04.05.2013 Views

Download (8Mb) - Etheses - Saurashtra University

Download (8Mb) - Etheses - Saurashtra University

Download (8Mb) - Etheses - Saurashtra University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Saurashtra</strong> <strong>University</strong><br />

Re – Accredited Grade ‘B’ by NAAC<br />

(CGPA 2.93)<br />

Savaia, Bharat S., 2011, “Synthesis and Characterization of New Heterocyclic<br />

Compounds & Their Application”, thesis PhD, <strong>Saurashtra</strong> <strong>University</strong><br />

http://etheses.saurashtrauniversity.edu/id/eprint/457<br />

Copyright and moral rights for this thesis are retained by the author<br />

A copy can be downloaded for personal non-commercial research or study,<br />

without prior permission or charge.<br />

This thesis cannot be reproduced or quoted extensively from without first<br />

obtaining permission in writing from the Author.<br />

The content must not be changed in any way or sold commercially in any<br />

format or medium without the formal permission of the Author<br />

When referring to this work, full bibliographic details including the author, title,<br />

awarding institution and date of the thesis must be given.<br />

<strong>Saurashtra</strong> <strong>University</strong> Theses Service<br />

http://etheses.saurashtrauniversity.edu<br />

repository@sauuni.ernet.in<br />

© The Author


Synthesis and Characterization of New<br />

heterocyclic compounds & their<br />

applications<br />

A THESIS SUBMITTED TO<br />

THE SAURASHTRA UNIVERSITY<br />

IN THE FACULTY OF SCIENCE<br />

FOR THE DEGREE OF<br />

Doctor of Philosophy<br />

UNDER THE GUIDANCE OF<br />

PROF. ANAMIK SHAH<br />

DEPARTMENT OF CHEMISTRY<br />

(DST-FIST FUNDED AND UGC-SAP<br />

SPONSORED)<br />

SAURASHTRA UNIVERSITY<br />

RAJKOT – 360 005<br />

GUJARAT (INDIA)<br />

IN<br />

CHEMISTRY<br />

BY<br />

Bharat S. Savalia<br />

UNDER THE CO-GUIDANCE OF<br />

PROF. ERIK VAN DER EYCKEN<br />

LABORATORY FOR ORGANIC &<br />

MICROWAVE-ASSISTED CHEMISTRY<br />

(LOMAC).<br />

DEPARTMENT OF CHEMISTRY,<br />

UNIVERSITY OF LEUVEN<br />

(K.U.LEUVEN), BELGIUM


JANUARY-2011<br />

Statement under O. Ph. D. 7 of <strong>Saurashtra</strong> <strong>University</strong><br />

The work included in the thesis is done by me under the supervision of<br />

Prof. Anamik K. Shah and Co-supervision of Prof. Erik Van der Eycken<br />

and the contribution made thereof is my own work. The work was carried<br />

out at Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot under<br />

UGC meritorious Fellowship and at Laboratory for Organic &<br />

Microwave-Assisted Chemistry (LOMAC), Department of Chemistry,<br />

<strong>University</strong> of Leuven (K.U.Leuven), Belgium under Erasmus Mundus<br />

Scholarship.<br />

Date:<br />

Place: Bharat S. Savalia


The Blessed Lord said: Fearlessness, purification of one's existence, cultivation of<br />

spiritual knowledge, charity, self-control, performance of sacrifice, study of the<br />

Vedas, austerity and simplicity; non-violence, truthfulness, freedom from anger;<br />

renunciation, tranquillity, aversion to faultfinding, compassion and freedom from<br />

covetousness; gentleness, modesty and steady determination; vigour, forgiveness,<br />

fortitude, cleanliness, freedom from envy and the passion for honour--these<br />

transcendental qualities, O son of Bharata, belong to godly men endowed with<br />

divine nature.<br />

Bhagvad Gita, Chapter-16, Verses-1-3.<br />

To my Family,<br />

With Love


Acknowledgment<br />

This thesis arose in part out of years of research that has been done since I came to Prof.<br />

Anamik Shah’s group. By that time, I have worked with a great number of people whose<br />

contribution in assorted ways to the research and the making of the thesis deserved special<br />

mention. It is a pleasure to convey my gratitude to them all in my humble acknowledgment.<br />

In the first place I would like to record my gratitude to Prof. ANAMIK SHAH for his<br />

supervision, advice, and guidance from the very early stage of this research as well as giving me<br />

extraordinary experiences through out the work. Above all and the most needed, he provided<br />

me unflinching encouragement and support in various ways. His truly scientific intuition has<br />

made him as a constant oasis of ideas and passions in science, which has exceptionally, inspire<br />

and enrich my growth as a student, a researcher and a scientist want to be. I am indebted to<br />

him for more than he knows.<br />

I gratefully acknowledge My Co-Supervisor Prof. ERIK VAN DER EYCKEN Laboratory<br />

for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry,<br />

<strong>University</strong> of Leuven (K.U.Leuven), Belgium, for his advice, supervision, and crucial<br />

contribution, which made him a backbone of this research and so to this thesis. His<br />

involvement with his originality has triggered and nourished my intellectual maturity that I<br />

will benefit from, for a long time to come. Erik, I am grateful in every possible way and hope<br />

to keep up our collaboration in the future.<br />

I am very thankful to the faculties of Department of Chemistry namely, Professor and Head<br />

Dr. P.H. Parasaniya, Prof. V. H. Shah, Dr. H. S. Joshi, Dr. Shipra Baluja, Dr. M. K. Shah,<br />

Dr. Yogesh Naliapara, Dr.U.C.Bhoya and Dr. R. C. Khunt for their encouragement and ever<br />

green support.<br />

The Department of Chemistry and LOMAC has provided the support and equipment I have<br />

needed to produce and complete my thesis and the UGC and Erasmus Mundus has funded my<br />

studies. Many Thanks.


Many thanks go in particular to Dr.Denis Ermolet’v. I am much indebted to Denis for his<br />

valuable advice in scientific discussion and synthetic part of this thesis.<br />

To the role model for hard workers in the lab, Dr. Vaibhav Mehta, I would like to thank him<br />

for many reasons. I would also acknowledge Sachin, Rupesh, Ripula, Dipak, Punit, Bari, Jigo,<br />

Nigam, Nick, Prof. BK, and Claudia (Lab Mummy) for their advice and their willingness to<br />

share their bright thoughts with me, which was very fruitful for shaping up my ideas and<br />

research. Thanks to each and every members of LOMAC.<br />

Collective and individual acknowledgments are also owed to my colleagues at <strong>Saurashtra</strong><br />

<strong>University</strong> whose presence somehow perpetually refreshed, helpful, and memorable. Many<br />

thanks go in particular to Vaibhav, Bunty, Ravi, Sailesh, Shrey, Dhiru, Abhay, Bapu, Nilay,<br />

Manisha, Harshad, Ronny, Mrunal, Rakshit, Ashish, Priti, Fatema, Ketaki, Dilip, Pratik,<br />

Vishwa and Paresh. I was extraordinarily fortunate in having Rahul, Matre, Jigo, Bharat,<br />

Suresh, Pankaj, Atul, Raju, Naval, Naimish, Dodia, Ghetiya Satish and Mahesh as my<br />

friends. Thank s to all dear.<br />

To Prashant Shah, thank for giving me the opportunity to work on your O2h in Ahmedabad.<br />

To Cnp, Tusharbhai, Jigo, Pradip, Hemal, Nileshwari, Shabu, PP, Hiral, Tejas, Pareshbhai<br />

and Vikas thank for your technical assistances and fun during the work we had in O2h. It is<br />

also a pleasure to mention.<br />

I am tempted to individually thank all of my friends which, from my childhood until graduate<br />

school, have joined me in the discovery of what is life about and how to make the best of it.<br />

However, because the list might be too long and by fear of leaving someone out, I will simply<br />

say thank you very much to you all.<br />

It is a pleasure to express my gratitude wholeheartedly to Anamik Shah’s family for their kind<br />

hospitality during my stay in Rajkot for Ph.D. Specially thanks to Ranjanmam and Aditya.<br />

Where would I be without my family? My parents deserve special mention for their<br />

inseparable support and prayers. My Father Savdasbhai, in the first place is the person who<br />

put the fundament of my learning character, showing me the joy of intellectual pursuit ever


since I was a child. My Mother Hansaben, is the one who sincerely raised me with her caring<br />

and gently love. My special gratitude is due to my dadi, my brother Kalpesh, Bhabhi<br />

Jayshreeben, my sisters Manisha, Jiju Rajnibhai, Sweet Miral, Mahek, Nancy, & Man, my<br />

uncle Manshukhbhai and his family for their loving support.<br />

Words fail me to express my appreciation to my wife Trupti whose dedication, love and<br />

persistent confidence in me, has taken the load off my shoulder. I owe her for being unselfishly<br />

let her intelligence, passions, and ambitions collide with mine. Therefore, I would also thank<br />

Tupi’s family for letting me take her hand in marriage, and accepting me as a member of the<br />

family, warmly. Furthermore, to Sorathiya family with their thoughtful support, thank you.<br />

I would like to thank everybody who was important to the successful realization of thesis, as<br />

well as expressing my apology to those whose name I could not mention individually.<br />

Finally, I bow my head before almighty GOD, who has inspired ME in each and every stage<br />

of my life.<br />

BHARAT SAVALIA


CONTENTS<br />

CHAPTER – 1<br />

Microwave Assisted Organic Synthesis<br />

1. Microwave Assisted Organic Synthesis 1<br />

1.1 Introduction 1<br />

1.2 Microwave Frequency 2<br />

1.3 Principle 2<br />

1.4 Heating Mechanism 3<br />

1.4.1 Dipolar Polarisation 3<br />

1.4.2. Conduction Mechanism 4<br />

1.5 Effects of solvents 5<br />

1.6 Conventional vs Microwave Heating 6<br />

1.7 Application of microwave in organic synthesis 7<br />

1.8 Studies on 2-Aminoimidazoles 8<br />

1.9 2-Aminoimidazole Alkaloids 11<br />

1.10 Methods for the preparation of 2-aminoimidazoles 15<br />

1.11 The 2-Aminoimidazole as a Pharmacophore 21<br />

1.11.1 Antibiotics Activity 21<br />

1.11.2 Sodium Hydrogen Exchanger-1 (NHE-1) Antagonists. 22<br />

1.11.3 Anti HIV Activity 22<br />

1.11.4 α-adrenoreceptor agonists. 24<br />

1.11.5 Anti Cancer Activity 24<br />

1.11.6 BACE-1 Inhibitors 25<br />

1.11.7 Anti Biofilm Activity 26<br />

1.12 Introduction to Biofilm 29<br />

1.12.1 Properties of biofilms 30<br />

1.12.2 Biofilm Growth Cycle 31<br />

1.12.3 Biofilm Drug Resistance 31<br />

1.13 Recent Publications on 2-aminoimidazoles 33<br />

1.14 Conclusion 33<br />

1.15 References 34


CHAPTER – 2<br />

Microwave Assisted Synthesis & Structure Activity Relationship of 2-Hydroxy-2phenyl-2,3-dihydro-imidazo[1,2-a]pyrimidinium<br />

Salts and 2N-Substituted 4(5)-<br />

Phenyl-2-Amino-1H-imidazoles as Inhibitors of the Biofilm Formation by<br />

Salmonella Typhimurium and Pseudomonas aeruginosa<br />

2.1 Introduction 40<br />

2.2 Reaction scheme 41<br />

2.3 Proposed Mechanism 42<br />

2.4 Results and discussion 43<br />

2.5 Biofilm activity 50<br />

2.5.1 2N-substituted 2-aminopyrimidines 48<br />

2.5.2 2-hydroxy-2,3-dihydro-imidazopyrimidinium salts 48<br />

2.5.2.1 n-Alkyl or iso-alkyl substituents at 1-position 48<br />

2.5.2.2 Further Modification in the most active core structure 51<br />

2.5.2.3 Cyclo-alkyl substituents at 1-position 53<br />

2.5.3 2N-substituted 2-aminoimidazoles 54<br />

2.6 Conclusion 56<br />

2.7 Experimental 57<br />

2.8 Biological Assays 58<br />

2.9 Experimental Protocols 60<br />

2.10 Spectral Characterization 62<br />

2.11 Representative NMR spectra 87<br />

2.12 References 90<br />

CHAPTER – 3<br />

Structure Activity Relationship of N1-Substituted 2-Aminoimidazoles as<br />

Inhibitors of Biofilm Formation by Salmonella Typhimurium and Pseudomonas<br />

aeruginosa<br />

3.1 Introduction 93<br />

3.2 Reaction scheme 94<br />

3.3 Proposed Mechanism 95<br />

3.4 Results and discussion 96


3.5 Biofilm activity 98<br />

3.5.1 N1-alkyl 2-aminoimidazoles 99<br />

3.5.2 Further Modification in the most active core structure 102<br />

3.5.3 Cyclo-alkyl 2-aminoimidazoles 104<br />

3.6 Conclusion 106<br />

3.7 Experimental 107<br />

3.8 Experimental protocols 108<br />

3.9 Spectral Characterization 109<br />

3.10 Representative NMR spectra 122<br />

3.11 References 124<br />

CHAPTER – 4<br />

Copper Catalyzed Microwave Assisted One Pot Synthesis of 2-Aminoimidazole-<br />

Triazole Framework via Dimorth Rearrangement and Click Reaction.<br />

4.1 Introduction 127<br />

4.2 Optimization Study 128<br />

4.3 Results and discussion 130<br />

4.4 Possible Mechanism 133<br />

4.5 Conclusion 134<br />

4.6 Experimental 134<br />

4.7 Experimental Protocols 135<br />

4.8 Spectral Characterization 136<br />

4.9 Representative NMR spectra 149<br />

4.10 References 151<br />

CHAPTER – 5<br />

Synthesis, Characterization, Crystal and molecular structure analysis of DP-7: A<br />

new Multi Drug Resistance Reverter Lead Molecule<br />

5.1 Introduction 154<br />

5.2 Reaction Scheme 155<br />

5.3 Method of crystallization 155<br />

5.4 Crystal structure determination 155


5.5 Results and discussion 156<br />

5.6 Conclusion 160<br />

5.7 Experimental 161<br />

5.8 Spectral Characterization 161<br />

5.9 Representative NMR spectra 163<br />

5.10 References 165<br />

SUMMARY<br />

CONFERENCES/SEMINARS/WORKSHOPS ATTENDED<br />

LIST OF PUBLICATIONS


Abbreviations<br />

Ac Acetyl<br />

2-AI 2-aminoimidazole<br />

aq Aqueous<br />

Boc tert-butyloxycarbonyl<br />

n-BuLi n-butyllithium<br />

t-BuOK potassium tert-butoxide<br />

Cbz Benzyloxycarbonyl<br />

CI chemical ionization<br />

m-CPBA m-chloroperoxybenzoic acid<br />

DAST diethylaminosulfur trifluoride<br />

DBBA 5,5-dibromobarbituric acid<br />

DCM Dichloromethane<br />

DIBAL diisobutylaluminium hydride<br />

DIEA Diisopropylethylamine<br />

DIPA Diisopropanolamine<br />

DMAP 4-dimethylaminopyridine<br />

DMF Dimethylformamide<br />

DMSO dimethyl sulfoxide<br />

EDCI 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide<br />

ESI electrospray ionization<br />

equiv Equivalent<br />

h Hour<br />

HMBC heteronuclear multiple bond correlation<br />

HRMS high resolution mass spectrometry<br />

LAH lithium aluminium hydride<br />

MAOS microwave-assisted organic synthesis<br />

MeCN Acetonitrile<br />

min Minute<br />

MS mass spectrometry


Ms Mesyl<br />

MW Microwave<br />

NBS N-bromosuccinimide<br />

NCS N-chlorosuccinimide<br />

NMM N-methylmorpholine<br />

NOESY nuclear Overhauser effect spectroscopy<br />

PCC pyridinium chlorochromate<br />

Pd Palladium<br />

Pd2(dba)3<br />

tris(dibenzylideneacetone)dipalladium<br />

PDC pyridinium dichromate<br />

PPA polyphosphoric acid<br />

rt room temperature<br />

SPOS solid-phase organic synthesis<br />

TBDMS tert-butyldimethylsilyl<br />

TBDPS tert-butyldiphenylsilyl<br />

TEA Triethylamine<br />

TFA trifluoroacetic acid<br />

THF Tetrahydrofuran<br />

TLC thin layer chromatography<br />

TMS Tetramethylsilane<br />

Ts Tosyl<br />

W Watt


Microwave Assisted Organic<br />

Synthesis


1. Microwave Assisted Organic Synthesis:<br />

1.1 Introduction<br />

Synthesis of new chemical entities is major bottleneck in drug discovery.<br />

Conventional methods for various chemical synthesis is very well documented and<br />

practiced. 1 The methods for synthesis (Heating process) of organic compounds has<br />

continuously modified from the decade. In 1855, Robert Bunsen invented the burner<br />

which acts as energy source for heating a reaction vessel, this was latter superseded<br />

by isomental, oil bath or hot plate, but the drawback of heating, though method<br />

remain the same. Microwave Assisted Organic Synthesis (MAOS), which has<br />

developed in recent years, has been considered superior to traditional heating.<br />

Microwave assisted organic synthesis 2 (MAOS) has emerged as a new “lead” in<br />

organic synthesis. The technique offers simple, clean, fast, efficient, and economic for<br />

the synthesis of a large number of organic molecules. In the recent year microwave<br />

assisted organic reaction has emerged as new tool in organic synthesis. Important<br />

advantage of this technology include highly accelerated rate of the reaction,<br />

Reduction in reaction time with an improvement in the yield and quality of the<br />

product. Now day’s technique is considered as an important approach toward green<br />

chemistry, because this technique is more environmentally friendly. This technology<br />

is still under-used in the laboratory and has the potential to have a large impact on the<br />

fields of screening, combinatorial chemistry, medicinal chemistry and drug<br />

development. Conventional method of organic synthesis usually need longer heating<br />

time, tedious apparatus setup, which result in higher cost of process and the excessive<br />

use of solvents/ reagents lead to environmental pollution. This growth of green<br />

chemistry holds significant potential for a reduction of the by product, a reduction in<br />

waste production and a lowering of the energy costs. Due to its ability to couple<br />

directly with the reaction molecule and by passing thermal conductivity leading to a<br />

rapid rise in the temperature, microwave irradiation has been used to improve many<br />

organic syntheses.


1.2 Microwave frequency<br />

Microwave heating refers the use of electromagnetic waves ranges from 0.01m to 1m<br />

wave length of certain frequency to generate heat in the material. These microwaves<br />

lie in the region of the electromagnetic spectrum between millimeter wave and radio<br />

wave i.e. between I.R and radio wave. They are defined as those waves with<br />

wavelengths between 0.01metre to 1meter, corresponding to frequency of 30GHz to<br />

0.3GHz.<br />

1.3 Principle<br />

The basic principle behind the heating in microwave oven is due to the interaction of<br />

charged particle of the reaction material with electro magnetic wavelength of<br />

particular frequency. The phenomena of producing heat by electromagnetic<br />

irradiation are ether by collision or by conduction, some time by both.<br />

All the wave energy changes its polarity from positive to negative with each cycle of<br />

the wave. This cause rapid orientation and reorientation of molecule, which cause<br />

heating by collision. If the charge particles of material are free to travel through the<br />

material (e.g. Electron in a sample of carbon), a current will induce which will travel<br />

in phase with the field. If charge particle are bound within regions of the material, the<br />

electric field component will cause them to move until opposing force balancing the<br />

electric force. 3-9


1.4 Heating Mechanism<br />

In microwave oven, material may be heated with use of high frequency<br />

electromagnetic waves. The heating arises from the interaction of electric field<br />

component of the wave with charge particle in the material. Two basic principal<br />

mechanisms involve in the heating of material<br />

1.4.1 Dipolar Polarisation<br />

Dipolar polarisation is a process by which heat is generated in polar molecules. On<br />

exposure to an oscillating electromagnetic field of appropriate frequency, polar<br />

molecules try to follow the field and align themselves in phase with the field.<br />

However, owing to inter-molecular forces, polar molecules experience inertia and are<br />

unable to follow the field. This results in the random motion of particles, and this<br />

random interaction generates heat. Dipolar polarisation can generate heat by either<br />

one or both the following mechanisms:<br />

1. Interaction between polar solvent molecules such as water, methanol and ethanol<br />

2. Interaction between polar solute molecules such as ammonia and formic acid<br />

The key requirement for dipolar polarisation is that the frequency range of the<br />

oscillating field should be appropriate to enable adequate inter -particle interaction. If<br />

the frequency range is very high, inter-molecular forces will stop the motion of a<br />

polar molecule before it tries to follow the field, resulting in inadequate inter-particle<br />

interaction. On the other hand, if the frequency range is low, the polar molecule gets<br />

sufficient time to align itself in phase with the field. Hence, no random interaction<br />

takes place between the adjoining particles. Microwave radiation has the appropriate<br />

frequency (0.3-30 GHz) to oscillate polar particles and enable enough inter-particle<br />

interaction. This makes it an ideal choice for heating polar solutions.<br />

In addition, the energy in a microwave photon (0.037 kcal/mol) is very low, relative<br />

to the typical energy required to break a molecular bond (80-120 kcal/mol).<br />

Therefore, microwave excitation of molecules does not affect the structure of an<br />

organic molecule, and the interaction is purely kinetic.


1.4.1. a Interfacial Polarization<br />

Interfacial polarization is an effect, which is very difficult to treat in a simple manner,<br />

and easily viewed as combination of the conduction and dipolar polarization effects.<br />

This mechanism is important for system where a dielectric material is not<br />

homogenous, but consists of conducting inclusion of one dielectric in other.<br />

1.4.2. Conduction mechanism<br />

The conduction mechanism generates heat through resistance to an electric current.<br />

The oscillating electromagnetic field generates an oscillation of electrons or ions in a<br />

conductor, resulting in an electric current. This current faces internal resistance, which<br />

heats the conductor.<br />

The main limitation of this method is that it is not applicable for materials that have<br />

high conductivity, since such materials reflect most of the energy that falls on them.


1.5. Effects of solvents<br />

Every solvent and reagent will absorb microwave energy differently. They each have<br />

a different degree of polarity within the molecule, and therefore, will be affected<br />

either more or less by the changing microwave field. A solvent that is more polar, for<br />

example, will have a stronger dipole to cause more rotational movement in an effort<br />

to align with the changing field. A compound that is less polar, however, will not be<br />

as disturbed by the changes of the field and, therefore, will not absorb as much<br />

microwave energy. Unfortunately, the polarity of the solvent is not the only factor in<br />

determining the true absorbance of microwave energy, but it does provide a good<br />

frame of reference. Most organic solvents can be broken into three different<br />

categories: low, medium, or high absorber, as shown in Figure 6. The low absorbers<br />

are generally hydrocarbons while the high absorbers are more polar compounds, such<br />

as most alcohols.<br />

Absorbance level Solvents<br />

High<br />

Medium<br />

Low<br />

DMSO, EtOH, MeOH, Propanols,<br />

Nitobenzen,<br />

Glycol<br />

Formic Acid, Ethylene<br />

Water, DMF, NMP, Butanol,<br />

Acetonitrile, HMPA, Methy Ethyl<br />

Ketone, Acetone, Nitromethane,<br />

Dichlorobenzene, 1,2-Dichloroethane,<br />

Acetic Acid, trifluoroacetic Acid,<br />

Chloroform, DCM, Carbon tetrachloride,<br />

1,4-Dioxane, Ethy Acetate, Pyridine,<br />

Triethyamine, Toluene, Benzene,<br />

Chlorobenzene, Pentane, Nexane and<br />

other hydrocarbons


1.6 Conventional vs Microwave Heating<br />

Microwave heating is different from conventional heating in many respects. The<br />

mechanism behind microwave Synthesis is quite different from conventional<br />

synthesis. Points enlisted in Table 1, differ the microwave heating from conventional<br />

heating. 10-26<br />

No CONVENTIONAL MICROWAVE<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Reaction mixture heating proceeds<br />

from a surface usually inside surface of<br />

reaction vessels<br />

The vessel should be in physical<br />

contact with surface source that is at a<br />

higher temperature source (e.g. mental,<br />

oil bath, steam bath etc.)<br />

By thermal or electric source heating<br />

take place.<br />

Heating<br />

conduction<br />

mechanism involve-<br />

Transfer of energy occur from the wall,<br />

surface of vessel, to the mixture and<br />

eventually to reacting species<br />

In conventional heating, the highest<br />

temperature (for a open vessels) that<br />

can be achieved is limited by boiling<br />

point of particular mixture.<br />

In the conventional heating all the<br />

compound<br />

equally<br />

in mixture are heated<br />

Reaction mixture heating proceeds<br />

directly inside mixture<br />

No need of physical contact of<br />

reaction with the higher temperature<br />

source. While vessel is kept in<br />

microwave cavities.<br />

By electromagnetic wave heating take<br />

place.<br />

Heating mechanism involvedielectric<br />

polarization and conduction<br />

The core mixture is heated directly<br />

while surface (vessel wall) is source<br />

of loss of heat<br />

In microwave, the temperature of<br />

mixture can be raised more than its<br />

boiling point i.e. superheating take<br />

place<br />

In microwave, specific component<br />

can be heated specifically.<br />

8 Heating rate is less Heating rate is several fold high


1.7 Application of microwave in organic synthesis<br />

Following reactions have been performed through microwave heating.<br />

Sr. Reaction Ref. Sr Reaction Ref.<br />

1 Acetylation reaction 27 18 Diel’s-Alder reaction 44<br />

2 Addition reaction 28 19 Dimerization reaction 45<br />

3 Alkylation reaction 29 20 Elimination reaction 28<br />

4 Alkynes metathesis 30 21 Estrification reaction 46<br />

5 Allylation reaction 31 22 Enantioselective reaction 47<br />

6 Amination reaction 32 23 Halogenation reaction 48<br />

7<br />

Aromatic nucleophillic<br />

substitution reaction<br />

33 24 Hydrolysis reaction 59<br />

8 Arylation reaction 34 25 Mannich reaction 50<br />

9 Carbonylation reaction 35 26 Oxidation reaction 51<br />

10 Combinatorial reaction 36 27 Phosphorylation synthesis 52<br />

11 Condensation reaction 37 28 Polymerization reaction 53<br />

12 Coupling reaction 38 29 Rearrangement reaction 54<br />

13 Cyanation reaction 39 30 Reduction reaction 55<br />

14 Cyclization reaction 40 31 Ring closing synthesis 56<br />

15 Cyclo-addition reaction 41 32 Solvent free reaction 57<br />

16 Deacetylation reaction 42 33 Transestrification reaction 46<br />

17 Dehalogenation reaction 43 34 Transformation reaction 58<br />

Figure 1.2: General View of Monomode CEM Discover (left) and Multimode<br />

MILESTONE Start (right) Systems


1.8 Studies on 2-Aminoimidazoles<br />

Much effort has been dedicated to the study of molecular architecture and its<br />

relationship to biological activity. From decades of high throughput screening of both<br />

natural and synthetic small molecules we have clued in on structural features that<br />

impart a high probability of biological efficacy. 59 Recently natural products have<br />

enjoyed a renaissance in lead generation for discovery based research. This realization<br />

has further been folded into the concept of Biology-oriented synthesis (BIOS) which<br />

relies on the core structures of natural products as valuable pre-validated scaffolds. 60<br />

These so-called “privileged” pharmacophores are often the basis of synthetic<br />

collections aimed at increasing the success rate of small molecule screening ventures.<br />

In particular, marine natural products derived from sponges have provided valuable<br />

leads for therapeutic small molecules. 61-62 Surprisingly the large majority of these<br />

compounds have been isolated from organisms of the class Dermospongiae. In the<br />

mid 1980’s chemists noted that the other major sponge class, Calcarea, had rarely<br />

been subject to chemical investigations. A flurry of efforts through the mid-1990’s<br />

helped to establish biogenetic relationships among these sponges. Isolated to explore<br />

these interconnections and not necessarily for specific biological responses the<br />

activities of these natural products have remained largely uncovered. Since these<br />

initial investigations, an emerging structural class has recurrently been identified<br />

through bioassay guided isolation which contains the 2-aminoimidazole core. From<br />

the viewpoint of small molecule discovery this review will highlight alkaloids isolated<br />

from Leucetta sp. This small skeletal family has been shown to interrogate an<br />

incredibly diverse range of biological processes and thus represents an important<br />

discovery scaffold for both medicinal and discovery based research.<br />

In 1958, a nitrogen rich antibiotic, consequently named azomycin, was isolated from a<br />

presumptive Streptomyces sp. 63 This new antibiotic displayed good antimicrobial<br />

activity against B. subtilis (6 μg/mL) and E. coli (25 μg/mL) and was relatively well<br />

tolerated in mice (LD50 = 80 mg/kg). Eventually the structure of azomycin was<br />

revealed to be 2-nitroimidazole (2) 64 , which along with its synthetic derivative<br />

metronidiazole (3) have become clinically relevant antiprotozoal therapeutics (Fig.<br />

1.8.1). 65 With the parallel observation that several microbes were able to oxidize


aromatic amines, Lancini’s group showed some Streptomyces species are able to<br />

oxidize 2-aminoimidazole itself, along with a series of 4-alkyl-2-aminoimidazoles, to<br />

their corresponding 2-nitroimidazoles. 66 This suggested that the 2-aminoimidazole<br />

might be the direct biosynthetic precursor to azomycin and in 1970 Okami’s group<br />

isolated the parent heterocycle (1) from Streptomyces eurocidicus. 67 This study also<br />

showed that supplementing the growth medium with L-Arg substantially increased the<br />

production of 1, suggesting that arginine catabolism is critical to its biosynthesis. It is<br />

unknown whether a similar pathway exists in marine organisms that produce more<br />

complex 2-aminoimidazoles, however 1 has been discovered in sponges of the family<br />

Halicondriidae. 68<br />

L-Arg<br />

N<br />

NH<br />

NH 2<br />

N<br />

NH<br />

NO 2<br />

N<br />

NO 2<br />

1 2<br />

Me<br />

3<br />

2-Aminoimidazole Azomycin Metronidazole<br />

Fig.1.8.1 Biosynthetic transformations of 2-aminoimidazole.<br />

Studies on azomycin’s (2) and metronidazole’s (3) mechanism of action have<br />

revealed that the nitro group is reduced in vivo to the nitroso radical which is<br />

responsible for its selective anaerobic antiprotozoal activity. 69 Subsequent studies<br />

have shown that hypoxic conditions in tumors are also capable of reducing the 2nitorimidazole,<br />

prompting it to serve as an important prodrug for 2-aminoimidazoles<br />

in hypoxic environments. 70-72<br />

The ambivalent reactivity of the key structural motif 2-amino-1H-imidazole (4) is<br />

responsible for the molecular diversity observed in this group of alkaloids. The<br />

electrophilic or nucleophilic reactivity at the same position C-4(5) is dependent on the<br />

tautomeric isomer involved (Scheme 1.8.1). 73<br />

NH 2<br />

HN N<br />

5<br />

nucleophilic<br />

position<br />

NH<br />

2<br />

3 1<br />

H N N H<br />

4 5<br />

4<br />

NH 2<br />

N N<br />

5<br />

electrophilic<br />

position<br />

Scheme-1.8.1 The Tautomerism and Ambivalent Reactivity of 2-<br />

Aminoimidazole<br />

N<br />

OH


It is understood that the 2-aminoimidazole occupies an important region of chemical<br />

space as its hydrogen bond donor-acceptor pattern is capable of recreating that of the<br />

guanidine. 74 More importantly, it occupies a unique pKa range between the more<br />

acidic 2-aminopyridinium ion 75 and less acidic guanidinium ion 76 (Fig.1.8.2).<br />

Furthermore, the pKa’s of 2-aminoimidazolium ions show a predictable trend with<br />

substitution, allowing it to be finely tuned for medicinal applications as illustrated in<br />

the examples below. 77<br />

2-Aminopyridine 2-aminobenzimidazole<br />

H<br />

N<br />

N NH 2 N<br />

pK a = 6.71 7.18<br />

N<br />

NH 2<br />

NH<br />

2-aminoimidazole<br />

Me<br />

N<br />

NH 2<br />

NH<br />

Me<br />

N<br />

NH 2<br />

pK a = 8.46 8.65 9.21<br />

HN NH 2 HN<br />

NH 2<br />

Me<br />

NH<br />

amidine guanidine<br />

NH 2<br />

pK a = 12.4 13.4<br />

NH 2<br />

Fig.1.8.2 pKa’s of common guanidine mimetics<br />

This dramatic difference in the pKa of 2-aminoimidazoles (~4 pKa units) with that of<br />

guanidine has led to some debate concerning the ability of the 2-aminoimidazole to<br />

directly mimic a guanidine. These arguments, based on a lowered pKa and electronic<br />

dissimilarity are, however, precisely what makes the 2-aminoimidazole a unique<br />

guanidine mimic for medicinal chemistry.- 77-78 Most importantly, their pKa range<br />

(pKa ~7-9) allows a significant fraction of compound to be uncharged at<br />

physiological pH thus increasing the likelihood of cellular penetration. It also permits<br />

this unique heterocycle to cross the blood brain barrier and may decrease the<br />

susceptibility of these compounds to Pgp mediated efflux vide infra. 79


1.9 2-Aminoimidazole Alkaloids<br />

The 2-aminoimidazole framework is emerging as an important pharmacophore, 80 and<br />

is widely found in numerous biologically active marine alkaloids. Over the last 25<br />

years, several hundreds of diverse 1-unsubstituted and 1-substituted 2aminoimidazoles<br />

have been characterized. 1-Unsubstituted 2-aminoimidazole<br />

alkaloids (Fig. 1.9.1) have been isolated essentially from various species of marine<br />

sponges (Phylum Porifera) of Caribbean and South Atlantic regions. 81 Oroidin (1) and<br />

the dimeric sceptrin (3) are the most abundant members of the pyrrole-imidazole<br />

family.<br />

H 2N<br />

H 2N<br />

H 2N<br />

N<br />

N<br />

H<br />

H<br />

N<br />

N<br />

N<br />

Oroidin (1)<br />

HN<br />

O<br />

HN<br />

N<br />

H<br />

O<br />

Sceptrin (3)<br />

H N<br />

HN<br />

H2N HO<br />

N<br />

N<br />

H<br />

HN<br />

N<br />

H<br />

H2N Cl<br />

Palau'amine<br />

(5)<br />

H<br />

N<br />

HN<br />

O<br />

NH 2<br />

O<br />

N<br />

H<br />

N<br />

H<br />

Br<br />

Br<br />

Br<br />

Br<br />

H 2N<br />

N<br />

H<br />

N<br />

HO<br />

O<br />

H 2N<br />

H 2N<br />

Me<br />

HN<br />

H<br />

N<br />

N<br />

N<br />

H<br />

HN<br />

N<br />

N<br />

H<br />

Cl<br />

N<br />

H<br />

OH<br />

Girolline (2)<br />

N<br />

Br<br />

Br<br />

Ageladine A (4)<br />

O<br />

NH 2<br />

NH<br />

Dragmacidin E (6)<br />

Fig.1.9.1 Some representative 1-unsubstituted 2-aminoimidazoles from marine<br />

sponges.<br />

Br


In turn, most of the 1-substituted 2-aminoimidazole alkaloids (Figure 1.9.2) have been<br />

isolated from the Calcarea group of the genera Leucetta and Clathrina from the Red<br />

Sea and the Indo-Pacific regions. 82<br />

N<br />

H2N N<br />

Me<br />

HO<br />

OH<br />

Naamine A (7)<br />

OMe<br />

OMe<br />

OMe<br />

N<br />

H2N N O OMe<br />

Me<br />

Calcaridine A (9)<br />

N<br />

OH<br />

H2N N<br />

OMe<br />

Me<br />

Kealiinine A (11)<br />

H 2N<br />

N<br />

N<br />

OH<br />

Isonaamine A (8)<br />

N<br />

H2N N<br />

Me O<br />

O<br />

O<br />

OH<br />

O<br />

Leucettamine A (10)<br />

N<br />

H2N N<br />

Me O<br />

O<br />

Preclathridine A (12)<br />

Fig.1.9.2 Some representative 1-substituted 2-aminoimidazoles from<br />

marine sponges.<br />

Both classes of 1-substituted and 1-unsubstituted 2-aminoimidazoles possess<br />

interesting biological properties. Due to their high cytotoxicity many polysubstituted<br />

2-aminoimidazole alkaloids are involved in chemical defense of marine sponges<br />

against predators, in the prevention of the settlement of fouling and pathogenic<br />

microorganisms or in the suppression of epibiotic bacteria and spatial competition.


Recently group of Erik 83 described a novel, short and efficient synthesis of diverse 2aminoimidazoles<br />

from readily available polysubstituted secondary propargylamines<br />

and thioureas (Scheme-1.9.1). Both the guanylation and the cyclization steps can be<br />

carried out either in a stepwise manner with a carbodiimide activator and an AgI<br />

catalyst or in a one-pot process with a recoverable AgI salt as a promoter and catalyst.<br />

This protocol was successfully applied to the total synthesis of all trisubstituted 2aminoimidazole<br />

naamine alkaloids. Furthermore, we demonstrated the potential of<br />

polysubstituted 2-aminoimidazoles as inhibitors of bacterial biofilm formation.<br />

R 1<br />

R 2<br />

R 3<br />

R 4<br />

Me<br />

CHO<br />

N<br />

H<br />

Boc<br />

N<br />

N<br />

Boc N<br />

Me<br />

N<br />

H2N N<br />

Me<br />

R 1<br />

R 1<br />

allyl<br />

R 5<br />

R 2<br />

R 4<br />

R 3<br />

1) TFA/DCM<br />

RT, 3h<br />

2) H2-Pd/C<br />

MeOH, RT<br />

R 5<br />

R 2<br />

R 4<br />

R 3<br />

R 5<br />

CuBr (10 mol %)<br />

100 oC, MW<br />

Toluene, 25 min<br />

6a<br />

AgNO3 (1.4 equiv)<br />

Et3N (2 equiv)<br />

MeCN, RT, 5 min<br />

Scheme 1.9.1 Short total synthesis of alkaloid of the naamine family<br />

R 1<br />

R 2<br />

R 1<br />

R 2<br />

R 3<br />

R 3<br />

R 4<br />

R 5<br />

N(Me)Allyl<br />

[Pd(PPh3) 4] (5 mol%)<br />

DMBA (3.5 equiv)<br />

DCM, Reflux, 25 min<br />

R 4<br />

NH(Me)<br />

R 5


Pierre Potier proposed biogenetic scheme, various hypothetical constituents can be<br />

predicted. It is clear that the above chemical pathway suggests that these compounds<br />

may be more widespread than presently known. The isolation and characterisation of<br />

new pyrrole-imidazole metabolites will certainly allow us to explore additional<br />

transformations which could support this hypothesis. As chemical diversity,<br />

enzymatic catalysis variation and mutagenesis are closely related, the ‘‘prebiotic<br />

chemistry’’ presented here can also provide strong evidence for a multifunctional<br />

enzyme-mediated biosynthesis. Such multiprotein systems would be particularly<br />

needed by the living fixed sponges for their adaptation to environmental influences,<br />

and for self-defence.<br />

Fig.1.9.3 Arrangement of all known oroidin alkaloids in structural groups.


