br />

3 AGMA 6114-A06 (2006 version)<br />

the result is between 1970 and 1988 standard, and taken more<br />

consideration about factors based on advanced <strong>gear</strong> technology, and<br />

accepted by many companies.


CITIC apply AGMA 6114-A06 (2006 version) based on many years<br />

experience for <strong>gear</strong> design and manufacturing.<br />

The development of CITIC exposed <strong>gear</strong> calculation program CS06-10.2<br />

(the latest version)<br />

The results of 3 AGMA standard can be quickly got , and the calculation<br />

basis is 2006 standard<br />

2.3 Program and Spectrum of CITIC <strong>gear</strong><br />

After optimization of <strong>gear</strong> parameters, we have completed CITIC <strong>gear</strong><br />

specification spectrum CT06-01.1


The <strong>drive</strong> of high power <strong>gear</strong> requires higher tooth surface<br />

hardness and machining precision<br />

Increase of <strong>gear</strong><br />

diameter<br />

Increase of<br />

transmission power<br />

Requirements of high power <strong>gear</strong><br />

<<br />

Increase of tooth surface hardness<br />

Increase of mill<br />

diameter<br />

Inincrease of stalled<br />

power<br />

Improvement of machining accuracy


Current available tooth surface hardness and machining precision<br />

Tooth surface<br />

hardness<br />

Machining<br />

precision<br />

Gear<br />

HB300~350<br />

AGMA 10<br />

ISO 7<br />

Pinion<br />

HRC57~61<br />

AGMA 12<br />

ISO 5


Total Power P0 (MW)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Tooth surface hardness — Total installed power<br />

P0 = f(HB)<br />

0<br />

160 180 200 220 240 260 280 300 320 340<br />

Minimun Surface Hardness of Gear (HB)<br />

Single Pinion Dual Pinon<br />

Strength (N/mm 2 )<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

Hardness-Strength<br />

200<br />

160 180 200 220 240 260 280 300 320 340 360<br />

Hardness (HB)<br />

Tensil Strength(min) Yield Strength(min)


Total Power P0 (MW)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Gear normal module — Total installed power<br />

P0 = f(mn)<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Normal Modulus mn (mm)<br />

Single Pinion Dual Pinion


Total Power P0 (MW)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

External diameter of <strong>gear</strong> — Total installed power<br />

SAG Mill P0 = f(d0)<br />

9 10 11 12 13 14 15 16<br />

External Diameter of Gear d0 (m)<br />

Single Pinion Dual Pinion<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Ball Mill P0 = f(d0)<br />

SAG Mill Ball Mill<br />

Total Power P0 (MW)<br />

9 10 11 12 13 14 15 16<br />

External Diameter of Gear d0 (m)<br />

Single Pinion Dual Pinion


Total Power P0 (MW)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Weight of <strong>gear</strong> —Total installed power<br />

P0 = f(G)<br />

0<br />

60 70 80 90 100 110 120 130 140 150 160<br />

Estimated Weight of Gear G (t)<br />

Single Pinion Dual Pinion


13-23 MW Gear parameter – SAG double motor<br />

(from CITIC <strong>gear</strong> spectrum)


13-23 MW Gear parameter- Ball mill double motor<br />

(from CITIC <strong>gear</strong> spectrum)


Type SAG Mill Ball Mill<br />

Specification Φ 12.8×6.4 m (Φ 42×21 ft) Φ 8.5×14.6 m (Φ 28×48 ft)<br />

Specification<br />

of <strong>drive</strong> motor<br />

Type of <strong>drive</strong><br />

motor<br />

Drive mode<br />

2×11500 = 23000 kW 2×11500 = 23000 kW<br />

Double asynchronous<br />

motor/Double synchronous<br />

motor<br />

Double asynchronous<br />

motor/Double synchronous<br />

motor<br />

asynchronous motor+reducer+open <strong>gear</strong> or low speed<br />

synchronous motor+air cluth+open <strong>gear</strong><br />

Module of<br />

<strong>gear</strong> 45 45<br />

Diameter of<br />

addendum 15340 mm 6 discs 13200 mm4 discs<br />

Width of <strong>gear</strong><br />

23 MW Ultra large <strong>gear</strong><br />

1150 mm 1150 mm


Gear with installed power of 23 MW<br />

should meet<br />

Diameter of addendum d 0 = 15.4 m<br />

Normal module m n = 45 mm<br />

Minimum hardness of tooth surface HB = 300<br />

Weight G = 150 t<br />

The above information determine<br />

Smelting<br />

Casting<br />

Heat treatment<br />

Machining machine<br />

Cutting tools


Ø7.9×13.6 m ball mill <strong>gear</strong>four parts bolted structuretightened by special nuts which<br />

reduce field installation work load.