1.10 Methods for the preparation of 2-aminoimidazoles<br />

Several methods for the formation of 2-aminoimidazoles are known with widely<br />

differing degrees of synthetic utility, but no current method as of yet has a broad<br />

range of applicability in complex molecule synthesis. Harsh reaction conditions<br />

and/or synthetically difficult and labile precursors are often required for such task.<br />

The methods to prepare 2-aminoimidizoles may be categorized into four main classes:<br />

1) Condensation reactions,<br />

2) Ambivalent addition of 2-aminoimidazole,<br />

3) Direct formation of C-N bond.<br />

4) Heterocyclic exchange reactions.<br />

Functionalized 2-aminoimidazoles can show a wide range of stability issues, the free<br />

base of many substrates is susceptible to nucleophilic or base mediated degredation.<br />

This instability has thus far precluded a unified strategy to access this heterocycle, but<br />

the variety of methods can often lead to success in a complex molecule setting.<br />

1.10.1 Condensations<br />

By far the most common way to prepare the 2-aminoimidazoles originates with the<br />

condensation of α-amino or α -haloketone with cyanamide or a guanidine derivative,<br />

respectively. This strategy was first disclosed by Norris and McKee who explored the<br />

condensation of α -aminoacetophenones with N-cyanoguanidines (scheme-1.10.1). 84<br />

Cl<br />

O<br />

NH 2.HCl<br />

NC<br />

N<br />

H<br />

NH<br />

Scheme-1.10.1 Norris and McKee‘s condensation.<br />

N<br />

R 2<br />

R 1<br />

150-200 o C<br />

Subsequently Lawson was able to show that aminoacetaldehyde diethylacetal can<br />

undergo acid catalyzed addition to cyanamide giving the masked guanidine<br />

acetaldehyde (Scheme-1.10.2). 85<br />

Cl<br />

N<br />

NH<br />

HN<br />

NH<br />

N<br />

R 1<br />

R 2


EtO<br />

OEt<br />

NH 2CN<br />

NH 2<br />

AcOH<br />

EtO<br />

OEt<br />

Scheme-1.10.2 Lawson’s synthesis.<br />

H<br />

N<br />

NH<br />

NH 2<br />

HCl<br />

H 2O<br />

N<br />

H<br />

N<br />

NH 2.HCl<br />

Kruetzberger found that condensation of 1,2-hydrazinedicarboxamidine with benzoin<br />

derivatives in alkali media will yield symmetrically substituted azoimidazoles after<br />

spontaneous oxidation of the bis-imidazolhydrazine (Scheme-1.10.3). 86 Reductive<br />

cleavage of the azo group by hydrogenolysis gives two mole equivalents of the 2aminoimidazole.<br />

This methodology is useful but limited to the preparation of 4,5diaryl<br />

substituted 2-aminoimidazoles.<br />

H 2N<br />

HN<br />

HN NH<br />

NH<br />

NH 2<br />

Ar<br />

O<br />

OH<br />

Ar<br />

NaOH<br />

Scheme-1.10.3 Kruetzberger’s condensation.<br />

Ar<br />

In 1966, Lancini and Lazzari successfully expanded Lawson’s strategy to include α -<br />

aminoketones, including the use of N-alkylamines (Scheme-1.10.4). 87-88 They were<br />

the first to observe the strict pH dependence of this condensation. At very low pH the<br />

cyanamide is quickly converted to urea. At high pH, dimerization of the aminoketone<br />

to the piperazine competes with cyanamide condensation. Having established the<br />

optimum pH of the reaction to be ~4.5, these conditions are now routinely adopted. In<br />

1925 Pyman and Burtles had reported the reaction of α-bromoacetone and guanidine<br />

to give a mixture of uncharacterizable compounds, leading them to abandon this<br />

approach and develop their diazonium coupling described below. 89 Seventy years<br />

later, Weber discovered that N-acetylguanidine smoothly undergoes displacement and<br />

condensation with α -haloketones and aldehydes. 90<br />

O<br />

H<br />

N<br />

NH 2CN<br />

pH = 4.5<br />

N<br />

N<br />

N<br />

NH<br />

Ar<br />

HN<br />

N<br />

N<br />

Ar<br />

N<br />

Ar<br />

NH 2<br />

H 2<br />

Pd/C<br />

Scheme-1.10.4 Lancini and Lazzari’s expanded strategy<br />

Ph<br />

Ar<br />

HN<br />

Ar<br />

N<br />

NH 2


R 1<br />

O<br />

X<br />

R 2<br />

NH 2<br />

H 2N NAc<br />

R 1<br />

HN<br />

R 2<br />

N<br />

NHAc<br />

NH 2NH 2<br />

OR<br />

H 2SO 4<br />

Scheme-1.10.5 Weber’s condensation with N-acetylguanidine.<br />

In the late 1970’s Nishimura reported the condensation of substituted α-diketones<br />

with guanidine to yield a variety of useful products (Scheme-1.10.6). 91 This report<br />

illuminates the variety of chemistry that is possible around this heterocyclic core.<br />

Treatment of a diketone with guanidine in dioxane and methanol yields the substituted<br />

bicyclic bis-guanidine . Alternatively, aprotic reaction conditions can selectively<br />

deliver the 2-aminoimidizo-4-ol. This intermediate can undergo a base catalyzed<br />

pinacol-type rearrangement to form the 2-aminoimidizo-4-one. This same<br />

intermediate can give rise to the 4,5-diol upon exposure to aqueous hydrochloric acid.<br />

A similar hydration reaction with anhydrous HCl affords the di-methoxylated<br />

derivative. Hydrogenolysis of 2-aminoimidizo-4-ol cleanly gives the 4,5-dialkyl-2aminoimidazole.<br />

These laboratory transformations foreshadow potential biosynthetic<br />

relationships between the 2-aminoimidazole natural products isolated from marine<br />

sponges.<br />

R 2<br />

O<br />

R1 R2 NH 2<br />

HN N<br />

HN N<br />

NH 2<br />

N<br />

N<br />

H<br />

R 1<br />

NaOH<br />

MeOH<br />

NH 2<br />

dioxane<br />

MeOH<br />

R1 R2 HO<br />

HO<br />

conc.HCl<br />

N<br />

N<br />

H<br />

R 1<br />

R 2<br />

NH 2<br />

Scheme-1.10.6 Nishimura’s diketone condensation<br />

O<br />

O<br />

H 2N<br />

HN<br />

MeO<br />

R 1<br />

NH 2<br />

MeOH<br />

HCl<br />

N<br />

NH 2<br />

R 1<br />

R 2<br />

R 1<br />

R 1<br />

HN<br />

OH<br />

N<br />

R2 N<br />

R N<br />

MeO H<br />

2 H<br />

N<br />

N<br />

R 2<br />

N<br />

NH 2<br />

NH 2<br />

H2/Pd-C<br />

MeOH<br />

NH 2


1.10.2 Ambi-valent Addition of 2-Aminoimidazole<br />

Depending on reaction conditions, the parent heterocycle, 2-aminoimidazole, can be<br />

influenced to react either at N-2 or C-4. In Potier’s synthesis of girolline, 2aminoimidizole<br />

was added directly to the α-chloroaldehyde. Under the influence of<br />

sodium carbonate, the imidazole adds preferentially through the 4-position (Scheme-<br />

1.10.7 ). 92 As revealed in Horne’s synthesis of stevensine, methanesulfonic acid was<br />

used to add the 2-aminoimidazole across an olefin. 93-94 Horne has also shown that<br />

Friedel-Crafts type alkylation of the activated ethers can proceed with attack by C-4<br />

in the presence of methanesulfonic acid to give stevensine (Scheme-1.10.7).<br />

Alternatively, triflouroacetic acid persuades N-2 addition to give the N-alkylated 2aminoimidazole.<br />

H 2N<br />

H<br />

N<br />

N<br />

O<br />

Cl<br />

N<br />

O<br />

O<br />

Na2CO3 HCl<br />

HCl, H 2O<br />

H 2N<br />

Scheme-1.10.7 Potier’s Ambi-valent additions of 2-aminoimidazole<br />

Br<br />

HN<br />

HN<br />

N<br />

Br<br />

TFA rt.<br />

Br<br />

N<br />

H<br />

NH<br />

O<br />

H2N H<br />

N<br />

N<br />

Br<br />

Scheme-1.10.8 Horne’s Ambi-valent additions of 2-aminoimidazole.<br />

1.10.3 Formation of C-N bond.<br />

Br<br />

Br<br />

MeO<br />

N<br />

H<br />

Br<br />

NH<br />

O<br />

MsOH<br />

90 o C<br />

H<br />

N<br />

N<br />

HO<br />

NH 2<br />

Cl<br />

Girroline<br />

Br<br />

H 2N<br />

HN<br />

N<br />

NH<br />

N<br />

H O<br />

Stevensine<br />

It is now clear that, condensation reactions are applicable to the preparation of monoand<br />

di-substituted 2-aminoimidazoles. To generate more highly substituted 2-amino<br />

imidazole cores, the direct introduction of N-2 on an appropriately substituted<br />

imidazole is frequently applied. The first method for forming 2-aminoimidazoles, in


this manifold, was reported in 1925 by Burtles and Pyman who showed that azobromoaniline<br />

and dimethylimidazole underwent aromatic substitution to form the<br />

hydrazone (Scheme-1.10.9).The aryl hydrazone was then readily reduced by Zn dust<br />

and aqueous acetic acid or stannous chloride and hydrochloric acid.<br />

N 2<br />

HN<br />

N<br />

Br<br />

NaHCO 3<br />

H2O<br />

HN<br />

N<br />

N N<br />

Scheme-1.10.9 Pyman’s synthesis.<br />

Br<br />

SnCl 2<br />

100 o C<br />

HN<br />

N<br />

NH 2.HCl<br />

Hassner was the first to report the reaction of imidazole lithium with a vinyl azide,<br />

hydrolysis of the intermediate triazine gives the aminoimidazole. 95 Since that report,<br />

Potier has popularized the use of lithiated imidazoles. 96 Potier reported that lithiation<br />

with LDA followed by azide transfer from TsN3 efficiently generated the 2azidoimidazoles<br />

(Scheme-1.10.10). Hydrogenolysis of the azide proceeds smoothly to<br />

give the 2-aminoimidazole, exemplified in his synthesis of keramidine. 97<br />

N<br />

N<br />

Tr<br />

HN<br />

O<br />

H<br />

N<br />

Br<br />

LDA, TsN 3<br />

-70 o C<br />

N 3<br />

N<br />

N<br />

Tr<br />

HN<br />

Scheme-1.10.10 Potier’s method via lithiation.<br />

O<br />

H<br />

N<br />

Br<br />

10 % Pd/C<br />

Lithiated imidazoles can also be trapped by disulfides to give the 2-thioimidazoles.<br />

Oxidation to either the sulfone or sulfoxide creates a leaving group capable of<br />

displacement with azide (Scheme-1.10.11). 98 This strategy has been utilized by<br />

Weinreb in the synthesis of ageladine A. 99-100<br />

COOEt<br />

EtOOC<br />

N<br />

N<br />

Me SO2Me NaN 3, DMF<br />

87 o C, 13 h<br />

H 2<br />

COOEt<br />

EtOOC<br />

N<br />

N<br />

Me N3 Scheme-1.10.11 Anderson’s method of synthesis.<br />

H 2N<br />

N<br />

N<br />

Tr<br />

HN<br />

O<br />

H<br />

N<br />

Br


To avoid lithiation, Ohta has shown that 2-bromoimidazoles can undergo palladium<br />

catalyzed coupling with trimethylsilylazide (Scheme-1.10.12). Reduction again<br />

provides the 2-aminoimidazole. This strategy has been implemented by Ohta’s group<br />

to access several Leucetta alkaloids discussed below. Also, noteworthy, Ohta has<br />

shown that during reduction of the azide it can be directly protected as its<br />

benzylidenimine. 101-102<br />

N<br />

N<br />

Br<br />

TMSN 3<br />

PdCl 2(PPH 3) 2<br />

80 o C N<br />

N<br />

N 3<br />

H2, Pd-C<br />

Scheme-1.10.12 Ohta’s palladium catalyzed synthesis.<br />

1.10.4 Heterocyclic Exchange Reactions<br />

The transformation of 3-amino-1,2,4-oxadiazoles to 2-aminoimidazoles can be carried<br />

out by reaction with fluorinated ß-dicarbonyls to give the ß-hemiaminal (Scheme-<br />

1.10.13). 103 This can undergo subsequent conversion to the 2-amidoimidazole through<br />

a Boulton-Katritzky Rearrangement. This intermediate can then be reduced to give<br />

Intermediate. The benzamide can also be removed via acid catalyzed hydrolysis to<br />

give the trifluoromethyl amino-imidazole. An interesting reaction, however the<br />

synthesis of the intermediate ß-enaminocarbonyl is low yielding and initial results<br />

suggest limited substituent scope, as the initial condensation requires the presence of<br />

the trifluoromethyl ketone.<br />

Ph<br />

O<br />

O<br />

N<br />

NH 2<br />

N<br />

O<br />

CF 3<br />

R<br />

Montmorillonite K-10,<br />

PhMe, 100 o C;<br />

Ph<br />

F3C HN<br />

OH O<br />

N<br />

N<br />

O<br />

R<br />

Ph<br />

O<br />

N<br />

H<br />

Ph<br />

N<br />

F3C HN<br />

OH OH<br />

N<br />

N<br />

O<br />

R<br />

NaBH 4<br />

THF<br />

reflux<br />

Scheme-1.10.13 Boulton-Katritzky rearrangment of aminooxadiazoles.<br />

N<br />

H<br />

CF 3<br />

OH<br />

R<br />

N<br />

N<br />

Ph<br />

NH 2<br />

O<br />

N<br />

H<br />

N<br />

N<br />

H N<br />

2N<br />

H<br />

N<br />

H<br />

CF 3<br />

HCl<br />

EtOH<br />

reflux<br />

CF 3<br />

O<br />

R<br />

O<br />

R


Another route to 4(5)-acyl-2-amino-1H-imidazoles is based on the recyclization of 5acyl-2-amino-1,3-oxazoles<br />

(Scheme-1.10.14). 104 For example, 5-acetyl-2-aminooxazole<br />

gave upon heating in water solution with ammonia or aliphatic amines 2amino-1H-imidazoles<br />

in 32% (R = H) and 43-62% (R = alkyl or cycloalkyl) yields.<br />

Me<br />

O<br />

N<br />

O<br />

NH 2<br />

NH 3 or Amine<br />

H 2O, heating<br />

Me<br />

O<br />

N<br />

N<br />

H<br />

NHR<br />

Scheme-1.10.14 Mularski’s recyclization method.<br />

Methodology to prepare 2-aminoimidzoles has greatly advanced due to the rising<br />

demand in natural product synthesis and medicinal chemistry. However, the<br />

development of methods to succinctly generate a highly functionalized 2aminoimidazole<br />

core from stable precursors is warranted.<br />

1.11 The 2-Aminoimidazole as a Pharmacophore<br />

The 2-aminoimidazole has been utilized as a building block has led to the<br />

development of several medicinally relevant small molecules.<br />

1.11.1 Antibiotics Activity<br />

Researchers at Zeneca delivered a series of broad spectrum antibiotics a-c, inspired by<br />

the well studied cephalosporins. 106-106 They were further able to show that substitution<br />

on N1 of the aminoimidazole led to inactive compounds, again suggesting that this<br />

motif may make an acid hydrogen bond contact (Fig. 1.11.1). Interestingly they were<br />

able to correlate the pKa of the 2-aminoimidazole with activity. Against Gram<br />

positive organisms they found that a slight elevation in the pKa led to a dramatic<br />

decrease in activity. For Gram-negative bacteria, there was little difference,<br />

suggesting pKa may alter the membrane permeability.


N N<br />

N<br />

N<br />

S<br />

S<br />

S<br />

H<br />

N<br />

NH<br />

S<br />

S<br />

S<br />

H<br />

N<br />

NH<br />

S<br />

S<br />

S<br />

H<br />

N<br />

NH<br />

HOOC<br />

N NH<br />

HOOC<br />

N NH<br />

HOOC<br />

N NH<br />

O a O b O<br />

c<br />

pKa = 7.1<br />

pKa = 7.4<br />

pKa = 8.05<br />

S.aureus = 8<br />

S.aureus = 16 S.aureus = 256<br />

E Coli = 0.03<br />

E Coli = 0.015 E Coli = 0.03<br />

Fig-1.11.1 2-aminoimidazole modified cephalosporins.<br />

1.11.2 Sodium Hydrogen Exchanger-1 (NHE-1) Antagonists.<br />

Scientists at Bristol-Meyers Squibb have noted the ability of the 2-aminoimidazole to<br />

function as a bioisostere of acylguanidines. 106 Looking to produce novel inhibitors of<br />

the sodium hydrogen exchanger-1 (NHE-1) they aimed at replacing the acylguanidine<br />

in their lead compounds (Fig. 1.11.2). They surveyed a number of heterocyclic<br />

analogues that would conserve the pKa of the acylguanidine as a cationic species,<br />

necessary for antagonism of the Na+ transporter.<br />

Cl<br />

HN N<br />

NH 2<br />

Cl<br />

HN N<br />

NH 2<br />

Cl<br />

HN N<br />

a b NH<br />

Cl<br />

c 2 Cl<br />

d<br />

0.75 0.039 0.18 0.008<br />

Fig.- 1.11.2 NHE-1 antagonists. (NHE-1 Inhibition IC50 (µm))<br />

1.11.3 Anti HIV Activity<br />

N<br />

N<br />

Cl<br />

HN N<br />

Much effort has been dedicated to the development of HIV protease (HIV PR)<br />

inhibitors for the treatment of AIDS. The protease is responsible for the processing of<br />

nascent polypeptides to mature proteins comprising the viral particle. Without the<br />

formation of the mature particle, viral replication of HIV has been shown to be<br />

inhibited. HIV PR has therefore been an active biochemical target for the<br />

development of small molecule therapeutics.<br />

Wilkerson and co-workers at DuPont-Merck had developed a cyclic urea-based HIV<br />

PR inhibitor scaffold which possessed an acceptable pharmacokinetic profile, but<br />

lacking the potency necessary to advance the candidate. 107 Biochemical evaluation of<br />

NH 2


this series of compounds against the HIV PR dimer revealed that a and b were<br />

extremely potent inhibitors Ki = 0.023 and 0.012 nM respectively. The compounds<br />

were also able to inhibit viral replication in vitro as measured by the ability of the<br />

compounds to inhibit RNA synthesis by 90% (a) IC90 = 13.2 nM; (b) IC90 = 26.2 nM).<br />

Interestingly, QSAR on this series of cyclic ureas suggested the optimum lipophilicity<br />

for protease inhibition (ClogP = 4.4) is different from the inhibition of viral<br />

replication (ClogP = 6.36) as revealed by the reversal of Ki and IC90 selectivities for<br />

(a) and (b). This makes it difficult to optimize both parameters within the same<br />

molecule, but suggests that while (a, b) display the same hydrogen bonding pattern at<br />

the terminal urea, the lipophilicity disparity between the 2-aminoimidazole and the<br />

benzimidazole has a significant effect on their pharmacokinetic profile. With these<br />

results, (a) and (b) were advanced for pharmacokinetic studies in female Beagles. As<br />

seen in the pharmacokinetic profiles (Fig. 1.11.3) the decreased lipohilicity of (b) had<br />

a significant impact on the clearance (CL) and half-life (t1/2) of the compound,<br />

advancing its candidacy based on this improved PK profile.<br />

N<br />

NH<br />

H<br />

N<br />

Ph HO OH Ph<br />

O<br />

N<br />

O<br />

N<br />

NH 2<br />

N<br />

NH<br />

H<br />

N<br />

a b<br />

Fig.- 1.11.3 Unsymmetrical HIV PR inhibitors.<br />

Parameter a b<br />

Ki (nM) 0.023 0.012<br />

IC90 (nM) 13.2 26.2<br />

Dose (mg/kg) 5.0 5.0<br />

CL, L/h/kg 0.8 0.5<br />

Vss (L/Kg) 1.0 4.0<br />

T1/2 (h,iv) 0.9 5.6<br />

Ph HO OH Ph<br />

Table-1.13.1: Pharmacokinetic profiles of HIV PR inhibitors<br />

O<br />

N<br />

O<br />

N<br />

NH 2


1.11.4 α-adrenoreceptor agonists.<br />

Agents that can stimulate α-andrenoceptors modulate a variety of physiological<br />

processes including the reduction of blood pressure, sedation and the inhibition of<br />

intestinal fluid secretion. 108 Scientists at Allergan Pharmaceuticals targeted the α –<br />

andrenoceptor to reduce intraocular pressure(IOP), a common condition in patients<br />

suffering from glaucoma. 109 The challenge in designing such agents stems from the<br />

ability of α –andrenoceptor subtypes to modulate different biological processes, most<br />

concerning are those in the central nervous system (CNS). One approach to<br />

minimizing CNS effect is topical application, minimizing access of the compound to<br />

the CNS. From the known α-andrenoceptor agonist clonidine, 110 modifications to<br />

minimize CNS access generated the lead compounds p-aminoclonidine and AGN-<br />

191103 (21) (Fig. 1.13.4). The The alternative approach is to discover compounds<br />

displaying enough selectivity between the α-andrenoceptor subtypes such that they<br />

exhibit an enhanced therapeutic index. This led to replacing the imidazolidin-imine<br />

with a 2-aminoimidazole. This compound (a) was selected for further evaluation.<br />

Binding assays demonstrated (a) bound to the α2A-receptor with a Ki = 1.7 nM and<br />

was 1200-fold selective for the α2A –receptor over the α1-receptor, 50-fold selective<br />

for the α2A –receptor over the α2B –receptor, and 10-fold selective for the α2A –<br />

receptor over the α2C –receptor. Compound (a) was found to be effective in vivo with<br />

an EC50 = 8.7 nM and importantly remained effective when administered<br />

intravenously, demonstrating its capability of crossing the blood-brain barrier.<br />

H<br />

N N<br />

NH<br />

Cl<br />

Cl<br />

H<br />

N N<br />

NH<br />

Cl<br />

Cl<br />

NH 2<br />

Clonidine p-aminoclonidine AGN-191103<br />

Fig.- 1.11.4 α-adrenoreceptor agonists.<br />

H<br />

N<br />

NH<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

O<br />

O<br />

Compound (a)<br />

1.11.5 Anti Cancer Activity<br />

Cancer has been the leading cause of death worldwide. Chemotherapy remains one of<br />

the major treatment options available for cancer, andmost of the currently used<br />

anticancer drugs are administered to patients via a parenteral infusion or bolus<br />

injection. Clinical complications with the parenteral administrations have been


documented. Extra care is needed because of inappropriate patient compliances, and<br />

extra cost associated with hospitalization is necessary. Efforts in searching for orally<br />

active anticancer agents have been extensive, including the anticancer drug category<br />

of tubulin binding agents from which only injectable drugs are available such as<br />

taxanes and vinca alkaloids. Recently Chiung-Tong Chen 111 reported the synthesis<br />

and biological functions of 2-amino-1-arylidenaminoimidazoles as orally active<br />

anticancer agents. Selective compounds had shown potent effects in the interference<br />

on the colchicines binding to tubulins, inhibition of tumor cell proliferation, and<br />

induction of human cancer cell apoptosis.<br />

R 2<br />

H 2N<br />

R 1<br />

N<br />

N<br />

N<br />

R 3<br />

R 4<br />

IC 50 = 0.05- >10 (µM)<br />

1.11.6 BACE-1 Inhibitors<br />

Alzheimer’s disease (AD) is the largest unmet medical need in neurobiology and<br />

accounts for the majority of dementia diagnosed in the elderly. AD is characterized by<br />

a progressively slow decline in cognitive function that leaves the end-stage patient<br />

dependent on custodial care with death occurring on the average of 9 years after<br />

diagnosis. The lack of an effective treatment for AD has stirred an intense search for<br />

novel therapies based on the amyloid hypothesis. This hypothesis states that a gradual<br />

and chronic imbalance between the production and clearance of Aß peptides results in<br />

their accumulation in the brain. These secreted peptides polymerize into neurotoxic<br />

oligomers that disrupt neuronal function and lead to cell death and memory loss that is<br />

phenotypical of AD. ß-secretase (BACE-1) is an as partyl protease representing the<br />

ratelimiting step in the generation of these Aß peptide fragments. Given the central<br />

role of Aß in AD pathology, inhibition of BACE-1 has become an attractive target for<br />

the treatment of Alzheimer’s disease. Vacca 112 and Hills 113 developed a series of<br />

aromatic heterocycles as BACE-1 inhibitors. The potency of the weak initial lead<br />

structure was dramatically enhanced using traditional medicinal chemistry. These<br />

inhibitors were shown to bind in a unique fashion that allowed for potent binding in a<br />

non-traditional fashion.


H 2N<br />

N<br />

N<br />

H<br />

R 2<br />

R 1<br />

N<br />

H2N N<br />

Me<br />

Bace-1 IC 50 = 4-6 (µM) Bace-1 IC 50 = 0.47-2 (µM) Bace-1 IC 50 = 0.47-2 (µM)<br />

Fig. 1.11.5 BACE-1 inhibitors<br />

1.11.7 Anti Biofilm Activity<br />

Bacterial biofilms are defined as a surface attached community of ignalling sms<br />

that are protected by an extracellular matrix of biomolecules. Within a biofilm state,<br />

bacteria are more resistant to antibiotics and are inherently insensitive to antiseptics<br />

and basic host immune responses. The NIH has estimated that 65-80% of all<br />

microbial infections are biofilm-based. Biofilm infections of indwelling medical<br />

devices are also of major concern, as once the device is colonized, infection is<br />

virtually impossible to eradicate. Bacterial biofilms 114-116 underlie the persistent<br />

colonization of hospital facilities, which perpetuates nosocomial infections. Hospitalacquired<br />

infections place a $10 billion burden on the U.S. healthcare system annually.<br />

Given the prominence of biofilms in infectious diseases, there has been an increasing<br />

effort toward the development of small molecules that will modulate bacterial biofilm<br />

development and maintenance. This, coupled with the spread of multi-drug antibiotic<br />

resistance across many of these bacteria, has put a tremendous burden on the scientific<br />

and medical community to alleviate biofilm-related problems. In this review, we will<br />

highlight the development of small molecules that inhibit and/or disperse bacterial<br />

biofilms through non-microbicidal mechanisms. The review will be segmented into<br />

providing a general overview of how bacteria develop into biofilm communities, why<br />

they are important, and the difficulties associated with their control. This will be<br />

followed by a discussion of the numerous approaches that have been applied to the<br />

discovery of lead small molecules that mediate biofilm development. These<br />

approaches are grouped into: 1) discovery/synthesis of molecules based upon<br />

naturally occurring bacterial ignalling molecules, 2) chemical library screening, and<br />

3) discovery/synthesis of natural product and natural product analogues.<br />

R 2<br />

R 1<br />

H 2N<br />

N<br />

N<br />

N<br />

R 1<br />

R 2


Very recently the research group of Melander has been studying widely the ability of<br />

simple analogues of the marine natural products bromoageliferin and oroidin (Fig.<br />

1.11.6) to control biofilm development. Bromoageliferin is a sponge-derived alkaloid<br />

that was reported to inhibit the formation of bacterial biofilms from marine sources,<br />

presumably as a defense mechanism against biofouling. 117 They reasoned that core<br />

structures derived from this complex molecule could be used as structural inspiration<br />

for the development of potent and synthetically accessible anti-biofilm agents. One of<br />

these scaffolds developed was based upon an aryl framework. 118 From a medicinal<br />

chemistry stand point, this scaffold was deemed a promising platform to develop<br />

further functionalized 2-aminoimidazole (2-AI) derivatives as diversity could rapidly<br />

be introduced through manipulation of the benzene ring. They described the synthesis<br />

and anti-biofilm activity of these aryl 2-AI derivatives against three commonlystudied<br />

Gram-negative bacteria.<br />

H 2N<br />

H 2N<br />

N<br />

N<br />

H<br />

N<br />

Bromoageliferin<br />

NH<br />

HN<br />

Br<br />

N<br />

H<br />

O<br />

O<br />

NH<br />

H<br />

N<br />

Br<br />

Br<br />

H 2N<br />

N<br />

N<br />

H<br />

H 2N<br />

Fig. 1.11.6 2-Aminoimidazole-based anti-biofilm molecules.<br />

N<br />

H<br />

O<br />

Oroidin<br />

N<br />

N<br />

H<br />

H<br />

N<br />

Br<br />

R<br />

Aryl 2-AI scaffold<br />

The research group of melander has recently developed several novel libraries of 2-<br />

aminoimidazole small molecules inspired by the marine alkaloids bromoageliferin<br />

and oroidin. These natural products were reviously reported to inhibit biofilm<br />

formation of the marine arotobacterium Rhodospirillum salexigens. 119 TAGE and<br />

CAGE were the first documented 2-aminoimidazoles with anti-biofilm activity against<br />

Pseudomonas aeruginosa biofilms.<br />

Analogues of the structurally simpler alkaloid oroidin were also pursued to develop<br />

novel classes of small molecules with anti-biofilm activity. Recently, an oroidin<br />

Br


inspired library was constructed utilizing click chemistry to generate a diverse library<br />

of 2-aminoimidazole/triazole conjugates (2-AIT).These compounds displayed the<br />

widest spectrum of anti-biofilm activity observed within the 2-aminoimidazole class<br />

(Fig. 1.11.7). 120-121<br />

H 2N<br />

H 2N<br />

N<br />

N<br />

H<br />

N<br />

Bromoageliferin<br />

H 2N<br />

N<br />

N<br />

H<br />

NH<br />

HN<br />

Br<br />

N<br />

H<br />

N<br />

H<br />

O<br />

O<br />

NH<br />

O<br />

Oroidin<br />

H<br />

N<br />

H<br />

N<br />

Br<br />

Br<br />

Br<br />

Br<br />

H 2N<br />

N<br />

N<br />

H<br />

H 2N<br />

HN<br />

N<br />

N<br />

H<br />

O<br />

H<br />

N<br />

H<br />

N O<br />

Br<br />

NH<br />

Br Br<br />

Br<br />

H 2N<br />

H 2N<br />

N<br />

N N<br />

R<br />

2-AIT Library<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

TAGE<br />

CAGE<br />

Fig. 1.11.7 Representative 2-aminoimidazoles derived from the marine natural<br />

products bromoageliferin and oroidin.<br />

The synthetic approach to this 2-AIT derivatization is outlined in (Scheme 1.11.1). In<br />

their previous synthesis of 2-AIT conjugates, they employed the alkyne-derived 2-AI<br />

as a precursor for the CuI-mediated[3+2] alkyne/azide cycloaddition (click reaction).<br />

Although this reaction worked well, purification of the resulting product was<br />

cumbersome, due to the need for copious amounts of ammonia saturated methanol for<br />

column chromatography. Therefore, they decided to revise the route by employing a<br />

Boc-protected 2-AI alkyne that would allow more traditional means of purification<br />

(i.e. methanol/dichloromethane columns). The Boc-protected scaffold was<br />

synthesized from oct-7-ynoic acid by treatment with oxayl chloride followed by<br />

diazomethane and quenching of the resulting α-diazo ketone with HBr to generate the<br />

intermediate a-bromo ketone. Cyclization with Boc-guanidine then delivered the<br />

target 2-AI alkyne..<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2


OH<br />

a,b<br />

O<br />

N<br />

H2N N<br />

Boc<br />

N 3<br />

H<br />

N R<br />

N<br />

N<br />

H2N N N<br />

N<br />

H<br />

a) i : (COCl) 2,CH 2Cl 2, DMF (cat.), ii : CH 2N 2,Et 2O/CH 2Cl 2, iii : HBr (82%) ; b) Boc-guanidine, DMF, RT<br />

(59%) ; c) azide, CuSO 4, Na ascorbate, EtOH, CH 2Cl 2,H 2O; d) TFA, CH 2Cl 2 (58-94 % over two steps)<br />

Scheme-1.11.1 Melander’s 2-AI-T conjugate synthesis.<br />

It was explained by earlier work that once target 2-AI alkyne had been synthesized,<br />

assembled a diverse array of azido amides to employ in the click reaction to create<br />

pilot collection of 2-AIT conjugates. Briefly, 2-bromo-ethylamine was treated with<br />

sodium azide to deliver 2-azido-ethylamine, which following acylation (via the<br />

respective acid chloride) generated the azido amides for elaboration into the 2-AIT<br />

collection. Each azido amide was then subjected to the click reaction with target 2-AI<br />

alkyne. Boc-deprotection (TFA/CH2Cl2) followed by counterion exchange<br />

(trifluoroacetate for chloride) delivered the target 2-AIT compounds for antibiofilm<br />

screening.<br />

1.12 Introduction to Biofilm<br />

Biofilms play a significant role in infection disease and account for up<br />

to 80% of microbial infections in the body.<br />

Bacterial biofilms are defined as a surface-attached community of bacteria<br />

that are surrounded by a protective extracellular matrix.<br />

On a global scale, biofilm related costs incur 6-10 billions of Euros to the<br />

agricultural, engineering, and medical sectors of economy.<br />

Despite the focus of modern microbiology research on pure culture,<br />

planktonic bacteria, it is now recognized that most bacteria found in<br />

natural, clinical, and industrial settings persist in biofilms.<br />

Within a biofilm, bacteria are upward of 1000-times more resistant to<br />

conventional antibiotic treatment<br />

Biofilms grow virtually everywhere, in almost any environment where<br />

there is a combination of moisture, nutrients, and a surface.<br />

c,d<br />

H N<br />

R


1.12.1 Properties of biofilms<br />

A biofilm community can be formed by a single bacterial species, but in nature<br />

biofilms almost always consist of rich mixtures of many species of bacteria, as well as<br />

fungi, algae, yeasts, protozoa, other microorganisms, debris and corrosion products.<br />

Biofilms are held together by sugary molecular strands, collectively termed<br />

"extracellular polymeric substances" or "EPS." The cells produce EPS and are held<br />

together by these strands, allowing them to develop complex, three-dimensional,<br />

resilient, attached communities. Biofilms cost the U.S. literally billions of dollars<br />

every year in energy losses, equipment damage, product contamination and medical<br />

infections. But biofilms also offer huge potential for bioremediating hazardous waste<br />

sites, biofiltering municipal and industrial water and wastewater, and forming<br />

biobarriers to protect soil and groundwater from contamination


1.12.2 Biofilm Growth Cycle<br />

1) Planktonic bacteria reversibly attach to a surface suitable for growth and<br />

Bacteria begin secretion of the extra cellular polymeric substances (EPS) and<br />

attachment becomes irreversible.<br />

2) The maturing biofilm begins to take on a 3-dimensional shape. Biofilm<br />

communities can develop within hours.<br />

3) The biofilm fully matures, and complex architecture is observed. Bacteria<br />

disperse from the biofilm to reinitiate biofilm colonization of a distal surface.<br />

1.12.3 Biofilm Drug Resistance


The figure below shows a model of biofilm resistance to killing based on persister<br />

survival.<br />

Initial treatment with antibiotic kills normal cells (coloured green) in both planktonic<br />

and biofilm populations.<br />

The immune system kills planktonic persisters (coloured green), but the biofilm<br />

persister cells (coloured pink) are protected from the host defences by the exopolymer<br />

matrix.<br />

After the antibiotic concentration is reduced, persisters resuscitate and repopulate the<br />

biofilm and the infection relapses.<br />

Biofilm infections are highly recalcitrant to antibiotic treatment. However, planktonic<br />

cells that are derived from these biofilms are, in most cases, fully susceptible to<br />

antibiotics. Importantly, biofilms do not actually grow in the presence of elevated<br />

concentrations of antibiotics, therefore biofilms do not have increased resistance<br />

compared with planktonic cells. 122 But if biofilms are not resistant to antibiotics, how<br />

do biofilm bacteria avoid being killed by antibiotic treatments? The resistance of<br />

biofilms to drug therapy has been one of the more elusive problems in microbiology,<br />

but the analysis of a simple dose-response experiment provided an unexpected insight<br />

into the puzzle. 122-124<br />

Most of the cells in a biofilm are highly susceptible to bactericidal agents such as<br />

fluoroquinolone antibiotics or metal oxyanions, which can kill both rapidly dividing<br />

and slow- or non-growing cells. 124-126 This is important, as cells in the biofilm are<br />

slow-growing, and many are probably in the stationary phase of growth. The<br />

experiment also revealed a small sub-population of cells that remain alive irrespective<br />

of the concentration of the antibiotic (persisters). The number of surviving persisters<br />

was greater in the non-growing stationary phase. In vitro, a stationary culture seems to<br />

be more tolerant than a biofilm to antibiotics. However, this situation is probably<br />

reversed in vivo. Antibiotic treatment will kill most biofilm and planktonic cells,<br />

leaving persisters alive. At this point, the similarity with an in vitro experiment<br />

probably ends. The immune system can mop up and kill remaining planktonic<br />

persisters, just as it eliminates nongrowing cells of a bacterial population that is<br />

treated with a bacteriostatic antibiotic. However, the biofilm exopolymer matrix<br />

protects against immune cells, 127-129 and persisters that are contained in the biofilm


can survive both the onslaught of antibiotic treatment and the immune system. When<br />

the concentration of antibiotic reduces, persisters can repopulate the biofilm, which<br />

will shed off new planktonic cells, producing the relapsing biofilm infection. The<br />

problem of biofilm resistance 72 to killing by most therapeutics probably defaults to<br />

persisters. Interestingly, yeast biofilms also form tolerant persisters.<br />

1.13 Recent publications on 2-aminoimidazoles.<br />

The core structure 2-aminoimidazole has assumed importance in various synthesis<br />

related to heterocyclic in drug synthesis as appeared in Sci-finder search results on the<br />

basis of number of publications in medicinal and synthetic chemistry journals.<br />

Fig.1.10 Sci-finder search results by heating term 2-aminoimidazole.<br />

1.14 Conclusion<br />

Bacterial biofilms pose a serious threat to the healthcare system of our society as they<br />

are responsible for the morbidity and mortality of a myriad of diseases. The<br />

development of antibiotic resistance among many bacterial strains has put a<br />

tremendous pressure on the medical community to find alternative approaches for the<br />

treatment of biofilm-mediated diseases. In this present work of thesis a microwave<br />

assisted synthesis of small molecules which shows ability to controlling bacterial<br />

antibiofilm has been reported.


1.15 References<br />

[1] (a) William A.S., Aleksel F.B., Ron C., Organic Synthesis: the science behind art. Royal<br />

Society of Chemistry (Great Britain). (b) Organic Synthesis Coll vol. and (c) Comprehensive<br />

organic Synthesis book volumes.<br />

[2] For recent reviews on microwave-assisted organic synthesis see: (a) Kappe, C. O. (2004)<br />

Angew.Chem.Int.Ed., 43, 6250. (b) Kappe, C. O., Dallinger, D. (2006) Nat. Drug. Disc. Rev.,<br />

5, 51. (c) Nagariya A.K., Meena.A.K., Kiran, Yadav A.K., Niranjan.U.S., Pathak A.K., Singh.<br />

B., Rao.M.M. (2010) Journal of pharmacy Research. 3, 575-580. (d) Jignasa.K.S. Ketan T.S.,<br />

Bhumika.S.P., Anuradha K.G., (2010) Der Pharma Chemica, 2, 1, 342-353.<br />

[3] (a) Adam, D. (2003) Nature, 421, 571-572. (b) Blackwell, H. E. (2003) Org. Biomol. Chem. 1,<br />

1251-55.<br />

[4] Sharma, S. V.; Rama-sarma, G. V. S.; Suresh, B. (2002), Indian. J. Pham. Scien. 64, 337-344.<br />

[5] Johansson, H. (2001) Am. Lab. 33, 10, 28-32.<br />

[6] Bradley, D. (2001) Modern Drug Discovery 4, 32-36.<br />

[7] Larhed, M.; Hall berg, A. (2001) Drug Discovery Today. 6, 406-416.<br />

[8] Wathey, B.; Tierney, J.; Lidrom, P.; Westman, (2002) J. Drug Discovery Today, 7, 373-380.<br />

[9] Dzieraba, C. D.; Combs, A. P. (2002) Annual reports in medicinal chemistry, academic press,<br />

37, 247-256.<br />

[10] In; http://www.milestonesci.com.<br />

[11] In; http://www.maos.net.<br />

[12] In; http://www.cem.com.<br />

[13] Westaway, K. C.; Gedye, R. J. (1995) Microwave Power Electromagnetic energy 30, 219-<br />

230.<br />

[14] Kuhnert, N. (2002) Angrew Chem. Int. Ed. 41, 1863-1866.<br />

[15] Gabriel, C.; Gabriel, S.; Grant, E. H.; Holstead, B. S. T.; Mingos, D. M. P. (1998) Chem. Soc.<br />

Rev. 27, 213-23.<br />

[16] Langa, F.; DelaCruz, P.; DelaHoz, A.; Diaz-Ortiz, A.; Diez-Barra, E. (1997) Org. Synth. 4,<br />

373-86.<br />

[17] Saillard, R.; Poux, M.; Berlan, J.; Audhvy-peaudecert, M. (1995) Tetrahedron, 51, 4033-42.<br />

[18] Stuerga, D.; Gaillard, P. (1996) Tetrahedron 52, 5505-10.<br />

[19] Caddick, S. (1995) Tetrahedron 51, 10403-32.<br />

[20] Strauss, C. R.; Trainor, R. W. (1995) Aust. J. Chem. 48, 1665-1692.<br />

[21] Bose, A. K.; Banik, B. K.; Lavlinskaia, N.; Jayaraman, M.; Manhas, M. S. (1997) Chemtech.<br />

27, 18-124.<br />

[22] Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. (2001) Tetrahedron, 57, 9225-83.<br />

[23] Nuchter. M.; Ondruschka, B.; Lautenschlager, W. (2003) Chem. Eng. Techno. 26, 1208-<br />

1216.<br />

[24] Nuchter. M.; Ondruschka, B.; Bonrath, W.; Gum, A. (2004) Green Chem. 6, 128-141.<br />

[25] Abramovitch, R. A. (1991), Org. Prep. Proced. Int. 23, 685-711.


[26] Leadbeater, N. E. (2004) Chemistry World 1, 38-41.<br />

[27] Moghaddam, F. M.; Sharifi, A. (1995) Synth. Commun. 25, 2457-61.<br />

[28] Mogilaiah, K.; Kavita, S.; Babu, H. R. (2003) Indian J. Chem. 42b, 1750-52.<br />

[29] Abramovitch, R. A.; Shi, Q.; Bogdal, D. (1995) Synth. Commun. 25, 1-8.<br />

[30] Miljanic, O. S.; Volhardt, K. P. C.; Whitener, G. D. (2003) Synlett. 1, 29-34.<br />

[31] Motorina, I. A.; Parly, F.; Grierson, D. S. (1996) Synlett. 4, 389-91.<br />

[32] Mccarroll, A. J.; Sandham, D. A.; Titumb, L. R.; Dek Lewis, A. K.; Cloke, F. G. N.; Davies,<br />

B. P.; Desantand, A. P.; Hiller, W.; Caddicks, S. (2003) Molecular Diversity 7, 115-23.<br />

[33] Robeiro, G. L.; Khandikar, B. M. (2003) Synth. Commun. 33, 10405-10.<br />

[34] Wali, A.; Paillai, S. M.; Satish, S. (1995) Indian petrochemical Corp. Ltd. 294.<br />

[35] Yamazaki, K.; Kondo, V. (2003) J. Comb. Chem., 5,<br />

[36] Al-obeidi, F.; Austin, R. E.; Okonoya, J. F.; Bond, D. R. S. Mini-rev. (2003) Med. Chem. 3,<br />

449.<br />

[37] Kim, J. K.; Kwon, P. S.; Kwon, T. W.; Chung, S. K.; Lee, J. W. (1996) Synth. Commun. 26,<br />

535-42.<br />

[38] Burten, G.; Cao, P.; Li, G.; Rivero, R. (2003) Org. Lett. 5, 4373-76.<br />

[39] Arevela, R. K.; Leadbeater, N. E. (2003) J. Org Chem. 68, 9122-25.<br />

[40] Crawford, K. R.; Bur, S. K.; Straub, C. S.; Padwa, A. (2003) Org. Lett. 5, 3337-40.<br />

[41] Lerestif, J. M.; Perocheav, J.; Tonnard, F.; Bazareav, J. P.; Hamelin, J. (1995) Tetrahedron<br />

51, 6757-74.<br />

[42] Jaya Kumar, G.; Ajithabai, M. D.; Santhosh, B.; Veena, C. S.; Nair, M. S. (2003) Indian J.<br />

Chem. 42B, 429-31.<br />

[43] Calinescu, I.; Calinescu, R.; Martin, D.I.; Radoiv, M. T. (2003) Res. Chem. Inter med. 29, 71-<br />

81.<br />

[44] Mavoral, J. A.; Cativicla, C.; Garcia, J. I.; Pires, E.; Rovo, A. J.; Figueras, F. (1995) Appl.<br />

Catal. 131, 159-66.<br />

[45] Santagoda, V.; Fiorino, F.; Perissuti, E.; Severino, B.; Terracciano, S.; Cirino, G.; Caliendo,<br />

G. (2003) Tetrahedron lett. 5, 2131-34.<br />

[46] Roy, I.; Gupta, M. N. (2003) Tetrahedron Lett. 44, 1145-48.<br />

[47] Diaz-Ortiz, A.; Dela Hoz, A.; Merrero, M. A.; Prieto, P.; Sanchez-Migallon, A.; Cassio, F. P.;<br />

Arriela, A.; Vivanco, S.; Foces, C. (2003) Molec. Divers. 7, 165-69.<br />

[48] Jnagaki, T.; Fukuhara, T.; Hara, S. (2003) Synthesis 8, 1157-59.<br />

[49] Plazl, I.; Leskovesek, S.; Kolooini, T. (1995) Chem. Eng. J. 59, 253-57.<br />

[50] Lechmann, F.; Pilotti, A.; Luthman, K. (2003) Molec. Divers. 7, 145-52.<br />

[51] Kiasat, A. R.; Kazemi, F.; Rastogi, S. (2003) Synth. Commun. 33, 601-06.<br />

[52] Gospondinova, M.; Gredard, A.; Jeannin, M.; Chitanv, G. C.; Carpov, A.; Thiery, V.; Besson,<br />

T. (2002) Green chem. 4, 220-22.<br />

[53] Vu, z. T.; Liu, L. J.; Zhuo, R. X. (2003) Polym. Chem. Ed. 41, 13-21.<br />

[54] Srikrishana, A.; Kumar, P.P. (1995) Tetrahedron Lett. 36, 6313-16.<br />

[55] Chattopadhyay, S.; Banerjee, S.K.; Mitra, A.K. (2002) J. Indian Chem. Soc. 79, 906-907.


[56] Garbacia, S.; Desai, B.; Lavastre, O.; Kappe, C. O. (2003) J. Org. Chem. 68,<br />

[57] Laurent, A.; Jacquault, P.; Di Martino, J. L.; Hamelin, (1995) Chem. Commun. 1101.<br />

[58] Kad, G. L.; Kaur, I.; Bhandari, M.; Singh, J.; Kaur, J. (2003) J. Org. Proc. Res. Dev. 339-40.<br />

[59] Nielsen, T. E., Schreiber, S. L. (2007) Angew. Chem. Int. Ed., 47, 48-56<br />

[60] a) Nören-Müller, A., Reis-Corr a, Jr., I., Prinz, H., Rosenbaum, C., Saxena, K., Schwalbe, H.<br />

[61]<br />

J., Vestweber, D., Cagna, G., Schunk, S., Schwarz, O., Schiewe, H., Waldmann H. (2006)<br />

Proc. Natl. Acad. Sci. USA, 103, 10606-10611. b) Wilk, W., Krishna Saxena, K., Schwalbe,<br />

H., Kaiser, M., Waldmann, H. (2008) Angew. Chem. Int. Ed., 47, 5973-5977.<br />

Zaborsky, O. R. Plenum Press; New York, N.Y. pp 1-43.<br />

[62] Singh, R., Sharma, M., Joshi, P., Rawat, D. S. (2008) Cancer Agents Med. Chem., 8, 603-617.<br />

[63] Maeda, K., Osato, T., Umezawa, H. (1953) J. Antibiotics, 6, 182.<br />

[64] Nakamura S., Umezawa, H. (1955) J. Antibiotics, 8, 66.<br />

[65] Cudmore, S. L., Delgaty, K. L., Hayward-McClelland, S. F., Petrin, D. P., Garber, G. E.<br />

(2004) Clin. Micro-biol. Rev., 17, 783-793.<br />

[66] Lancini, C. C., Lazari, E., Sartori C. (1968) J. Antibiotics, 6, 387-292.<br />

[67] Seki, Y., Nakamura, T., Okami, Y. (1970) J. Biochem., 67, 389-396.<br />

[68] Utkina, N. K., Fedoreev, S. A. (1984) Khim. Prir. Soedin., 1, 124-125.<br />

[69] Edwards, D. I. (1993) J. Antimicrob. Chemother., 31, 9-20.<br />

[70] Reigan, P., Edwards, P. N., Gbaj, A., Cole, C., Barry, S. T., Page, K. M., Ashton, S. E., Luke,<br />

R. W. A., Douglas, K. T., Stratford, I. J., Jaffar, M., Bryce, R. A., Freeman, S. (2005) J. Med.<br />

Chem., 48, 392-402.<br />

[71] Hodgkiss, R. J. (1998) Anti-Cancer Drug Des., 13, 687-702.<br />

[72] Naylor, M. A., Threadgill, M. D., Webb, P., Stratford, I. J., Stephens, M. A., Fielden, E. M.,<br />

Adams, G. E. (1992) J. Med. Chem., 35, 3573-3578.<br />

[73] Al Mourabit, A.; Potier, P. Eur. J. Org. Chem. 2001, 237 and references therein.<br />

[74] Hofmann, K. (1963) "The Chemistry of Heterocyclic Compounds," Vol. 6, A. Weissburger,<br />

Ed., Interscience Publishers, Inc., New York, N. Y., pp. 141-142.<br />

[75] Angyal, S. J., Angyal, C. L. (1952) J. Am. Chem. Soc., 74, 1461-1466.<br />

[76] Bell, R. P. (1959) Cornel <strong>University</strong> Press, Ithaca, N. Y., p. 96.<br />

[77] Storey, B. T., Sullivan, W. W., Moyer, C. L. (1964) J. Org. Chem, 29, 3118-3120.<br />

[78] Dardonville, C., Rozas, I., Alkorta, I. (1998) J. Mol. Graphics, 16, 150-156.<br />

[79] Ayrton, A., Morgan, P. (2001) Xenobiotica, 31, 469-497.<br />

[80] E. Fattorusso, O. Taglialatela-Scafati, Modern alkaloids: structure, isolation, synthesis and<br />

biology, John Wiley, Weinheim, 2008.<br />

[81] A. E. Wright; S. A. Chiles, S. S. Cross, Nat. Prod. Rep. 1991, 54, 1684–1686.<br />

[82] D. J. Faulkner, Nat. Prod. Rep. 2001, 18, 1–49.<br />

[83] D. S. Ermolat’ev, J.B. Bariwal, H. P. L. Steenackers, S. C. J. De Keersmaecker, E. V. Van der<br />

Eycken (2010), Angew. Chem. Int. Ed. 2010, 49, 9465 –9468<br />

[84] Norris, T. O., McKee, R. L. (1954) J. Am. Chem. Soc., 77, 1056.<br />

[85] Lawson, A. (1956) J. Chem. Soc., 307-310.


[86] Kreutzberger, A. (1962) J. Org. Chem., 27, 886-891.<br />

[87] Lancini, G. C., Lazzari, E. (1966) J. Antibiotics, 3, 152-154.<br />

[88] Lancini, G. C., Lazzari, E., Arioli, V., Bellani, P. (1969) J. Med. Chem., 12, 775-780.<br />

[89] Burtles, R., Pyman, F. L. (1925) J. Chem. Soc., 2012-2018.<br />

[90] Little, T. L., Webber, S. E. (2004) J. Org. Chem., 59, 7299-7305.<br />

[91] Nishimura, T., Kitajima, K. (1979) J. Org. Chem., 44, 818-824.<br />

[92] Marchais, S., Al-Mourabit, A., Poupat, C., Potier, P. (1998) Tetrahedron Lett., 39, 8085-8088.<br />

[93] Sosa, A. C. B., Yakushijin, K., Horne, D. A. (2000) J. Org. Chem., 65, 610-611.<br />

[94] Xu, Y.-Z., Yakushijin, K., Horne, D. A. (1997) J. Org. Chem., 62, 456-464.<br />

[95] Hassner, A., Munger, P., Belinka, Jr., B. A. (1982Tetrahedron Lett., 23, 699-702.<br />

[96] Daninos, S., Al Mourabit, A., Ahond, A., Zurita, M. B., Poupat, C., Potier, P. (1994) Bull.<br />

Soc. Chim. Fr., 131, 590-599.<br />

[97] Danios-Zegal, S., Mourabit, A. A., Poupat, C., Potier, P. (1997) Tetrahedron., 53, 7605-7614.<br />

[98] Jarosinski, M. A., Anderson, K. A. (1991) J. Org. Chem., 56, 4058-4062.<br />

[99] Meketa, M. L., Weinreb, S. M. (2006) Org. Lett., 8, 1443-1446.<br />

[100] Meketa, M. L., Weinreb, S. M. (2007). Org. Lett., 9, 853-855.<br />

[101] Kawasaki, I., Sakaguchi, N., Fukushima, N., Fujioka, N., Nikaido, F, Yamashita, M., Ohta, S.<br />

(2002) Tetrahedron, 43, 4377-4380.<br />

[102] Kawasaki, I., Sakaguchi, N., Khadeer, A., Yamashita, M., Ohta, S. (2006) Tetrahedron, 62,<br />

10182-10192.<br />

[103] Piccionello, A. P., Pace, A., Vivona, N., Pani, M. (2008) Tetrahedron, 64, 4004-4010.<br />

[104] LaMattina, J. L.; Mularski, C. J. Tetrahedron. Lett. 1984, 25, 2957.<br />

[105] Jung, F., Delvare, C., Hamon, A., Ackerley, N., Betts, M. J. (1991) 34, 1110-1116.<br />

[106] Jung, F., Boucherot, D., Delvare, C., Olivier, A., Davies, G. M., Betts, M. J., Brown, R.,<br />

Stevenson, R., Jospeh, M., Kingston, J. F., Pittam, J. D. (1993) J. Antibiotics, 46, 992-1012.<br />

[107] Wilkerson, W. W., Dax, S., Cheatham, W. W. (1997) J. Med. Chem., 40, 4079-4088.<br />

[108] Maze, M., Tranquilli, W. (1991) Anesthesiology, 74, 581-605.<br />

[109] Munk, S. A., Harcourt, D. A., Arasasingham, P. N., Burke, J, A., Kharlamb, A. B., Manlapaz,<br />

C. A., Padillo, E. U., Roberts, D., Runde, E. (1997) J. Med. Chem., 40, 18-23.<br />

[110] Makabe, R. (1966) Dtsch. Med. Wochenschr., 91, 1686-1688.<br />

[111] Wen-Tai Li, Der-Ren Hwang, Jen-Shin Song, Ching-Ping Chen, Jiunn-Jye Chuu,Chih-Bo Hu,<br />

Heng-Liang Lin,Chen-Lung Huang,, Chiung-Tong Chen (2010), J. Med. Chem. DOI:<br />

10.1021/jm901501s<br />

[112] Shawn J. Stachel, Craig A. Coburn, Diane Rush, Samuel L. Grahama, Sanjeev K. Munshi,<br />

Joseph P. Vacca. (2009), Bioorganic & Medicinal Chemistry Letters. 19 2977–2980<br />

[113] Ivory D. Hills, M. Katharine Holloway, Tim J. Allison, Dennis Colussi, Shawn J. Stachel.<br />

(2009), Bioorganic & Medicinal Chemistry Letters 19 4993–4995<br />

[114] Donlan, R. M.; Costerton, J. W. (2002), Clin. Microbiol. Rev. 15, 167.<br />

[115] Richards, J. J.; Melander, C. (2009), Anti-Infect. Agents Med. Chem. 8, 295.<br />

[116] Davies, D. (2003), Nat. Rev. Drug Disc., 2, 114.


[117] Yamada, A.; Kitamura, H.; Yamaguchi, K.; Fukuzawa, S.; Kamijima, C.; Yazawa, K.;<br />

Kuramoto, M.; Fujitani, Y.; Uemura, D. (1997), Bull. Chem. Soc. Jpn. 70, 3061.<br />

[118] Richards, J. J.; Melander, C. (2008), J. Org. Chem. 73, 5191<br />

[119] A. Yamada, H. Kitamura, K. Yamaguchi, S. Fukuzawa, C. Kamijima, K.Yazawa,<br />

M.Kuramoto, G.Y.S.Wang, Y.Fujitani, D.B.Uemura, (1997), Chem. Soc. Jpn., 70, 3061.<br />

[120] J. J. Richards, T. E. Ballard, R. W. Huigens and C. Melander (2008), ChemBioChem, 9, 1267<br />

[121] For synthesis and antibiofilm activity of 2-AI and 2-AI-T see a) Ballard, T. E., J. J. Richards,<br />

A. Aquino, C. S. Reed, and C. Melander. (2009), J. Org. Chem. 74:1755–1758. b) Ballard, T.<br />

E., J. J. Richards, A. L. Wolfe, and C. Melander. (2008). Chemistry 14:10745–10761. c) .<br />

Huigens, R. W., L.Ma, C. Gambino, A. Basso, P. D. R.Moeller, J. Cavanagh, D. J. Wozniak,<br />

and C. Melander. (2008), Mol. Biosyst. 4:614–621. d) Huigens, R. W., III, J. J. Richards, G.<br />

Parise, T. E. Ballard, W. Zeng, R.Deora, and C. Melander. (2007), J. Am. Chem. Soc.<br />

129:6966–6967. e) Huigens, R. W., III, S. A. Rogers, A. T. Steinhauer, and C. Melander.<br />

(2009), Org. Biomol. Chem. 7:794–802. f) Richards, J. J., T. E. Ballard, R. W. Huigens, and<br />

C. Melander. (2008), Chembiochem 9:1267–1279. g) Richards, J. J., T. E. Ballard, and C.<br />

Melander. (2008), Org. Biomol. Chem. 6:1356–1363. h) Richards, J. J., R. W. Huigens, T. E.<br />

Ballard, A. Basso, J. Cavanagh, and C.Melander. (2008), Chem.Commun. (Camb.)<br />

2008:1698–1700. i) Richards, J. J., and C. Melander. (2008), J. Org.Chem. 73:5191–5193. j)<br />

Richards, J. J., C. S. Reed, and C. Melander. (2008), Bioorg. Med. Chem. Lett. 18:4325–<br />

4327. k) Rogers, S. A., R. W. Huigens, and C. Melander. (2009), J. Am. Chem. Soc.<br />

131:9868–9869. l ) Rogers, S. A., M. Krayer, J. S. Lindsey, and C. Melander. (2009), Org.<br />

Biomol. Chem. 7:603–606. m) Rogers, S. A., and C. Melander. (2008), Angew.Chem. Int. Ed.<br />

Engl. 47:5229–5231.<br />

[122] Lewis, K. Riddle. (2001), Antimicrob.Agents Chemother. 45, 999–1007.<br />

[123] Brooun, A., Liu, S. & Lewis, K. Antimicrob. (2000), Agents Chemother. 44, 640–646<br />

[124] Spoering, A. L. & Lewis, K. (2001), J. Bacteriol. 183, 6746–6751.<br />

[125] Harrison, J. J. et al. (2005), Microbiology 151, 3181–3195 53.<br />

[126] Harrison, J. J., Turner, R. J. & Ceri, H. (2005), Microbiol. 7, 981–994.<br />

[127] Leid, J. G., Shirtliff, M. E., Costerton, J. W. & Stoodley, A. P. (2002), Infect. Immun. 70,<br />

6339–6345.<br />

[128] Jesaitis, A. J. et al. (2003), J. Immunol. 171, 4329–4339.<br />

[129] Vuong, C. et al. (2004), Cell. Microbiol. 6, 269–275.<br />

[130] For biofilm resistance mechanism see, http://www.ncbi.nlm.nih.gov/entrez/query.fcg


Microwave Assisted Synthesis & Structure<br />

Activity Relationship of 2-Hydroxy-2-phenyl-<br />

2,3-dihydro-imidazo[1,2-a]pyrimidinium Salts<br />

and 2N-Substituted 4(5)-Phenyl-2-Amino-1H-<br />

imidazoles as Inhibitors of the Biofilm<br />

Formation by Salmonella Typhimurium and<br />

Pseudomonas aeruginosa


Chapter-2<br />

Microwave Assisted Synthesis & Structure Activity Relationship of 2-<br />

Hydroxy-2-phenyl-2,3-dihydro-imidazo[1,2-a]pyrimidinium Salts<br />

and 2N-Substituted 4(5)-Phenyl-2-Amino-1H-imidazoles as Inhibitors<br />

of the Biofilm Formation by Salmonella Typhimurium and<br />

Pseudomonas aeruginosa<br />

Br<br />

N<br />

N<br />

N R 1<br />

OH<br />

R 2<br />

In the current chapter a library of 1-substituted 2-hydroxy-2-phenyl-2,3-dihydro-<br />

imidazo[1,2-a]pyrimidinium salts and 2N-substituted 4(5)-phenyl-2-amino-1H-<br />

imidazoles was synthesized via microwave assisted protocol and tested for the<br />

antagonistic effect against biofilm formation by Salmonella Typhimurium and<br />

Pseudomonas aeruginosa.<br />

Publications:<br />

[1] One-pot microwave-assisted protocol for the synthesis of substituted 2-amino-<br />

R1 HN<br />

1H-imidazoles. Mol Divers. (2010) DOI 10.1007/s11030-010-9270-5<br />

[2] Structure Activity Relationship of 2-Hydroxy-2-phenyl-2,3-dihydro-<br />

imidazo[1,2-a]pyrimidinium Salts and 2N-Substituted 4(5)-Phenyl-2-Amino-<br />

1H-imidazoles as Inhibitors of the Biofilm Formation by Salmonella<br />

Typhimurium and Pseudomonas aeruginosa Bioorganic & Medicinal<br />

Chemistry. Submited (2010)<br />

N<br />

N<br />

H<br />

R 2


2.1 Introduction<br />

As described in chapter-1 the class of 2-aminoimidazoles has recently been given<br />

particular interest due to various biological properties of these compounds. 2-<br />

Aminoimidazole alkaloids and their metabolites, isolated from the marine sponges<br />

Hymeniacidon sp., have been described as potent antagonists of serotonergic 1 and<br />

histaminergic 2 receptors. Naamine and isonaamine alkaloids from the marine sponges<br />

Leucetta sp. exhibit antiviral and anticancer activity. 3,4 Because of these interesting<br />

biological activities, numerous synthetic routes to 1-substituted and 1-unsubstituted 2aminoimidazoles<br />

have been reported. Modern synthetic methods for accessing 1unsubstituted<br />

2-amino-1H-imidazoles can be roughly classified as heterocyclization<br />

of substituted or protected guanidines with 1,2-dielectrophiles, 5a-c heteroaromatic<br />

nucleophilic substitution 5c,6 and recyclization of 2-aminooxazoles. 7 Although different<br />

substituted guanidines are readily available and can be prepared in situ (e.g. from<br />

cyanamines 8 ), the high basicity of guanidines together with non-regioselectivity often<br />

leads to multiple products. 9 Protection by acetyl 5a and Boc-groups 5c requires, in turn,<br />

acidic deprotection conditions. Another procedure is the cyclocondensation of<br />

aldehydes and guanidine nitrate using sodium cyanide and supported aluminum oxide,<br />

which provides symmetric 2-aminoimidazoles. 10<br />

Recently, we described two new approaches to the synthesis of substituted 2-amino-<br />

1H-imidazoles. The first approach is based on the cleavage of imidazo[1,2a]pyrimidines<br />

11 with hydrazine 12 In the second approach we reported microwave<br />

assisted one pot synthesis.(scheme-3) 13


2.2 Reaction scheme:<br />

2.2.1 2-amino pyramidine: (Scheme-1)<br />

N<br />

TEA, EtOH N<br />

R NH2 R<br />

N Cl MW N N<br />

120 H<br />

o +<br />

C, 25 min<br />

2.2.2 Synthesis of substituted 2-amino 1 H-imidazole. (Scheme-2)<br />

N<br />

N N<br />

64% N2H4 100 °C, 10 min<br />

R N<br />

N<br />

+<br />

Br<br />

H<br />

R1 N<br />

MeCN<br />

H MW<br />

O 80 °C, 30 min Br<br />

1<br />

OH<br />

R2 MeCN<br />

MW<br />

R 2<br />

2.2.3 One-Pot approach: (Scheme-3)<br />

N<br />

R1 N N<br />

H<br />

+<br />

Br O<br />

H<br />

R 2<br />

1.MW, 80 °C<br />

MeCN, 30 min<br />

2. N2H4, MW 90 °C<br />

MeCN, 10 min<br />

R 1<br />

HN<br />

N<br />

N<br />

H<br />

R 2<br />

R 1<br />

HN<br />

N<br />

N<br />

H<br />

R 2


2.3 Proposed Mechanism:<br />

Regarding the mechanism of the transformation of 2-hydroxy-2,3-dihydro-1Himidazo[1,2-a]pyrimidinium<br />

salts into 2-amino-1H-imidazoles, we presume that the<br />

reaction proceeds via an unusual Dimroth-type rearrangement 14-16 (Scheme-4).<br />

Scheme-4: Proposed Mechanism for the Dimroth-type Rearrangement of 2-<br />

Hydroxy-2,3-dihydro-1H-imidazo[1,2-a]pyrimidinium Salts III-12<br />

N<br />

N N R1 Br OH<br />

R 2 R3<br />

N N<br />

R 2<br />

NH 2<br />

R1 OH<br />

R 3<br />

N2H4 fast<br />

HN NH R 1<br />

HN<br />

R 2<br />

H 2NHN<br />

O<br />

R 3<br />

N<br />

N<br />

N R1 OH<br />

R 2 R3<br />

R 1HN<br />

N<br />

N<br />

H<br />

H 2NHN<br />

R 2<br />

OH<br />

R 3<br />

N<br />

N<br />

N R1 OH<br />

R 2 R3<br />

1 A B<br />

- H 2O<br />

slow<br />

R 1HN<br />

C D E 2<br />

In the first step, the 2-hydroxy-2,3-dihydroimidazo[1,2-a]pyrimidinium salt (1)<br />

undergoes cleavage of the pyrimidine ring, resulting in the generation of pyrazole and<br />

2-amino-5-hydroxyimidazolidine (C), which is in equilibrium with the open form (D).<br />

This can cyclize again leading to the isomeric 2-amino-5(4)-hydroxyimidazolidines<br />

(E). Both isomers (C) and (E) were detected by mass-spectrometry. Final<br />

dehydratation upon microwave irradiation, results in the rearranged 2-amino-1Himidazoles<br />

2. This dehydratation step, as judged by mass-spectrometry, was found to<br />

be the slowest step of the transformation. While some 2-amino-5(4)hydroxyimidazolidines<br />

(E) lost water spontaneously at room temperature, other<br />

required higher temperature upon microwave irradiation. Therefore all reactions were<br />

run at 100 °C, preventing the sequence from stopping after the first step.<br />

-<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

R 2<br />

R 3


2.4 Results and discussion:<br />

Initially careful investigation of the formation and dehydratation of salt (3) resulting<br />

in the formation of salt (4) under conventional heating conditions as well as upon<br />

microwave irradiation has been studied. As a proof of concept, the condensation of 2methylaminopyrimidine<br />

(1, R1 = Me) and α-phenacylbromide (2, R2 = Ph) was<br />

studied (Table 1). A sealed vial containing a solution of the starting compounds in<br />

acetonitrile was conventionally heated with an oil bath (Table 1, No-1-6) or irradiated<br />

with microwaves (Table 1, No-7-12) at different temperatures for 30−60 min. The<br />

formation of the 2-hydroxy salt (3) was faster under microwave irradiation and this<br />

compound was obtained in 88% yield within 30 min. Further increase of the<br />

temperature up to 120 °C using conventional heating or microwave irradiation led to a<br />

mixture of salts (3) and (4) (Table 1). Interestingly, using microwave irradiation at<br />

120 °C for 60 min, we were able to drive the reaction completely to the formation of<br />

the imidazo[1,2-a]pyrimidinium salt (4) (Table 1, No-12).<br />

N<br />

N N R N<br />

N<br />

Br O<br />

R1 N N +<br />

1 + N<br />

H H R Br<br />

N<br />

2<br />

OH<br />

1 2 3 R2 R Conditions<br />

Br<br />

1<br />

(R1 = Me, R2 = Ph)<br />

4 R2 No. Conditions Time (min) T (°C) 3 (yield %) b 4 (yield %) b<br />

1<br />

30 80 64 0<br />

2 60 80 77 0<br />

3 30 100 81 Traces<br />

Conventional<br />

4 60 100 85 Traces<br />

5 30 120 68 17<br />

6 60 120 53 28<br />

7<br />

30 80 88 0<br />

8 60 80 85 0<br />

9 Microwave 30 100 48 33<br />

10 60 100 45 35<br />

11 30 120 12 79


No.<br />

12 60 120 traces 84<br />

a<br />

All reactions were carried out on a 1 mmol scale of 2-methylaminopyrimidine (1, R1 = Me) with<br />

1.35 equiv of α-phenacylbromide (2, R2 = Ph) in MeCN (5 Ml); b isolated yield after recrystallization<br />

from MeCN.<br />

Table-1: Investigation of the condensation under conventional heating and<br />

microwave irradiation a<br />

As the transformation of salts (3) into salts (4) is relatively rapid at the temperatures<br />

above 100 °C, the synthesis of salts 3 was conducted at 80 °C. Treatment of<br />

substituted 2-aminopyrimidines (1) with 15 mol % excess of α-bromoketones (2) in<br />

MeCN under microwave irradiation for 30 min generated the intermediate salts (3)<br />

which, in most cases, precipitated from the reaction mixture upon cooling (Table-2).<br />

Reaction progress was monitored by mass-spectrometry. In all cases examined, the<br />

reaction appeared to be complete after 30 min. The cleavage step was performed<br />

under microwave irradiation at 90 °C, using 7 equivalents of hydrazine hydrate. Based<br />

on the data given in (Table-2), the reaction appears to be compatible with both aryl<br />

and alkyl substitutions. All the reactions were clean, smooth, and provided the<br />

products in good and high yields. The compounds were purified by column<br />

chromatography using 5−10% MeOH in CH2Cl2 as the eluent. All the final 2-amino-<br />

1H-imidazoles were characterized by 1 H and 13 C NMR spectroscopy. Their<br />

composition was also confirmed by HRMS.<br />

R1 HN<br />

N<br />

N<br />

H<br />

R 2<br />

Compound<br />

Code<br />

R1 R2 Yield<br />

1 BS-136* CH3 2,4-(di-OCH3) 48<br />

2 BS-137* (benzo[d][1,3]dioxol-6- naphthalen-1-yl 72


yl)methyl<br />

3 BS-140* C3H7 3,4-(di-Cl) 70<br />

4 BS-141* cyclohexane 4-SO2Me 43<br />

5 BS-143* C8H17 4-Cl 43<br />

6 BS-146* C5H11 4-Cl 57<br />

7 BS-147* C6H13 4-F 61<br />

8 BS-148* 4-methoxyphenethyl 3-Br 44<br />

9 BS-154* cyclooctane 4-SO2Me 53<br />

10 BS-139* 2-methoxyethyl 4-CN 55<br />

11 BS-258 C8H17 4-OCH3 78<br />

12 BS-259 C8H17 4-F 69<br />

13 BS-260 C8H17 3,4-(di-Cl) 72<br />

14 BS-261 C8H17 3-Br 79<br />

15 BS-262 C8H17 naphthalen-1-yl 68<br />

16 BS-263 C8H17 4-NO2 66<br />

17 BS-264 C8H17 4-(4-NO2Ph) 75<br />

18 BS-265 C8H17 SO2Me 54<br />

19 BS-292 i-Bu 4-NO2 70<br />

20 BS-293 i-Bu H 71<br />

21 BS-294 i-Bu 4-Br 69<br />

22 BS-295 i-Bu 4-Cl 73<br />

*Compounds have been synthesized via One-pot protocol (Scheme-3).<br />

All compounds are either oily or amorphous solid.<br />

Table-2: Microwave assisted synthesis of substituted 2-amino-1H-imidazoles.<br />

2.5 Biofilm activity:<br />

Bacteria are able to switch between a planktonic life style and a biofilm mode of<br />

growth, in which they live as structured communities of bacterial cells enclosed in a<br />

self-produced polymeric matrix and adherent to an inert or living surface. 17 As<br />

bacteria in biofilms are more resistant to challenges from predators, antibiotics,<br />

disinfectants and host immune systems, 18-21 serious problems and high costs have<br />

been associated with biofilms, both in medicine and industrial settings. According to<br />

the National Institutes of Health, more than 80% of microbial infections are related to<br />

biofilms. 22 Especially the use of indwelling medical devices comprises a high risk for


the development of biofilm related infections. 19 This high prevalence of biofilm<br />

related infections is particularly problematic given the fact that bacteria in biofilms<br />

can be up to 1000-fold more resistant to antibiotics. 23 In industry, biofilms have been<br />

implicated e.g. in the contamination of installations in food industry, mild steel<br />

corrosion, decreased passage through pipelines by colonization of the interior of the<br />

pipes, and enhanced resistance of vessels by initiation of “biofouling” on the vessel<br />

hulls. The yearly economic loss caused by ‘biofouling’ in the marine industry is<br />

estimated at $ 6.5 billion. 24<br />

One way to deal with this problem is the development of small molecules that are able<br />

to prevent or destroy biofilm formation 25 . Only a few molecular scaffolds have been<br />

identified to date, among which the best-studied examples are (1) the halogenated<br />

furanones, which were originally isolated from the seaweed Delisea pulchra, 26-27 (2)<br />

analogues of the homoserine lactone signalling molecules 28 and (3) analogues of the<br />

sponge-derived marine natural alkaloids oroidin and bromoageliferin. 29-36 A<br />

particularly valuable approach is the development of small molecules that specifically<br />

target the biofilm formation in a non-toxic manner, as it is expected that resistance<br />

against these compounds will emerge much slower than against classical<br />

microbiocidal compounds. As a consequence, non-toxic biofilm inhibitors have the<br />

potential to be used in a preventive treatment of a wide diversity of industrial and<br />

medical surfaces. Furthermore, the potential to co-dose biofilm inhibitors and<br />

classical antibiotics for the treatment of biofilm infections is also an attractive<br />

option. 27<br />

Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa are two well<br />

studied organisms in terms of biofilm formation. Salmonella enterica is worldwide<br />

one of the most important causes of foodborne infections. Salmonella is able to form<br />

biofilms on a variety of both biotic surfaces (such as gallstones, 37 plant surfaces, 38-39<br />

and epithelial cell layers 40 ) and abiotic surfaces (such as concrete, plastics, glass,<br />

polystyrene, … ) 41-42 . These biofilms are an important survival strategy in all stages<br />

of infection, from transmission to chronic infection. Severe non-typhoid Salmonella<br />

infections are commonly treated with fluoroquinolones and third-generation<br />

cephalosporins. Unfortunately, there are alarming reports concerning the development<br />

of resistance against these antibiotics 43 , underlining the urgent need of alternative<br />

anti-Salmonella strategies. Given the importance of biofilms in the spread of<br />

Salmonella, the development of Salmonella biofilm inhibitors seems a promising


approach. P. aeruginosa is an opportunistic pathogen implicated in a myriad of<br />

infections. Patients with compromised host defenses, such as burn patients, HIV<br />

patients and cystic fibrosis patients (80% colonization rate of P. aeruginosa 44 ) are<br />

particularly susceptible to P. aeruginosa infections. 45 P. aeruginosa biofilms have<br />

been related to recurrent ear infections, chronical bacterial prostatitis and lung<br />

infections in CF patients, the latter being extremely harmful as P. aeruginosa<br />

colonization and chronic lung infection is the major causative agent of morbidity and<br />

mortality in CF patients. 46 Moreover, P. aeruginosa can colonize as biofilms a<br />

variety of medical devices such as intravascular catheters and urinary catheters.<br />

Obviously there is an urgent need of agents that can prevent or eradicate P.<br />

aeruginosa biofilms on infected tissues and on medical devices.<br />

2.5.1 2N-substituted 2-aminopyrimidines<br />

Some members of the 2-aminopyrimidine class of compounds have previously been<br />

shown to possess antibacterial and antifungal activity. 47-48 These molecules are the<br />

precursors of the N1-substituted diazo[1,2-a]pyrimidinium salts in our synthesis<br />

pathway (scheme-2). The availability of a broad array of 2-aminopyrimidines,<br />

substituted with n-alkyl, cyclo-alkyl and aromatic groups at the N2-position prompted<br />

us to investigate the potential of this class of compounds as biofilm inhibitors. The<br />

influence of compounds on the biofilm formation of S. Typhimurium was tested at<br />

25°C. Remarkably, none of the compounds does have an effect on the biofilm<br />

formation at 400 µM, which was the highest concentration tested.<br />

2.5.2 2-hydroxy-2,3-dihydro-imidazopyrimidinium salts<br />

A broad array of 1-substituted 2-hydroxy-2-phenyl-2,3-dihydro-imidazopyrimidinium<br />

salts were synthesized via previously established chemistry from our laboratory and<br />

their ability to prevent the biofilm formation of S. Typhimurium and P. aeruginosa<br />

was tested. These molecules differ in the substitution pattern of the 2-phenyl ring and<br />

in the nature of the substituent at the 1-position i.e. n-alkyl, iso-alkyl, cyclo-alkyl.<br />

2.5.2.1 n-Alkyl or iso-alkyl substituents at 1-position


In first instance, a series of 2-hydroxy-2-phenyl-2,3-dihydro-imidazopyrimidinium<br />

salts with a broad variety of n-alkyl or iso-alkyl substituents at the 1-position, with<br />

lengths ranging from 1 carbon atom to 14 carbon atoms was synthesized. The 2phenyl<br />

group of these salts is either unsubstituted, para-substituted with a chlorine<br />

atom, a nitro group, a fluorine atom, a bromine atom or a methoxy group, or 3,4disubstituted<br />

with chlorine atoms. Each compound was assayed for the ability to<br />

inhibit S. Typhimurium ATCC14028 biofilm formation at 25 °C. As depicted in<br />

figure 1A, a clear correlation was found between the length of the alkyl substituent<br />

and the biofilm inhibitory activity. In general the activity of the molecules with a<br />

short alkyl chain was found to be very low (IC50 > 400 µM). Within a series of<br />

molecules with the same substitution of the 2-phenyl ring, in general a gradual<br />

increase in biofilm inhibitory activity was observed by raising the length of the alkyl<br />

chain from 1 to 8 carbon atoms. The compounds with an octyl substituent show a<br />

maximal activity with IC50 values in the range of 6-11 µM. By further raising the<br />

alkyl chain length from 8 to 14 carbon atoms, a gradual decrease in biofilm inhibitory<br />

activity was observed. For the molecules with a heptyl, octyl, nonyl and decyl side<br />

chain (which are the most active molecules), the nature of the substituent of the 2phenyl<br />

group does not have a substantial effect on the biofilm inhibitory activity.<br />

Next the influence of a subset of the 2-hydroxy-2-phenyl-2,3-dihydroimidazopyrimidinium<br />

salts for their ability to prevent the biofilm formation of P.<br />

aeruginosa was studied. As represented in table-4 and figure-1B, a similar structure<br />

activity relationship was found as in the case of Salmonella biofilm inhibition.<br />

Compounds with short alkyl substituents (C1-6) in general only have a slight effect on<br />

the biofilm formation (IC50’s >80 µM), while compounds with medium length side<br />

chains (C7-C10) have IC50 values between 20-40 µM and compounds with long side<br />

chains (C11-C14) have IC50 values higher than 800 µM. However, it should be<br />

mentioned that some of the compounds with long side chain do reduce the biofilm<br />

formation to a certain extent, but their dose response curves reach a steady state level<br />

of 25 to 45 % biofilm inhibition starting from concentrations between 25 and 50 µM.


Br<br />

N<br />

N<br />

N R 1<br />

OH<br />

R 2<br />

No. Code R2 R1<br />

S. Typhimurium<br />

IC50<br />

P. aeruginosa<br />

IC50<br />

1 BS-289 H i-Bu 131.2 289.4<br />

2 BS-083 H n-Pen 278.2 565.4<br />

3 BS-058 H n-Hex 102.0 405.8<br />

4 BS-049 H n-Hep 23.4 25.5<br />

5 BS-052 H n-Oct 9.8 14.4<br />

6 BS-061 H n-Non 8.3 26.8<br />

7 BS-055 H n-Dec 15.0 29.9<br />

8 BS-064 H n-Und 24.6 >800<br />

9 BS-067 H n-Dod 27.5 >800<br />

10 BS-070 H n-Trd 81.6 >800<br />

11 BS-073 H n-Tet 179.6 >800<br />

12 BS-291 4-Cl i-Bu 31.4 83.4<br />

13 BS-099 4-Cl n-Pen 32.6 163.9<br />

14 BS-092 4-Cl n-Hex 13.7 79.8<br />

15 BS-089 4-Cl n-Hep 6.7 36.9<br />

16 BS-090 4-Cl n-Oct 7.0 15.7<br />

17 BS-093 4-Cl n-Non 18.3 20.2<br />

18 BS-091 4-Cl n-Dec 51.3 83.3<br />

19 BS-094 4-Cl n-Und 61.9 >800<br />

20 BS-095 4-Cl n-Dod 122.1 >800<br />

21 BS-096 4-Cl n-Trd 316.1 >800<br />

22 BS-097 4-Cl n-Tet >800 >800<br />

23 BS-288 4-NO2 i-Bu 322.5 191.7<br />

24 BS-290 4-Br i-Bu 5.2 6.3<br />

IC50: Concentration of inhibitor needed to inhibit biofilm formation by 50%.<br />

Table-4: Influence of 1-alkylated 2-hydroxy-2,3-dihydro-imidazo[1,2a]pyrimidinium<br />

salts on the biofilm formation of S. Typhimurium ATCC14028 and P.<br />

aeruginosa PA14 at 25°C.


Br<br />

N<br />

N<br />

N R 1<br />

OH<br />

Br<br />

N<br />

N<br />

N R 1<br />

OH<br />

Figure-1A: Effect of the length of the n-alkyl chain at the 1-position of 2-hydroxy-2-<br />

phenyl-2,3-dihydro-imidazo[1,2-a]pyrimidinium salts, substituted with Cl and H at<br />

the para-position of the 2-phenyl ring, on the IC50 (µM) for inhibition of biofilm<br />

formation of S. Typhimurium ATCC14028.<br />

2.5.2.2 Further Modification in the most active core structure<br />

Since the compounds with a n-octyl chain substituted at the 1-position have the<br />

highest activity against Salmonella biofilms and also have a high activity against<br />

Pseudomonas biofilms, we decided to synthesize the additional 1-octyl-2-hydroxy-2phenyl-2,3-dihydro-imidazopyrimidinium<br />

salts with more variation in the substitution<br />

pattern of the 2-phenyl ring. As depicted in Table 5 these compounds generally inhibit<br />

biofilm formation of S. Typhimurium at low concentrations. However, no improved<br />

activity was observed in comparison with the previously described compounds (Table<br />

2). The effect of the n-octyl substituted compounds on the biofilm formation of P.<br />

aeruginosa strongly depends on the substitution pattern of the 2-phenyl ring, as some<br />

Cl


of the compounds have low IC50 values (10-40 µM), while the other compounds only<br />

have a moderate activity (IC50 = 100-400 µM).<br />

Br<br />

N<br />

N<br />

N C 8H 17<br />

OH<br />

R<br />

SR CODE R<br />

S. Typhimurium<br />

IC50<br />

P. aeruginosa<br />

IC50<br />

1 BS-180 4-NO2 6.6 12.1<br />

2 BS-176 4-F 7.6 nd<br />

3 BS-175 4-OMe 10.5 nd<br />

4 BS-177 3,4-diCl 7.1 nd<br />

5 BS-187 4-SMe 13.2 36.5<br />

6 BS-179 Naphtyl 14.7 15.1<br />

7 BS-185 4-(4-NO2Ph) 31 215.2<br />

8 BS-186 4-SO2Me 60.3 99.9<br />

9 BS-188 4-([1,1’-biphenylyl]-4-yl) 52.8 336.1<br />

10 BS-178 3-Br 7.1 29<br />

Table-5: Influence of N1-octyl 2-hydroxy-2, 3-dihydro-imidazo[1,2-a]pyrimidinium<br />

salts on the biofilm formation of S. Typhimurium ATCC14028 and P. aeruginosa<br />

PA14 at 25°C.<br />

2.5.2.3 Cyclo-alkyl substituents at 1-position<br />

A series of 2-hydroxy-2-phenyl-2,3-dihydro-imidazopyrimidinium salts with a broad<br />

variety of cyclo-alkyl substituents at the 1-position was synthesized with lengths<br />

ranging from 3 to 12 carbon atoms (Table 6). The 2-phenyl group of these salts was<br />

either unsubstantiated or para-substituted with a chlorine atom. Similarly to the<br />

structure-activity relationship delineated for the n-alkyl substituted salts, a gradual<br />

increase in the inhibitory activity against Salmonella biofilms was observed by rising<br />

the length of the cyclo-alkyl chain from 3 to 8 carbon atoms. However, in contrast to<br />

the salts with n-dodecyl chain at the 1-position, the salts with a cyclo-dodecyl chain


do have a very strong effect against Salmonella biofilms (IC50 values < 6.25 µM). By<br />

analogy with (1) the effect on Salmonella biofilms and (2) the activity of the n-alkyl<br />

substituted salts, we found that all the cyclo-alkyl substituted salts with a short side<br />

chain do only have a slight effect on the biofilm formation of P. aeruginosa (IC50’s<br />

>150 µM), while the compounds with a medium length side chain have a stronger<br />

biofilm inhibitory activity. The salts with a cyclo-dodecyl chain do drastically reduce<br />

the Pseudomonas biofilm formation (IC50’s ~7 µM), in sharp contrast to the<br />

compounds with n-dodecyl side chain.<br />

Br<br />

N<br />

N<br />

N R 1<br />

OH<br />

R 2<br />

SR CODE R2 R1<br />

S. Typhimurium<br />

IC50<br />

P. aeruginosa<br />

IC50<br />

1 BS-079 H c-Bu 493.0 >400<br />

2 BS-076 H c-Hex 139.0 22.4<br />

3 BS-046 H c-Hep 84.2 191.3<br />

4 BS-043 H c-Oct 58.4 48.6<br />

5 BS-100 4-Cl c-Bu 120.8 371.5<br />

6 BS- 4-Cl c-Pen 41.8 41.9<br />

7 BS-098 4-Cl c- Hex 33.0 16.4<br />

8 BS-088 4-Cl c- Hep 27.9 76.2<br />

9 BS-087 4-Cl c-Oct 12.6 22.7<br />

10 BS-086 4-Cl c-Doc 5.6 6.8<br />

Table-6: Influence of 1-cyclo-alkyl-2-hydroxy-2,3-dihydro-imidazo[1,2-a]<br />

pyrimidinium salts on the biofilm formation of S. Typhimurium ATCC14028 and P.<br />

aeruginosa PA14 at 25°C.<br />

2.5.3 2N-substituted 2-aminoimidazoles<br />

In the present it was interesting to investigate whether introduction of n-alkyl, isoalkyl,<br />

cyclo-alkyl or aromatic group at the 2N-position of the 4(5)-phenyl-2-amino-


1H-imidazoles could also enhance their biofilm inhibitory activity. Therefore a broad<br />

range of 2N-substituted 4(5)-phenyl-2-amino-1H-imidazoles were synthesized.<br />

An array of 4(5)-phenyl-2-aminoimidazoles 2N-substituted with either a short n- or<br />

iso-alkyl chain (C1-C5) or n-octyl chain was synthesized. As depicted in table7, a<br />

broad diversity of (substituted) 4(5)-phenyl groups were included. The compounds<br />

with a iso-butyl substitution at the 2N-position were found to be in general more<br />

active than their 2N-unsubstituted counterparts, with respect to both the Salmonella<br />

and Pseudomonas biofilm formation.<br />

SR R1<br />

R1 HN<br />

R2<br />

N<br />

N<br />

H<br />

R 2<br />

S. Typhimurium<br />

IC50<br />

P. aeruginosa<br />

IC50<br />

1 CH3 2,4-(di-OCH3) Nd Nd<br />

2<br />

(benzo[d][1,3]dioxol-<br />

6-yl)methyl<br />

naphthalen-1-yl 261.0 10.5<br />

3 C3H7 3,4-(di-Cl) 10.9 27.7<br />

4 Cyclohexane 4-SO2Me Nd Nd<br />

5 C8H17 4-Cl >400 Nd<br />

6 C5H11 4-Cl >400 Nd<br />

7 C6H13 4-F >400 12.5<br />

8 C8H17 4-OCH3 >400 >800<br />

9 C8H17 4-F >400 Nd<br />

10 C8H17 3,4-(di-Cl) 118.3 >800<br />

11 C8H17 3-Br 44.6 >800<br />

12 C8H17 naphthalen-1-yl 238.4 >800<br />

13 C8H17 4-NO2 10.9 25.0<br />

14 C8H17 4-(4-NO2Ph) Nd Nd<br />

15 C8H17 SO2Me 41.8 Nd<br />

16 i-Bu 4-NO2 3.8 22.9<br />

17 i-Bu H 4.9 1.2<br />

18 i-Bu 4-Br 2.9 1.2<br />

19 i-Bu 4-Cl 2.0 0.9<br />

Table-7: Influence of 2N-alkylated 2-aminoimidazoles on the biofilm formation and<br />

the planktonic growth of S. Typhimurium ATCC14028 and P. aeruginosa PA14 at<br />

25°C.


2.6 Conclusion<br />

In the present study, the potential of these 1-substituted 2-hydroxy-2,3-dihydroimidazopyrimidinium<br />

salts and 2N-subsituted 2-amino-1H-imidazoles as inhibitors of<br />

the biofilm formation by S. Typhimurium and P. aeruginosa was thoroughly<br />

investigated. We found that 2-hydroxy-2,3-dihydro-imidazopyrimidinium salts with<br />

intermediate length n-alkyl chains (C7-C10) substituted at the 1-position in general<br />

prevent the biofilm formation of both species at low micromolar concentrations (IC50<br />

= 5-50 µM). For these molecules, the nature of the substituent of the 2-phenyl group<br />

does not have a substantial effect on the biofilm inhibitory activity. Salts with a<br />

shorter (C1-C5) or longer (C11-C14) n-alkyl chain at the 1-position were found to be<br />

much less potent. Consistent with this, we observed that salts with an intermediate<br />

length cyclo-alkyl chain are much more active against biofilm formation of both<br />

species as compared to the salts with a short cyclo-alkyl chain. However, remarkably<br />

salts with a long cyclo-dodecyl side chain were found to have even better activities<br />

than salts with an intermediate length cyclo-alkyl side chain.<br />

In the framework of the 2-aminoimidazoles, be the introduction of a butyl, pentyl or<br />

hexyl side chain at the 2N-position of the 2-aminoimdazoles results in an enhanced<br />

biofilm inhibitory activity against both species, while introduction of a shorter n-alkyl<br />

chain reduces the biofilm inhibitory activity. The effect of introduction of longer nalkyl<br />

chains however seems to be strongly dependent on the substitution pattern of the<br />

5-phenyl ring and the bacterial species studied.<br />

In conclusion, the 2N-substituted 2-aminoimidazoles and 2-hydroxy-2-phenyl-2,3dihydro-imidazopyrimidinium<br />

salts of the present study are valuable candidates in the<br />

development of therapeutics and sanitizers for the combat of biofilm formation by S.<br />

Typhimurium, P. aeruginosa and possibly other pathogenic bacteria.