Ø7.9×13.6 m ball mill pinion shaft group


Gearguard equiped with:<br />

1 Infrared thermometer<br />

Monitors tooth surface<br />

temperature on line to avoid<br />

<strong>gear</strong>ing face superheated;<br />

2 Heater<br />

To avoid oil accumulation<br />

when temperature is too low


2.6 Finite Element Analysis FEA<br />

vectogram of comprehensive displacement on <strong>gear</strong> integral joint


schematic drawing for applying load<br />

on the tooth face<br />

the drawing of Von Mises stress on the<br />

local nodes of the <strong>gear</strong>


vector gram of comprehensive displacement on the local nodes of<br />

<strong>gear</strong> (deformation has been amplified for 500 times)


finite element analysis and stiffness analysis for <strong>gear</strong> guard wind load<br />

to ensure the stiffness of large diameter <strong>gear</strong> guard in the outdoor environment.


3 Manufacture


Material is smelted in vacuum electric-arc furnace, refined in steel ladle and<br />

deaerated in vacuum.<br />

Casting adopts ring riser.<br />

The process of smelting and pouring is simulated on computer.The company<br />

introduces the world famous simulation software:<br />

Britain JmatPro material software<br />

Germany Magma casting software<br />

France Sysweld welding,heat treatment software, etc<br />

The quality of castings has been greatly enhanced through the application of<br />

these softwares.<br />

3.1 Casting


Simulation software — ring riser<br />

Casting<br />

Solidfication


Smelting<br />

80 t electric-arc furnace


150 t ladle refining furnace


3.2 Forging<br />

The world largest 18500 t oil hydraulic press and operating machine for free forging<br />

The weight of the largest forging piece is 400 t


3.3 Heat treatment<br />

7×16m 9×12m furnace for heat treatment


Carburizing and Quenching for pinion<br />

Φ1.7×6.7m carburizing furnace


3.4 Machining<br />

16 m CNC vertical lathe


22 m heavy-duty vertical lathe


Gear rack shaper<br />

12 m rack shaping machine


Gear hobbing<br />

16m CNC hobbing machine


Mechanically clamped carbide hobs can effectively guarantee ccuracy<br />

of <strong>gear</strong> tooth surface.<br />

Cutting tool<br />

Kenner modulus 36 mechanically clamped carbide hobs


Hobbing for pinion<br />

Φ1.4 m horizontal hobbing machine


Grinding and profile modification for pinion<br />

Φ2.8 m molding <strong>gear</strong> grinding machine


Pouring<br />

Australia SINO project, <strong>gear</strong> pouring<br />

external diameter 11.7 m net weight 118 t liquid steel weight 375 t


Rolling test<br />

rolling test between pinion and <strong>gear</strong>


Environment - temperature control<br />

It is extremely important to control the environment<br />

temperature, especially the last procedure, which<br />

ensure <strong>gear</strong> machining precision.<br />

Temperature<br />

control


3.5 Delivery commissioning<br />

CITIC HIC has unique advantages of factory assembly ,no-load commissioning for large scale<br />

grinding mill.<br />

All critical parts are manufactured in our company.<br />

special test platform and generator system for commissioning<br />

No-load commissioning can check <strong>gear</strong> assembly and meshing, to find and solve possible<br />

problems in advance, and ensure success installation of grinding mill on site for one time.