2.7 Experimental<br />

2.7.1 General Methods<br />

All chemical reagents were used without further purification. Solvents for column<br />

chromatography and TLC were laboratory grade and distilled before use. For thinlayer<br />

chromatography (TLC), analytical TLC plates (Alugram SIL G/UV254 (E. M.<br />

Merk) were used. Column chromatography was performed with flash silica gel (100-<br />

200 mesh) or neutral alumina oxide (50-200 micron). 1 H and 13 C NMR spectra were<br />

recorded on a Bruker Avance 300 (300 MHz) or a Bruker AMX-400 (400 MHz)<br />

spectrometers. NMR samples were run in the indicated solvents and were referenced<br />

internally. Chemical shift values were quoted in ppm and coupling constants were<br />

quoted in Hz. Chemical shift multiplicities were reported as s = singlet, d = doublet, t<br />

= triplet, q = quartet, m = multiplet and br = broad. Low-resolution mass spectra were<br />

recorded on a HEWLETT-PACKARD instrument (CI or EI) and LCQ Advantage<br />

instrument (ESI). High-resolution mass spectra (EI) were recorded on a KRATOS<br />

MS50TC instrument. Melting points were determined using Reichert-Jung Thermovar<br />

apparatus and were uncorrected.<br />

2.7.2 Microwave Irradiation Experiments<br />

Microwave irradiation experiments were carried out in a dedicated CEM-Discover<br />

mono-mode microwave apparatus or Milestone MicroSYNTH multi-mode microwave<br />

reactor (Laboratory Microwave Systems). Microwave apparatuses were used in the<br />

standard configuration as delivered, operating at a frequency 2.45 GHz with<br />

continuous irradiation power from 0 to 400 W. The reactions were carried out in 10,<br />

20, 30 and 50 mL glass tubes. The temperature was measured with an IR sensor on<br />

the outer surface of the process vial or fibre optic sensor inside the process vial. After<br />

the irradiation period, the reaction vessel was cooled rapidly (2-5 min) to ambient<br />

temperature by air jet cooling.


2.8 Biological assays<br />

2.8.1 Static peg assay for prevention of Salmonella Typhimurium and<br />

Pseudomonas aeruginosa biofilm formation<br />

The device used for biofilm formation is a platform carrying 96 polystyrene pegs<br />

(Nunc no. 445497) that fits as a microtiter plate lid with a peg hanging into each<br />

microtiter plate well (Nunc no. 269789). Two-fold serial dilutions of the compounds<br />

in 100 µl liquid broth (Tryptic Soy Broth diluted 1/20 (TSB 1/20)) per well were<br />

prepared in the microtiter plate (2 or 3 repeats per compound). Subsequently, an<br />

overnight culture of S. Typhimurium ATCC14028 (grown in Luria-Bertani medium)<br />

or P. aeruginosa (grown in TSB) was diluted 1:100 into the respective liquid broth<br />

and 100 µl (~10 6 cells) was added to each well of the microtiter plate, resulting in a<br />

total amount of 200 µl medium per well. The pegged lid was placed on the microtiter<br />

plate and the plate was incubated for 24 h at 25°C without shaking. During this<br />

incubation period biofilms were formed on the surface of the pegs. After 24 h, the<br />

optical density at 600 nm (OD600) was measured for the planktonic cells in the<br />

microtiter plate using a VERSAmax microtiter plate reader (Molecular Devices). This<br />

gives a first indication of the effect of the compounds on the planktonic growth. For<br />

quantification of biofilm formation, the pegs were washed once in 200 µl phosphate<br />

buffered saline (PBS). The remaining attached bacteria were stained for 30 min with<br />

200 μl 0.1% (w/v) crystal violet in an isopropanol/methanol/PBS solution (v/v<br />

1:1:18). Excess stain was rinsed off by placing the pegs in a 96-well plate filled with<br />

200 μl distilled water per well. After the pegs were air dried (30 min), the dye bound<br />

to the adherent cells was extracted with 30% glacial acetic acid (200 µl). The OD570 of<br />

each well was measured using a VERSAmax microtiter plate reader (Molecular<br />

Devices). The IC50 value for each compound was determined from the concentration<br />

gradient by using the GraphPad software of Prism.


2.8.2 Bioscreen assay for measuring Salmonella Typhimurium and P.<br />

aeruginosa growth inhibition<br />

The Bioscreen device (Oy Growth Curves Ab Ltd) was used for measuring the<br />

influence of the chemical compounds on the planktonic growth of Salmonella<br />

Typhimurium and P. aeruginosa. The Bioscreen is a computer controlled<br />

incubator/reader/shaker that uses 10x10 well microtiter plates and measures light<br />

absorbance of each well at a specified wave length in function of time. An overnight<br />

culture of S. Typhimurium ATCC14028 (grown up in LB medium) or P. aeruginosa<br />

(grown up in TSB) was diluted 1:200 in liquid broth (TSB 1/20). 300 µl of the diluted<br />

overnight culture was added to each well of the 10x10 well microtiter plate.<br />

Subsequently, serial dilutions of the chemical compounds were prepared in DMSO or<br />

EtOH. 3 µl of each diluted stock solution was added to the wells (containing the 300<br />

µl bacterial culture) in 3-fold. As a control 3 µl of the appropriate solvent was also<br />

added to the plate in 3- or 4-fold. The microtiter plate was incubated in the Bioscreen<br />

device at 25°C for at least 24 h, with continuous medium shaking. The absorbance of<br />

each well was measured at 600 nm each 15 min. Excel was used to generate the<br />

growth curves for the treated wells and the untreated control wells.<br />

The effect of each compound concentration on the planktonic growth was classified<br />

into one of the following categories:<br />

1) The planktonic growth is not or only slightly affected, indicated by the symbol<br />

‘-‘.<br />

2) The planktonic growth is retarded, indicated by the symbol ‘+’.<br />

3) The planktonic growth is completely or almost completely inhibited, indicated<br />

by the symbol ‘o’.<br />

The following criterium was used to decide between the first and the second category:<br />

If the absorbance (measured at 600 nm) of the bacterial culture treated with the<br />

compound is at least 0.5 (for Salmonella) or 0.8 (for Pseudomonas) units lower<br />

than the absorbance of the untreated culture during 4 consecutive hours, then the<br />

effect on the planktonic growth is classified in category 2.


2.9 Experimental protocol:<br />

2.9.1 General Procedure for the Preparation of Substituted 2-<br />

Aminopyrimidines<br />

In a 50 mL microwave vial were successively dissolved in EtOH (20 mL) 2chloropyrimidine<br />

(3.43 g, 30 mmol), amine (39 mmol, 1.3 equiv) and triethylamine<br />

(6.2 mL, 45 mmol, 1.5 equiv). The reaction tube was sealed, and irradiated in the<br />

cavity of a Milestone MicroSYNTH microwave reactor at a ceiling temperature of<br />

120 °C at 100 W maximum power for 25 min. After the reaction mixture was cooled<br />

with an air flow for 15 min, it was diluted with water (100 mL), extracted with DCM<br />

(2×150 mL) and dried over Na2SO4. The solvent was evaporated in vacuo, and the<br />

crude mixture was purified by silica gel flash chromatography using 0-5%<br />

MeOH−DCM as the eluent.<br />

13 new substituted 2-aminopyrimidine derivatives were synthesized in similar<br />

manner. (Table-1)<br />

Table-1 Compound synthesized<br />

N<br />

N<br />

N<br />

H R<br />

ENTRY CODE R Yield<br />

1 BS-021 cyclododecane 66<br />

2 BS -024 cyclooctane 60<br />

3 BS -025 cycloheptane 64<br />

4 BS -030 cyclobutane 61<br />

5 BS-029 C6H13 88<br />

6 BS -026 C7H15 87<br />

7 BS -027 C8H17 86<br />

8 BS -033 C9H19 86<br />

9 BS -028 C10H21 87<br />

10 BS -034 C11H23 88<br />

11 BS -035 C12H25 89<br />

12 BS -036 C13H27 88<br />

13 BS -037 C14H19 88


2.9.2 General Procedure for the Preparation of Salts.<br />

To a solution of 2-substituted aminopyrimidine (6 mmol) and α-bromoacetophenone<br />

(7.2 mmol, 1.2 equiv) in acetonitrile (12 mL) was added 4-dimethylaminopyridine (6<br />

mg, 0.05 mmol). After being stirred at 85 °C for 5 h, the reaction mixture was diluted<br />

with acetone (20 mL) and the precipitate was filtered and washed with acetone (2×20<br />

mL), ether (2×20 mL) and dried over P2O5 to give salt as a white solid.<br />

10 new compounds were synthesized in similar manner.<br />

2.9.3 General Procedure for the Preparation of Salts. (Microwave)<br />

In a 50 mL microwave vial were successively dissolved 2-substituted<br />

aminopyrimidine (6 mmol) and α-bromoacetophenone (7.2 mmol, 1.2 equiv) in<br />

acetonitrile (12 mL) was added 4-dimethylaminopyridine (6 mg, 0.05 mmol). The<br />

reaction tube was sealed, and irradiated in the cavity of a Milestone MicroSYNTH<br />

microwave reactor at a ceiling temperature of 80 °C at 100 W maximum power for 30<br />

min. After the reaction mixture was cooled with an air flow for 15 min, the reaction<br />

mixture was diluted with acetone (20 mL) and the precipitate was filtered and washed<br />

with acetone (2×20 mL), ether (2×20 mL) and dried over P2O5 to give salt as a white<br />

solid. 34 new compounds were synthesized in similar manner.<br />

2.9.4 General Procedure for the Preparation of 2-Amino-1H-imidazoles.<br />

To a suspension of salt (2 mmol) in MeCN (5 mL) hydrazine hydrate (0.7 mL, 14<br />

mmol of a 64% solution, 7 equiv) was added, and the mixture was irradiated in the<br />

sealed Milestone MicroSYNTH microwave reactor for 10 min at a ceiling<br />

temperature of 100 °C at 150 W maximum power. After cooling down hydrazine<br />

hydrate was evaporated with toluene (3×20 mL). The resulting residue was purified<br />

by column chromatography (silica gel; MeOH−DCM 1:4 v/v with 5% of 6M NH3 in<br />

MeOH) to afford 2-amino-1H-imidazole as an amorphous material.<br />

12 new compounds were synthesized in similar manner.<br />

2.9.5 General procedure for the one-pot two-step microwave-assisted synthesis<br />

of 2-amino-1H-imidazoles.<br />

In a microwave vial (10 mL) were successively dissolved in dry MeCN (3 mL) the<br />

corresponding 2-aminopyrimidine (4 mmol) and α-bromoketone (4.6 mmol). The<br />

reaction tube was sealed and irradiated in a microwave reactor at a ceiling


temperature of 80 °C and a maximum power of 50 W for 30 min. After the reaction<br />

mixture was cooled with an air flow for 15 min, hydrazine hydrate (0.9 mL, 28 mmol<br />

of a 64% solution, 7 equiv) was added, and the mixture was irradiated at a ceiling<br />

temperature of 90 °C and a maximum power of 50 W for another 10 min. After the<br />

reaction mixture was cooled, hydrazine hydrate was removed by distillation with<br />

toluene (3×20 mL). The resulting residue was purified by column chromatography<br />

(silica gel; MeOH-DCM 1:9 v/v with 0.5 % of 6N ammonia in MeOH) to afford 2amino-1H-imidazole<br />

as amorphous solid.<br />

10 new compounds were synthesized in similar manner.<br />

2.10 Spectral Characterization<br />

N-Cyclooctylpyrimidin-2-amine (BS-024)<br />

N<br />

N<br />

N<br />

H<br />

Yield: 60%. 1 H NMR (300 MHz, CDCl3): δ = 8.25 (d, J = 4.77 Hz, 2H), 6.46 (t, J =<br />

4.8 Hz, 1H), 5.07 (br s, 1H), 4.04 (m, 1H), 1.93 (m, 2H), 1.63 (m, 12H). 13 C NMR<br />

(75.5 MHz, CDCl3): δ =161.6, 158.0 (×2), 110.0, 50.6, 31.7 (×2), 27.5 (×2), 25.3,<br />

23.5 (×2). HRMS (EI): C12H19N3, calcd 205.2994, found: 205.2982.<br />

N –Cycloheptylpyrimidin-2-amine (BS-025)<br />

N<br />

N<br />

N<br />

H<br />

Yield: 64%. 1 H NMR (300 MHz, CDCl3): δ = 8.26 (d, J = 4.77 Hz, 2H), 6.47 (t, J =<br />

4.77 Hz, 1H), 5.09 (br s, 1H), 4.01 (m, 1H), 2.02 (m, 2H), 1.55 (m, 10H). 13 C NMR<br />

(75.5 MHz, CDCl3): δ =161.6, 158.0 (×2), 110.0, 51.6, 35.0 (×2), 28.2 (×2), 23.9<br />

(×2). HRMS (EI): C11H17N3, calcd 191.2728, found: 191.2742.<br />

N –Heptylpyrimidin-2-amine (BS-026)<br />

N<br />

N<br />

N<br />

H<br />

C 7H 15<br />

Yield: 87%. 1 H NMR (300 MHz, CDCl3): δ = 8.27 (d, J = 4.8 Hz, 2H), 6.50 (t, J = 4.8<br />

Hz, 1H), 5.07 (br s, 1H), 3.40 (m, 2H), 1.61 (m, 2H), 1.31 (m, 8H), 0.85 (m 3H). 13 C


NMR (75.5 MHz, CDCl3): δ =162.5, 157.9 (×2), 110.1, 41.5, 31.8, 29.6, 29.0, 26.9,<br />

22.6, 14.0. HRMS (EI): C11H19N3, calcd 193.2887, found: 193.2894.<br />

N –Octylpyrimidin-2-amine (BS-027)<br />

N<br />

N<br />

N<br />

H<br />

C 8H 17<br />

Yield: 86%. 1 H NMR (300 MHz, CDCl3): δ = 8.27 (d, J = 4.74 Hz, 2H), 6.49 (t, J =<br />

4.77 Hz, 1H), 5.11 (br s, 1H), 3.40 (m, 2H), 1.60 (m, 2H), 1.27 (m, 10H), 0.87 (m<br />

3H). 13 C NMR (75.5 MHz, CDCl3): δ =162.4, 158.0 (×2), 110.1, 41.5, 31.8, 29.6,<br />

29.3, 29.2, 26.9, 22.6, 14.1. HRMS (EI): C12H21N3, calcd 207.3152, found: 207.3131.<br />

N –Decylpyrimidin-2-amine (BS-028)<br />

N<br />

N<br />

N<br />

H<br />

C 10H 21<br />

Yield: 87%. 1 H NMR (300 MHz, CDCl3): δ = 8.27 (d, J = 4.8 Hz, 2H), 6.50 (t, J = 4.8<br />

Hz, 1H), 5.07 (br s, 1H), 3.38 (m, 2H), 1.60 (m, 2H), 1.26 (m, 14H), 0.87 (t, J = 6.93,<br />

3H). 13 C NMR (75.5 MHz, CDCl3): δ =162.4, 158.0 (×2), 110.1, 41.5, 31.8, 29.6 (×2),<br />

29.5, 29.3 (×2), 26.9, 22.6, 14.1. HRMS (EI): C14H25N3, calcd 235.3684, found:<br />

235.3670.<br />

N –Cyclobutylpyrimidin-2-amine (BS-030)<br />

N<br />

N<br />

N<br />

H<br />

Yield: 61%. 1 H NMR (300 MHz, CDCl3): δ = 8.27 (m, 2H), 6.51 (t, J = 4.77 Hz, 1H),<br />

5.29 (br s, 1H), 4.46 (m, 1H), 2.42 (m, 2H), 1.89 (m, 2H), 1.76 (m, 2H). 13 C NMR<br />

(75.5 MHz, CDCl3): δ =161.6, 158.0 (×2), 110.4, 46.3, 31.5 (×2), 15.0. HRMS (EI):<br />

C8H11N3, calcd 149.1930, found: 149.1917<br />

N –Nonylpyrimidin-2-amine (BS-033)<br />

N<br />

N<br />

N<br />

H<br />

C 9H 19<br />

Yield: 86%. 1 H NMR (300 MHz, CDCl3): δ = 8.27 (d, J = 4.71 Hz, 2H), 6.50 (t, J =<br />

4.77 Hz, 1H), 5.07 (br s, 1H), 3.40 (m, 2H), 1.61 (m, 2H), 1.26 (m, 12H), 0.87 (t, J =<br />

6.9, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =162.5, 158.0 (×2), 110.1, 41.5, 31.8, 29.6,


29.5,29.4, 29.2, 27.0, 22.6, 14.1. HRMS (EI): C13H23N3, calcd 221.3418, found:<br />

221.3400.<br />

N –Undecylpyrimidin-2-amine (BS-034)<br />

N<br />

N<br />

N<br />

H<br />

C 11H 23<br />

Yield: 88%. 1 H NMR (300 MHz, CDCl3): δ = 8.27 (d, J = 4.62 Hz, 2H), 6.50 (t, J =<br />

4.77 Hz, 1H), 5.07 (br s, 1H), 3.40 (m, 2H), 1.60 (m, 2H), 1.25 (m, 16H), 0.87 (t, J =<br />

6.87, 3H). 13 C NMR (75.5 MHz, CDCl3): δ = 162.5, 158.0 (×2), 110.2, 41.5, 31.9,<br />

29.6 (×4), 29.3 (×2), 26.9, 22.6, 14.1. HRMS (EI): C15H27N3, calcd 249.3950, found:<br />

249.3938.<br />

N –Dodecylpyrimidin-2-amine (BS-035)<br />

N<br />

N<br />

N<br />

H<br />

C 12H 25<br />

Yield: 89%. 1 H NMR (300 MHz, CDCl3): δ = 8.27 (d, J = 4.41 Hz, 2H), 6.50 (t, J =<br />

4.74 Hz, 1H), 5.07 (br s, 1H), 3.40 (m, 2H), 1.61 (m, 2H), 1.25 (m, 18H), 0.88 (t, J =<br />

6.84, 3H). 13 C NMR (75.5 MHz, CDCl3): δ = 162.4, 158.0 (×2), 110.2, 41.5, 31.9,<br />

29.6 (×5), 29.3 (×2), 26.9, 22.6, 14.1. HRMS (EI): C16H29N3, calcd 263.4216, found:<br />

263.4202.<br />

N –Tridecylpyrimidin-2-amine (BS-036)<br />

N<br />

N<br />

N<br />

H<br />

C 13H 27<br />

Yield: 88%. 1 H NMR (300 MHz, CDCl3): δ = 8.27 (d, J = 4.77 Hz, 2H), 6.50 (t, J =<br />

4.8 Hz, 1H), 5.07 (br s, 1H), 3.38 (m, 2H), 1.60 (m, 2H), 1.25 (m, 20H), 0.88 (t, J =<br />

6.9, 3H). 13 C NMR (75.5 MHz, CDCl3): δ = 162.4, 158.0 (×2), 110.1, 41.5, 31.9, 29.6<br />

(×6), 29.3 (×2), 27.0, 22.7, 14.1. HRMS (EI): C17H31N3, calcd 277.4481, found:<br />

277.4491.<br />

N –Tetradecylpyrimidin-2-amine (BS-037)<br />

N<br />

N<br />

N<br />

H<br />

C 14H 29


Yield: 88%. 1 H NMR (300 MHz, CDCl3): δ = 8.27 (d, J = 4.77 Hz, 2H), 6.50 (t, J =<br />

4.8 Hz, 1H), 5.07 (br s, 1H), 3.38 (m, 2H), 1.60 (m, 2H), 1.25 (m, 22H), 0.88 (t, J =<br />

6.9, 3H). 13 C NMR (75.5 MHz, CDCl3): δ = 162.4, 158.0 (×2), 110.2, 41.5, 31.9, 29.6<br />

(×7), 29.3 (×2), 26.9, 22.7, 14.1. HRMS (EI): C18H33N3, calcd 291.4747, found:<br />

291.4723.<br />

1-Heptyl-2-hydroxy-2-phenyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4-ium<br />

bromide amine (BS-049)<br />

N<br />

Br<br />

N<br />

N C 7H 15<br />

OH<br />

Yield: 75 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (m, 1H), 8.85 (m, 1H), 7.80 (s,<br />

1H), 7.77 (m, 2H), 7.49 (m, 3H), 7.31 (m, 1H), 4.82 (s, 2H). 3.17 (m, 2H), 1.36 (m,<br />

2H), 1.09 (m, 8H), 0.80 (t, J = 6.84 Hz, 3H).<br />

2-Hydroxy-1-octyl-2-phenyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4-ium<br />

bromide (BS-052)<br />

N<br />

Br<br />

N<br />

N C 8H 17<br />

OH<br />

Yield: 73 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (m, 1H), 8.86 (m, 1H), 7.80 (s,<br />

1H), 7.75 (m, 2H), 7.47 (m, 3H), 7.31 (t, J = 5.49 Hz, 1H), 4.83 (s, 2H). 3.17 (m, 2H),<br />

1.36 (m, 2H), 1.09 (m, 10H), 0.83 (t, J = 6.72 Hz, 3H).<br />

1-Decyl-2-hydroxy-2-phenyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4-ium<br />

bromide (BS-055)<br />

N<br />

Br<br />

N<br />

N C 10H 21<br />

OH


Yield: 78 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (d, J = 4.62 Hz, 1H), 8.87 (d, J =<br />

6.18 Hz, 1H), 7.81 (s, 1H), 7.74 (m, 2H), 7.47 (m, 3H), 7.31 (m, 1H), 4.83 (s, 2H).<br />

3.17 (m, 2H), 1.09 (m, 16H), 0.85 (t, J = 6.51 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3):<br />

δ =167.5, 154.5, 148.2, 138.2, 129.2, 128.3 (×2), 126.9 (×2), 111.1, 90.6, 62.6, 40.7,<br />

31.2, 28.7, 28.6, 28.5, 28.2, 27.3, 25.8, 22.0, 13.9.<br />

1-Hexyl-2-hydroxy-2-phenyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4-ium<br />

bromide (BS-058)<br />

N<br />

Br<br />

N<br />

N C 6H 13<br />

OH<br />

Yield: 80 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (m, 1H), 8.87 (m, 1H), 7.81 (s,<br />

1H), 7.74 (m, 2H), 7.47 (m, 3H), 7.31 (m 1H), 4.83 (s, 2H). 3.17 (m, 2H), 1.34 (m,<br />

2H), 1.09 (m, 6H), 0.78 (t, J = 6.48 Hz, 3H).<br />

2-Hydroxy-1-nonyl-2-phenyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4-ium<br />

bromide (BS-061)<br />

N<br />

Br<br />

N<br />

N C 9H 19<br />

OH<br />

Yield: 75 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (m, 1H), 8.87 (m, 1H), 7.80 (s,<br />

1H), 7.74 (m, 2H), 7.47 (m, 3H), 7.31 (t, J = 6.21 Hz, 1H), 4.83 (s, 2H). 3.17 (m, 2H),<br />

1.09 (m, 14H), 0.84 (t, J = 6.63 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =167.5,<br />

154.5, 148.2, 138.2, 129.2, 128.3 (×2), 126.9 (×2), 111.1, 90.6, 62.6, 40.7, 31.1, 28.5,<br />

28.4, 28.2, 27.3, 25.8, 22.0, 13.9.<br />

2-Hydroxy-2-phenyl-1-undecyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4-ium<br />

bromide (BS-064)<br />

N<br />

Br<br />

N<br />

N C 11H 23<br />

OH


Yield: 80 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (d of d, J = 1.89, 4.68 Hz, 1H),<br />

8.87 (d, J = 6.06 Hz, 1H), 7.80 (s, 1H), 7.75 (m, 2H), 7.47 (m, 3H), 7.31 (m 1H), 4.83<br />

(s, 2H). 3.17 (m, 2H), 1.09 (m, 18H), 0.85 (t, J = 6.42 Hz, 3H).<br />

1-Dodecyl-2-hydroxy-2-phenyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4-ium<br />

bromide (BS-067)<br />

N<br />

Br<br />

N<br />

N C 12H 25<br />

OH<br />

Yield: 78 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (m, 1H), 8.87 (m, 1H), 7.81 (s,<br />

1H), 7.74 (m, 2H), 7.46 (m, 3H), 7.31 (m, 1H), 4.84 (s, 2H). 3.17 (m, 2H), 1.22 (m,<br />

20H), 0.85 (t, J = 6.24 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =167.5, 154.5,<br />

148.2, 138.2, 129.2, 128.3 (×2), 126.9 (×2), 111.1, 90.6, 62.6, 40.7, 31.2, 28.9 (×2),<br />

28.8, 28.6 (×2), 28.2, 27.3, 25.8, 22.0, 13.9.<br />

2-Hydroxy-2-phenyl-1-tridecyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4-ium<br />

bromide (BS-070)<br />

N<br />

Br<br />

N<br />

N C 13H 27<br />

OH<br />

Yield: 79 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (m, 1H), 8.87 (m, 1H), 7.80 (s,<br />

1H), 7.76 (m, 2H), 7.46 (m, 3H), 7.31 (m 1H), 4.83 (s, 2H). 3.17 (m, 2H), 1.22 (m,<br />

22H), 0.85 (m, 3H).<br />

2-Hydroxy-2-phenyl-1-tetradecyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4-ium<br />

bromide (BS-073)


N<br />

Br<br />

N<br />

N C 14H 29<br />

OH<br />

Yield: 72 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (d, J = 4.65 Hz, 1H), 8.87 (d, J =<br />

6.27 Hz, 1H), 7.81 (s, 1H), 7.77 (m, 2H), 7.46 (m, 3H), 7.32 (m 1H), 4.84 (s, 2H).<br />

3.17 (m, 2H), 1.23 (m, 24H), 0.85 (m, 3H).<br />

1-Cyclobutyl-2-hydroxy-2-phenyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4ium<br />

bromide (BS-079)<br />

N<br />

Br<br />

N<br />

N<br />

OH<br />

Yield: 77 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (m, 1H), 8.83 (m, 1H), 7.86 (s,<br />

1H), 7.65(m, 2H), 7.46(m, 3H), 7.34 (m 1H), 4.76 (s, 2H). 3.90 (m, 1H), 2.76 (m,<br />

2H), 1.88 (m, 2H), 1.69 (m, 2H).<br />

2-Hydroxy-1-pentyl-2-phenyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4-ium<br />

bromide (BS-083)<br />

N<br />

Br<br />

N<br />

N C 5H 11<br />

OH<br />

Yield: 74 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (m, 1H), 8.86 (m, 1H), 7.82 (s,<br />

1H), 7.77 (m, 2H), 7.47 (m, 3H), 7.31 (m 1H), 4.83 (s, 2H). 3.17 (m, 2H), 1.36, (m,<br />

2H), 1.09 (m, 4H), 0.73 (t, J = 6.72 Hz, 3H).<br />

2-(4-Chlorophenyl)-1-cycloheptyl-2-hydroxy-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-088)<br />

N<br />

Br<br />

N<br />

N<br />

OH<br />

Cl


Yield: 90 %. 1 H NMR (300 MHz, CDCl3): δ = 9.00 (d of d, J = 1.92, 4.65 Hz, 1H),<br />

8.85 (m, 1H), 7.92 (s, 1H), 7.79 (d, J = 8.64 Hz, 2H), 7.56 (d, J = 8.58 Hz, 2H), 7.28<br />

(m, 1H), 4.74 (m, 2H). 3.10 (m, 1H), 2.19 (m, 2H), 1.40 (m, 10H).<br />

2-(4-Chlorophenyl)-1-heptyl-2-hydroxy-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-089)<br />

N<br />

Br<br />

N<br />

N C 7H 15<br />

OH<br />

Cl<br />

Yield: 91 %. 1 H NMR (300 MHz, CDCl3): δ = 9.04 (d, J = 4.65 Hz, 1H), 8.87 (d, J =<br />

5.85 Hz, 1H), 7.90 (s, 1H), 7.78 (d, J = 8.61 Hz, 2H), 7.55 (d, J = 8.58 Hz, 2H), 7.32<br />

(m, 1H), 4.82 (s, 2H). 3.17 (m, 2H), 1.09 (m, 10H), 0.81 (t, J = 7.17 Hz, 3H).<br />

2-(4-Chlorophenyl)-2-hydroxy-1-octyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-<br />

4-ium bromide (BS-090)<br />

N<br />

Br<br />

N<br />

N C 8H 17<br />

OH<br />

Cl<br />

Yield: 71 %. 1 H NMR (300 MHz, CDCl3): δ = 9.05 (d, J = 6.51 Hz, 1H), 8.90 (d, J =<br />

6.24 Hz, 1H), 7.90 (s, 1H), 7.78 (d, J = 8.61 Hz, 2H), 7.55 (d, J = 8.58 Hz, 2H), 7.32<br />

(m, 1H), 4.82 (m, 2H). 3.17 (m, 2H), 1.09 (m, 12H), 0.83 (t, J = 6.75 Hz, 3H).<br />

2-(4-Chlorophenyl)-1-decyl-2-hydroxy-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-<br />

4-ium bromide (BS-091)<br />

N<br />

Br<br />

N<br />

N C 10H 21<br />

OH<br />

Cl<br />

Yield: 86 %. 1 H NMR (300 MHz, CDCl3): δ = 9.04 (d, J = 3.33 Hz, 1H), 8.86 (d, J =<br />

6.0 Hz, 1H), 7.89 (s, 1H), 7.81 (d, J = 8.37 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.32 (m,<br />

1H), 4.82 (m, 2H). 3.17 (m, 2H), 1.09 (m, 16H), 0.85 (t, J = 6.51 Hz, 3H). 13 C NMR


(75.5 MHz, CDCl3): δ = 167.7, 154.6, 148.2, 137.3, 134.1, 129.0 (×2), 126.3 (×2),<br />

111.1, 90.2, 62.5, 40.7, 31.2, 28.8, 28.6 (×2), 28.2, 27.2, 25.8, 22.0, 13.9.<br />

2-(4-Chlorophenyl)-1-hexyl-2-hydroxy-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-<br />

4-ium bromide (BS-092)<br />

N<br />

Br<br />

N<br />

N C 6H 13<br />

OH<br />

Cl<br />

Yield: 83 %. 1 H NMR (300 MHz, CDCl3): δ = 9.04 (d, J = 4.47 Hz, 1H), 8.87 (d, J =<br />

6.3 Hz, 1H), 7.90 (s, 1H), 7.78 (d, J = 8.55 Hz, 2H), 7.56 (m, 2H), 7.33 (t, J = 5.0 Hz,<br />

1H), 4.82 (m, 2H). 3.17 (m, 2H), 1.05 (m, 8H), 0.79 (t, J = 6.30 Hz, 3H).<br />

2-(4-Chlorophenyl)-2-hydroxy-1-nonyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-<br />

4-ium bromide (BS-093)<br />

N<br />

Br<br />

N<br />

N C 9H 19<br />

OH<br />

Cl<br />

Yield: 82 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (d of d, J = 1.86, 4.62 Hz, 1H),<br />

8.86 (m, 1H), 7.89 (s, 1H), 7.78 (d, J = 8.64 Hz, 2H), 7.55 (d, J = 8.58 Hz, 2H), 7.32<br />

(m, 1H), 4.82 (m, 2H). 3.17 (m, 2H), 1.09 (m, 14H), 0.84 (t, J = 6.63 Hz, 3H).<br />

2-(4-Chlorophenyl)-2-hydroxy-1-undecyl-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-094)<br />

N<br />

Br<br />

N<br />

N C 11H 23<br />

OH<br />

Cl


Yield: 83 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (d, J = 4.56 Hz, 1H), 8.87 (d, J =<br />

6.3 Hz, 1H), 7.89 (s, 1H), 7.78 (d, J = 8.49 Hz, 2H), 7.55 (d, J = 8.49 Hz, 2H), 7.32<br />

(m, 1H), 4.82 (m, 2H). 3.17 (m, 2H), 1.22 (m, 18H), 0.85 (t, J = 6. 3 Hz, 3H). 13 C<br />

NMR (75.5 MHz, CDCl3): δ = 167.5, 154.6, 148.2, 137.3, 134.1, 129.0 (×2), 128.3<br />

(×2), 111.1, 90.2, 62.5, 40.7, 31.2, 28.9, 28.8, 28.6 (×2), 28.2, 27.2, 25.8, 22.0, 13.9.<br />

2-(4-Chlorophenyl)-1-dodecyl-2-hydroxy-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-095)<br />

N<br />

Br<br />

N<br />

N C 12H 25<br />

OH<br />

Cl<br />

Yield: 90 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (d of d, J = 1.83, 4.59 Hz, 1H),<br />

8.87 (d, J = 6.06 Hz, 1H), 7.90 (s, 1H), 7.78 (d, J = 8.64 Hz, 2H), 7.55 (d, J = 8.61<br />

Hz, 2H), 7.32 (m, 1H), 4.82 (m, 2H). 3.17 (m, 2H), 1.22 (m, 20H), 0.85 (t, J = 6. 33<br />

Hz, 3H).<br />

2-(4-Chlorophenyl)-2-hydroxy-1-tridecyl-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-096)<br />

N<br />

Br<br />

N<br />

N C 13H 27<br />

OH<br />

Cl<br />

Yield: 95 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (d of d, J = 1.83, 4.65 Hz, 1H),<br />

8.87 (d of d, J = 1.77, 6.27 Hz, 1H), 7.90 (s, 1H), 7.78 (d, J = 8.61 Hz, 2H), 7.55 (d, J<br />

= 8.61 Hz, 2H), 7.32 (m, 1H), 4.82 (m, 2H). 3.17 (m, 2H), 1.23 (m, 22H), 0.85 (t, J =<br />

6. 33 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ = 167.5, 154.6, 148.2, 137.2, 134.1,<br />

129.0 (×2), 128.3 (×2), 111.2, 90.2, 62.5, 40.7, 31.2, 28.9 (×3), 28.8, 28.6 (×2), 28.2,<br />

27.2, 25.8, 22.0, 13.9.<br />

2-(4-Chlorophenyl)-2-hydroxy-1-tetradecyl-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-097)


N<br />

Br<br />

N<br />

N C 14H 29<br />

OH<br />

Cl<br />

Yield: 90 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (d, J = 4.56 Hz, 1H), 8.87 (d J =<br />

6.12 Hz, 1H), 7.90 (s, 1H), 7.78 (d, J = 8.55 Hz, 2H), 7.55 (d, J = 8.55 Hz, 2H), 7.32<br />

(t, J = 4.95 Hz, 1H), 4.82 (m, 2H). 3.17 (m, 2H), 1.23 (m, 24H), 0.85 (t, J = 6. 09 Hz,<br />

3H).<br />

2-(4-Chlorophenyl)-1-cyclohexyl-2-hydroxy-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-098)<br />

N<br />

Br<br />

N<br />

N<br />

OH<br />

Cl<br />

Yield: 84 %. 1 H NMR (300 MHz, CDCl3): δ = 9.01 (d of d, J = 1.86, 4.68 Hz, 1H),<br />

8.84 (d of d, J = 1.83, 6.39 Hz, 1H), 7.96 (s, 1H), 7.78 (d, J = 8.64 Hz, 2H), 7.56 (d, J<br />

= 8.58 Hz, 2H), 7.30 (m, 1H), 4.72 (m, 2H). 3.02 (m, 1H), 2.13 (m, 2H), 0.75 (m, 8H).<br />

2-(4-Chlorophenyl)-2-hydroxy-1-pentyl-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-099)<br />

N<br />

Br<br />

N<br />

N C 5H 11<br />

OH<br />

Cl<br />

Yield: 78 %. 1 H NMR (300 MHz, CDCl3): δ = 9.04 (d of d, J = 1.8, 4.56 Hz, 1H),<br />

8.87 (d of d, J = 1.65, 6.27 Hz, 1H), 7.90 (s, 1H), 7.78 (d, J = 8.64 Hz, 2H), 7.56 (d, J<br />

= 8.61 Hz, 2H), 7.32 (m, 1H), 4.81 (m, 2H). 3.17 (m, 2H), 1.10 (m, 6H), 0.75 (t, J = 6.<br />

81 Hz, 3H).<br />

2-(4-Chlorophenyl)-1-cyclobutyl-2-hydroxy-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

(BS-100)


N<br />

Br<br />

N<br />

N<br />

OH<br />

Cl<br />

Yield: 81 %. 1 H NMR (300 MHz, CDCl3): δ = 9.06 (d, J = 4.11 Hz, 1H), 8.84 (d, J =<br />

6.21 Hz, 1H), 7.95 (s, 1H), 7.69 (d, J = 8.58 Hz, 2H), 7.55 (d, J = 8.55 Hz, 2H), 7.35<br />

(t, J = 5.22 Hz, 1H), 4.64 (m, 2H), 3.89 (m, 1H), 2.73 (m, 2H), 1.91 (m, 2H), 1.66 (m,<br />

2H).<br />

2-Hydroxy-2-(4-methoxyphenyl)-1-octyl-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-175)<br />

N<br />

Br<br />

N<br />

N C 8H 17<br />

OH<br />

OMe<br />

Yield: 77 %. 1 H NMR (300 MHz, CDCl3): δ = 9.02 (m, 1H), 8.84 (d, J = 6.3 Hz, 1H),<br />

7.71 (s, 1H), 7.65 (d, J = 8.79 Hz, 2H), 7.30 (m, 2H), 7.01 (d, J = 8.79 Hz, 1H), 4.79<br />

(s, 2H). 3.79 (s, 3H), 3.17 (m, 2H), 1.10 (m, 12H), 0.83 (t, J = 6.66 Hz, 3H). 13 C NMR<br />

(75.5 MHz, CDCl3): δ = 167.4, 159.7, 154.4, 148.2, 129.8, 128.4 (×2), 113.5 (×2),<br />

111.0, 90.5, 62.5, 55.2, 40.5, 31.0, 28.2 (×2), 27.3, 25.8, 22.0, 13.8.<br />

2-(4-Fluorophenyl)-2-hydroxy-1-octyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-<br />

4-ium bromide (BS-176)<br />

N<br />

Br<br />

N<br />

N C 8H 17<br />

OH<br />

F<br />

Yield: 68 %. 1 H NMR (300 MHz, CDCl3): δ = 9.03 (d of d, J = 1.92, 4.71 Hz, 1H),<br />

8.84 (d of d, J = 1.65, 6.3 Hz, 1H), 7.86 (s, 1H), 7.82 (m, 2H), 7.33 (m, 3H), 4.82 (s,<br />

2H). 3.17 (m, 2H), 1.10 (m, 12H), 0.83 (t, J = 6.72 Hz, 3H). 13 C NMR (75.5 MHz,<br />

CDCl3): δ = 167.4, 164.1, 160.8, 154.5, 134.5 (×2), 129.5 (d), 115.3 (d), 111.2, 90.2,<br />

62.5, 40.6, 31.0, 28.2 (×2), 27.3, 25.8, 21.9, 13.8.


2-(3,4-Dichlorophenyl)-2-hydroxy-1-octyl-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-177)<br />

N<br />

Br<br />

N<br />

N C 8H 17<br />

OH<br />

Cl<br />

Cl<br />

Yield: 82 %. 1 H NMR (300 MHz, CDCl3): δ = 9.05 (d of d, J = 1.86, 4.62 Hz, 1H),<br />

8.88 (d of d, J = 1.74, 6.27 Hz, 1H), 8.07 (s, 1H), 8.02 (s, 1H), 7.78 (s, 2H), 7.33 (m,<br />

1H), 4.83 (m, 2H). 3.23 (m, 2H), 1.11 (m, 12H), 0.83 (t, J = 6.75 Hz, 3H). 13 C NMR<br />

(75.5 MHz, CDCl3): δ = 167.4, 154.6, 148.0, 139.4, 132.1, 131.2, 130.4, 129.4, 127.3,<br />

111.3, 89.6, 62.3, 40.6, 31.0, 28.2 (×2), 27.2, 25.7, 21.9, 13.8.<br />

2-(3-Bromophenyl)-2-hydroxy-1-octyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-<br />

4-ium bromide (BS-178)<br />

N<br />

Br<br />

N<br />

N C 8H 17<br />

OH<br />

Br<br />

Yield: 53 %. 1 H NMR (300 MHz, CDCl3): δ = 9.04 (d of d, J = 1.86, 4.68 Hz, 1H),<br />

8.87 (d of d, J = 1.62, 6.27 Hz, 1H), 8.01 (s, 1H), 7.93 (s, 1H), 7.77 (d, J = 7.86 Hz,<br />

1H), 7.66 (d, J = 8.4 Hz, 1H), 7.46 (t, J = 7.92 Hz, 1H) 7.33 (m, 1H), 4.82 (m, 2H).<br />

3.22 (m, 2H), 1.36 (m, 2H), 1.11 (m, 10H), 0.83 (t, J = 6.72 Hz, 3H). 13 C NMR (75.5<br />

MHz, CDCl3): δ = 167.4, 154.6, 148.1, 140.9, 132.1, 130.4, 129.9, 126.0, 121.7,<br />

111.2, 89.8, 62.5, 40.6, 31.0, 28.2 (×2), 27.2, 25.7, 21.9, 13.8.<br />

2-Hydroxy-2-(naphthalen-1-yl)-1-octyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-<br />

4-ium bromide (BS-179)


N<br />

Br<br />

N<br />

N C 8H 17<br />

OH<br />

Yield: 82 %. 1 H NMR (300 MHz, CDCl3): δ = 9.08 (d, J = 4.11 Hz, 1H), 9.00 (d, J =<br />

5.25 Hz, 1H), 8.38 (s, 1H), 8.02 (m, 4H), 7.86 (d, J = 7. 61 Hz, 1H), 7.60 (m, 2H),<br />

7.38 (t, J = 5.64 Hz, 1H), 4.99 (s, 2H). 3.26 (m, 2H), 1.39 (m, 2H), 1.00 (m, 10H),<br />

0.76 (t, J = 6.6 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ = 167.4, 154.7, 148.3,<br />

135.4, 132.9, 132.1, 128.4, 128.1, 127.5, 127.0, 126.6 (×2), 124.2, 111.2, 90.8, 62.5,<br />

40.7, 30.9, 28.2 (×2), 27.3, 25.8, 21.9, 13.8.<br />

2-Hydroxy-2-(4-nitrophenyl)-1-octyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4ium<br />

bromide (BS-180)<br />

N<br />

Br<br />

N<br />

N C 8H 17<br />

OH<br />

NO 2<br />

Yield: 75 %. 1 H NMR (300 MHz, CDCl3): δ = 9.06 (m, 1H), 8.89 (m, 1H), 8.37 (d, J<br />

= 8.7 Hz, 2H), 8.12 (s, 1H), 8.05 (d, J = 8.76 Hz, 2H), 7.36 (m, 1H), 4.86 (m, 2H).<br />

3.22 (m, 2H), 1.39 (m, 2H), 1.09 (m 10H), 0.81 (t, J = 6.66 Hz, 3H). 13 C NMR (75.5<br />

MHz, CDCl3): δ = 167.5, 154.7, 148.2, 147.9, 145.2, 128.7 (×2), 123.0 (×2), 111.4,<br />

90.0, 62.3, 40.8, 30.9, 28.2 (×2), 27.2, 25.7, 21.9, 13.8.<br />

2-Hydroxy-2-(4’-nitrobiphenyl-4-yl)-1-octyl-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-185)


N<br />

Br<br />

N<br />

N C 8H 17<br />

OH<br />

NO 2<br />

Yield: 49 %. 1 H NMR (300 MHz, CDCl3): δ = 9.05 (d, J = 4.11 Hz, 1H), 8.88 (d, J =<br />

6.2 Hz, 1H), 8.32 (d, J = 8.7 Hz, 2H), 8.03 (d, J = 8.76 Hz, 2H), 7.94 (m, 5H), 7.34 (t,<br />

J = 4.98 Hz, 1H), 4.87 (s, 2H). 3.24 (m, 2H), 1.43 (m, 2H), 1.10 (m 10H), 0.76 (t, J =<br />

6.45 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ = 167.5, 154.6, 148.2, 146.9, 145.5,<br />

138.9, 138.4, 127.9 (×3), 127.2 (×2), 124.1 (×3), 111.2, 90.5, 62.6, 40.8, 31.0, 28.2<br />

(×2), 27.3, 25.8, 21.9, 13.8.<br />

2-Hydroxy-2-(4-(methylsulfonyl)phenyl)-1-octyl-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-186)<br />

N<br />

Br<br />

N<br />

N C 8H 17<br />

OH<br />

SO 2Me<br />

Yield: 48 %. 1 H NMR (300 MHz, CDCl3): δ = 9.06 (d of d J = 1.65, 4.47 Hz, 1H),<br />

8.94 (d of d, J = 1.56, 6.21 Hz, 1H), 8.08 (s, 1H), 8.05 (s, 4H), 7.36 (m, 1H), 4.87 (m,<br />

2H). 3.27 (s, 3H), 3.24 (m, 2H), 1.40 (m, 2H), 1.11 (m, 10H), 0.82 (t, J = 6.66 Hz,<br />

3H). 13 C NMR (75.5 MHz, CDCl3): δ = 167.4, 154.7, 148.2, 143.7 (×2), 141.6, 128.1<br />

(×2), 127.0, 111.4, 90.3, 62.5, 43.3, 40.9, 31.0, 28.2 (×2), 27.4, 25.9, 21.9, 13.8.<br />

2-Hydroxy-2-(4-(methylthio)phenyl)-1-octyl-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-187)


N<br />

Br<br />

N<br />

N C 8H 17<br />

OH<br />

SMe<br />

Yield: 49 %. 1 H NMR (300 MHz, CDCl3): δ = 9.02 (m, 1H), 8.85 (m, 1H), 7.78 (s,<br />

1H), 7.66 (d, J = 8.52 Hz, 2H), 7.33 (m, 3H), 4.79 (m, 2H). 3.33 (s, 3H), 3.22 (m,<br />

2H), 1.39 (m, 2H), 1.10 (m, 10H), 0.83 (t, J = 6.66 Hz, 3H). 13 C NMR (75.5 MHz,<br />

CDCl3): δ = 167.4, 154.7, 148.2, 143.7 (×2), 141.6, 128.1 (×2), 127.0, 111.4, 90.3,<br />

62.5, 43.3, 40.9, 31.0, 28.2 (×2), 27.4, 25.9, 21.9, 13.8.<br />

5-(2,4-Dimethoxyphenyl)-N-methy-1H-imidazol-2-amine (BS-136)<br />

HN<br />

N<br />

N<br />

H<br />

O<br />

O<br />

Yield : 48 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.63 (br, 1H), 7.43 (d, J = 3.0<br />

Hz, 1H), 7.07 (s, 1H), 6.90 (d, J = 8.8 Hz, 1H), 6.63 (d of d, J = 3.1, 3.1 Hz, 1H), 5.73<br />

(q, J = 5.1 Hz, 1H), 3.80 (s, 3H). 3.71 (s, 3H), 2.77 (d, J= 5.1 Hz, 3H). 13 C NMR<br />

(75.5 MHz, DMSO-d6): δ =153.1, 151.0, 149.5, 129.3, 123.4, 114.8, 111.8, 111.2,<br />

110.1, 55.5, 55.2, 29.8. HRMS (EI) C12H15N3O2, calcd 233.1164, found : 233.1173.<br />

N-((Benzol[d][1,3]dioxol-6-yl)-5-(naphthalene-3-yl)-1H-imidazol-2-amine (BS-<br />

137)<br />

O<br />

O<br />

HN<br />

N<br />

N<br />

H<br />

Yield : 72 %. 1 H NMR (300 MHz, DMSO-d6) δ = 10.61 (br, 1H), 8.06 (s, 1H), 7.83-<br />

7.79 (m, 4H), 7.44-7.37 (m, 2H), 7.19 (s, 1H), 6.99 (s, 1H), 6.87-6.86 (m, 2H), 6.32 (t,<br />

J = 6.4 Hz, 1H), 5.96 (s, 2H), 4.34 (d, J = 6.4 Hz, 2H). 13 C NMR (75.5 MHz,<br />

DMSO-d6) δ =151.2, 147.0, 145.8, 134.6, 133.5, 131.3, 127.5 (x 2), 127.4, 127.3,<br />

126.0,125.6, 124.6, 123.2, 120.4, 108.0 (x 2),107.8, 100.6 (x 2), 46.1. HRMS EI<br />

C21H17N3O2, calcd 343.1321 , found : 343.1340.<br />

5-(3,4-Dichlorophenyl)-N-propyl-1H-imidazol-2-amine(BS-140)


C3H7 HN<br />

N<br />

N<br />

H<br />

Cl<br />

Cl<br />

Yield : 70 %. 1 H NMR (300 MHz, DMSO-d6) δ = 10.55 (br, 1H), 7.82 (s, 1H), 7.58<br />

(s, 1H), 7.50 (d, J = 8.2 Hz, 1H), 7.22 (s, 1H), 5.83 (t, J = 6.0 Hz, 1H), 3.10 (q, J = 8.2<br />

Hz, 2H), 1.54 (m, 2H), 0.90 (t, J = 7.35 Hz, 3H). 13 C NMR (75.5 MHz, DMSO-d6) δ<br />

=151.6, 130.9 (x 2), 130.3 (x 2), 126.3, 124.6, 123.4, 104.2, 44.7, 22.6, 11.4. HRMS<br />

EI C12H13Cl2N3, calcd 269.0487, found : 269.0480.<br />

N-Cyclohexyl-5-(4-(methylsulfonyl)phenyl)-1H-imidazol-2-amine (BS-141)<br />

HN<br />

N<br />

N<br />

H<br />

S O<br />

O<br />

Yield : 43 %. 1 H NMR (300 MHz, DMSO-d6) δ = 10.54 (br, 1H), 7.83-7.76 (m, 4H),<br />

7.31 (s, 1H), 5.75 (d, J = 8.4 Hz, 1H), 3.16 (s, 3H), 2.49 (s, 1H), 1.90 (s, 2H), 1.70 (m,<br />

2H), 1.20 (m, 6H). 13 C NMR (75.5 MHz, DMSO-d6) δ =151.1, 140.1, 136.1, 127.2(x<br />

4), 123.4 (x 2), 104.2, 51.1, 43.7, 33.0(x 2), 25.4, 24.6(x 2). HRMS EI C16H21N3O2S,<br />

calcd 319.1354. , found : 319.1337.<br />

5-(4-Chlorophenyl)-N-octyl-1H-imidazol-2-amine (BS-143)<br />

C8H17 HN<br />

N<br />

N<br />

H<br />

Cl<br />

Yield : 43%. 1 H NMR (300 MHz, DMSO-d6) δ = 10.43 (br, 1H), 7.63 (d, J = 8.3 Hz,<br />

2H), 7.31 (d, J = 8.4 Hz, 2H), 7.09 (s, 1H), 5.71 (t, J = 4.9 Hz, 1H), 3.12 (m, 2H),<br />

1.48-1.51 (m, 2H), 1.25 (m, 10H), 0.85 (t, J = 4.2 Hz, 3H). 13 C NMR (75.5 MHz,<br />

DMSO-d6) δ =151.5, 128.8 (x 2), 128.1 (x 3), 124.9 (x 2), 100.7, 42.9, 31.2, 29.4,<br />

28.8, 28.7, 26.4, 22.0, 13.9. HRMS EI C17H24ClN3, calcd 305.1659, found : 305.1646.<br />

5-(4-Chlorophenyl)-N-pentyl-1H-imidazol-2-amine (BS-146)<br />

C5H11 HN<br />

N<br />

N<br />

H<br />

Cl


Yield: 57 %. 1 H NMR (300 MHz, DMSO-d6) δ = 10.44 (br, 1H), 7.65 (d, J = 7.3 Hz,<br />

2H), 7.31 (d, J = 8.3 Hz, 2H), 7.09 (s, 1H), 5.71 (t, J = 5.1 Hz, 1H), 3.12 (m, 2H),<br />

1.51 (t, J = 1.7 Hz, 2H), 1.30 (m, 4H), 0.88 (t, J = 6.7 Hz, 3H). 13 C NMR (75.5 MHz,<br />

DMSO-d6) δ =151.5, 128.9 (x 2), 128.1 (x 3), 124.9 (x 2), 104.1, 42.8, 29.1, 28.6,<br />

21.9, 13.9.HRMS EI C14H18ClN3, calcd 263.1189. , found: 263.1180.<br />

5-(4-Fluorophenyl)-N-hexyl-1H-imidazol-2-amine (BS-147)<br />

C6H13 HN<br />

N<br />

N<br />

H<br />

F<br />

Yield: 61 %. 1 H NMR (300 MHz, DMSO-d6) δ = 10.38 (br, 1H), 7.62 (m, 2H), 7.09<br />

(t, J = 8.8 Hz, 2H), 6.99 (s, 1H), 5.66 (m, 1H), 3.13-3.10 (m, 2H), 1.51 (m, 2H), 1.28<br />

(m, 6H), 0.87 (t, J = 6.4 Hz, 3H). 13 C NMR (75.5 MHz, DMSO-d6) δ =161.6, 158.5,<br />

151.4, 125.0, 124.9, 115.0, 114.7, 104.1 (x 2), 42.9, 31.0, 29.4, 26.1, 22.1, 13.8.,<br />

HRMS EI C15H20FN3, calcd 261.1641. , found: 261.1631.<br />

N-(4-Methoxyphenethyl)-5-(3-bromophenyl)-1H-imidazol-2-amine(BS-148)<br />

O<br />

HN<br />

N<br />

N<br />

H<br />

Br<br />

Yield : 44 %. 1 H NMR (300 MHz, DMSO-d6) δ = 10.56 (br, 1H), 7.82 (s, 1H), 7.65<br />

(d, J = 6.5 Hz, 2H), 7.24-7.16 (m, 5H), 6.88 (d, J = 8.4 Hz, 2H), 5.77 (m, 1H), 3.72 (s,<br />

3H), 3.35 (s, 2H), 2.77 (t, J = 7.6 Hz, 2H). 13 C NMR (75.5 MHz, DMSO-d6) δ<br />

=157.5, 151.3, 131.6 (x 2), 130.3, 129.6 (x 3), 127.3, 125.7, 122.1, 121.9, 113.6 (x 3),<br />

54.9, 44.8, 34.6.,HRMS EI C18H18BrN3O, calcd 371.0633. , found : 371.0658.<br />

N-Cyclooctyl-5-(4-(methylsulfonyl)phenyl)-1H-imidazol-2-amine (BS-154)<br />

HN<br />

N<br />

N<br />

H<br />

SO 2Me<br />

Yield : 53 %. 1 H NMR (300 MHz, DMSO-d6) δ = 10.49 (br, 1H), 7.86 (d, J = 8.5 Hz,<br />

2H), 7.79 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 1.5 Hz, 1H), 5.74 (d, J = 8.4 Hz, 1H), 3.64


(s, 1H), 3.16 (s, 3H), 1.80 (m, 2H), 1.53 (m, 12H). 13 C NMR (75.5 MHz, CDCl3) δ =<br />

151.5, 138.8, 136.2, 127.7 (x 3), 124.0 (x 2), 105.1, 53.7, 44.6, 32.3 (x 2), 27.2 (x 2),<br />

25.2, 23.4 ( x 2). HRMS EI C18H25N3O2S, calcd 344.1667. , found : 344.1644.<br />

4-(2-(2-Methoxyethylamino)-1H-imidazole-5-yl)benzonitrile(BS-139)<br />

O<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

Yield 85 %. 1 H NMR (300 MHz, DMSO d6) δ = 10.6 (br, 1H), 7.7 (m 4H), 7.3 (s 1H),<br />

5.8 (s 1H), 3.5 (t 2H), 3.4 (m 2H), 3.2 (s 3H). 13 C NMR (300 MHz, DMSO d6) δ<br />

=151.3, 140.1, 134.2, 132.2(x 2), 123.8, 119.5, 110.8, 106.4, 104.1, 70.9, 57.9, 54.8,<br />

43.3. HRMS EI C13H14N4O, calcd 242.1168 , found : 242.1167.<br />

5-(4-Methoxyphenyl)-N-octyl-1H-imidazol-2-amine (BS-258 )<br />

C 8H 17<br />

N<br />

H<br />

N<br />

N<br />

H<br />

O<br />

Yield : 78 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.91 (br s, 1H), 7.51 (d, J = 8.57<br />

Hz, 2H), 6.95 (s, 1H), 6.87 (d, J = 8.75 Hz, 2H), 6.05 (m, 1H), 3.74 (s, 3H), 3.16 (m,<br />

2H), 1.51 (m, 2H), 1.28 (m, 10H), 0.85 (t, J = 6.75 Hz, 3H). 13 C NMR (75.5 MHz,<br />

CDCl3): δ =149.2, 131.1, 129.5, 129.3 (×2), 128.8 (×2), 128.2, 123.4, 43.1, 31.6, 29.5,<br />

29.0, 28.9, 26.4, 22.2, 14.0. HRMS (EI): C18H27N3O, calcd 301.2154, found:<br />

301.2142.<br />

5-(4-Fluorophenyl)-N-octyl-1H-imidazol-2-amine (BS-259)<br />

C 8H 17<br />

N<br />

H<br />

N<br />

N<br />

H<br />

F<br />

Yield : 69% . 1 H NMR (300 MHz, DMSO-d6): δ = 10.44 (br s, 1H), 7.61 (t, J = 5.85<br />

Hz, 2H), 7.08 (t, J = 8.78 Hz, 2H), 6.99 (s, 1H), 5.67 (t, J = 6.03 Hz, 1H), 3.10 (m,<br />

2H), 1.51 (m, 2H), 1.25 (m, 10H), 0.83 (m, 3H). 13 C NMR (75.5 MHz, CDCl3): δ<br />

=163.8, 160.5, 148.7, 130.2, 128.4, 127.0, 122.9, 115.5, 104.7, 43.0, 31.6, 29.5, 29.0,<br />

28.9, 26.4, 22.5, 14.0. HRMS (EI): C17H24FN3, calcd 289.1954, found:. 289.1964.<br />

5-(3,4-Dichlorophenyl)-N-octyl-1H-imidazol-2-amine (BS-260)<br />

C 8H 17<br />

N<br />

H<br />

N<br />

N<br />

H<br />

Cl<br />

Cl


Yield : 72 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.52 (br s, 1H), 7.82 (s, 1H),<br />

7.58 (m, 1H), 7.50 (d, J = 8.13 Hz, 1H), 7.22 (s, 1H), 5.78 (m, 1H), 3.11 (m, 2H), 1.51<br />

(m, 2H), 1.28 (m, 10H), 0.85 (t, J = 6.94 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ<br />

=149.6, 132.8, 131.1, 131.0, 130.6, 129.5, 127.1, 127.0, 124.2, 43.3, 31.6, 29.5, 29.0,<br />

28.9, 26.4, 22.5, 14.0. HRMS (EI): C17H23Cl2N3, calcd 339.1269, found:. 339.1279.<br />

5-(3-Bromophenyl)-N-octyl-1H-imidazol-2-amine (BS-261)<br />

C 8H 17<br />

N<br />

H<br />

N<br />

N<br />

H<br />

Br<br />

Yield : 79 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.49 (br s, 1H), 7.79 (s, 1H),<br />

7.59 (s, 1H), 7.22 (m, 1H), 7.14 (s, 1H), 5.73 (t, J = 5.66 Hz, 1H), 3.11 (m, 2H), 1.51<br />

(m, 2H), 1.25 (m, 10H), 0.84 (t, J = 6.69 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ<br />

=149.2, 133.0, 130.8, 130.1 (×2), 128.0, 126.5, 123.8, 122.6, 43.2, 31.6, 29.5, 29.0,<br />

28.9, 26.4, 22.5, 14.0. HRMS (EI): C17H24BrN3, calcd 349.1154, found:. 249.1138.<br />

5-(Naphthalen-1-yl)-N-octyl-1H-imidazol-2-amine (BS-262)<br />

C 8H 17<br />

N<br />

H<br />

N<br />

N<br />

H<br />

Yield : 68 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.53 (br s, 1H), 8.05 (s, 1H),<br />

7.80 (m, 3H), 7.39 (m, 3H), 7.17 (s, 1H), 5.73 (m, 1H), 3.16 (m, 2H), 1.54 (m, 2H),<br />

1.26 (m, 10H), 0.83 (t, J = 6.86 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.1,<br />

133.4, 132.4, 129.5, 128.3, 128.2, 127.9, 127.7, 126.6, 126.4 (×2), 126.0, 123.0, 43.3,<br />

31.6, 29.5, 29.0, 28.9, 26.4, 22.5, 14.0. HRMS (EI): C21H27N3, calcd 321.4592,<br />

found:. 321.4578.<br />

5-(4-Nitrophenyl)-N-octyl-1H-imidazol-2-amine (BS-263)<br />

C 8H 17<br />

N<br />

H<br />

N<br />

N<br />

H<br />

NO 2<br />

Yield : 66 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.74 (br s, 1H), 8.12 (d, J = 8.92<br />

Hz, 2H), 7.84 (d, J = 8.92 Hz, 2H), 7.43 (s.1H), 5.91 (t, J = 5.54 Hz, 1H), 3.16 (m,<br />

2H), 1.52 (m, 2H), 1.25 (m, 10H), 0.85 (t, J = 6.75 Hz, 3H). 13 C NMR (75.5 MHz,<br />

CDCl3): δ =163.8, 160.5, 148.7, 130.2, 128.4, 127.0, 122.9, 115.5, 104.7, 43.0, 31.6,<br />

29.5, 29.0, 28.9, 26.4, 22.5, 14.0. HRMS (EI): C17H24N4O2, calcd 316.1899,<br />

found:.316.1909.


5-(4’-Nitrobiphenyl-4-yl)-N-octyl-1H-imidazol-2-amine (BS-264)<br />

C 8H 17<br />

N<br />

H<br />

N<br />

N<br />

H<br />

NO 2<br />

Yield : 75 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.53 (br s, 1H), 8.27 (d, J = 8.71<br />

Hz, 2H), 7.96 (d, J = 8.71 Hz, 2H), 7.75 (s.4H), 7.18 (s. 1H), 5.76 (t, J = 5.88 Hz,<br />

1H), 3.16 (m, 2H), 1.53 (m, 2H), 1.26 (m, 10H), 0.86 (t, J = 6.75 Hz, 3H). 13 C NMR<br />

(75.5 MHz, CDCl3): δ =163.8, 160.5, 148.7, 130.2, 128.4, 127.0, 122.9, 115.5, 104.7,<br />

43.0, 31.6, 29.5, 29.0, 28.9, 26.4, 22.5, 14.0. HRMS (EI): C23H28N4O2, calcd<br />

392.2212, found:.392.2201.<br />

5-(4-(Methylsulfonyl)phenyl)-N-octyl-1H-imidazol-2-amine (BS-265)<br />

C 8H 17<br />

N<br />

H<br />

N<br />

N<br />

H<br />

O<br />

S<br />

O<br />

Yield : 54 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.62 (br s, 1H), 7.84 (d, J = 8.55<br />

Hz, 2H), 7.76 (d, J = 8.35 Hz, 2H), 7.32 (s.1H), 5.83 (t, J = 5.97 Hz, 1H), 3.16 (m,<br />

5H), 1.52 (m, 2H), 1.25 (m, 10H), 0.85 (t, J = 6. 56 Hz, 3H). 13 C NMR (75.5 MHz,<br />

CDCl3): δ =150.7, 138.1, 136.6, 127.9 (×2), 127.6, 127.4 (×2), 126.0, 44.5, 43.6, 31.6,<br />

29.6, 29.0, 28.9, 26.5, 22.5, 14.0. HRMS (EI): C18H27N3O2S, calcd 349.4909,<br />

found:.249.4918.<br />

N-Isobutyl-5-(4-nitrophenyl)-1H-imidazol-2-amine (BS-292)<br />

N<br />

H<br />

N<br />

N<br />

H<br />

NO 2<br />

Yield : 70 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.69 (br s, 1H), 8.12 (d, J = 9.02<br />

Hz, 2H), 7.84 (d, J = 8.50 Hz, 2H), 7.42 (s, 1H), 5.99 (t, J = 5.93 Hz, 1H), 2.99 (t, J =<br />

6.44 Hz, 2H), 1.83 (m, 1H), 0.89 (d, J = 6.70 Hz, 6H). 13 C NMR (75.5 MHz, DMSOd6):<br />

δ =152.2 (×2), 143.8, 141.6, 123.9 (×2), 123.3, 104.1 (×2), 50.4, 27.9, 20.1 (×2).<br />

HRMS (EI): C13H16N4O2, calcd 260.1273, found: 260.1287<br />

N-Isobutyl-5-phenyl-1H-imidazol-2-amine (BS-293)<br />

N<br />

H<br />

N<br />

N<br />

H


Yield : 71 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.52 (br s, 1H), 7.59 (d, J = 7.47<br />

Hz, 2H), 7.28 (t, J = 7.47 Hz, 2H), 7.09 (t, J = 7.25 Hz,1H), 7.04 (s,1H), 5.92 (t, J =<br />

5.71 Hz, 1H), 2.98 (t, J = 6.37 Hz, 2H), 1.82 (m, 1H), 0.89 (d, J = 6.59 Hz, 6H). 13 C<br />

NMR (75.5 MHz, DMSO-d6): δ =151.2, 134.0, 133.1, 128.2 (×2), 125.1, 123.4(×2),<br />

104.1, 50.5, 27.9, 20.1 (×2). HRMS (EI): C13H17N3, calcd 215.1422, found:215.1411.<br />

5-(4-Bromophenyl)-N-isobutyl-1H-imidazol-2-amine (BS-294)<br />

N<br />

H<br />

N<br />

N<br />

H<br />

Br<br />

Yield : 69 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.46 (br s, 1H), 7.55 (d, J = 8.25<br />

Hz, 2H), 7.42 (d, J = 8.25 Hz, 2H), 7.08 (s, 1H), 5.80 (t, J = 5.75 Hz, 1H), 2.97 (t, J =<br />

6.25 Hz, 2H), 1.82 (m, 1H), 0.89 (d, J = 6.50 Hz, 6H). 13 C NMR (75.5 MHz, DMSOd6):<br />

δ =151.6, 134.1, 133.0 (×3), 125.3 (×2), 117.2, 104.1, 50.6, 27.9, 20.1 (×2).<br />

HRMS (EI): C13H16BrN3, calcd 293.0528, found:293.0529.<br />

5-(4-Chlorophenyl)-N-isobutyl-1H-imidazol-2-amine (BS-295)<br />

N<br />

H<br />

N<br />

N<br />

H<br />

Cl<br />

Yield : 73 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.46 (br s, 1H), 7.60 (d, J = 8.35<br />

Hz, 2H), 7.29 (d, J = 8.35 Hz, 2H), 7.07 (s, 1H), 5.81 (t, J = 5.96 Hz, 1H), 2.97 (t, J =<br />

6.20 Hz, 2H), 1.82 (m, 1H), 0.89 (d, J = 6.68 Hz, 6H). 13 C NMR (75.5 MHz, DMSOd6):<br />

δ =151.5, 133.6, 133.2, 128.9, 128.0 (×2), 124.9 (×2), 104.1, 50.5, 27.9, 20.1<br />

(×2). HRMS (EI): C13H16ClN3, calcd 249.1033, found:249.1047.


2.11 Representative NMR spectra<br />

2.11.1 1 H and 13 C NMR spectra of bs-026<br />

Integral<br />

9.5<br />

9.0<br />

170<br />

8.5<br />

8.2747<br />

8.2590<br />

1.8547<br />

162.5113<br />

157.9984<br />

160<br />

8.0<br />

150<br />

7.5<br />

7.2629<br />

140<br />

7.0<br />

6.5166<br />

6.5003<br />

6.4846<br />

0.9485<br />

6.5<br />

N<br />

130<br />

6.0<br />

N<br />

5.5<br />

5.0793<br />

N<br />

C7H15 N<br />

H<br />

110.1675<br />

N<br />

C7H15 N<br />

H<br />

120<br />

110<br />

0.8893<br />

5.0 4.5<br />

(ppm)<br />

100<br />

3.4260<br />

3.4028<br />

3.3834<br />

3.3790<br />

3.3595<br />

4.0<br />

77.5117<br />

77.0862<br />

76.6644<br />

90 80<br />

(ppm)<br />

1.9702<br />

3.5<br />

70<br />

3.0<br />

60<br />

2.5<br />

2.0<br />

50<br />

1.6316<br />

1.6102<br />

1.5870<br />

1.3698<br />

1.3522<br />

1.3403<br />

1.3058<br />

1.2876<br />

0.9035<br />

0.8959<br />

0.8815<br />

0.8583<br />

0.0003<br />

2.6079<br />

1.5<br />

41.5103<br />

40<br />

8.3061<br />

1.0<br />

3.0000<br />

0.5<br />

31.8118<br />

29.6081<br />

29.0662<br />

26.9680<br />

22.6114<br />

30<br />

20<br />

0.0<br />

14.0875<br />

10<br />

0


2.11.2 1 H and 13 C NMR spectra of bs-091<br />

Integral<br />

170<br />

167.5253<br />

9.5<br />

9.0476<br />

9.0376<br />

8.8882<br />

8.8687<br />

0.9779<br />

0.9465<br />

160<br />

9.0<br />

154.6121<br />

8.5<br />

148.2155<br />

150<br />

7.8977<br />

7.8105<br />

7.7816<br />

7.5826<br />

7.5544<br />

7.3454<br />

7.3284<br />

7.3084<br />

0.9515<br />

1.9910<br />

1.9242<br />

0.9636<br />

8.0<br />

140<br />

7.5<br />

137.3205<br />

134.1059<br />

129.0584<br />

128.3529<br />

N<br />

Br<br />

7.0<br />

N<br />

Br<br />

130<br />

N<br />

120<br />

N<br />

6.5<br />

N C 10H 21<br />

OH<br />

111.2795<br />

6.0<br />

Cl<br />

N C 10H 21<br />

OH<br />

110<br />

Cl<br />

100<br />

5.5<br />

4.8203<br />

1.9070<br />

5.0 4.5<br />

(ppm)<br />

90.2424<br />

90 80<br />

(ppm)<br />

4.0<br />

70<br />

3.5<br />

62.5177<br />

3.3309<br />

3.2179<br />

3.1959<br />

3.1689<br />

3.1520<br />

60<br />

1.7611<br />

3.0<br />

50<br />

2.5024<br />

2.5<br />

40.7023<br />

40<br />

2.0<br />

1.5<br />

1.2025<br />

1.0976<br />

0.8748<br />

0.8535<br />

0.8309<br />

16.214<br />

1.0<br />

31.2220<br />

28.6219<br />

28.2364<br />

27.2800<br />

25.8145<br />

22.0544<br />

30<br />

20<br />

3.0000<br />

13.9231<br />

0.5<br />

10<br />

0.0<br />

0


2.11.3<br />

10.4329<br />

0.7429<br />

151.5720<br />

10.0<br />

150<br />

1 H and 13 C NMR spectra of bs-143<br />

C8H17 HN<br />

C8H17 HN<br />

140<br />

9.0<br />

N<br />

N<br />

H<br />

128.8948<br />

128.1056<br />

124.9601<br />

N<br />

N<br />

H<br />

130<br />

8.0<br />

120<br />

7.6549<br />

7.6273<br />

7.3122<br />

7.2845<br />

7.0969<br />

1.7133<br />

2.0012<br />

0.7988<br />

110<br />

7.0<br />

Cl<br />

100.7882<br />

Cl<br />

100<br />

6.0<br />

90<br />

5.7173<br />

1.3479<br />

5.0<br />

(ppm)<br />

80<br />

(ppm)<br />

70<br />

4.0<br />

60<br />

3.1288<br />

3.1068<br />

50<br />

2.0669<br />

3.0<br />

42.9279<br />

40<br />

2.5024<br />

2.0863<br />

2.0<br />

1.5113<br />

1.4893<br />

1.2584<br />

1.9883<br />

10.174<br />

31.2511<br />

29.4365<br />

28.8183<br />

28.7164<br />

26.4691<br />

22.0835<br />

30<br />

20<br />

1.0<br />

0.8579<br />

0.8353<br />

3.0000<br />

13.9304<br />

10<br />

-0.0001<br />

0.0<br />

0


2.12 References<br />

[1] Cafieri F, Fattorusso E, Mangoni A, Taglialatela Scafati O. (1996) Tetrahedron Lett. 3, 3587-<br />

3590.<br />

[2] Kobayashi J, Ohizumi Y, Nakamura H, Hirata Y, (1986) Tetrahedron 42, 1176-1177.<br />

[3] (a) Bedoya Zurita M, Ahond A, Poupat C, Potier P (1989) Tetrahedron. 45, 6713-6720. (b)<br />

Gross H, Kehraus S, Koenig GM, Woerheide G, Wright AD. (2002) J. Nat. Prod. 65, 1190-<br />

1193 (c) Hassan W, Edrada R, Ebel R, Wray V, Berg A, Van Soest R, Wiryowidagdo S,<br />

Proksch P. (2004) J. Nat. Prod. 67, 817-822.<br />

[4] (a) Copp BR, Fairchild CR, Cornell L, Casazza AM, Robinson S, Ireland CM. (1998) J. Med.<br />

Chem. 41, 3909-3911. (b) Colson G, Raboult L, Lavelle F, Zeaial A. (1992) Biochem.<br />

Pharmacol. 43, 1717-1723. (c) Pitts WJ, Wityak J, Smallheer JM, Tobin AE, Jetter JW,<br />

Buynitsky JS, Harlow PP, Solomon KA, Corjay MH, Mousa SA, Wexler R, Jadhav PK.<br />

(2000) J. Med. Chem. 43, 27-40. (d) Batt DG, Petraitis JJ, Houghton GC, Modi DP, Cain GA,<br />

Corjay MH, Mousa SA, Bouchard PJ, Forsythe MS, Harlow PP, Barbera FA, Spitz SM,<br />

Wexler RR, Jadhav. (2000) J. Med. Chem. 43, 41-58.<br />

[5] (a) Little TL, Webber SE. (1994) J. Org. Chem. 59, 7299-7305. (b) Abou Jneid R, Ghoulami<br />

S, Martin MT, Dau ETH, Travert N, Al-Mourabit A. (2004) Org. Lett. 6, 3933-3936. (c) Gore<br />

VK, Ma VV, Norman MH, Ognyanov VI, Xi N. (2006) US Patent, US 2006/0084640<br />

[6] Stamford AW, Craig CD, Huang Y. (2001) Int. Pat. WO 01/44201<br />

[7] (a) Lamattina JL, Mularski CJ (1984)Tetrahedron Lett. 25, 2957-2960 (b) Lamattina JL.<br />

(1985) Eur. Pat. Appl. EP 138464 A2.<br />

[8] Katritzky AR, Rogovoy B (2005) Arkivoc. Part Iv, 49-87 and references herein.<br />

[9] Beyer H, Pyl T, Lahmer H. (1961) Chem. Ber. 94, 3217.<br />

[10] Thangavel N, Murgesh K. (2005) Asian J. Chem. 17, 2769.<br />

[11] Ermolat’ev DS, Giménez V N, Babaev EV, Van der Eycken E. (2006) J. Comb. Chem. 8, 659-<br />

663.<br />

[12] Ermolat’ev DS, Svidritsky EP, Babaev EV, Van der Eycken E. (2009) Tetrahedron Lett. 50,<br />

5218-5220.<br />

[13] Ermolat’ev D. S., Savaliya B, Shah A, Van der Eycken E, (2010) Molecular Diversity.<br />

accepted.<br />

[14] Ashry EI, Kilany Y, Rashed N, Assafi H. (1999) Adv. Heterocycl. Chem. 75, 79;<br />

[15] Brown D. J. “Mechanisms of Molecular Migrations”, Vol. 1, Thyagarajan, B. S. (1968) (Ed.),<br />

Wiley-Interscience, New York, pp. 209.<br />

[16] Ermolat’ev, D. S. and Van der Eycken, E. (2008) J. Org. Chem. 73, 6691.<br />

[17] Costerton, J. W, Stewart P. S, Greenberg,E. P. (1999) Science 284, 1318-22.<br />

[18] Stewart P. S, Costerton J. W. (2001) Lancet. 358, 135-8.<br />

[19] Donlan R. M, Costerton J. W. (2002) Clin Microbiol Rev. 15, 167-93.<br />

[20] Mah T. F, Pitts B, Walker G. C, Stewart P. S, O'Toole G. A. (2003) Nature 426, 306-10.


[21] Matz C, McDougald D, Moreno A. M, Yung P. Y, Yildiz F. H, Kjelleberg S. B. (2005) Proc<br />

Nat. Acad. Sci. USA. 102, 16819-24.<br />

[22] Davies D. U. (2003) Nat Rev Drug Discov. 2, 114-22.<br />

[23] Olson M. E, Ceri H, Morck D. W, Read R. R. (2002) J. Vet. Res. 66, 86-92.<br />

[24] Blanke S. R, Yang R. (2002) Enviromental Institute of Houston<br />

[25] Musk D. J, Hergenrother P. (2006) J. Curr. Med. Chem. 13, 2163-77.<br />

[26] De Nys R, Kumar N, Kjelleberg S, Steinberg P. D. (2006) Prog Mol Subcell Biol. 42.<br />

[27] Janssens J. C, Steenackers H, Robijns S, Gellens E, Levin J, Zhao H, Hermans K, De Coster<br />

D, Verhoeven T. L, Marchal K, Vanderleyden J, De Vos D. E, De Keersmaecker S. C. (2008)<br />

Appl Environ Microbio. 74, 6639-48.<br />

[28] Geske G. D, Siegel A. P, Blackwell H. E. (2005) J. Am. Chem. Soc. 127, 12762-3.<br />

[29] Huigens R. W, Richards J. J, Parise G, Ballard T. E, Zeng W, Deora R, Melander C. (2007) J.<br />

Am. Chem. Soc. 129, 6966-7.<br />

[30] Richards J. J, Ballard T. E, Melander C. (2008) Org. Biomol. Chem. 6, 1356-63.<br />

[31] Richards J. J, Huigens Iii R. W, Ballard T. E, Basso A, Cavanagh J, Melander C. (2008)<br />

Chem. Commun. (Camb). 1698-700.<br />

[32] Huigens R. W, Ma L, Gambino C, Moeller P. D, Basso A, Cavanagh J, Wozniak D. J,<br />

Melander C. (2008) Mol. Biosyst. 4, 614-21.<br />

[33] Richards J. J, Ballard T. E, Huigens R. W, Melander C. (2008) Chem. bio. chem. 9, 1267-79.<br />

[34] Rogers S. A, Melander C. (2008) Angew. Chem. Int. Ed. 47, 5229-31.<br />

[35] Ballard T. E, Richards J, Wolfe A. L, Melander C. (2008) Chemistry. 14, 10745-61.<br />

[36] Sullivan J. D, Giles R. L. (2009) Current Bioactive Compounds. 5, 39-78.<br />

[37] Prouty A. M, Schwesinger W. H, Gunn J. S. (2002) Infect Immun. 70, 2640-9.<br />

[38] Barak J. D, Charkowski A. O. (2002) Appl. Environ Microbiol. 68, 4758-63.<br />

[39] Brandl M. T, Mandrell R. E. (2002) Appl. Environ Microbiol. 68, 3614-21.<br />

[40] Boddicker J. D, Ledeboer N. A, Jagnow J, Jones B. D, Clegg S. (2002) Mol Microbiol. 45,<br />

1255-65.<br />

[41] Romling U, Sierralta W. D, Eriksson K, Normark S. (1998) Mol Microbiol. 28, 249-64.<br />

[42] Latasa C, Roux A, Toledo-Arana A, Ghigo J. M, Gamazo, C, Penades J. R, Lasa I. (2005)<br />

Mol. Microbiol. 58, 1322-39.<br />

[43] Parry C. M, Threlfall E. J. (2008) Curr. Opin. Infect. Dis. 21, 531-8.<br />

[44] Govan J. R, Deretic V. (1996) Microbiol Rev. 60, 539-74.<br />

[45] Wagner V. E, Iglewski B. H. P. (2008) Clin. Rev. Allergy Immunol. 35, 124-34.<br />

[46] Gomez M. I, Prince A. (2007) Curr. Opin. Pharmacol. 7, 244-51.<br />

[47] Ghannoum M, Abu Elteen K, el-Rayyes N. R. (1989) Microbios. 60, 23-33.<br />

[48] Fioravanti R, Biava M, Porretta G. C, Landolfi C, simonetti N, Villa A, Conte E, Porta-Puglia<br />

(1995) Eur. J. Med. Chem. 30, 123-132.


Structure Activity Relationship of N1-<br />

Substituted 2-Aminoimidazoles as Inhibitors of<br />

Biofilm Formation by Salmonella Typhimurium<br />

and Pseudomonas aeruginosa


Chapter-3<br />

Structure Activity Relationship of N1-Substituted 2-Aminoimidazoles<br />

as Inhibitors of Biofilm Formation by Salmonella Typhimurium and<br />

Pseudomonas aeruginosa<br />

H 2N<br />

N<br />

N<br />

R 1<br />

A library of N1-substituted 4(5)-phenyl-2-aminoimidazoles was synthesized and<br />

tested for the antagonistic effect against biofilm formation by Salmonella<br />

Typhimurium and Pseudomonas aeruginosa. The substitution pattern of the 4(5)-<br />

phenyl group and the nature of the N1-substituent were found to have a major effect<br />

on the biofilm inhibitory activity. The most active compounds of this series were<br />

shown to inhibit the biofilm formation at low micromolar concentrations.<br />

Publication:<br />

[1] Structure Activity Relationship of 4(5)-Phenyl-2-amino-1H-imidazoles, N1-<br />

Substituted 2-Aminoimidazoles and Imidazo[1,2-a]pyrimidinium Salts as<br />

Inhibitors of Biofilm Formation by Salmonella Typhimurium and<br />

Pseudomonas aeruginosa. J. Med.Chem. (2010) DOI: 10.1021/jm1011148<br />

R 2


3.1 Introduction<br />

In previous chapter-2 the dimorth rearrangement was performed to generate<br />

substituted 2-aminoimidazoles. The 2-aminoimidazole (2-AI) ring structure is of<br />

particular interest especially within the realms of medicinal chemistry. For example,<br />

several classes of marine natural products possessing this structure were recently<br />

discovered and identified. l Many of these compounds display a broad range of<br />

biological properties including antibacterial, anti-inflammatory, anticancer, and<br />

antiviral activity. Synthetic 2-AI derivatives, including 2-amino-histamine have been<br />

shown to have HI- and H2-receptor agonist and antagonist activity. 2 Other unrelated<br />

2-AI derivatives are selective 5-HT3 receptor antagonists, which may be<br />

potentially useful in the treatment of chemotherapy induced emesis 3 . Novel<br />

cephalosporins with incorporated 2-AI rings display both Gram-positive and Gramnegative<br />

antibacterial activity as well as good ß-lactamase stability 4 . In addition, 2-AI<br />

can serve as an important starting material in the preparation of 2-nitroimidazole<br />

(azomycin) a naturally occurring antibiotic 5 . Other synthetic analogs of 2nitroimidazole<br />

have been found to be cytotoxic toward hypoxic tumor cells and act as<br />

hypoxic cell radiosensitizers. 6<br />

The methods reported to prepare imidazoles are numerous, although only a limited<br />

number describe the direct synthesis of the corresponding 2-amino derivatives. The<br />

preparation of 2-AI was accomplished by the intramolecular cyclization of N-(2,2diethoxyethyl)guanidine<br />

upon acid hydrolysis. 7,8 The reaction of α-amino aldehydes<br />

or ketones with cyanamide appears to be the most commonly used direct approach. 8,9<br />

However, this reaction is pH sensitive and can lead to different products. In one<br />

case the formation of lH-imidazo[l,2-a]imidazoles was observed. 8 The dimerization<br />

and cyclization of a-amino aldehydes or ketones to symmetrical pyrazines is also a<br />

common problem associated with this method. 9a,10 A classical, although indirect<br />

approach to 2-AI's relies upon the formation of 2-arylazo derivatives via diazonium<br />

coupling, followed by reduction. 2a,7,11 The synthesis of 2-amino-4,5-diarylimidazoles<br />

was accomplished by the reduction of symmetrical 2,2'-azoimidazoles. 13 A more<br />

recent procedure was reported where 2-AI's were formed by the reaction of α -<br />

diketones with guanidine, followed by catalytic hydrogenation. 14 Other indirect<br />

approaches to 2-AI's involve ipso type substitutions of appropriate C-2 substituted


imidazoles, where the addition of a suitable nitrogen nucleophile is followed by the<br />

elimination of an activated leaving group such as a halogen or alkyl sulfoxide or<br />

sulfone. This method has been applied with limited success to electron-poor<br />

imidazoles or when fluorine is the leaving group. 4,15 An interesting synthetic route to<br />

functionalized 2-AI's, which were difficult to obtain by other methods, has been<br />

achieved using a base catalyzed rearrangement of 3-amino-1,2,4-oxadiazoles. 16<br />

Another type of heterocyclic rearrangement involves the reaction of 2-aminooxazoles<br />

with ammonia or formamide. 17 Most recently, the synthesis of 2-amino-4(5)-(αhydroxyalkyl)imidazoles<br />

has been demonstrated where 2-AI was reacted with<br />

aldehydes under neutral conditions. 18<br />

The microwave-assisted procedure for the synthesis of 1,4,5-substituted 2aminoimidazoles<br />

(Scheme-1) is two-step protocol based on the cyclocondensation of<br />

2-aminopyrimidines and bromocarbonyl compounds at 130-150 °C, followed by the<br />

cleavage of the intermediary imidazo[1,2-a]pyrimidin-1-ium salts with an excess of<br />

hydrazine.<br />

3.2 Reaction Scheme<br />

Scheme-1<br />

N<br />

N<br />

+<br />

N<br />

H<br />

Br O<br />

H<br />

H 2N<br />

N<br />

N<br />

R 1<br />

R 2<br />

R 1<br />

R 2<br />

MeCN<br />

MW<br />

80 °C, 30 min<br />

MeCN<br />

64% N2H4 MW<br />

100 °C, 10 min<br />

Br<br />

N<br />

N<br />

N<br />

N<br />

N R1 OH<br />

R 2<br />

PPA, 150 °C<br />

aq. HClO4 N R 1<br />

R 2<br />

ClO 4


3.3 Proposed Mechanism<br />

A possible mechanism for the pyrimidine ring cleavage upon reaction of salts (1) with<br />

amines, which involves the formation of azabutadienes (Scheme 2), Initially, the<br />

imidazo[1,2-a]pyrimidinium salt (1) undergoes a nucleophilic attack at its C-5<br />

position by a first molecule of amine. After rearrangement of the intermediate (A) and<br />

isomerisation of the resulting (B), (E, E)-azabutadiene (2) is formed. Initiated by<br />

protonation, the azabutadiene intermediate (C) in turn undergoes 1,4-addition with a<br />

second molecule of amine, finally resulting in the formation of 2-aminoimidazole (3)<br />

together with diazapentadienium salt (4) (Scheme-2).<br />

Consistent with this mechanism, the corresponding imidazo[1,2-a]pyrimidinium salts<br />