installed power<br />

2x5586 kW<br />

external diameter of<br />

<strong>gear</strong> Φ13m<br />

Dexing Copper Mine of Jiangxi Copper Company (22500 t /d)<br />

installed power<br />

2x5586 kW<br />

external diameter of<br />

<strong>gear</strong> Φ10.8m<br />

Φ10.37×5.19 m SAG (11172kW) Φ7.32×10.68 m ball mill (11172kW)<br />

delivery commissioning in april, 2010


installed power<br />

2x6343 kW<br />

Wushan Copper-molybdenum Mine in inner Mongolia ( 35000 t /d)<br />

external diameter of<br />

<strong>gear</strong> Φ13.3m<br />

installed power<br />

2x8500 kW<br />

external diameter of<br />

<strong>gear</strong> Φ11.6m<br />

Φ11×5.4 m SAG (12686 kW) Φ7.9×13.6 m ball mill (17000 kW)<br />

delivery commissioning in october, 2011


Australia SINO Iron Mine (230000 t /d)<br />

installed power<br />

2x7800 kW<br />

external diameter of<br />

<strong>gear</strong> Φ11.7m<br />

Φ7.9×13.6m ball mill (15600kW double asynchronous motors) 6 sets<br />

delivery commissioning in july, 2009 of first set


installed power<br />

2x6750 kW<br />

external diameter of<br />

<strong>gear</strong> Φ10.8m<br />

Taiyuan Iron and Steel Co. (66700 t /d)<br />

installed power<br />

2x5500 kW<br />

external diameter of<br />

<strong>gear</strong> Φ10.8m<br />

Φ7.32×12.5 m (13500 kW)Φ7.32×11.28 m (11000 kW) ball mill each 3 sets<br />

delivery commissioning in may, 2011


4 Application


1 The following parameters must meet inspection<br />

requirements when installing,<br />

(1) radial run-out of <strong>gear</strong><br />

(2) end face run-out of <strong>gear</strong><br />

4.1 Installation and commissioning<br />

(3) contact area of meshing between pinion and <strong>gear</strong><br />

(4) back lash between pinion and <strong>gear</strong>


2 Tooth surface temperature monitoring (especially in the early operation period )<br />

if temperature difference is over 10 0 C along tooth width, it means poor<br />

contact between tooth surface. The possible reasons followed:<br />

-- skew of <strong>gear</strong> caused shell distortion when full load<br />

-- foundation bolt looseness<br />

-- foundation subsidence etc<br />

It need readjustment<br />

3 Tooth surface vibration monitoring (installed on pinion bearing pedestal)<br />

to avoid system resonance, it need to do modal analysis for equipment and<br />

foundation in advance.


finite element mesh of global ball mill and foundation model


engage -X links model overall displacement, self weight + charge mass, view 1<br />

(10% exaggerated scale)


喷射润滑装置<br />

喷射润滑装置<br />

4.2 Lubrication


4.3 Control<br />

The control and protection system adopt PLC control, touching screen display and multiple<br />

detection device to ensure reliability of operation and realize automatic control.


6 Bibliography


1 D.Danecki F.Thomas A.Grandy H.Walters<br />

Selection and Evaluation of Grinding Mill Motors and Drives (2003)<br />

2 M.Jones, Jr.Moris Fresko<br />

Autogenous and Semiautogenous Mills 2010 Update<br />

Gear strength standard<br />

3 ANSI/AGMA6114-A06<br />

Gear Power Rating for Cylindrical Shell and Trunnion Supported Equipment<br />

(Metric Edition)


Gear accuracy standard<br />

4 ANSI/AGMA2015-1-A01<br />

Accuracy Classification System-Tangential Measurements for Cylindrical Gears<br />

5 ANSI/AGMA2015-2-A01<br />

Accuracy Classification System-Radial Measurements for Cylindrical Gears<br />

6 GB/T10095.1-2008 / ISO1328-1:1995<br />

Cylindrical Gears System of Accuracy - Part 1: Definitions and Allowable Values<br />

of Deviations Relevant to Corresponding Flanks of Gear Teeth<br />

7 GB/T10095.2-2008 / ISO1328-2:1997<br />

Cylindrical Gears System of Accuracy - Part 2: Definitions and Allowable Values<br />

of Deviations Relevant to Radial Composite Deviations and Runout Information


Thank You!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!