(1) can directly be cleaved to 2-aminoimidazoles (3) upon stirring with a large excess<br />

of secondary amine (6 or more equiv) at room temperature, while the isolated<br />

azabutadienes (2) appeared to be stable to 20 and more equivalents of piperidine in<br />

refluxing acetonitrile for 1 h. In contrary, azabutadienes (2) were quantitatively<br />

cleaved to 2-aminoimidazoles (3) in the presence of 1.5 equiv triethylamine<br />

hydrochloride salt (Scheme-3.5).<br />

Scheme-2<br />

N<br />

N N R1 H<br />

1<br />

R' 2N<br />

R 2<br />

R' 2NH<br />

-H<br />

NH<br />

N<br />

N<br />

R1 R 2<br />

R' 2N<br />

N<br />

R' 2NH<br />

A<br />

N<br />

N R 1<br />

R 2<br />

R' 2N<br />

R' 2N<br />

H<br />

C D<br />

R' 2N<br />

NH<br />

N<br />

N<br />

R1 R 2<br />

N<br />

N<br />

N R 1<br />

R 2<br />

B<br />

H 2N<br />

N<br />

N<br />

R 1<br />

3<br />

R' 2N<br />

R 2<br />

N<br />

N<br />

2<br />

N R 1<br />

R 2<br />

NR' 2<br />

+ NR' 2<br />

4


3.4 Result and Discussion<br />

It was found that the cyclocondensation of 2-alkylaminopyrimidines with αbromoacetophenones<br />

at 80 °C first led to stable 2-hydroxy-2,3-dihydroimidazo[1,2a]pyrimidinium<br />

bromides. The bicyclic nature of the structures clearly followed from<br />

1 H NMR data, indicating the doublet of doublets of the methylene fragments, as well<br />

as from 13 C NMR spectra.<br />

The 2-hydroxy-2,3-dihydroimidazo[1,2-a]pyrimidinium salts were obtained in good<br />

yields, and only for sterically hindered 2-alkylaminopyrimidines the yields slightly<br />

decreased. Dehydration of the 2-hydroxy-2,3-dihydroimidazo[1,2-a]pyrimidinium<br />

salts was successfully achieved by short (15 min) heating in polyphosphoric acid<br />

(PPA) at 150 °C. The corresponding imidazo[1,2-a]pyrimidinium salts were isolated<br />

and characterized as perchlorates, and in most cases the yields were almost<br />

quantitative. The structures of aromatic salts were completely consistent with their 1 H,<br />

and 13 C NMR data.<br />

The cleavage step was performed under microwave irradiation at 100 °C, using 7<br />

equivalents of hydrazine hydrate. Resulting 2-amino-1H-imidazoles were obtained in<br />

high yields. Using this protocol we have synthesized library of substituted 2aminoimidazole<br />

(Table-1)<br />

No.<br />

Compound<br />

Code<br />

H 2N<br />

N<br />

N<br />

R 1<br />

R 2<br />

R1 R2 Yield % m.p. o C<br />

1 BS-042 cyclododecane H 53 228-230<br />

2 BS-045 cyclooctane H 53 152-154<br />

3 BS-048 cycloheptane H 54 180-182<br />

4 BS-078 cyclohexane H 64 153-155


5 BS-081 cyclobutane H 47 77-79<br />

6 BS-085 C5H11 H 53 123-125<br />

7 BS-060 C6H13 H 53 -<br />

8 BS-051 C7H15 H 61 -<br />

9 BS-054 C8H17 H 55 -<br />

10 BS-063 C9H19 H 58 -<br />

11 BS-057 C10H21 H 53 -<br />

12 BS-066 C11H23 H 52 -<br />

13 BS-069 C12H25 H 52 -<br />

14 BS-072 C13H27 H 58 44-46<br />

15 BS-075 C14H19 H 64 44-46<br />

16 BS-116 cyclododecane Cl 42 221-223<br />

17 BS-117 cyclooctane Cl 55 207-209<br />

18 BS-118 cycloheptane Cl 51 180-182<br />

19 BS-128 cyclohexane Cl 37 179-181<br />

20 BS-130 cyclobutane Cl 40 156-158<br />

21 BS-129 C5H11 Cl 38 96-98<br />

22 BS-122 C6H13 Cl 53 76-78<br />

23 BS-119 C7H15 Cl 54 80-82<br />

24 BS-120 C8H17 Cl 57 76-78<br />

25 BS-123 C9H19 Cl 50 76-78<br />

26 BS-121 C10H21 Cl 52 89-91<br />

27 BS-124 C11H23 Cl 57 78-80<br />

28 BS-125 C12H25 Cl 57 79-81<br />

29 BS-126 C13H27 Cl 56 83-85<br />

30 BS-127 C14H19 Cl 51 82-83<br />

Yields are isolated yields over 2 steps.<br />

Table-1: compound library of substituted 2-aminoimidazole


No.<br />

H 2N<br />

Compound<br />

Code<br />

N<br />

N<br />

C8H17 R1<br />

R 1<br />

Yield %<br />

1 BS-199 4-OCH3 56<br />

2 BS-200 4-F 71<br />

3 BS-201 3,4-di Cl 64<br />

4 BS-202 3-Br 68<br />

5 BS-203 Naphthalen-1-yl 59<br />

6 BS-204 4-NO2 66<br />

7 BS-205 4-(4-NO2-Ph) 52<br />

8 BS-206 4-SO2Me 61<br />

9 BS-207 4-SMe 40<br />

10 BS-208 4-(4-biphenyl)_ 31<br />

Yields are isolated yields over 2 steps.<br />

Table -2: 2-aminoimidazole with octyl substitution at N-1 position<br />

3.5 Biofilm Activity<br />

The preliminary results from our lab the basic compound (A) with a non-substituted<br />

phenyl group at the C(5) position of the imidazole ring shows a moderate biofilm<br />

inhibitory activity (IC50 = 130 µM). Interestingly, substitution of the para- position of<br />

the phenyl ring with a chlorine (B) atom enhances the biofilm inhibitory activity<br />

about ten times (IC50 = 16 µM).<br />

H 2N<br />

N<br />

N<br />

H<br />

N<br />

H2N N<br />

H<br />

A B<br />

In an attempt to improve their biofilm inhibitory activity, we substituted the N1position<br />

of some of the para-substituted 4(5)-phenyl-2-aminoimidazoles with n-alkyl<br />

and cyclo-alkyl groups by using our previously established chemistry.<br />

Cl


3.5.1 N1-alkyl 2-aminoimidazoles<br />

In first instance a broad variety of alkyl groups, with lengths ranging from one carbon<br />

atom to 14 carbon atoms, were introduced at the N1-position of the 4(5)monosubstituted<br />

2-aminoimidazoles (A) and (B) resulting in compounds A-1 to A-<br />

14, and B-1 to B-13 respectively (Table-3). Each compound was assayed for the<br />

ability to inhibit S. Typhimurium ATCC14028 biofilm formation at 25 °C. As<br />

depicted in figure 1, a clear correlation was found between the length of the alkyl<br />

substituent and the biofilm inhibitory activity. In general, compounds with a short<br />

alkyl chain substitution (C1, C2, C3) on the N1-position have a lower activity as<br />

compared to their respective unsubstituted counterparts. This effect is most<br />

pronounced for the methyl substituent, which causes a reduction in the activity of at<br />

least 4 times. To a lesser extent, ethyl and isopropyl substituents also cause a<br />

reduction in activity. Substitution with a butyl group does not have an unequivocal<br />

effect. In the case of compound A-4, the activity is enhanced three-fold, while in the<br />

other cases the activity is reduced. Remarkably, all the compounds substituted with<br />

an alkyl group with an intermediate length between 5 and 10 carbon atoms are very<br />

active biofilm inhibitors, with IC50 values in general below 12 µM. The effect of<br />

substitution with a longer alkyl chain drastically depends on the nature of the<br />

substituent on the C5-position of the ring (phenyl or p-chlorophenyl). Indeed,<br />

replacement of the N1-hydrogen of compound (A) (phenyl on C5 of the ring) by a<br />

long alkyl chain (C11-C14) raises the activity drastically, from an IC50 of 130 µM for<br />

compound (A) to values below 8 µM for the substituted compounds (A-11 to A-14).<br />

In the case of compound (B) (p-chlorophenyl on C5 of the ring), substitution with an<br />

undecyl (B-10) and dodecyl (B-11) group results in very active compounds IC50<br />

values below 5 µM), while introduction of a tridecyl group (B-12) does not have a<br />

clear effect on the biofilm inhibitory activity and introduction of a tetradecyl (B-13)<br />

group drastically reduces the activity (IC50 = 453 µM). Subsequently, we investigated<br />

the influence of some of the most active representatives of this class of compounds on<br />

the planktonic growth curve of S. Typhimurium at 25°C. Most compounds only show<br />

a very small concentration range with a specific effect on biofilm formation and no<br />

effect on the planktonic growth (Table-3). Therefore we cannot exclude the possibility<br />

that the biofilm inhibitory effect of these compounds (at the higher concentrations) is<br />

partially due to a reduction of the planktonic growth of the bacteria in the growth


medium used in the set-up to monitor biofilm formation. Interestingly, compound A-<br />

14 with a long alkyl chain, does not follow this general trend as no effect on the<br />

growth was observed at 80 µM while the biofilm formation was inhibited at 9 µM.<br />

As depicted in table-3 and figure 1, a similar structure activity relationship was found<br />

for the inhibition of P. aeruginosa biofilm formation at 25°C. Again, introduction of<br />

a short alkyl chain at the N1-position generally results in a decreased activity (except<br />

for compound (A-2), while all the compounds with an intermediate alkyl chain length<br />

show very strong activities. The effect of substitution with a long alkyl chain is in this<br />

case also dependent on the nature of the C5-subsitutent. In the case of compound (A),<br />

substitution with a long alkyl chain results in very active compounds (A-10 to A-14),<br />

The activity of compound (B) is also decreased after introduction of a long N1-alkyl<br />

chain, (compounds B-9 to B-13). Interestingly, growth curve analysis revealed that<br />

these compounds are much less toxic to P. aeruginosa than to S. Typhimurium. Most<br />

compounds show a broad concentration range with only biofilm inhibition and no<br />

effect on the planktonic growth (table -3).<br />

No. Compound<br />

Code<br />

R1<br />

H 2N<br />

N<br />

N<br />

R 1<br />

R2<br />

R 2<br />

S. Typhimurium<br />

IC50<br />

P. aeruginosa<br />

IC50<br />

1 A-1 Me H 431.5 95.1<br />

2 A-2 Et H 206.0 20.6<br />

3 A-3 i-pr H 175.5 4.5<br />

4 A-4 n-Bu H 51.9 2.1<br />

5 A-5 n-Pen H 48.3 2.0<br />

6 A-6 n-Hex H 39.6 19.1<br />

7 A-7 n-Hep H 12.2 6.8<br />

8 A-8 n-Oct H 11.8 18.5<br />

9 A-9 n-Non H 5.9 8.3<br />

10 A-10 n-Dec H 6.1 15.0<br />

11 A-11 n-Und H 7.1 16.2


12 A-12 n-Dod H 7.1 12.8<br />

13 A-13 n-Trd H 5.9 27.2<br />

14 A-14 n-Tet H 8.6 9.7<br />

15 B-1 Me Cl 108.1 111.8<br />

16 B-2 Et Cl 53.1 11.3<br />

17 B-3 n-Bu Cl 57.8 16.9<br />

18 B-4 n-Pen Cl 8.0 6.0<br />

19 B-5 n-Hex Cl 4.9 5.3<br />

20 B-6 n-Hep Cl 9.3 2.6<br />

21 B-7 n-Oct Cl 5.8 3.9<br />

22 B-8 n-Non Cl 3.9 8.0<br />

23 B-9 n-Dec Cl 4.0 22.3<br />

24 B-10 n-Und Cl 4.0 42.9<br />

25 B-11 n-Dod Cl 6.1 49.7<br />

26 B-12 n-Trd Cl 19.5 33.8<br />

27 B-13 n-Tet Cl 453.3 19.0<br />

IC50: concentration of inhibitor needed to inhibit biofilm formation by 50%.<br />

Explanation Note: Number of compound code is also corresponding to the number of<br />

carbon chain at R1 position. (ie. A-1 is Methyl substituted )<br />

Table-3: Influence of N1-alkylated 2-aminoimidazoles on the biofilm formation and<br />

the planktonic growth of S. Typhimurium ATCC14028 and P. aeruginosa PA14 at<br />

25°C.


H 2N<br />

N<br />

N<br />

N<br />

H2N N<br />

R R<br />

Figure-1 Effect of introduction of alkyl chains with different lengths (1-14 C-<br />

atoms; at the N1-postion of compound A (Blue) and B (Red) on the IC50 (µM) for<br />

inhibition of the biofilm formation of S. Typhimurium ATCC14028 at 25°C in TSB<br />

1/20.<br />

3.5.2 Further Modification in the most active core structure<br />

The introduction of a n-octyl side chain at the N1-position of compounds (A) and (B)<br />

does result in very active inhibitors of both the Salmonella and Pseudomonas biofilm<br />

formation, we also decided to introduce an n-octyl chain at the N1-position of some<br />

other 4(5)-phenyl-2-amino-1H-imidazoles and evaluate the biofilm inhibitory activity<br />

of the substituted compounds (table 4). All the compounds (C8-1 to C8-10) are<br />

active inhibitors of both the S. Typhimurium and P. aeruginosa biofilm formation at<br />

25°C, except for compounds C8-7 and C8-10. These compounds have very bulky<br />

C5-substituents, which could diminish the solubility of the compounds in the growth<br />

medium, reduce the uptake into the cell or cause steric hindrance in the putative<br />

Cl


eceptor binding pocket. Growth curve analysis confirmed the previously described<br />

finding that the N1-alkylated 2-aminoimidazoles in general show a broad<br />

concentration range in which they specifically inhibit the biofilm formation of P.<br />

aeruginosa, without reducing the planktonic growth of the bacteria, while this<br />

concentration range is smaller in the case of S. Typhimurium. Compounds C8-7 and<br />

C8-10 are exceptions to this rule as we found them to slow down the planktonic<br />

growth of P. aeruginosa at the IC50 for biofilm inhibition.<br />

Sr.<br />

Compound<br />

Code<br />

H 2N<br />

N<br />

N<br />

C8H17 R1<br />

R 1<br />

S.<br />

Typhimurium<br />

IC50<br />

P. aeruginosa<br />

1 C8-1 4-OCH3 8.5 1.2<br />

2 C8-2 4-F 10.7 4.8<br />

3 C8-3 3,4-di Cl 3.7 -<br />

IC50<br />

4 C8-4 3-Br 11.1 40.6<br />

5 C8-5 Naphthalen-1-yl 6.5 17.6<br />

6 C8-6 4-NO2 35.4 -<br />

7 C8-7 4-(4-NO2-Ph) 116.6 >800<br />

8 C8-8 4-SO2Me 29.1 4.9<br />

9 C8-9 4-SMe 6.6 2.7<br />

10 C8-10 4-(4-biphenyl) >800 >800<br />

IC50: concentration of inhibitor needed to inhibit biofilm formation by 50%.<br />

Table-4: Influence of N1-octyl-2-aminoimidazoles on the biofilm formation and the<br />

planktonic growth of S. Typhimurium ATCC14028 and P. aeruginosa PA14 at 25°C.


3.5.3 Cyclo-alkyl 2-aminoimidazoles<br />

To determine whether the introduction of an intermediate or long cyclo-alkyl chain<br />

could also enhance the activity of the compounds, a broad variety of cyclo-alkyl<br />

groups, with lengths ranging from 4 to 12 carbon atoms, were introduced at the N1position<br />

of the 4(5)-monosubstituted 2-aminoimidazoles (A) and (B) (table 5). The<br />

compounds were tested against biofilm formation of S. Typhimurium and P.<br />

aeruginosa at 25°C. As depicted introduction of an intermediate cyclo-alkyl chain<br />

does improve the biofilm inhibitory activity of compound (A) against S. Typhimurium<br />

and even more drastically against P. aeruginosa. In the case of Salmonella,<br />

introduction of a cyclo-heptyl chain yields the most active compound (compound A-<br />

Cy-5) with an IC50 of 27 µM, as compared to 130 µM for compound (A). In the case<br />

of Pseudomonas, cyclo-hexyl and cyclo-octyl are the best substituents as introduction<br />

of these groups improves the activity drastically from an IC50 of 73 µM. All<br />

compounds derived from (B) by introduction of an intermediate length side chain are<br />

very strong inhibitors of the Salmonella and Pseudomonas biofilm formation (table<br />

5), although their activity is not markedly better than the activity of the unsubstituted<br />

compounds. Introduction of a dodecyl side chain abolishes the activity of all three<br />

compounds against P. aeruginosa biofilm formation, while the effect of a cyclododecyl<br />

substituent on the Salmonella biofilm inhibition depends on the nature of the<br />

C5-group. Indeed, compound A-Cy-7, derived from (A) by introduction of a cyclododecyl<br />

group, is a very strong biofilm inhibitor, while compound B-Cy-6, derived<br />

from (B), is a moderate biofilm inhibitor. As in the case of the n-alkyl substituents,<br />

growth curve analysis revealed that most compounds with cyclo-alkyl substituents<br />

only possess a very small concentration range with a selective effect on the<br />

Salmonella biofilm formation and no effect on the planktonic growth. An exception<br />

is compound A-Cy-7, with a cyclo-dodecyl side chain, which does not affect the<br />

planktonic growth of Salmonella at 80 µM (the highest concentration tested), while<br />

the IC50 for biofilm inhibition is 15 µM. Interestingly, the concentration range<br />

between biofilm inhibition and growth inhibition is much broader in the case of P.<br />

aeruginosa (table-5).


No.<br />

Compound<br />

Code<br />

R1<br />

H 2N<br />

N<br />

N<br />

R 1<br />

R2<br />

R 2<br />

S. Typhimurium<br />

IC50<br />

P. aeruginosa<br />

IC50<br />

1 A-Cy-1 c-Pr H 89.6 35.0<br />

2 A-Cy-2 c-Bu H 116.3 19.9<br />

3 A-Cy-3 c-Pen H 70.7 12.6<br />

4 A-Cy-4 c-Hex H 85.1 4.6<br />

5 A-Cy-5 c-Hep H 26.8 14.2<br />

6 A-Cy-6 c-Oct H 40.4 4.5<br />

7 A-Cy-7 c-Dod H 14.5 >800<br />

8 B-Cy-1 c-Pr Cl 54.8 13.0<br />

9 B-Cy-2 c-Bu Cl 11.5 6.0<br />

10 B-Cy-3 c-Hex Cl 33.2 11.2<br />

11 B-Cy-4 c-Hep Cl 15.6 4.0<br />

12 B-Cy-5 c-Oct Cl 12.8 48.6<br />

13 B-Cy-6 c-Dod Cl 120.2 >800<br />

IC50: concentration of inhibitor needed to inhibit biofilm formation by 50%.<br />

Explanation Note: Number of compound code is also corresponding to the ring size of<br />

cyclic substitution at R1 position. (ie. A-Cy-1 is Cyclopropyl substituted )<br />

Table-5: Influence of N1-cyclo-alkyl-2-aminoimidazoles on the biofilm formation<br />

and the planktonic growth of S. Typhimurium and P. aeruginosa PA14 at 25°C.


3.6. Conclusion<br />

In the present study, we investigated the effect of the different substitution on 2aminoimidazoles<br />

on the biofilm formation of S. Typhimurium and P. aeruginosa. We<br />

found that our simplest 2-aminoimidazole structure, 4(5)-phenyl-2-amino-1Himidazole<br />

(A), showed a moderate biofilm inhibitory activity both against S.<br />

Typhimurium and P. aeruginosa. Substitution of the para-position of the 4(5)-phenyl<br />

ring with a chlorine atom (B) enhanced the biofilm inhibitory activity about ten times.<br />

We were able to delineate a relationship between the length of the N1-alkyl or N1cyclo-alkyl<br />

chain of the N1-substituted 2-aminoimidazoles and their biofilm<br />

inhibitory activity. In general, introduction of a short alkyl chain at the N1-position<br />

resulted in a decreased activity against S. Typhimurium and P. aeruginosa biofilm<br />

formation, while all compounds with an intermediate alkyl or cyclo-alkyl chain length<br />

showed very strong activities in both test systems. The introduction of a long alkyl or<br />

cylco-alkyl chain could either drastically enhance the activity or totally abolish the<br />

activity, depending on the nature of the C5-subsitutent and the bacterial species tested.<br />

Growth curve analysis revealed that the N1-(cyclo-)alkylated 2-aminoimidazoles<br />

show a broad concentration range in which they specifically inhibit the biofilm<br />

formation of P. aeruginosa, without retarding the planktonic growth of the bacteria.<br />

However, these compounds were much more toxic to S. Typhimurium. Therefore, we<br />

cannot exclude the possibility that a part of the inhibitory effect against Salmonella<br />

biofilms (at the higher concentrations) is due to a reduction of the planktonic growth<br />

of the bacteria in the growth medium surrounding the surface on which the biofilms<br />

are formed.<br />

In conclusion, the 2-aminoimidazoles and the imidazopyrimidinium salts of the<br />

present study are valuable candidates in the development of therapeutics and<br />

sanitizers for the combat of biofilm formation by S. Typhimurium, P. aeruginosa and<br />

possibly other pathogenic bacteria.


3.7 Experimental<br />

3.7.1 General Methods<br />

All chemical reagents were used without further purification. Solvents for column<br />

chromatography and TLC were laboratory grade and distilled before use. For thinlayer<br />

chromatography (TLC), analytical TLC plates (Alugram SIL G/UV254 (E. M.<br />

Merk) were used. Column chromatography was performed with flash silica gel (100-<br />

200 mesh) or neutral alumina oxide (50-200 micron). 1 H and 13 C NMR spectra were<br />

recorded on a Bruker Avance 300 (300 MHz) or a Bruker AMX-400 (400 MHz)<br />

spectrometers. NMR samples were run in the indicated solvents and were referenced<br />

internally. Chemical shift values were quoted in ppm and coupling constants were<br />

quoted in Hz. Chemical shift multiplicities were reported as s = singlet, d = doublet, t<br />

= triplet, q = quartet, m = multiplet and br = broad. Low-resolution mass spectra were<br />

recorded on a HEWLETT-PACKARD instrument (CI or EI) and LCQ Advantage<br />

instrument (ESI). High-resolution mass spectra (EI) were recorded on a KRATOS<br />

MS50TC instrument. Melting points were determined using Reichert-Jung Thermovar<br />

apparatus and were uncorrected.<br />

3.7.2 Microwave Irradiation Experiments<br />

Microwave irradiation experiments were carried out in a dedicated CEM-Discover<br />

mono-mode microwave apparatus or Milestone MicroSYNTH multi-mode microwave<br />

reactor (Laboratory Microwave Systems). Microwave apparatuses were used in the<br />

standard configuration as delivered, operating at a frequency 2.45 GHz with<br />

continuous irradiation power from 0 to 400 W. The reactions were carried out in 10,<br />

20, 30 and 50 mL glass tubes. The temperature was measured with an IR sensor on<br />

the outer surface of the process vial or fibre optic sensor inside the process vial. After<br />

the irradiation period, the reaction vessel was cooled rapidly (2-5 min) to ambient<br />

temperature by air jet cooling.


3.8. Experimental protocols<br />

3.8.1 General Procedure for the Preparation of hydroxy Salts. (Microwave)<br />

According to process described in chapeter-2 40 new hydrocy salts were<br />

synthesized<br />

3.8.2 General Procedure for the Preparation of HClO4 Salts.<br />

A mixture of 84% polyphosphoric acid (3 g) and hydroxy salts (3 mmol) was heated<br />

in 50 ml beaker upon intensive stirring at 150 °C for 15 min. After cooling to the<br />

room temperature the resulting viscous mass was dissolved in 30 ml of water and 1 ml<br />

(10 mmol) of 70% HClO4 was added dropwise upon mild stirring. The white<br />

precipitate was washed with distilled water (3×10 mL), ether (2×10 mL) until a<br />

neutral reaction of the pH paper and then dried over P2O5 to give salt as fine white<br />

crystals.<br />

In similar manner 40 new compounds were synthesized.<br />

3.8.3 General Procedure for the Microwave-Assisted Synthesis of 2aminoimidazoles.<br />

To a suspension of HClO4 salt (2 mmol) in MeCN (5 mL) hydrazine hydrate (0.7 mL,<br />

14 mmol of a 64% solution, 7 equiv) was added, and the mixture was irradiated in the<br />

sealed Milestone MicroSYNTH microwave reactor for 10 min at a ceiling<br />

temperature of 100 °C at 150 W maximum power. After cooling down the reaction<br />

was worked up by diluting with DCM (300 mL), washing with sat. NH4Cl solution<br />

(150 mL), brine (150 mL) and water (2×150 mL) and drying over anhydrous Na2SO4.<br />

After filtration and concentration the resulting residue was purified by column<br />

chromatography (silica gel; DCM−MeOH, 9:1 v/v with 3% TEA) to afford the<br />

product as a colourless solid.<br />

40 new compounds were synthesized In similar manner.


3.9 Spectral Characterization<br />

1-Cyclododecyl-5-phenyl-1H-imidazol-2-amine (BS-042)<br />

H 2N<br />

N<br />

N<br />

Yield: 42 %. Mp: 228-230 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.38 (m, 5H), 6.59 (s,<br />

1H), 4.16 (m, 1H), 3.98 (br, 2H), 1.88 (m, 5H), 1.22(m, 14H), 0.90 (m, 3H). 13 C NMR<br />

(75.5 MHz, CDCl3): δ =148.4, 131.4, 131.2, 129.8 (× 2), 128.3 (×2), 127.5, 122.1,<br />

50.0, 29.1(×2), 24.0 (×2), 23.9 (×2), 22.6 (×2), 21.9 (×2), 21.5. HRMS (EI):C21H31N3,<br />

calcd 325.2518, found: 325.2511.<br />

1-Cyclooctyl-5-phenyl-1H-imidazol-2-amine (BS-045)<br />

H 2N<br />

N<br />

N<br />

Yield: 53 %. Mp: 152-154 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.43-7.28 (m, 5H),<br />

6.60 (s, 1H), 4.24 (m, 1H), 3.98 (br, 2H), 2.11 (m, 2H), 1.87 (m, 4H), 1.50 (m, 7H),<br />

1.25 (m, 1H). 13 C NMR (75.5 MHz, CDCl3): δ =148.1, 131.2, 129.5, 129.0 (×2),<br />

128.4 (×2), 127.3, 122.7, 54.5, 33.1(×2), 26.2, 25.8 (×2), 25.3 (×2). HRMS (EI):<br />

C17H23N3, calcd 269.1892, found: 269.1893.<br />

1-Cycloheptyl-5-phenyl-1H-imidazol-2-amine (BS-048)<br />

H 2N<br />

N<br />

N<br />

Yield: 54 %. Mp: 180-182 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.43-7.29 (m, 5H),<br />

6.59 (s, 1H), 4.09 (m, 3H), 2.13 (m, 2H), 1.95 (m, 2H), 1.73 (m, 2H), 1.54 (m, 6H).<br />

13 C NMR (75.5 MHz, CDCl3): δ =148.2, 131.1, 129.6, 128.9 (×2), 128.5 (×2), 127.3,


122.6, 54.6, 33.3(×2), 27.3 (×2), 25.7 (×2). HRMS (EI): C16H21N3, calcd 255.1735,<br />

found: 255.1759.<br />

1-Heptyl-5-phenyl-1H-imidazol-2-amine (BS-051)<br />

H 2N<br />

N<br />

N<br />

C7H15 Yield: 61 %. 1 H NMR (300 MHz, CDCl3): δ = 7.43-7.31 (m, 5H), 6.67 (s, 1H), 3.95<br />

(br, 2H), 3.75(t, J = 7.5 Hz, 2H), 1.59 (m, 2H), 1.17 (m, 8H), 0.84 (t, J = 6.5 Hz, 3H).<br />

13<br />

C NMR (75.5 MHz, CDCl3): δ =149.0, 131.0, 129.4, 128.6 (×2), 128.2 (×2), 127.2,<br />

122.6, 43.1, 31.5, 29.5, 28.6, 26.4, 22.4, 14.0. HRMS (EI): C16H23N3, calcd 257.1892,<br />

found: 257.1908.<br />

1-Octyl-5-phenyl-1H-imidazol-2-amine (BS-054)<br />

H 2N<br />

N<br />

N<br />

C8H17 Yield: 55 %. 1 H NMR (300 MHz, CDCl3): δ = 7.40-7.31 (m, 5H), 6.67 (s, 1H), 4.02<br />

(br, 2H), 3.75(t, J = 7.3 Hz, 2H), 1.59 (m, 2H), 1.17 (m, 10H), 0.85 (t, J = 6.6 Hz,<br />

3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.1, 131.0, 129.4, 128.6 (×2), 128.2 (×2),<br />

127.2, 122.6, 43.1, 31.6, 29.5, 29.0, 28.9, 26.4, 22.2, 14.0. HRMS (EI): C17H25N3,<br />

calcd 271.2048, found: 271.2035.<br />

1-Decyl-5-phenyl-1H-imidazol-2-amine (BS-057)<br />

H 2N<br />

N<br />

N<br />

C 10H 21<br />

Yield: 53 %. 1 H NMR (300 MHz, CDCl3): δ = 7.41-7.29 (m, 5H), 6.67 (s, 1H), 4.15<br />

(br, 2H), 3.75(t, J = 7.3 Hz, 2H), 1.58 (m, 2H), 1.21 (m, 14H), 0.87 (t, J = 6.5 Hz,<br />

3H). 13 C NMR (75.5 MHz, CDCl3): δ =148.9, 131.0, 129.4, 128.6 (×2), 128.3 (×2),<br />

127.2, 122.6, 43.1, 31.8, 29.5, 29.4, 28.3, 29.2, 28.9, 26.4, 22.2, 14.1. HRMS (EI):<br />

C19H29N3, calcd 299.2361, found: 299.2365.


1-Hexyl-5-phenyl-1H-imidazol-2-amine (BS-060)<br />

H 2N<br />

N<br />

N<br />

C6H13 Yield: 53 %. 1 H NMR (300 MHz, CDCl3): δ = 7.41-7.30 (m, 5H), 6.67 (s, 1H), 3.98<br />

(br, 2H), 3.75(t, J = 7.4 Hz, 2H), 1.59 (m, 2H), 1.18 (m, 6H), 0.82 (t, J = 6.4 Hz, 3H).<br />

13<br />

C NMR (75.5 MHz, CDCl3): δ =149.0, 131.0, 129.4, 128.6 (×2), 128.2 (×2), 127.2,<br />

122.8, 43.1, 31.1, 29.5, 26.1, 22.4, 13.8. HRMS (EI): C15H21N3, calcd 243.1735,<br />

found: 243.1730.<br />

1-Nonyl-5-phenyl-1H-imidazol-2-amine (BS-063)<br />

H 2N<br />

N<br />

N<br />

C9H19 Yield: 58 %. 1 H NMR (300 MHz, CDCl3): δ = 7.31 (m, 5H), 6.67 (s, 1H), 3.95 (br,<br />

2H), 3.75(t, J = 7.5 Hz, 2H), 1.58 (m, 2H), 1.17 (m, 12H), 0.86 (t, J = 6.6 Hz, 3H).<br />

13<br />

C NMR (75.5 MHz, CDCl3): δ =152.6, 134.6, 132.9, 132.1 (× 2), 131.7 (× 2), 130.7,<br />

126.4, 46.6, 35.3, 33.0, 32.8, 32.6, 32.5, 30.0, 26.1, 17.6. HRMS (EI): C18H27N3, calcd<br />

285.2205, found: 285.2222.<br />

5-Phenyl-1-undecyl-1H-imidazol-2-amine (BS-066)<br />

H 2N<br />

N<br />

N<br />

C 11H 23<br />

Yield: 52 %. 1 H NMR (300 MHz, CDCl3): δ = 7.42-7.31 (m, 5H), 6.67 (s, 1H), 3.99<br />

(br, 2H), 3.75 (t, J = 7.0 Hz, 2H), 1.59 (m, 2H), 1.17 (m, 16H), 0.87 (t, J = 6.4 Hz,<br />

3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.1, 131.0, 129.4, 128.6 (×2), 128.2 (×2),<br />

127.1, 122.9, 43.1, 31.8, 29.5 (× 2), 29.4, 29.3, 29.2, 28.9, 26.4, 22.6, 14.1. HRMS<br />

(EI): C20H31N3, calcd 313.2518, found: 313.2512.<br />

1-Dodecyl-5-phenyl-1H-imidazol-2-amine (BS-069)<br />

H 2N<br />

N<br />

N<br />

C 12H 25


Yield: 52 %. 1 H NMR (300 MHz, CDCl3): δ = 7.39-7.30 (m, 5H), 6.67 (s, 1H), 3.99<br />

(br, 2H), 3.75 (t, J = 7.2 Hz, 2H), 1.58 (m, 2H), 1.17 (m, 18H), 0.88 (t, J = 6.4 Hz,<br />

3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.0, 131.1, 129.4, 128.6 (×2), 128.2 (×2),<br />

127.1, 123.0, 43.1, 31.9, 29.5 (× 3), 29.4, 29.3(× 2), 28.9, 26.4, 22.6, 14.1. HRMS<br />

(EI): C21H33N3, calcd 327.2674, found: 327.2663.<br />

5-Phenyl-1-tridecyl-1H-imidazol-2-amine (BS-072)<br />

H 2N<br />

N<br />

N<br />

C 13H 27<br />

Yield: 58 %. Mp: 44-46 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.40-7.31 (m, 5H), 6.67<br />

(s, 1H), 3.99 (br, 2H), 3.75 (t, J = 7.3 Hz, 2H), 1.58 (m, 2H), 1.17 (m, 20H), 0.88 (t, J<br />

= 6.4 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =148.9, 131.0, 129.4, 128.6 (×2),<br />

128.2 (×2), 127.1, 122.7, 43.1, 31.9, 29.5 (× 7), 28.9, 26.4, 22.6, 14.1. HRMS (EI):<br />

C22H35N3, calcd 341.2831, found: 341.2827.<br />

5-Phenyl-1-tetradecyl-1H-imidazol-2-amine (BS-075)<br />

H 2N<br />

N<br />

N<br />

C 14H 29<br />

Yield: 64 %. Mp: 44-46 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.41-7.30 (m, 5H), 6.67<br />

(s, 1H), 4.00 (br, 2H), 3.75 (t, J = 7.4 Hz, 2H), 1.58 (m, 2H), 1.17 (m, 22H), 0.88 (t, J<br />

= 6.3 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =148.8, 131.0, 129.5, 128.6 (×2),<br />

128.3 (×2), 127.2, 122.8, 43.1, 31.9, 29.6 (× 8), 28.9, 26.4, 22.6, 14.1. HRMS (EI):<br />

C23H37N3, calcd 355.2987, found: 355.3016.<br />

1-Cyclohexyl-5-phenyl-1H-imidazol-2-amine (BS-078)<br />

H 2N<br />

N<br />

N<br />

Yield: 64 %. Mp: 153-155 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.42-7.28 (m, 5H),<br />

6.60 (s, 1H), 3.89 (m, 3H), 1.88 (m, 6H), 1.64 (m, 1H), 1.18 (m, 3H). 13 C NMR (75.5


MHz, CDCl3): δ =148.4, 131.2, 130.0, 129.0 (×2), 128.5 (×2), 127.3, 122.6, 55.1,<br />

31.2(×2), 25.9 (×2), 25.1. HRMS (EI): C15H19N3, calcd 241.1579, found: 241.1589.<br />

1-Cyclobutyl-5-phenyl-1H-imidazol-2-amine (BS-081)<br />

H 2N<br />

N<br />

N<br />

Yield: 47%. Mp: 77-79 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.41-7.28 (m, 5H), 6.58<br />

(s, 1H), 4.61 (m, 1H), 4.07 (br, 2H), 2.51 (m, 2H), 2.27 (m, 2H), 1.75 (m, 2H). 13 C<br />

NMR (75.5 MHz, CDCl3): δ =149.1, 131.3, 129.7, 128.6 (×2), 128.3 (×2), 127.1,<br />

122.9, 49.2, 29.5 (×2), 15.0. HRMS (EI): C13H15N3, calcd 213.1266, found: 213.1268.<br />

1-Pentyl-5-phenyl-1H-imidazol-2-amine (BS-085)<br />

H 2N<br />

N<br />

N<br />

C5H11 Yield: 53 %. Mp: 123-125 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.46-7.29 (m, 5H),<br />

6.67 (s, 1H), 4.00 (br, 2H), 3.75 (t, J = 7.5 Hz, 2H), 1.59 (m, 2H), 1.19 (m, 4H), 0.81<br />

(t, J = 6.7 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.0, 131.0, 129.4, 128.6 (×2),<br />

128.2 (×2), 127.2, 122.8, 43.1, 29.2, 28.6, 22.0, 13.8. HRMS (EI): C14H19N3, calcd<br />

229.1579, found: 229.1594.<br />

5-(4-Chlorophenyl)-1-cyclododecyl-1H-imidazol-2-amine (BS-116)<br />

H 2N<br />

N<br />

N<br />

Yield: 42 %. Mp: 221-223 ° C 1 H NMR (300 MHz, CDCl3): δ = 7.38 (m, 5H), 6.59 (s,<br />

1H), 4.16 (m, 1H), 3.98 (br, 2H), 1.88 (m, 5H), 1.22(m, 14H), 0.90 (m, 3H). 13 C NMR<br />

(75.5 MHz, CDCl3): δ =148.4, 131.4, 131.2, 129.8 (×2), 128.3 (×2), 127.5, 122.1,<br />

50.0, 29.1(×2), 24.0 (×2), 23.9 (×2), 22.6 (×2), 21.9 (×2), 21.5. HRMS (EI):C21H31N3,<br />

calcd 325.2518, found: 325.2118.<br />

Cl


5-(4-Chlorophenyl)-1-cyclooctyl-1H-imidazol-2-amine (BS-117)<br />

H 2N<br />

N<br />

N<br />

Yield: 55 %. Mp: 207-209 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.37 (d, J = 8.4 Hz,<br />

2H), 7.20 (d, J = 8.4 Hz, 2H), 6.59 (s, 1H), 4.18 (m, 1H), 4.02 (br, 2H), 2.12 (m, 2H),<br />

1.85 (m, 4H), 1.50 (m, 7H), 1.25 (m, 1H). 13 C NMR (75.5 MHz, CDCl3): δ =148.6,<br />

131.1, 130.0 (× 2), 129.7, 128.7 (×2), 128.3, 123.4, 56.7, 33.3(×2), 27.2 (×3), 25.7<br />

(×2). HRMS (EI): C17H22ClN3, calcd 303.1502, found: 303.1519.<br />

5-(4-Chlorophenyl)-1-cycloheptyl-1H-imidazol-2-amine (BS-118)<br />

H 2N<br />

N<br />

N<br />

Yield: 51 %. Mp: 180-182 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.36 (d, J = 8.4 Hz,<br />

2H), 7.18 (d, J = 8.4 Hz, 2H), 6.59 (s, 1H), 4.00 (m, 3H), 2.12 (m, 2H), 1.92 (m, 2H),<br />

1.75 (m, 2H), 1.55 (m, 6H). 13 C NMR (75.5 MHz, CDCl3): δ =148.6, 131.1, 130.0<br />

(×2), 129.7, 128.7 (×2), 128.3, 123.4, 56.7, 33.3(×2), 27.2 (×2), 25.7 (×2). HRMS<br />

(EI): C16H20ClN3, calcd 289.1346, found: 289.1364.<br />

5-(4-Chlorophenyl)-1-heptyl-1H-imidazol-2-amine (BS-119)<br />

H 2N<br />

N<br />

N<br />

C7H15 Yield: 54 %. Mp: 80-82 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.35 (d, J = 8.4 Hz, 2H),<br />

7.23 (d, J = 8.4 Hz, 2H), 6.66 (s, 1H), 4.02 (br, 2H), 3.72(t, J = 7.5 Hz, 2H), 1.57 (m,<br />

2H), 1.18 (m, 8H), 0.84 (t, J = 6.5 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.4,<br />

133.0, 129.6, 129.3 (×2), 128.8 (×2), 128.1, 123.5, 43.1, 31.5, 29.5, 28.6, 26.4, 22.5,<br />

14.2. HRMS (EI): C16H22ClN3, calcd 291.1502, found: 291.1507.<br />

Cl<br />

Cl<br />

Cl


5-(4-Chlorophenyl)-1-octyl-1H-imidazol-2-amine (BS-120)<br />

H 2N<br />

N<br />

N<br />

C8H17 Yield: 57 %. Mp: 76-78 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.35 (d, J = 8.4 Hz, 2H),<br />

7.23 (d, J = 9.3 Hz, 2H), 6.67 (s, 1H), 3.95 (br, 2H), 3.73(t, J = 7.2 Hz, 2H), 1.57 (m,<br />

2H), 1.18 (m, 10H), 0.86 (t, J = 6.6 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.2,<br />

131.1, 129.5, 129.3 (×2), 128.8 (×2), 128.2, 123.4, 43.1, 31.6, 29.5, 29.0, 28.9, 26.4,<br />

22.2, 14.0. HRMS (EI): C17H24ClN3, calcd 305.1659, found: 305.1649.<br />

5-(4-Chlorophenyl)-1-decyl-1H-imidazol-2-amine (BS-121)<br />

H 2N<br />

N<br />

N<br />

C 10H 21<br />

Yield: 52 %. Mp: 89-91 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.35 (d, J = 8.4 Hz, 2H),<br />

7.33 (d, J = 9.0 Hz, 2H), 6.67 (s, 1H), 3.97 (br, 2H), 3.72 (t, J = 7.4 Hz, 2H), 1.57 (m,<br />

2H), 1.18 (m, 14H), 0.87 (t, J = 6.5 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =148.3,<br />

133.0, 129.5, 129.3 (×2), 128.8 (×2), 128.2, 123.5, 43.1, 31.8, 29.5, 29.4 (×2), 29.2,<br />

28.9, 26.4, 22.6, 14.1. HRMS (EI): C19H28ClN3, calcd 333.1972, found: 333.1999.<br />

5-(4-Chlorophenyl)-1-hexyl-1H-imidazol-2-amine (BS-122)<br />

H 2N<br />

N<br />

N<br />

C6H13 Yield: 53 %. Mp: 76-78 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.35 (d, J = 8.4 Hz, 2H),<br />

7.23 (d, J = 8.4 Hz, 2H), 6.67 (s, 1H), 3.97 (br, 2H), 3.37 (t, J = 7.9 Hz, 2H), 1.57 (m,<br />

2H), 1.18 (m, 6H), 0.83 (t, J = 6.4 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.3,<br />

133.0, 129.5, 129.3 (×2), 128.8 (×2), 128.2, 123.5, 43.1, 31.1, 29.5, 26.1, 22.4, 13.9.<br />

HRMS (EI): C15H20N3, calcd 277.1346, found: 277.1353.<br />

5-(4-Chlorophenyl)-1-nonyl-1H-imidazol-2-amine (BS-123)<br />

H 2N<br />

N<br />

N<br />

C9H19 Cl<br />

Cl<br />

Cl<br />

Cl


Yield: 50 %. Mp: 76-78 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.35 (d, J = 8.5 Hz, 2H),<br />

7.23 (d, J = 8.9 Hz, 2H), 6.67 (s, 1H), 4.00 (br, 2H), 3.73 (t, J = 7.3 Hz, 2H), 1.57 (m,<br />

2H), 1.18 (m, 12H), 0.87 (t, J = 6.6 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =152.2,<br />

133.1, 129.5, 129.3 (× 2), 128.8 (× 2), 128.2, 123.6, 43.1, 31.7, 29.6, 29.3, 29.1, 28.9,<br />

26.4, 22.6, 14.0. HRMS (EI): C18H26ClN3, calcd 319.1815, found: 319.1808.<br />

5-(4-Chlorophenyl)-1-undecyl-1H-imidazol-2-amine (BS-124)<br />

H 2N<br />

N<br />

N<br />

C 11H 23<br />

Yield: 57 %. Mp: 78-80 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.35 (d, J = 8.4 Hz, 2H),<br />

7.23 (d, J = 9.1 Hz, 2H), 6.66 (s, 1H), 4.00 (br, 2H), 3.72 (t, J = 7.3 Hz, 2H), 1.57 (m,<br />

2H), 1.18 (m, 16H), 0.88 (t, J = 6.4 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.2,<br />

133.1, 129.5, 129.3 (×2), 128.8 (×2), 128.2, 123.6, 43.1, 31.8, 29.6, 29.5, 29.4 (×2),<br />

29.3, 28.9, 26.4, 22.6, 14.1. HRMS (EI): C20H30ClN3, calcd 347.2128, found:<br />

347.2136.<br />

5-(4-Chlorophenyl)-1-dodecyl-1H-imidazol-2-amine (BS-125)<br />

H 2N<br />

N<br />

N<br />

C 12H 25<br />

Yield: 57 %. Mp: 79-91 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.35 (d, J = 8.4 Hz, 2H),<br />

7.23 (d, J = 8.9 Hz, 2H), 6.67 (s, 1H), 3.99 (br, 2H), 3.72 (m, 2H), 1.58 (m, 2H), 1.17<br />

(m, 18H), 0.88 (m, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.1, 133.1, 129.5, 129.3<br />

(×2), 128.8 (×2), 128.2, 123.6, 43.1, 31.9, 29.6 (× 3), 29.4 (× 2), 29.3, 28.9, 26.4,<br />

22.6, 14.1. HRMS (EI): C21H32ClN3, calcd 361.2285, found: 361.2281.<br />

5-(4-Chlorophenyl)-1-tridecyl-1H-imidazol-2-amine (BS-126)<br />

H 2N<br />

N<br />

N<br />

C 13H 27<br />

Yield: 56 %. Mp: 83-85 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.35 (d, J = 8.5 Hz, 2H),<br />

7.23 (d, J = 9.3 Hz, 2H), 6.67 (s, 1H), 3.99 (br, 2H), 3.72 (t, J = 7.3 Hz, 2H), 1.57 (m,<br />

2H), 1.17 (m, 20H), 0.88 (t, J = 6.3 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.1,<br />

Cl<br />

Cl<br />

Cl


133.1, 129.5, 129.3 (×2), 128.8 (×2), 128.2, 123.6, 43.1, 31.9, 29.6 (×4), 29.5, 29.4,<br />

29.3, 28.9, 26.4, 22.6, 14.1. HRMS (EI): C22H34ClN3, calcd 375.2441, found:<br />

375.2446.<br />

5-(4-Chlorophenyl)-1-tetradecyl-1H-imidazol-2-amine (BS-127)<br />

H 2N<br />

N<br />

N<br />

C 14H 29<br />

Yield: 51 %. Mp: 82-83 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.35 (d, J = 8.5 Hz, 2H),<br />

7.23 (d, J = 8.7 Hz, 2H), 6.67 (s, 1H), 4.00 (br, 2H), 3.72 (t, J = 7.3 Hz, 2H), 1.55 (m,<br />

2H), 1.17 (m, 22H), 0.87 (m, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.1, 133.1,<br />

129.5, 129.3 (×2), 128.8 (×2), 128.2, 123.6, 43.1, 31.9, 29.6 (×5), 29.5, 29.4 (×2),<br />

29.0, 26.4, 22.7, 14.1. HRMS (EI): C23H36ClN3, calcd 389.2598, found: 389.2602.<br />

5-(4-Chlorophenyl)-1-cyclohexyl-1H-imidazol-2-amine (BS-128)<br />

H 2N<br />

N<br />

N<br />

Yield: 37 %. Mp: 179-181 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.35 (d, J = 8.4 Hz,<br />

2H), 7.18 (d, J = 8.4 Hz, 2H), 6.60 (s, 1H), 4.00 (br, 2H), 3.81 (m, 1H), 1.87 (m, 6H),<br />

1.66 (m, 1H), 1.23 (m, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =148.8, 133.2, 130.2<br />

(×2), 129.8, 128.9, 128.7 (×2), 123.7, 55.2, 31.2(×2), 25.9 (×2), 25.1. HRMS (EI):<br />

C15H18ClN3, calcd 275.1189, found: 275.1187.<br />

5-(4-Chlorophenyl)-1-pentyl-1H-imidazol-2-amine (BS-129)<br />

H 2N<br />

N<br />

N<br />

C5H11 Yield: 38 %. Mp: 96-98 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.35 (d, J = 8.4 Hz, 2H),<br />

7.23 (d, J = 8.8 Hz, 2H), 6.67 (s, 1H), 4.08 (br, 2H), 3.73 (t, J = 7.3 Hz, 2H), 1.58 (m,<br />

2H), 1.22 (m, 4H), 0.82 (t, J = 6.6 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.3,<br />

133.0, 129.5, 129.3 (×2), 128.8 (×2), 128.2, 123.4, 43.2, 29.3, 28.6, 22.1, 13.8. HRMS<br />

(EI): C14H18ClN3, calcd 263.1189, found: 263.1185.<br />

Cl<br />

Cl<br />

Cl


5-(4-Chlorophenyl)-1-cyclobutyl-1H-imidazol-2-amine (BS-130)<br />

H 2N<br />

N<br />

N<br />

Yield: 40%. Mp: 156-159 ° C. 1 H NMR (300 MHz, CDCl3): δ = 7.33 (d, J = 8.4 Hz,<br />

2H), 7.19 (d, J = 8.5 Hz, 2H), 6.57 (s, 1H), 4.55 (m, 1H), 4.00 (br, 2H), 2.47 (m, 2H),<br />

2.27 (m, 2H), 1.76 (m, 2H). 13 C NMR (75.5 MHz, CDCl3): δ =149.4, 133.0, 129.8,<br />

129.7 (×2), 128.6 (×2), 128.4, 123.5, 49.2, 29.5 (×2), 15.0. HRMS (EI): C13H14ClN3,<br />

calcd 247.0876, found: 247.0874.<br />

5-(4-Methoxyphenyl)-1-octyl-1H-imidazol-2-amine (BS-199)<br />

H 2N<br />

N<br />

N<br />

C8H17 Yield: 56 %. 1 H NMR (300 MHz, CDCl3): δ = 7.25 (m, 2H), 6.95 (d, J = 8.7 Hz, 2H),<br />

6.60 (s, 1H), 3.97 (br s, 2H), 3.84 (s, 3H), 3.70 (t, J = 7.8 Hz, 2H), 1.56 (m, 2H), 1.17<br />

(m, 10H), 0.86 (t, J = 7.05 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.2, 131.1,<br />

129.5, 129.3 (×2), 128.8 (×2), 128.2, 123.4, 43.1, 31.6, 29.5, 29.0, 28.9, 26.4, 22.2,<br />

14.0. HRMS (EI): C18H27N3O, calcd 301.4265, found: 301.4271.<br />

5-(4-Fluorophenyl)-1-octyl-1H-imidazol-2-amine (BS-200)<br />

H 2N<br />

N<br />

N<br />

C8H17 Yield: 71 %. 1 H NMR (300 MHz, CDCl3): δ = 7.27 (m, 2H), 7.09 (m, 2H), 6.63 (s,<br />

1H), 3.96 (br s, 2H), 3.70 (t, J = 6.8 Hz, 2H), 1.56 (m, 2H), 1.17 (m, 10H), 0.86 (t, J =<br />

7.05 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =163.8, 160.5, 148.7, 130.2, 128.4,<br />

127.0, 122.9, 115.5, 104.7, 43.0, 31.6, 29.5, 29.0, 28.9, 26.4, 22.5, 14.0. HRMS (EI):<br />

C17H24FN3, calcd 289.3910, found: 289.3901.<br />

5-(3,4-Dichlorophenyl)-1-octyl-1H-imidazol-2-amine (BS-201)<br />

Cl<br />

O<br />

F


H 2N<br />

N<br />

N<br />

C8H17 Yield: 64 %. 1 H NMR (300 MHz, CDCl3): δ = 7.47 (d, J = 8.3 Hz, 1H), 7.40 (d, J =<br />

7.98 Hz, 1H), 7.16 (d of d, J = 2.0, 6.2 Hz, 1H), 6.71 (s, 1H), 4.05 (br s, 2H), 3.73 (t, J<br />

= 7.68 Hz, 2H), 1.59 (m, 2H), 1.19 (m, 10H), 0.86 (t, J = 7.05 Hz, 3H). 13 C NMR<br />

(75.5 MHz, CDCl3): δ =149.6, 132.8, 131.1, 131.0, 130.6, 129.5, 127.1, 127.0, 124.2,<br />

43.3, 31.6, 29.5, 29.0, 28.9, 26.4, 22.5, 14.0. HRMS (EI): C17H23Cl2N3, calcd<br />

340.2906, found: 240.2918.<br />

5-(3-Bromophenyl)-1-octyl-1H-imidazol-2-amine (BS-202)<br />

H 2N<br />

N<br />

N<br />

C8H17 Yield: 68 %. 1 H NMR (300 MHz, CDCl3): δ = 7.45 (m, 2H), 7.25 (m, 2H), 6.70 (s,<br />

1H), 4.02 (br s, 2H), 3.74 (t, J = 7.71 Hz, 2H), 1.59 (m, 2H), 1.19 (m, 10H), 0.86 (t, J<br />

= 6.08 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.2, 133.0, 130.8, 130.1 (×2),<br />

128.0, 126.5, 123.8, 122.6, 43.2, 31.6, 29.5, 29.0, 28.9, 26.4, 22.5, 14.0. HRMS (EI):<br />

C17H24BrN3, calcd 350.2966, found:250.2978.<br />

5-(Naphthalen-1-yl)-1-octyl-1H-imidazol-2-amine (BS-202)<br />

H 2N<br />

N<br />

N<br />

C8H17 Yield: 68 %. 1 H NMR (300 MHz, CDCl3): δ = 7.85 (m, 4H), 7.46 (m, 3H), 6.78 (s,<br />

1H), 4.04 (br s, 2H), 3.83 (t, J = 7.62 Hz, 2H), 1.62 (m, 2H), 1.15 (m, 10H), 0.82 (t, J<br />

= 6.99 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =149.1, 133.4, 132.4, 129.5, 128.3,<br />

128.2, 127.9, 127.7, 126.6, 126.4 (×2), 126.0, 123.0, 43.3, 31.6, 29.5, 29.0, 28.9, 26.4,<br />

22.5, 14.0. HRMS (EI): C21H27N3, calcd 321.4592, found: 321.4576.<br />

5-(4-Nitrophenyl)-1-octyl-1H-imidazol-2-amine (BS-204)<br />

H 2N<br />

N<br />

N<br />

C8H17 Cl<br />

Cl<br />

Br<br />

NO 2


Yield: 66%. 1 H NMR (300 MHz, CDCl3): δ = 8.27 (d, J = 8.7 Hz, 2H), 7.47 (t, J = 8.7<br />

Hz, 2H), 6.89 (s, 1H), 4.13 (br s, 2H), 3.82 (t, J = 7.8 Hz, 2H), 1.63 (m, 2H), 1.21 (m,<br />

10H), 0.85 (t, J = 6.96 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =163.8, 160.5,<br />

148.7, 130.2, 128.4, 127.0, 122.9, 115.5, 104.7, 43.0, 31.6, 29.5, 29.0, 28.9, 26.4,<br />

22.5, 14.0. HRMS (EI): C17H24N4O2, calcd 316.3981, found: 316.3993.<br />

5-(4'-Nitrobiphenyl-4-yl)-1-octyl-1H-imidazol-2-amine (BS-205)<br />

H 2N<br />

N<br />

N<br />

C8H17 Yield: 52 %. 1 H NMR (300 MHz, CDCl3): δ = 8.33 (m, 1H), 7.78-7.35 (m, 6H), 7.13<br />

(m 1H), 6.77 (s, 1H), 4.07 (br s, 2H), 3.79 (m, 2H), 1.63 (m, 2H), 1.19 (m, 10H), 0.84<br />

(m, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =163.8, 160.5, 148.7, 130.2, 128.4, 127.0,<br />

122.9, 115.5, 104.7, 43.0, 31.6, 29.5, 29.0, 28.9, 26.4, 22.5, 14.0. HRMS (EI):<br />

C23H28N4O2, calcd 392.4940, found:392.4928.<br />

NO 2<br />

5-(4-(Methylsulfonyl)phenyl)-1-octyl-1H-imidazol-2-amine (BS-206)<br />

H 2N<br />

N<br />

N<br />

C8H17 SO 2Me<br />

Yield: 61 %. 1 H NMR (300 MHz, CDCl3): δ = 7.97 (d, J = 8.1 Hz, 2H), 7.51 (d, J =<br />

7.98 Hz, 2H), 6.83 (s, 1H), 4.09 (br s, 2H), 3.82 (t, J = 7.68 Hz, 2H), 3.09 (s 3H), 1.62<br />

(m, 2H), 1.21 (m, 10H), 0.86 (t, J = 7.05 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ<br />

=150.7, 138.1, 136.6, 127.9 (×2), 127.6, 127.4 (×2), 126.0, 44.5, 43.6, 31.6, 29.6,<br />

29.0, 28.9, 26.5, 22.5, 14.0. HRMS (EI): C18H27N3O2S, calcd 349.4909, found:<br />

349.4920.<br />

5-(4-(Methylthio)phenyl)-1-octyl-1H-imidazol-2-amine (BS-207)<br />

H 2N<br />

N<br />

N<br />

C8H17 Yield: 40 %. 1 H NMR (300 MHz, CDCl3): δ = 7.33-7.22 (m, 4H), 6.65 (s, 1H), 4.00<br />

(br s, 2H), 3.73 (t, J = 7.98 Hz, 2H), 2.51 (s, 3H), 1.58 (m, 2H), 1.18 (m, 10H), 0.86<br />

(t, J = 6.99 Hz, 3H). 13 C NMR (75.5 MHz, CDCl3): δ =163.8, 160.5, 148.7, 130.2,<br />

SMe


128.4, 127.0, 122.9, 115.5, 104.7, 43.0, 31.6, 29.5, 29.0, 28.9, 26.4, 22.5, 14.0. HRMS<br />

(EI): C18H27N3S, calcd 317.4921, found: 317.4935.<br />

5-(Triphenyl-4-yl)-1-octyl-1H-imidazol-2-amine (BS-208)<br />

H 2N<br />

N<br />

N<br />

C8H17 Yield: 31 %. 1 H NMR (300 MHz, CDCl3): δ = 7.70-7.64 (m, 7H), 7.46-7.40 (m 5H),<br />

6.74 (s, 1H), 4.03 (br s, 2H), 3.80 (m, 2H), 1.63 (m, 2H), 1.20 (m, 10H), 0.86 (m, 3H).<br />

13<br />

C NMR (75.5 MHz, CDCl3): δ =148.9, 140.5, 140.2, 139.2 (×2), 130.0, 129.2, 128.8<br />

(×2), 128.5, 127.5 (×2), 127.4, 127.3, 127.2 (×4), 127.0, 126.9, 123.1, 43.2, 31.7,<br />

29.6, 29.0, 28.9, 26.5, 22.5, 14.0. HRMS (EI): C29H33N3, calcd 423.5924, found:<br />

423.5941.


3.10 Representative NMR spectra<br />

3.10.1 1 H and 13 C NMR spectra of bs-063<br />

Integral<br />

7.4263<br />

7.3999<br />

7.3780<br />

7.3252<br />

7.3171<br />

7.3102<br />

7.2625<br />

8.0<br />

152.6248<br />

150<br />

7.5<br />

4.9005<br />

7.0<br />

134.6350<br />

132.9477<br />

132.1549<br />

131.8022<br />

130.7185<br />

140<br />

6.6762<br />

0.9360<br />

130<br />

6.5<br />

126.4311<br />

H 2N<br />

120<br />

H 2N<br />

6.0<br />

N<br />

N<br />

N<br />

C9H19 5.5<br />

N<br />

C9H19 110<br />

100<br />

5.0<br />

90<br />

4.5<br />

3.9905<br />

3.7821<br />

3.7570<br />

3.7312<br />

1.4513<br />

81.0402<br />

80.6220<br />

80.2038<br />

4.0<br />

(ppm)<br />

80<br />

(ppm)<br />

2.1067<br />

3.5<br />

70<br />

3.0<br />

60<br />

2.5<br />

50<br />

46.6571<br />

2.0<br />

40<br />

1.6110<br />

1.5890<br />

1.5658<br />

1.9669<br />

1.5<br />

12.326<br />

1.0<br />

35.3221<br />

33.0857<br />

32.8639<br />

32.6638<br />

32.5038<br />

30.0128<br />

26.1509<br />

30<br />

0.8917<br />

0.8691<br />

0.8465<br />

3.0000<br />

20<br />

17.6160<br />

0.5<br />

10<br />

-0.0002<br />

0.0<br />

0


3.10.2 1 H and 13 C NMR spectra of bs-125<br />

Integral<br />

9.0<br />

160<br />

8.5<br />

149.1738<br />

150<br />

8.0<br />

7.3853<br />

7.3570<br />

7.2629<br />

7.2334<br />

2.0207<br />

2.6488<br />

7.5<br />

7.0<br />

6.6722<br />

N<br />

H2N N<br />

C12H25 0.9125<br />

133.1114<br />

129.5949<br />

129.3876<br />

128.8857<br />

128.2966<br />

123.6310<br />

140<br />

130<br />

6.5<br />

6.0<br />

5.5<br />

N<br />

H2N N<br />

C12H25 120<br />

110<br />

100<br />

5.0<br />

Cl<br />

Cl<br />

3.9909<br />

3.7536<br />

3.7285<br />

3.7028<br />

1.4687<br />

1.9926<br />

4.5 4.0<br />

(ppm)<br />

77.4765<br />

77.0510<br />

76.6292<br />

90 80<br />

(ppm)<br />

70<br />

3.5<br />

3.0<br />

60<br />

2.5<br />

50<br />

2.0<br />

43.1952<br />

40<br />

1.5750<br />

1.9595<br />

1.5<br />

1.2492<br />

1.1802<br />

0.9021<br />

0.8808<br />

0.8576<br />

18.169<br />

3.0000<br />

1.0<br />

0.5<br />

31.9039<br />

29.6019<br />

29.4965<br />

29.4019<br />

29.3292<br />

28.9983<br />

26.4927<br />

22.6890<br />

14.1359<br />

30<br />

20<br />

10<br />

0.0002<br />

0.0<br />

0.0008<br />

0


3.11 References<br />

[1] (a) Alvi K. A, Peters B. M, Hunter L. M, Crews P. (1993) Tetrahedron. 49,329. (b) Chan G.<br />

W, Mong S, Hemling M. E, Freyer A. J, Offen P. H, DeBrosse C. W, Sarau H. M, Westley J.<br />

W. (1993) J. Nat. Prod. 56, 116. (c) Tsuda M, Shigemori H, Ishibashi M, Kobayashi J. (1992)<br />

Tetrahedron Lett. 33, 2597. (d) Ishibashi M, Tsuda M, Ohizumi Y, Sasaki T, Kobayashi<br />

(1991) J. Ezperientia, 47, 299. (e) Kobayashi J, Tsuda M, Ohizumi Y. (1991) Experientia 47,<br />

301. (f) Keifer P. A, Schwartz R. E, Koker M. E. S, Hughes R. J, Rittschof D, Rinehart K. L.<br />

(1991) J. Org. Chem. 56, 2965. (g) Morales J. J, Rodriguez A. D. (1991) J. Nat. Prod. 54,<br />

629. (h) Alvi K. A, Crews P, Loughhead D. G. (1991) J. Nat. Prod. 54, 1509. (i) Wright A. E,<br />

Chiles S, Cross S. (1991) J. Nat. Prod. 54, 1684. (j) Kobayashi J, Tsuda M, Murayama T,<br />

Nakamura H, Ohizumi Y, Ishibashi M, Iwamura M, Ohta T, Nozoe S. (1990) Tetrahedron<br />

46, 5579. (k) Bedoya-Zurita M, Ahond A Poupat C, Potier P. (1989) Tetrahedron 45, 6713.<br />

(l) Walker R. P, Faulkner D. J, Van Engen D, Clardy J. (1981) J. Am. Chem. SOC. 103,<br />

6772.<br />

[2] (a) Nagai W, Kirk K. L, Cohen L. A. (1973) J. Org. Chem. 38, 971. (b) Dismukes K, Rogers<br />

M, Daily J. W. (1976) J. Neurochem. 26, 785. (c) Lipinski C. A, LaMattina J. L, Hohnke L.<br />

A. (1986) J. Med. Chem. 28, 1628. (d) Impicciatore M, Morini G, Chiavarini M, Plazzi P. V,<br />

Bordi F, Vitali F. (1986) Agents Actions 18, 134. (e) Haaksma J, DonnB-Op den Kelder M,<br />

Timmerman H, Weinstein H, (1991) In New Perspectives in Histamine Research;<br />

BirkhEiuser Verlag: Basel, 315-324.<br />

[3] See Ann. Drug Data Rep. 1993,15, 513.<br />

[4] Jung F, Boucherot D, Delvare C, Olivier A, Davies G. M, Betts M. J, Brown R, Stevenson R,<br />

Joseph M, Kingston F, Pittam, (1993) J. Antibiot. 46, 992.<br />

[5] (a) Beaman A. G, Tautz W, Gabriel T, Duschinsky R. (1966) J. Am. Chem. SOC. 87, 389.<br />

(b) Lancini C, Lazzari E, Arioli V, Bellani P. (1969) J. Med. Chem. 12, 775.<br />

[6] For example see: Jenkins C, Naylor A, O'Neill, Threadgill D, Cole S, Stratford J, Adams<br />

G. E, Fielden M, Suto J, Stier A. J. Med. Chem. lSW, 33, 2603. Adams E, Stratford J.<br />

(1986) Biochem. Pharm. 35, 71.<br />

[7] Storey B. T, Sullivan W. W, Moyer C. L. (1986) J. Org. Chem. 29, 3118.<br />

[8] Lawson, A. (1956) J. Chem. SOC. 307.<br />

[9] (a) Lancini G. C, Lazzari E. (1966) J. Heterocycl. Chem. 3, 1 (b) Cavalleri B, Ballotta R,<br />

Lancini G. C. (1979) J. Heterocycl. Chem. 979.<br />

[10] See: Porter A. E. A. (1984) In Comprehensive Heterocyclic Chemistr Pyrazines and Their<br />

Benzo Derivatives; Boulton A. J, McKillop A Eds.; Pergamon Press: New York. 3, 184-185.<br />

[11] Fargher R. G, Pyman F. L. (1919) J. Chem. SOC. 217.<br />

[12] Kirk K. L. (1978) J. Org. Chem. 43, 4381.<br />

[13] Kreutzberger A. (1962) J. Org. Chem. 27, 886.<br />

[14] Nishimura T, Kitajima K. (1979) J. Org. Chem. 44, 818.


[15] Takahashi K, Kirk K. L, Cohen L. A. J. Org. Chem. 1984, 49, 1951. Jarosinski M. A,<br />

Anderson K. (1991) J. Org. Chem. 56, 4058.<br />

[16] (a) Ruccia M, Vivona N, Cusmano G. (1974) Tetrahedron 30, 3859. (b) Braun M, Buchi G,<br />

Bushey F. (1978) J. Am. Chem. SOC. 100, 4208. (c) Sehgal K, Agrawal C. (1982) J. Pharm.<br />

Sci. 71, 1203. (d) Berry A, Gilbertsen B, Cook D. (1986) J. Med. Chem. 29, 2034.<br />

[17] LaMattina L, Mularski C. J. (1984) Tetrahedron Lett. 25, 2957.<br />

[18] Xu Y, Yakushijin K, Horne A. (1993) Tetrahedron Lett. 34, 6981


Copper Catalyzed Microwave Assisted One Pot<br />

Synthesis of 2-Aminoimidazole-Triazole<br />

Framework via Dimorth Rearrangement and<br />

Click Reaction


Chapter-4<br />

Copper Catalyzed Microwave Assisted One Pot<br />

Synthesis of 2-Aminoimidazole-Triazole Framework<br />

via Dimorth Rearrangement and Click Reaction.<br />

Br<br />

R 2<br />

N<br />

N<br />

n<br />

N<br />

OH<br />

R 1<br />

n = 1,2<br />

N 3<br />

ABSTRACT<br />

One-pot Microwave-Assisted Synthesis<br />

Cu(OAc) 2 (5 mol %)<br />

N 2H 4 (2 equiv)<br />

R 3<br />

(1.2 equiv)<br />

MW, 100 o C, 2-5 min<br />

R 2<br />

N<br />

NH<br />

N<br />

H<br />

22 examples,<br />

upto 90% yield<br />

R 1<br />

N<br />

N<br />

n<br />

N<br />

R3 A microwave assisted one-pot Cu(II)-catalyzed protocol was developed for the<br />

construction of 2-AI-T framework. This process combining two consecutive steps of<br />

dimorth rearrangement and click reaction represents a useful protocol for the smooth<br />

synthesis of novel 2-aminoimidazole-triazole derivatives.<br />

Publication<br />

[1] Copper Catalyzed Microwave Assisted One Pot Synthesis of 2-<br />

Aminoimidazole-Triazole Framework Org.lett (manuscript in preparation)


4.1 Introduction<br />

There are only a few approaches that describe the direct synthesis of 2aminoimidazoles<br />

and their biological activity 1-5 . The earliest method involves<br />

condensation of α-aminocarbonyl compounds with cyanamide or their synthetic<br />

equivalents 6,7 . This method is most commonly used for the direct construction of the<br />

2-aminoimidazole ring. Other general applicable strategies are cyclocondensation of<br />

α-bromoketone with N-acetylguanidine in acetonitrile 8 , iminophosphorane-mediated<br />

cyclization of α –azido esters 9 , ammonolysis of 2-amino-1,3-oxazol-3-iumsalts 10 ,<br />

sequential functionalization of 1,2-diprotected imidazole ring with different<br />

electrophiles 11 . Most of them involve long experimental procedures, the use of<br />

unstable precursors and tiresome workup process. Accordingly, the development of<br />

straightforward and general procedures for the synthesis of diversely substituted 2aminoimidazoles<br />

from readily available precursors is highly warranted. Herein, we<br />

report a rapid and highly efficient Cu-mediated synthesis of 2-aminoimidazoletriazole<br />

framework via click reaction and dimorth rearrangement.<br />

“Click chemistry” has emerged as a fast and efficient approach to synthesis of novel<br />

compounds with desired function making use of selected “near perfect” reactions. 12<br />

(very fast, selective, high-yield, and wide scope).<br />

The Dimroth rearrangement 13 is an isomerization of heterocycles that consists in a<br />

translocation of endo- or exocyclic heteroatoms through a ring-opening-ring-closure<br />

sequence. It can be catalyzed by acids, bases, heat or light.<br />

Recently group of Erik 14 reported a new one pot microwave assisted synthesis of<br />

substituted 2-amino-1H- imidazoles from readily available 2-aminopyrimidine (1) and<br />

α-bromoketone (2). The first step was performed by heating N-(3azidopropyl)pyrimidin-2-amine<br />

(1) and 2-bromo-1-phenylethanone (2) at 75 o C for 3<br />

h resulting in the formation of hydroxyl salt (3) which undergoes dimorth type<br />

rearrangement by 7 equiv of NH2NH2.H2O resulting in the formation of N-(2-azido)-<br />

1H-imidazol-2-amine. Final step of click reaction was performed under microwaveirradiation<br />

using phenylacetylene (1.5.equiv), Cu(Oac)2 (10 mol %)as catalyst at 100<br />

o<br />

C 10 min with a maximum power of 40W to obtain 2-AI-T scaffold (5). (Scheme 1)


N<br />

N<br />

Br<br />

R 2<br />

N<br />

N<br />

3<br />

N<br />

H<br />

N<br />

OH<br />

R1 N 3<br />

n<br />

MeCN, 75 o C,<br />

3 Hrs<br />

N<br />

n 3<br />

+<br />

R 2<br />

1 2<br />

Br<br />

O<br />

R 1<br />

One Pot MW ?<br />

o MW. 100 C<br />

MeCN, 10 min<br />

N2H4 (7 equiv)<br />

Scheme-1 Sequential Synthesis of 2-AI-T Framework<br />

R 2<br />

R 1<br />

R 2<br />

R 1<br />

N<br />

N<br />

H<br />

H<br />

N<br />

N<br />

NH<br />

N<br />

N R3 N<br />

n<br />

MW. 100 o C<br />

Cu(OAc) 2<br />

10 min, 80 %<br />

In continuation of earlier work on two step synthesis of 2-AI-T scaffold with excellent<br />

yield. now an ameliorated and convenient one-pot protocol for the synthesis of 2-AI-T<br />

scaffold under microwave conditions has been reported.<br />

4.2 Optimization Study<br />

Looking to the current exploration in the synthesis and microwave-assisted decoration<br />

of the 2-aminoimidazole 14 and click reaction 15 and preliminary success of the<br />

sequence, it was very interesting to investigate whether one-pot protocol for the<br />

construction of 2-AI-T scaffold should be possible. The test reaction was performed<br />

with hydroxy salt {3} and phenyl acetylene as a model system. Different Cu catalyst,<br />

equiv of NH2NH2.H2O, temperature and reaction time were screened to derive an<br />

optimized protocol (Table 1).<br />

First, the application of Cu(OAc)2 as catalyst for click reaction and different<br />

equivalents of aqueous NH2NH2.H2O for simultaneous dimorth rearrangement (Table-<br />

1, No-1-3) was evaluated. However in case of 1 equiv. of hydrazine used, yield was<br />

only 51 %. (Table-1, No-1). Next study of different reaction time (Table-1, No-3-7)<br />

performed. It was observed that reaction could complete even in very short time<br />

4<br />

NH<br />

5<br />

R 3<br />

N 3<br />

n


(Table-1, No- 6). Next reaction temperature (Table-1, No-8-9) was investigated.<br />

Decrease of the reaction temperature resulted in lover yield (Table-1, No-9). Then the<br />

examination the catalyst effect on a reaction (Table-1, No-7-13) was done. However<br />

replacement of Cu(Oac)2 with CuSO4 resulted in lower yield (Table-1, No-11). While<br />

in case of Cu Powder (200 mesh) used only traces amount of desire product observed<br />

(Table-1, No-13). Moreover it was observed that the catalyst was mandatory for<br />

successfully performing the reaction, as no product was formed in the absence of the<br />

catalyst (Table-1, No-12). Finally optimum reaction conditions were achieved when a<br />

mixture of hydroxy salt, 1.2 equiv of phenyl acetylene, 5 mol % of Cu(Oac)2 in 1 ml<br />

of Ethenol : water (4: 1) was irradiated for 2 min at a ceiling temperature of 100 o C<br />

applying a maximum power of 36 W, affording the desired compound in 90 % yield<br />

(Table 1 No-8). The protocol was checked with conventional condition providing<br />

lower yield of 24 % of after 24 hrs.<br />

N<br />

N N<br />

Ph OH<br />

N3 One-Pot microwave-assisted<br />

Cu salt (mol %)<br />

Br<br />

3<br />

N2H4 (equiv.)<br />

Ph (1.2 equiv.)<br />

EtOH : Water (4:1, 1ml)<br />

Ph<br />

No.<br />

time<br />

(min)<br />

N<br />

N<br />

H<br />

NH<br />

5<br />

N N<br />

N<br />

temp ( o C) Cu salt (mol %) yield (%) b<br />

1 c 20 100 °C Cu(Oac)2, 10 51<br />

2 d 20 100 °C Cu(Oac)2, 10 84<br />

3 20 100 °C Cu(Oac)2, 10 86<br />

4 10 100 °C Cu(Oac)2, 10 80<br />

5 5 100 °C Cu(Oac)2, 10 90<br />

6 2 100 °C Cu(Oac)2, 10 90<br />

7 1 100 °C Cu(Oac)2, 10 53<br />

8 2 100 °C Cu(Oac)2, 5 90<br />

9 2 90 °C Cu(Oac)2, 5 73<br />

10 2 100 °C Cu(Oac)2, 2 57<br />

11 2 100 °C CuSO4.5H2O, 5 67<br />

Ph


12 2 100 °C - -<br />

13 2 100 °C Cu Powder (200 mesh) Traces<br />

14 e - f 25 °C Cu(Oac)2, 5 24<br />

a<br />

All reactions were run on a 0.7 mmol scale of 3, applying phenyl acetylene (1.2<br />

equiv) in ethanol: water (4:1, 1 mL) under microwave irradiation. The mixture was<br />

irradiated in a sealed tube (CEM Discover @ ) at a ceiling temperature of 100 o C and 35<br />

W maximum power for the stipulated time. b isolated yields. c 1.0 equiv of<br />

NH2NH2.H2O used. d 5.0 equiv of NH2NH2.H2O used. e reaction carried out at room<br />

temperature. f time 24 h.<br />

Table-1: Copper Catalyzed One-Pot protocol: Catalyst, equiv of hydrazine, reaction<br />

time and Temperature Effects on the model reaction to obtain 2-AI-T scaffold a .<br />

4.3 Results and Discussion<br />

Encouraged by these findings, the scope of this protocol was further explored. An<br />

array of hydroxy salts 3 (a-j) (Table-2) were reacted with various acetylene using our<br />

optimized conditions. In most cases, the reactions proceeded well affording the one<br />

pot product in good to excellent yield (Table-2)<br />

R 2<br />

N<br />

1<br />

+<br />

N<br />

Br<br />

2<br />

N<br />

H<br />

O<br />

R 1<br />

N 3<br />

n<br />

MeCN, 75 o C,<br />

3 Hrs<br />

R 3<br />

N N<br />

n<br />

3<br />

N<br />

Br N<br />

R OH<br />

2 R1 Cu(OAc) 2 (5 mol. %)<br />

MW. 100 o N2H4 C<br />

3 {a-j}<br />

2-5 min, 85-90 %<br />

One-pot Microwave-assisted<br />

R 2<br />

R 1<br />

N<br />

N<br />

H<br />

NH<br />

N<br />

N R3 N<br />

n<br />

4 {a-v}


No. Product, Yield b (%) No. Product, Yield b (%)<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Cl<br />

Br<br />

Br<br />

Br<br />

Cl<br />

Br<br />

Br<br />

Cl<br />

Cl<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N H<br />

N<br />

N<br />

H<br />

N H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

N<br />

4-a (66)<br />

N<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

4-c (73)<br />

N<br />

N<br />

N<br />

N<br />

N<br />

H<br />

N<br />

H<br />

4-e (73)<br />

NH<br />

4-f (80)<br />

N<br />

H<br />

N<br />

N<br />

N<br />

4-g (80)<br />

NH<br />

NH<br />

N N<br />

N<br />

OMe<br />

4-b (84)<br />

Bu<br />

Me<br />

4-d (64)<br />

N<br />

N Hep<br />

N<br />

N N<br />

N<br />

N N<br />

N<br />

H 2N<br />

H<br />

N<br />

Pen<br />

Hep<br />

4-h (81)<br />

4-I (75)<br />

12<br />

12<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

Cl<br />

N<br />

N<br />

H<br />

NH<br />

N N<br />

N<br />

Cl 4-l (90)<br />

N<br />

N<br />

H<br />

N H<br />

N<br />

N<br />

N<br />

Br 4-m (95)<br />

O<br />

Br<br />

N<br />

N<br />

N<br />

H<br />

NH<br />

N<br />

N<br />

H<br />

NH<br />

4-n (74)<br />

N N<br />

N<br />

N N<br />

N<br />

O 4-o (29)<br />

O<br />

N<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

N<br />

O 4-p (29)<br />

N<br />

N<br />

H<br />

N H<br />

N<br />

N<br />

N<br />

F 4-q (68)<br />

N<br />

N<br />

H<br />

N H<br />

N<br />

N<br />

N<br />

F 4-r (80)<br />

N<br />

N<br />

H<br />

N H<br />

N<br />

N<br />

N<br />

Cl 4-s (16)<br />

Cl<br />

Cl<br />

N<br />

N<br />

H<br />

NH<br />

4-t (85)<br />

N N<br />

N


10<br />

11<br />

Cl<br />

Cl<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

N<br />

Cl 4-j (85)<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

N<br />

Cl 4-k (80)<br />

21<br />

22<br />

Cl<br />

Cl<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

NH<br />

N H<br />

N N<br />

N<br />

N<br />

N<br />

N<br />

S<br />

4-u (91)<br />

Br 4-v (80)<br />

a<br />

All reactions were run on a 0.7 mmol scale of 3 {a-j} ethanol: water (4:1) (1 ml) with<br />

phenyl acetylene (1.2 equiv), Cu(OAc)2 (5 mol % ) and hydrazine hydride (2 equiv).<br />

The mixture was irradiated in a sealed tube (CEM Discover @ ) at a ceiling temperature<br />

of 100 o C and 35 maximum power for the stipulated time. b isolated yields. Yields are<br />

shown in ().<br />

Table-2: Microwave assisted one pot decoration of 2-AI-T Framework a .<br />

A diverse set of 2-AI-T scaffold were synthesized with these optimized conditions.<br />

Ten different hydroxy salt 3 {a-j} (n = 1 or 2) were reacted with different (hetero)<br />

aromatic or alkyl acetylenes (Table-2) to test the generality of this new microwaveassisted<br />

one pot method (Table 2). All reactions were completed within 5 min using<br />

microwave irradiation at ceiling temperature of 100 o C and 35W power. The yields<br />

varied from good to excellent, although in some cases lower yields were observed<br />

(Table 2, No-15,16 and 19). However in case of morpholine substitution (table-2, No-<br />

15-16) probably due to decomposition of starting hydroxy salt 3 {h} lower yields<br />

were observed. Interestingly when 4,5-disubstituted hydroxy salt react with acetylene<br />

only 16% of desired product 4{s} was observed due to steric hindrance of 4-Mephenyl<br />

substitution on dimorth rearrangement. Motivated by the importance of the<br />

final target to develop new general method toward widely functionalized 2-AI-T<br />

framework, we next examined the extension of this procedure to other acetylene. The<br />

reaction proceeded effectively with aliphatic and aromatic terminal acetylenes to give<br />

the corresponding 2-AI-T (Table 2). Thus, a variety of substituted 2-AI-T containing<br />

aromatic, aliphatic, cyclic and heterocyclic substitution at the C-4 position of the<br />

triazole ring were obtained.


4.4 Possible Mechanism<br />

Regarding the mechanism of transformation of 2-hydroxy 2,3-dihydro-1Himidazo[1,2-a]pyrimidin-4-ium<br />

salts 3 into 2-amino-1H-imidazole-triazole 4, we<br />

presume that the reaction proceeds via an unusual Dimroth type rearrangement<br />

(Scheme-3).<br />

Br<br />

Br<br />

R 2<br />

N<br />

NH 2NH 2<br />

R 2<br />

N<br />

N<br />

N<br />

N3 n<br />

R2 N<br />

H<br />

N<br />

OH<br />

R1 N<br />

H<br />

3<br />

N<br />

R 1<br />

Ring Opening<br />

N<br />

R 1<br />

OH<br />

25 o C<br />

n<br />

N 3<br />

NH 2NH 2<br />

MW<br />

R 2<br />

N<br />

Cu(OAc) 2<br />

CuNP<br />

NH 2<br />

N<br />

N<br />

H ·HBr<br />

a b<br />

N<br />

R 1<br />

OH<br />

Generation of<br />

"nano-Cu"<br />

R 3 "Click" Reaction<br />

N<br />

n<br />

N<br />

N<br />

R 3<br />

Dimroth Rearrangement<br />

Scheme-3: Proposed mechanism for One-pot reaction:<br />

In the first step the 2-hydroxy-2,3-dihydroimidazo[1,2-a]pyrimidinium salt (3)<br />

undergoes cleavage of the pyrimidine ring (a), resulting in the generation of pyrazole<br />

and 2-amino-5-hydroxyimidazolidine (b), meanwhile copper nanoparticle 16 generated<br />

by reduction of Cu(OAc)2 using 1 equiv of NH2NH2.H2O takes part in click reaction.<br />

This intermediate (b), which is in equilibrium with the open form c can cyclize again<br />

leading by dehydration upon microwave irradiation, results in the rearranged 2amino-1H-imidazoles<br />

triazole (4).<br />

R 2<br />

HN<br />

R 1<br />

NH 2<br />

O<br />

N<br />

H 2O<br />

N<br />

N<br />

n<br />

N<br />

n<br />

c<br />

4<br />

N<br />

N<br />

N<br />

R 3<br />

R 3


4.5 Conclusion<br />

In conclusion microwave-assisted Cu-catalyzed one pot protocol for the synthesis of<br />

2-aminoimidazole-triazole framework via two consecutive steps of dimorth<br />

rearrangement and click reaction was demonstrated. Library of 22 compounds have<br />

been synthesized and were subjected to test for antibiofilm activity. However the<br />

antibiofilm activities of these classes of compounds are under pipeline.<br />

4.6 Experimental<br />

4.6.1 General Methods<br />

All chemical reagents were used without further purification. Solvents for column<br />

chromatography and TLC were laboratory grade and distilled before use. For thinlayer<br />

chromatography (TLC), analytical TLC plates (Alugram SIL G/UV254 (E. M.<br />

Merk) were used. Column chromatography was performed with flash silica gel (100-<br />

200 mesh) or neutral alumina oxide (50-200 micron). 1 H and 13 C NMR spectra were<br />

recorded on a Bruker Avance 300 (300 MHz) or a Bruker AMX-400 (400 MHz)<br />

spectrometers. NMR samples were run in the indicated solvents and were referenced<br />

internally. Chemical shift values were quoted in ppm and coupling constants were<br />

quoted in Hz. Chemical shift multiplicities were reported as s = singlet, d = doublet, t<br />

= triplet, q = quartet, m = multiplet and br = broad. Low-resolution mass spectra were<br />

recorded on a HEWLETT-PACKARD instrument (CI or EI) and LCQ Advantage<br />

instrument (ESI). High-resolution mass spectra (EI) were recorded on a KRATOS<br />

MS50TC instrument. Melting points were determined using Reichert-Jung Thermovar<br />

apparatus and were uncorrected.<br />

4.6.2 Microwave Irradiation Experiments<br />

Microwave irradiation experiments were carried out in a dedicated CEM-Discover<br />

mono-mode microwave apparatus or Microwave apparatuses were used in the<br />

standard configuration as delivered, operating at a frequency 2.45 GHz with<br />

continuous irradiation power from 0 to 400 W. The reactions were carried out in 10,<br />

20, 30 and 50 mL glass tubes. The temperature was measured with an IR sensor on<br />

the outer surface of the process vial or fibre optic sensor inside the process vial. After<br />

the irradiation period, the reaction vessel was cooled rapidly (2-5 min) to ambient<br />

temperature by air jet cooling.


4.7 Experimental protocols<br />

4.7.1 General Procedure for the Preparation 3-Azido-propylamine<br />

To a solution of 3-chloropropan-1-amine hydrochloride (3.2 g, 14.6 mmol) in water<br />

(10 mL) was slowly added NaN3 (3.2 g, 49.2 mmol) as a solution in water (15 mL).<br />

The resulting solution was allowed to stir at reflux overnight. After cooling to room<br />

temperature, about 2/3 of the water was removed by evaporation and the remaining<br />

residue diluted with ether (50 mL). This biphasic mixture was cooled to 0 °C and<br />

KOH pellets (4.0 g) were slowly added. The phases separated and the aqueous layer<br />

extracted with ether (2 x 30 mL). All organics combined, dried over Na2SO4, and<br />

concentrated to afford 3-Azido-propylamine (1.17 g, 80%) as yellow oil<br />

4.7.2 General Procedure for the Preparation of N-(3-azidopropyl)pyrimidin-2amine:<br />

In a 50 mL microwave vial were successively dissolved in EtOH (20 mL) 2chloropyrimidine<br />

(3.43 g, 30 mmol), 3-Azido-propylamine (48 mmol, 1.6 equiv) and<br />

triethylamine (6.2 mL, 45 mmol, 1.5 equiv). The reaction tube was sealed, and<br />

irradiated in the cavity of a Milestone MicroSYNTH microwave reactor at a ceiling<br />

temperature of 120 °C at 100 W maximum power for 60 min. After the reaction<br />

mixture was cooled with an air flow for 15 min, it was diluted with water (100 mL),<br />

extracted with DCM (2×150 mL) and dried over Na2SO4. The solvent was evaporated<br />

in vaccuo, and the crude mixture was purified by silica gel flash chromatography<br />

using 0-5% MeOH−DCM as the eluent.<br />

4.7.3 General Procedure for the Preparation of Salts.<br />

To a solution of N-(3-azidopropyl)pyrimidin-2-amine (6 mmol) and αbromoacetophenone<br />

(7.2 mmol, 1.2 equiv) in acetonitrile (12 mL) was added 4dimethylaminopyridine<br />

(6 mg, 0.05 mmol). After being stirred at 85 °C for 5 h, the<br />

reaction mixture was diluted with acetone (20 mL) and the precipitate was filtered and<br />

washed with acetone (2×20 mL), ether (2×20 mL) and dried over P2O5 to give salt as<br />

a white solid.


4.7.4 General Procedure for the preparation of 2-AI-T.<br />

Cool the suspension of hydrazine hydride (2 equiv), in ethanol (0.8 ml.). To the<br />

suspension were added Cu(OAc)2 (5 mol %) in water (0.2 ml). and stirred it for 2 min<br />

at 0 o C. To this were added acetylene (1.5 eq) and hydroxyl salt (1 eq.) The reaction<br />

mixture was irradiated at 100 0 o C at the maximum power 35 W for 2-5 min. After<br />

completion of the reaction, the solvent was removed under reduce pressure. The crude<br />

product was purifier by column chromatography over silica gel using DCM /<br />

methanol / 7N methanolic NH3 (96:3:1) as the eluent.<br />

4.8 Spectral Characterization<br />

2-Azidoethanamine (BS-167)<br />

H 2N<br />

Yield: 41 %. 1 H NMR (300 MHz, CDCl3): δ = 3.37 (t, J = 5.61 Hz, 2H), 2.88 (t, J =<br />

5.50 Hz, 2H), 1.53 (Br s, 2H).<br />

3-Azidopropan-1-amine (BS-220)<br />

H 2N<br />

Yield: 45 %. 1 H NMR (300 MHz, CDCl3): δ = 3.38 (t, J = 6.93 Hz, 2H), 2.81 (t, J =<br />

6.84 Hz, 2H), 1.73 (m, 2H), 1.36 (Br s, 2H).<br />

N-(2-Azidoethyl)pyrimidin-2-amine (BS-168)<br />

N<br />

N<br />

N<br />

H<br />

Yield: 67 %. 1 H NMR (300 MHz, CDCl3): δ = 8.30 (d, J = 4.74 Hz, 2H), 6.58 (t, J =<br />

4.74 Hz, 1H), 5.44 (Br s, 1H), 3.64 (m, 2H), 3.54 (t, J = 5.58 Hz, 2H), 13 C NMR<br />

(75.5 MHz, CDCl3): δ =162.0, 158.1, 158.0, 111.1, 50.8, 40.7. HRMS (EI) C6H6N6,<br />

calcd 164.0810, found :.<br />

N-(3-Azidopropyl)pyrimidin-2-amine (BS-221)<br />

N<br />

N<br />

N<br />

H<br />

N 3<br />

N 3<br />

N 3<br />

N 3


Yield: 69 %. 1 H NMR (300 MHz, CDCl3): δ = 8.28 (d, J = 4.80 Hz, 2H), 6.54 (t, J =<br />

4.80 Hz, 1H), 5.30 (Br s, 1H), 3.52 (m, 2H), 3.42 (t, J = 6.57 Hz, 2H), 1.90 (m, 2H).<br />

1-(3-Azidopropyl)-2-hydroxy-2-phenyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-<br />

4-ium bromide (BS-230)<br />

N<br />

Br<br />

N<br />

N<br />

OH<br />

Yield: 72 %. 1 H NMR (300 MHz, DMSO-d6) : δ = 9.05 (m, 2H), 7.93 (s, 1H), 7.80<br />

(m, 2H), 7.48 (m, 3H), 7.37 (t, J = 4.86 Hz, 1H), 4.95 (m, 2H), 3.41 (m, 4H), 1.64 (m,<br />

2H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 167.4, 154.6, 148.2, 138.1, 129.3, 128.4<br />

(×2), 126.9 (×2), 111.4, 90.6, 62.7, 47.9, 38.2, 27.0.<br />

1-(2-Azidoethyl)-2-hydroxy-2-phenyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-4ium<br />

bromide (BS-227)<br />

N<br />

Br<br />

N<br />

N<br />

OH<br />

Yield: 75 %. 1 H NMR (300 MHz, DMSO-d6) : δ = 9.02 (m, 2H), 7.99 (s, 1H), 7.80<br />

(m, 2H), 7.49 (m, 3H), 7.41 (t, J = 4.92 Hz, 1H), 4.95 (m, 2H), 3.38 (m, 4H). 13 C<br />

NMR (75.5 MHz, DMSO-d6): δ = 167.5, 154.7, 148.4, 137.8, 129.4, 128.4 (×2), 126.9<br />

(×2), 111.8, 90.6, 62.8, 48.1 (×2).<br />

1-(2-Azidoethyl)-2-hydroxy-2-(naphthalen-1-yl)-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-271)<br />

N<br />

Br<br />

N<br />

N<br />

OH<br />

N 3<br />

N 3<br />

N 3


Yield: 67 %. 1 H NMR (300 MHz, DMSO-d6) : δ = 9.10 (m, 2H), 8.38 (s, 1H), 8.16<br />

(s, 1H), 8.02 (m, 3H), 7.88 (m, 1H), 7.59 (m, 2H), 7.44 (m, 1H), 5.05 (s, 2H), 3.42 (m,<br />

4H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 167.5, 154.9, 148.5, 135.0, 132.9, 132.1,<br />

128.4, 128.2, 127.5, 127.1, 126.7 (×2), 124.1, 111.9, 90.8, 62.6, 48.2 (×2).<br />

1-(3-Azidopropyl)-2-(4-bromophenyl)-2-hydroxy-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-272)<br />

N<br />

Br<br />

N<br />

N<br />

OH<br />

Yield: 76 %. 1 H NMR (300 MHz, DMSO-d6) : δ = 9.06 (d of d, J = 1.62, 4.60 Hz,<br />

1H), 8.98 (d of d, J = 1.62, 6.24 Hz,1H) 8.00 (s, 1H), 7.72 (m, 4H), 7.37 (m, 1H),<br />

4.85 (m, 2H), 3.37 (m, 4H), 1.66 (m, 2H). 13 C NMR (75.5 MHz, DMSO-d6): δ =<br />

167.5, 154.7, 148.2, 137.6, 131.4(×2), 129.3 (×2), 122.9, 111.5, 90.3, 62.5, 47.9, 38.2,<br />

27.0.<br />

1-(2-Azidoethyl)-2-(3,4-dichlorophenyl)-2-hydroxy-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-273)<br />

N<br />

Br<br />

N<br />

Br<br />

N<br />

OH<br />

Yield: 78 %. 1 H NMR (300 MHz, DMSO-d6) : δ = 9.12 (m, 2H), 8.20 (s, 1H), 8.09<br />

(s, 1H), 7.79 (m, 2H), 7.43 (m, 1H), 4.93 (m, 2H), 3.42 (m, 4H). 13 C NMR (75.5<br />

MHz, DMSO-d6): δ = 167.5, 154.9, 148.3, 139.0, 132.2, 131.3, 130.5, 129.5, 127.4,<br />

112.1, 89.8, 62.5, 48.0 (×2).<br />

Cl<br />

N 3<br />

N 3<br />

Cl


1-(3-Azidopropyl)-2-(3,4-dichlorophenyl)-2-hydroxy-2,3-dihydro-1Himidazo[1,2-a]pyrimidin-4-ium<br />

bromide (BS-274)<br />

N<br />

Br<br />

N<br />

N<br />

OH<br />

Yield: 81 %. 1 H NMR (300 MHz, DMSO-d6) : δ = 9.07 (m, 1H), 8.97 (m,1H) 8.12 (s,<br />

1H), 8.08 (Br s, 1H), 7.97 (m, 2H), 7.38 (t, J = 4.92 Hz, 1H), 4.86 (m, 2H), 3.37 (m,<br />

4H), 1.68 (m, 2H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 167.5, 154.7, 148.1, 139.2,<br />

132.2, 131.3, 130.6, 129.3, 127.4, 111.6, 89.8, 62.4, 47.8, 38.3, 26.9.<br />

1-(2-Azidoethyl)-2-(4-chlorophenyl)-2-hydroxy-3-p-tolyl-2,3-dihydro-1Himidazo[1,2-a]pyrimidin-4-ium<br />

bromide (BS-299)<br />

N<br />

Br<br />

N<br />

Cl<br />

N<br />

OH<br />

Yield: 42 %. 1 H NMR (300 MHz, DMSO-d6) : δ = 9.19 (d, J = 3.06 Hz, 1H), 8.55 (d,<br />

J = 5.43 Hz, 1H), 7.71 (d, J = 8.52 Hz, 2H), 7.70 (s, 1H), 7.55 (d, J = 8.49 Hz, 2H),<br />

7.38 (m, 1H), 7.42 (d, J = 7.80 Hz, 2H), 7.08 (d, J = 7.80 Hz, 2H), 6.10 (s, 1H), 3.36<br />

(m, 4H), 2.33 (s, 3H) 13 C NMR (75.5 MHz, DMSO-d6): δ = 168.2, 156.1, 146.9,<br />

139.5, 135.9, 134.4, 129.4 (×6), 128.4 (×2), 124.4, 112.8, 93.5, 74.9, 47.9, 41.0, 20.7.<br />

1-(2-Azidoethyl)-2-(4-fluorophenyl)-2-hydroxy-2,3-dihydro-1H-imidazo[1,2a]pyrimidin-4-ium<br />

bromide (BS-300)<br />

N<br />

Br<br />

N<br />

N<br />

OH<br />

F<br />

Cl<br />

Cl<br />

N 3<br />

N 3<br />

N 3


Yield: 79 %. 1 H NMR (300 MHz, DMSO-d6) : δ = 9.09 (d, J = 4.53 Hz, 1H), 9.01 (d,<br />

J = 6.00 Hz, 1H), 8.04 (s, 1H), 7.85 (m, 2H), 7.37 (m, 3H), 4.92 (m, 2H), 3.38 (m,<br />

4H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 167.5, 164.1, 160.9, 154.7, 148.4, 134.0<br />

(d), 129.4 (d), 115.4, 115.1, 111.9, 90.3, 62.7, 48.1 (×2).<br />

5-(4-Bromophenyl)-N-(2-(4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl)ethyl)-1Himidazol-2-amine<br />

(BS-219)<br />

Br<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

Yield: 66 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.62 (br s, 1H), 8.45 (s, 1H), 7.43<br />

(d, J = 8.8 Hz, 2H), 7.57 (d, J = 7.9 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H), 7.10 (s, 1H),<br />

6.98 (d, J = 8.8 Hz, 2H), 6.02 (m, 1H), 4.60 (t, J = 5.90 Hz, 2H), 3.78 (s, 3H), 3.68<br />

(m, 2H). 13 C NMR (75.5 MHz, DMSO-d6): δ =158.8, 150.0, 146.0, 131.0, 126.4<br />

(×4), 125.5 (×2), 123.4, 120.7, 117.5, 114.2 (×4), 55.0, 49.2. 42.8. HRMS (EI)<br />

C20H19BrN6O, calcd 438.0804, found :438.0811.<br />

5-Phenyl-N-(3-(4-phenyl-1H-1,2,3-triazol-1-yl)propyl)-1H-imidazol-2-amine (BS-<br />

238)<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N N<br />

Yield: 90 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.91 (br s, 1H), 8.63 (s, 1H), 7.88<br />

(d, J = 7.2 Hz, 2H), 7.59 (d, J = 7.2 Hz, 2H), 7.44 (t, J = 7.7 Hz, 2H), 7.27 (m, 3H),<br />

7.08 (m, 2H), 6.09 (br s, 1H), 4.50 (t, J = 7.1 Hz, 2H), 3.21 (m, 2H), 2.21 (m, 2H). 13 C<br />

NMR (75.5 MHz, DMSO-d6): δ = 150.3, 146.2, 133.0, 132.3, 130.8, 128.8 (×2),<br />

128.3, 127.7, 125.6, 125.0 (×2), 123.6 (×2), 121.4, 110.4, 104.1, 47.3, 28.8 (×2).<br />

HRMS (EI) C20H20N6, calcd 344.1749, found : 344.1734.<br />

5-Phenyl-N-(2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethyl)-1H-imidazol-2-amine (BS-<br />

228)<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

O


Yield: 84 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.68 (br s, 1H), 8.57 (s, 1H), 7.82<br />

(d, J = 7.3 Hz, 2H), 7.61 (m, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.28 (m, 3H), 7.06 (m,<br />

2H), 6.01 (br s, 1H), 4.63 (t, J = 6.1 Hz, 2H), 3.70 (m, 2H). 13 C NMR (75.5 MHz,<br />

DMSO-d6): δ = 150.3, 146.1, 130.4, 128.8 (×4), 128.2, 127.7, 125.1, 125.0 (×4),<br />

123.4, 121.7, 104.1, 49.3. 42.9. HRMS (EI) C19H18N6, calcd 330.1593, found :<br />

330.1582.<br />

5-(4-Bromophenyl)-N-(2-(4-p-tolyl-1H-1,2,3-triazol-1-yl)ethyl)-1H-imidazol-2amine<br />

(BS-231)<br />

Br<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

Yield: 73 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.66 (br s, 1H), 8.50 (s, 1H), 7.70<br />

(d, J = 8.07 Hz, 2H), 7.57 (d, J = 8.31 Hz, 2H), 7.43 (d, J = 8.56 Hz, 2H), 7.22 (d, J =<br />

8.07 Hz, 2H), 7.13 (s, 1H), 6.03 (br s, 1H), 4.61 (t, J = 5.80 Hz, 2H), 3.68 (m, 2H),<br />

2.32 (s, 3H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 150.4, 146.1, 136.9 (×2), 130.9<br />

(×2), 129.3 (×4), 128.0, 125.3, 124.9 (×3), 121.2, 117.4, 49.2, 42,8, 20.7. HRMS (EI)<br />

C20H19BrN6, calcd 422.0855, found : 422.0863.<br />

N-(2-(4-(4-Butylphenyl)-1H-1,2,3-triazol-1-yl)ethyl)-5-(naphthalen-1-yl)-1Himidazol-2-amine<br />

(BS-275)<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

C4H9 Yield: 64 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.9 (br s, 1H), 8.54 (s, 1H), 8.14<br />

(s, 1H), 7.73 (m, 6H), 7.37 (m, 2H), 7.23 (m, 3H), 6.01 (m, 1H), 4.68 (m, 2H), 3.74<br />

(m, 2H), 2.58 (t, J = 7.4 Hz, 2H), 1.56 (m, 2H), 1.32 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H).<br />

13<br />

C NMR (75.5 MHz, DMSO-d6): δ = 150.7, 146.2, 141.8, 133.5, 131.3, 128.7 (×3),<br />

128.3, 127.5, 127.3 (×3), 126.0, 125.0 (×3), 124.6, 123.2, 121.3, 120.2, 49.3, 42.9,<br />

34.5, 32.9, 21.7, 13.7. HRMS (EI) C27H28N6, calcd 436.2375, found : 436. 2349.


5-(4-Bromophenyl)-N-(2-(4-heptyl-1H-1,2,3-triazol-1-yl)ethyl)-1H-imidazol-2amine<br />

(BS-277)<br />

Br<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

C 7H 15<br />

Yield: 73 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.56 (br s, 1H), 7.82 (s, 1H), 7.59<br />

(d, J = 8.2 Hz, 2H), 7.42 (d, J = 7.9 Hz, 2H), 7.13 (s, 1H), 5.93 (br s, 1H), 4.51 (t, J =<br />

5.90 Hz, 2H), 3.60 (m, 2H), 2.57 (d, J = 7.7 Hz, 2H), 1.57 (m, 2H), 1.25 (m, 8H), 0.85<br />

(t, J = 6.9 Hz, 3H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 150.5, 146.7 (×2), 131.0<br />

(×3 ), 125.3, 121.9 (×2), 117.4, 104.1, 48.9, 42.9, 31.1, 28.9, 28.5, 28.4, 25.0, 22.0,<br />

13.9. HRMS (EI) C20H27BrN6, calcd 430.1481, found : 430.1488.<br />

5-(4-Bromophenyl)-N-(3-(4-(4-pentylphenyl)-1H-1,2,3-triazol-1-yl)propyl)-1Himidazol-2-amine<br />

(BS-278)<br />

Br<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N N<br />

C 5H 11<br />

Yield: 80 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.58 (br s, 1H), 8.55 (s, 1H), 7.72<br />

(d, J = 8.06 Hz, 2H), 7.53 (d, J = 8.06 Hz, 2H), 7.38 (d, J = 8.27 Hz, 2H), 7.23 (d, J =<br />

8.06 Hz, 2H), 7.11 (s, 1H), 5.96 (m, 1H), 4.47 (t, J = 6.57 Hz, 2H), 3.19 (m, 2H), 2.59<br />

(t, J = 7.63 Hz, 2H), 2.14 (m, 2H), 1.59 (m, 2H), 1.30 (m, 4H), 0.86 (t, J = 6.78 Hz,<br />

3H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 146.3, 142.9, 131.0 (×2), 128.7 (×4),<br />

128.3, 125.4, 124.0 (×4), 121.0, 117.3 (×2), 47.3, 39.9, 34.8, 30.8, 30.5, 30.6, 21.9,<br />

13.8. HRMS (EI) C25H29BrN6. calcd.492.1637, found: 492. 1621.<br />

5-(3,4-Dichlorophenyl)-N-(2-(4-(4-heptylphenyl)-1H-1,2,3-triazol-1-yl)ethyl)-1Himidazol-2-amine<br />

( BS-279)<br />

Cl<br />

Cl<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

C 7H 15


Yield: 80 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.66 (br s, 1H), 8.50 (s, 1H), 7.86<br />

(s, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.62 (m, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.22 (d, J =<br />

8.3 Hz, 3H), 6.06 (m, 1H), 4.61 (t, J = 5.77 Hz, 2H), 3.69 (m, 2H), 2.58 (t, J =<br />

7.58Hz, 2H), 1.57 (m, 2H), 1.28 (m, 8H), 0.86 (m, 3H). 13 C NMR (75.5 MHz,<br />

DMSO-d6): δ = 146.1, 141.8, 130.9 (×2), 130.3, 128.6 (×3), 128.2 (×2), 126.5,124.9<br />

(×3), 124.8, 124.7, 121.2, 49.2, 42.8, 34.8, 31.1, 30.7, 28.5, 28.4, 22.0, 13.8. HRMS<br />

(EI) C26H30Cl2N6, calcd 496.1909, found : 496.1919.<br />

5-(3,4-Dichlorophenyl)-N-(3-(4-((methylamino)methyl)-1H-1,2,3-triazol-1yl)propyl)-1H-imidazol-2-amine<br />

(BS-283)<br />

Cl<br />

Cl<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N N<br />

Yield: 81 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.70 (br s, 1H), 7.99 (s, 1H), 7.82<br />

(s, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.23 (s, 1H), 6.01 (m, 1H),<br />

4.41 (t, J = 6.95 Hz, 2H), 3.67 (m, 2H), 3.14 (m, 2H), 2.26 (s, 3H), 2.07 (t, J = 6.5 Hz,<br />

2H), 1.86 (s,1H) 13 C NMR (75.5 MHz, DMSO-d6): δ = 151.4, 145.9, 135.9, 130.9<br />

(×2), 130.3, 126.4 (×2), 124.6, 123.4, 122.6, 47.0 (×2), 41.0, 35.4, 30.3. HRMS (EI)<br />

C16H19Cl2N7, calcd 389.1079, found: 389.1064.<br />

N-(3-(4-(2-Aminopropan-2-yl)-1H-1,2,3-triazol-1-yl)propyl)-5-(4-bromophenyl)-<br />

1H-imidazol-2-amine (BS-287)<br />

Br<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N N<br />

Yield: 75 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.57 (br s, 1H), 7.92 (s, 1H), 7.55<br />

(d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.3 Hz, 2H), 7.11 (s, 1H), 5.94 (t, J = 5.6 Hz, 1H),<br />

4.38 (t, J = 7.0 Hz, 2H), 4.10 (m, 2H), 3.16 (m, 2H), 2.07 (m, 2H), 1.37 (s, 6H). 13 C<br />

NMR (75.5 MHz, DMSO-d6): δ = 156.0, 151.3, 134.0, 131.0 (×3), 125.3 (×2), 120.1<br />

(×2), 117.3, 54.8, 48.5, 47.1, 30.8 (×2), 30.1. HRMS (EI) C17H22BrN7, calcd<br />

403.1120, found: 403.1131.<br />

H 2N<br />

H<br />

N


5-(3,4-Dichlorophenyl)-N-(2-(4-cyclohexyl-1H-1,2,3-triazol-1-yl)ethyl)-1Himidazol-2-amine<br />

(BS-301)<br />

Cl<br />

Cl<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

Yield: 85 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.64 (br s, 1H), 7.58 (s, 1H), 7.80<br />

(s, 1H), 7.60 (m, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.24 (s, 1H), 6.00 (m, 1H), 4.50 (t, J =<br />

5.76 Hz, 2H), 3.61 (m, 2H), 2.61 (m, 1H), 1.91 (m, 2H), 1.69 (m, 3H), 1.32 (m,5H).<br />

13<br />

C NMR (75.5 MHz, DMSO-d6): δ = 151.9, 150.6, 131.0 (×2), 130.3, 126.6 (×2),<br />

124.7, 123.4, 120.7, 104.1, 54.8, 49.0, 42.8, 34.5, 32.4 (×2), 25.5 (×2).HRMS (EI)<br />

C19H22Cl2N6, calcd 404.1283., found: 404.1278.<br />

5-(3,4-Dichlorophenyl)-N-(2-(4-propyl-1H-1,2,3-triazol-1-yl)ethyl)-1H-imidazol-<br />

2-amine (BS-302)<br />

Cl<br />

Cl<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

C 3H 7<br />

Yield: 90 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.80 (br s, 1H), 7.84 (d, J = 1.7<br />

Hz, 1H), 7.82 (s, 1H), 7.59 (d of d, J = 8.4, 1.7 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.26<br />

(s, 1H), 6.14 (br s, 1H), 4.51 (t, J = 6.04 Hz, 2H), 3.62(m, 2H), 2.56 (t, J = 7.49 Hz,<br />

2H), 1.57 (m, 2H), 0.89 (t, J = 7.25 Hz, 3H). 13 C NMR (75.5 MHz, DMSO-d6): δ =<br />

150.4, 146.5, 135.0, 131.0 (×2), 130.4 126.8 (×2), 124.8, 123.5, 122.0, 48.8, 42.8,<br />

27.0, 22.0, 13.6. HRMS (EI) C16H18Cl2N6, calcd 364.0970., found: 364.0980.<br />

5-(3,4-Dichlorophenyl)-N-(3-(4-propyl-1H-1,2,3-triazol-1-yl)propyl)-1Himidazol-2-amine<br />

(BS-303)<br />

Cl<br />

Cl<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N N<br />

C 3H 7


Yield: 83 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.80 (br s, 1H), 7.88 (s, 1H), 7.83<br />

(d, J = 1.7 Hz 1H), 7.58 (d of d, J = 8.3, 1.7 Hz, 1H), 7.52 (s, 1H), 7.49 (s, 1H), 6.13<br />

(br s, 1H), 4.38 (t, J = 6.98 Hz, 2H), 3.15 (m, 2H), 2.57 (t, J = 7.51 Hz, 2H), 2.06 (m,<br />

2H), 1.58 (m, 2H), 0.89 (t, J = 7.51 Hz, 3H). 13 C NMR (75.5 MHz, DMSO-d6): δ =<br />

150.0, 146.6, 135.1, 131.0 (×2), 130.3 126.8 (×2), 124.8, 123.5, 121.7, 54.8, 46.9,<br />

30.0, 27.0, 22.2, 13.5. HRMS (EI) C17H20Cl2N6, calcd 378.1127., found : 378.1114.<br />

5-(4-Bromophenyl)-N-(2-(4-propyl-1H-1,2,3-triazol-1-yl)ethyl)-1H-imidazol-2amine<br />

(BS-304)<br />

Br<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

C 3H 7<br />

Yield: 95 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.63 (br s, 1H), 7.87(s, 1H), 7.62<br />

(m, 2H), 7.48 (d , J = 8.6 Hz, 2H), 7.17 (s, 1H), 5.98 (t, J = 5.3 Hz, 1H), 4.59 (t, J =<br />

6.04 Hz, 2H), 3.66 (m, 2H), 2.61 (t, J = 7.44 Hz, 2H), 1.62 (m, 2H), 0.94 (t, J = 7.21<br />

Hz, 3H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 150.5, 146.5, 134.6, 131.0 (×3),<br />

125.4 (×2), 122.0 (×2), 117.4, 48.9, 42.9, 27.0, 22.2, 13.6. HRMS (EI) C16H19BrN6,<br />

calcd 374.0855., found: 374.0844.<br />

5-(4-Bromophenyl)-N-(3-(4-propyl-1H-1,2,3-triazol-1-yl)propyl)-1H-imidazol-2amine<br />

(BS-305)<br />

Br<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N N<br />

C 3H 7<br />

Yield: 74 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.59 (br s, 1H), 7.89 (s, 1H), 7.55<br />

(d , J = 8.1 Hz, 2H), 7.42 (d , J = 8.4 Hz, 2H), 7.11 (s, 1H), 5.93 (t, J = 5.25 Hz, 1H),<br />

4.38 (t, J = 6.83 Hz, 2H), 3.14 (m, 2H), 2.48 (t, J = 7.62 Hz, 2H), 2.06 (m, 2H), 1.58<br />

(m, 2H), 0.90 (t, J = 7.35 Hz, 3H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 151.1,<br />

146.6, 134.6, 131.0 (×3), 125.4 (×2), 121.7 (×2), 117.4, 47.9, 30.0, 27.0 (×2), 22.2,<br />

13.5. HRMS (EI) C17H21BrN6, calcd 388.1011., found: 388.1023.


(2-(3-(4-Propyl-1H-1,2,3-triazol-1-yl)propylamino)-1H-imidazol-5yl)(morpholino)methanone<br />

(BS-306)<br />

O<br />

O<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N N<br />

C 3H 7<br />

Yield: 29 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.02 (br s, 1H), 7.85 (s, 1H), 7.10<br />

(s, 1H), 6.05 (m, 1H), 4.35 (t, J = 6.8 Hz, 2H), 3.75 (m, 4H), 3.57 (t, J = 4.31 Hz, 4H),<br />

3.10 (m, 2H), 2.57 (t, J = 7.42 Hz, 2H), 2.05 (m, 2H), 1.60 (m, 2H), 0.90 (t, J = 7.42<br />

Hz, 3H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 161.2, 150.1, 146.6, 122.8, 121.7<br />

(×2), 66.3 (×2), 54.8 (×2), 46.9, 44.4, 29.9, 27.0, 22.2, 13.5. HRMS (EI) C16H25N7O2,<br />

calcd 347.2070., found: 347.2085.<br />

(2-(2-(4-Propyl-1H-1,2,3-triazol-1-yl)ethylamino)-1H-imidazol-5yl)(morpholino)methanone<br />

(BS-307)<br />

O<br />

O<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

C 3H 7<br />

Yield: 29 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.89 (br s, 1H), 7.78 (s, 1H), 7.08<br />

(s, 1H), 5.98 (m, 1H), 4.45 (m, 2H), 3.74 (m, 3H), 3.58 (m, 6H), 3.16 (m, 1H), 2.56<br />

(m, 2H), 1.57 (m, 2H), 0.89 (t, J = 7.25 Hz, 3H). 13 C NMR (75.5 MHz, DMSO-d6): δ<br />

= 161.4, 149.7, 146.5 (×2), 121.9 (×2), 66.3 (×2), 48.7 (×2), 44.4, 44.7, 27.0, 22.2,<br />

13.6. HRMS (EI) C15H23N7O2, calcd 333.1913., found: 333.1920.<br />

N-(2-(4-(Cyclopentylmethyl)-1H-1,2,3-triazol-1-yl)ethyl)-5-(4-fluorophenyl)-1Himidazol-2-amine<br />

(BS-308)<br />

F<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

Yield: 68 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.63 (br s, 1H), 7.82 (s, 1H),<br />

7.63 (q, J = 2.9, 5.7 Hz, 2H), 7.11 (t , J = 8.7 Hz, 2H), 7.03 (s, 1H), 5.96 (t, J = 5.4<br />

Hz, 1H), 4.51 (t, J = 5.99 Hz, 2H), 3.61 (m, 2H), 2.59 (d, J = 7.08 Hz, 2H), 2.07 (m,


1H), 1.66 (m, 6H), 1.70 (m, 2H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 161.8, 158.6,<br />

150.3, 146.2, 146.1, 130.9, 125.2, 125.1, 122.2, 115.1, 114.8, 48.9, 42.9, 31.8 (×3),<br />

31.0, 24.5 (×2). HRMS (EI) C19H23FN6, calcd 354.1968., found: 354.1974.<br />

N-(2-(4-Cyclopropyl-1H-1,2,3-triazol-1-yl)ethyl)-5-(4-fluorophenyl)-1H-imidazol-<br />

2-amine (BS-309)<br />

F<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

Yield: 80 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.55 (br s, 1H), 7.79 (s, 1H),<br />

7.64 (m, 2H), 7.10 (t , J = 8.7 Hz, 2H), 7.02 (s, 1H), 5.90 (m, 1H), 4.99 (t, J = 5.85<br />

Hz, 2H), 3.61 (m, 2H), 1.91 (m, 1H), 0.85 (m, 2H), 0.69 (m, 2H). 13 C NMR (75.5<br />

MHz, DMSO-d6): δ = 161.8, 158.6, 150.4, 148.6 (×2), 131.1, 125.1, 125.0, 120.9,<br />

115.1, 114.8, 48.9, 42.9, 7.6(×2), 6.5. HRMS (EI) C16H17FN6, calcd 312.1499., found:<br />

312.1487.<br />

5-(4-Chlorophenyl)-N-(2-(4-cyclopentyl-1H-1,2,3-triazol-1-yl)ethyl)-4-p-tolyl-1Himidazol-2-amine(BS-310-B)<br />

Cl<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

Yield: 16 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.89 (br s, 1H), 7.84 (s, 1H), 7.40<br />

(m, 2H), 7.29 (m, 4H), 7.14 (m, 2H), 5.87 (m, 1H), 4.52 (t, J = 5.87 Hz, 2H), 3.64 (m,<br />

2H), 3.06 (m, 1H), 2.29 (s, 3H), 1.95 (m, 2H), 1.60 (m, 6H). 13 C NMR (75.5 MHz,<br />

DMSO-d6): δ = 150.9, 150.1, 135.7, 130.0, 128.9 (×3), 128.1 (×3), 128.0 (×2), 127.2<br />

(×3), 121.1, 104.1, 49.0, 42.7, 36.1, 32.7 (×2), 24.6 (×2), 20.7. HRMS (EI)<br />

C25H27ClN6. calcd.446.1986, found: 446.1990.


N-(3-(4-(4-Tert-butylphenyl)-1H-1,2,3-triazol-1-yl)propyl)-5-(3,4dichlorophenyl)-1H-imidazol-2-amine<br />

(BS-340):<br />

Cl<br />

Cl<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N N<br />

Yield: 91 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.68 (br s, 1H), 8.53 (s, 1H), 7.82<br />

(s, 1H), 7.73 (d, J = 7.9 Hz, 2H), 7.57 (m, 1H), 7.43 (m, 3H), 7.25 (s, 1H) 6.02 (m,<br />

1H), 4.48 (t, J = 6.73 Hz, 2H), 3.20 (m, 2H), 2.14 (m, 2H), 1.30 (s, 9H). 13 C NMR<br />

(75.5 MHz, DMSO-d6): δ = 150.2, 146.2, 131.0, 130.3, 128.0, 126.6, 125.5 (×3),<br />

124.8 (×3), 124.7, 123.4, 121.0 (×2), 104.1, 47.3, 39.6, 34.2, 31.0 (×3), 29.9.HRMS<br />

(EI) C24H26Cl2N6, calcd 468.1596, found: 468.1602.<br />

5-(3,4-Dichlorophenyl)-N-(3-(4-(thiophen-3-yl)-1H-1,2,3-triazol-1-yl)propyl)-1Himidazol-2-amine<br />

(BS-341):<br />

Cl<br />

Cl<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N N<br />

Yield: 80 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.67 (br s, 1H), 8.46 (s, 1H), 7.82<br />

(m, 2H), 7.63 (m, 1H), 7.58 (m, 1H), 7.51 (m, 2H), 7.26 (s, 1H) 6.02 (m, 1H), 4.47 (t,<br />

J = 6.8 Hz, 2H), 3.19 (m, 2H), 2.14 (m, 2H). 13 C NMR (75.5 MHz, DMSO-d6): δ =<br />

151.3, 142.8, 132.1 (×2), 131.0, 130.0, 127.0, 126.5, 125.7, 124.7, 123.4, 121.1, 120.6<br />

(×2), 104.1, 47.3, 39.5, 29.9. HRMS (EI) C18H16Cl2N6S, calcd 418.0534, found:<br />

418.0522.<br />

5-(4-Bromophenyl)-N-(2-(4-cyclopropyl-1H-1,2,3-triazol-1-yl)ethyl)-1H-imidazol-<br />

2-amine(BS-342):<br />

Br<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

Yield: 78 %. 1 H NMR (300 MHz, DMSO-d6): δ = 10.56 (br s, 1H), 7.80 (s, 1H), 7.60<br />

(d, J = 7.3 Hz, 2H), 7.43 (d, J = 7.3 Hz, 2H), 7.14 (s, 1H), 5.93 (m, 1H), 4.49 (t, J =<br />

S


5.48 Hz, 2H), 3.59 (m, 2H), 3.16 (d of d, J = 5.2, 1.4 Hz, 1 H), 0.87 (m, 2H), 0.69 (m,<br />

2H). 13 C NMR (75.5 MHz, DMSO-d6): δ = 150.4, 148.7 (×3), 131.0, 130.9, 125.3,<br />

120.9 (×3), 117.4, 48.9, 42.8, 7.5 (×2), 6.5. HRMS (EI) C16H17BrN6, calcd 372. 0698,<br />

found: 372.0689.<br />

4.9 Representative NMR spectra<br />

4.9.1 1 H and 13 C NMR spectra of bs-272<br />

170<br />

167.5180<br />

9.0686<br />

9.0591<br />

9.0535<br />

8.9901<br />

8.9844<br />

8.9694<br />

8.9637<br />

Integral<br />

160<br />

1.9907<br />

9.0<br />

154.7139<br />

148.2373<br />

150<br />

140<br />

137.6005<br />

8.0015<br />

7.7800<br />

7.7505<br />

7.7216<br />

7.6921<br />

7.3908<br />

7.3745<br />

7.3701<br />

7.3544<br />

1.0890<br />

8.0<br />

3.9124<br />

131.4039<br />

129.3129<br />

0.9792<br />

122.9491<br />

N<br />

Br<br />

130<br />

N<br />

Br<br />

7.0<br />

N<br />

120<br />

N<br />

111.5523<br />

N<br />

OH<br />

110<br />

N<br />

OH<br />

Br<br />

Br<br />

6.0<br />

N 3<br />

100<br />

N 3<br />

90.3697<br />

90<br />

(ppm)<br />

4.9593<br />

4.9109<br />

4.8569<br />

4.8086<br />

2.0000<br />

5.0<br />

(ppm)<br />

80<br />

4.0<br />

70<br />

62.5832<br />

8.6996<br />

60<br />

3.4617<br />

3.4378<br />

3.3788<br />

3.3437<br />

3.3217<br />

3.2991<br />

3.0<br />

50<br />

47.9135<br />

40.0332<br />

39.7568<br />

39.4768<br />

39.2005<br />

38.9205<br />

27.0036<br />

40<br />

2.0<br />

30<br />

1.6835<br />

1.6609<br />

1.6377<br />

1.9439<br />

20<br />

1.0<br />

10<br />

0.0<br />

0


4.9.2<br />

1 H and 13 C NMR spectra of bs-304<br />

Integral<br />

160<br />

11.0<br />

10.6535<br />

0.7987<br />

150.5865<br />

146.5318<br />

150<br />

10.0<br />

140<br />

134.0549<br />

131.0403<br />

130<br />

9.0<br />

125.4219<br />

122.0327<br />

120<br />

Br<br />

117.4725<br />

Br<br />

7.8767<br />

7.6231<br />

7.5139<br />

7.4857<br />

0.9951<br />

1.8738<br />

1.9716<br />

8.0<br />

110<br />

7.1731<br />

N<br />

H<br />

0.9264<br />

N<br />

7.0<br />

N<br />

N<br />

H<br />

100<br />

N<br />

H<br />

N<br />

H<br />

6.0069<br />

5.9887<br />

5.9705<br />

90<br />

N<br />

N<br />

N<br />

0.9433<br />

6.0<br />

(ppm)<br />

N<br />

N<br />

N<br />

C 3H7<br />

80<br />

(ppm)<br />

C 3H 7<br />

5.0<br />

4.5890<br />

4.5689<br />

4.5488<br />

70<br />

1.9449<br />

60<br />

3.6965<br />

3.6764<br />

3.6569<br />

3.6368<br />

4.0<br />

1.9690<br />

3.0<br />

2.6414<br />

2.6169<br />

2.5918<br />

1.9586<br />

48.9026<br />

42.9570<br />

40.3132<br />

39.7568<br />

39.4805<br />

39.2005<br />

38.6441<br />

50<br />

40<br />

2.0<br />

30<br />

27.0764<br />

1.6773<br />

1.6528<br />

1.6283<br />

1.6032<br />

0.9724<br />

0.9479<br />

0.9235<br />

1.9563<br />

22.2144<br />

20<br />

3.0000<br />

1.0<br />

13.6286<br />

10<br />

0.0<br />

0


4.10 References<br />

[1] For a general review of the synthesis and activity of 2-aminoimidazole alkaloids, see: (a) S.<br />

M. Weinreb, (2007) Nat. Prod. Rep. 24, 931–948. (b) H. Hoffmann, T. Lindel, (2003)<br />

Synthesis. 1753–1783. (c) J. D. Sullivan, R. L. Giles, R. E. Looper. (2009) Curr. Bioactive<br />

Cmpds. 5, 39-78.<br />

[2] For the anti-biofilm activity of 2-aminoimidazoles, see: (a) R. W. Huigens III, J. J. Richards,<br />

G. Parise, T. E. Ballard, W. Zeng, R. Deora, C. Melander, (2007) J. Am. Chem. Soc. 129,<br />

6966–6967. (b) S. A. Rogers, C.Melander, (2008) Angew. Chem. 120, 5307–5309., (2008)<br />

Angew. Chem. Int. Ed. 47, 5229–5231. (c) T. E. Ballard, J. J. Richards, A. L. Wolf, C.<br />

Melander, (2008) Chem. Eur. J. 14, 10745–10761.<br />

[3] (a) M. S. Malamas, J. Erdei, I. Gunawan, J. Turner, Y. Hu, E. Wagner, K. Fan, R.Chopra, A.<br />

Olland, J. Bard, S. Jacobsen, R. L. Magolda, M. Pangalos, A. J. Robi- chaud. (2010) J. Med.<br />

Chem. 53, 1146–1158. (b) M. S. Malamas, J. rdei, I. Gunawan, K. Barnes, M. Johnson, Y.<br />

Hui, J. Turner, Y.Hu, E. Wagner, K. Fan, A. Olland, J. Bard,A. J. Robichaud. (2009) J. Med.<br />

Chem. 52, 6314–6323.<br />

[4] (a) R. S. Coleman, E. L. Campbell, D. J. Carper. (2009) Org. Lett. 11, 2133–2136. (b) M.<br />

Nodwell, A. Pereira, J. L. Riffell, C. Zimmermann, B. O. Patrick, M. Roberge, R. J. Andersen.<br />

(2009) J. Org. Chem. 74, 995–1006.<br />

[5] (a) A. G. Beaman, W. Tautz, T. Gabriel, R. Duschinsky. (1966) J. Am. Chem. SOC. 87, 389.<br />

(b) G. C. Lancini, E. Lazzari, V. Arioli, P. Bellani. (1969) J. Med. Chem. 12, 775<br />

[6] (a) A. Lawson. (1956) J. Am. Chem. Soc. 307–310. (b) B. T. Storey, W. W. Sullivan, C. L.<br />

Moyer. (1964) J. Org. Chem. 29, 3118–3120. (c) G. C. Lencini,; E. Lazzari. (1966) J.<br />

Heterocycl. Chem. 3, 152–154.<br />

[7] (a) N. S. Aberle, L. Guillaume, K. G. Watson. (2006) Org. Lett. 8, 419–421. (b) N. Aberle, J.<br />

Catimel, E. C. Nice, K. G. Watson. (2007) Bioorg. Med. Chem. Lett. 17,3741–3744.<br />

[8] C. H. Soh, W. K. Chui, Y. Lam. (2008) J.Comb.Chem. 10,118.<br />

[9] P. Molina, P. Fresneda, M. Sanz. (1999) J. Org. Chem. 64, 2540–2544.<br />

[10] T. Moschny, H. Hartmann. (1999) Helv. Chim. Acta 82, 1981–1993.<br />

[11] S. Ohta, N. Tsuno, S. Nakamura, N. Taguchi, M. Yamashita, I. Kawasaki, M. Fujieda. (2000)<br />

Heterocycles. 53, 1939–1955.<br />

[12] (a) H. C. Kolb, M. G. Finn, K. B. Sharpless. (2001) Angew. Chem., Int. Ed. 40, 2004-2021.<br />

(b) H. C. Kolb, K. B. Sharpless. (2003) Drug Discovery Today. 8, 1128 1137. (c) C. W.<br />

Tornøe, C. Christensen, M. Meldal. (2002) J. Org. Chem., 67, 3057-3064.<br />

[13] (a) E. Lieber, T. S. Chao, C. N. R. Rao. (1963) Organic Syntheses. Coll. Vol. 4, 380., 1957.<br />

Vol. 37, 26. (b) El. Ashry, Y. El Kilany, N. Rashed, H. Assafir, (1999) Adv. Heterocycl.<br />

Chem. 75, 79. (c) D. J. Brown, Mechanisms of Molecular Migrations. Thyagarajan, B. S.,<br />

(1968) Wiley-Interscience: New York, Vol. 1, 209.<br />

[14] For synthesis and anti biofilm activity see (a) D. S. Ermolat’ev, J. B. Bariwal, H. P. L.<br />

Steenackers, S. C. J. De Keersmaecker, E. V. Van der Eycken, (2010) Angew. Chem. Int. Ed.


49, 9465–9468. (b) D. S. Ermolat'ev, E. V. Babaev, E. V. Van der Eycken. (2006) Org Lett. 8,<br />

5781-5784. (c) D. S. Ermolat'ev, E. V. Van der Eycken. (2008) J. Org Chem. 73, 6691-6697.<br />

(d) D. S. Ermolat’ev, B. Savaliya, A. Shah, E. Van der Eycken. (2010) Molecular Diversity.<br />

DOI 10.1007/s11030-010-9270-5 (e) H. P. L. Steenackers, D. S. Ermolat’ev, B. Savaliya, A.<br />

De Weerdt, D. De Coster, A. Shah, E. V. Van der Eycken, D. E. De Vos, J. Vanderleyden, S.<br />

C.J. De Keersmaecker. (2010) J. Med Chem. DOI: 10.1021/jm 1011148.<br />

[15] For microwave-assisted procedure see: P. Appukkuttan, W. Dehaen, V. V. Fokin, E. Van der<br />

Eycken. Org. Lett., 2004, 6, 4223-4225. (b) For click chemistry under non-classical conditions<br />

see: C. O. Kappe, E. Van der Eycken. Chem. Soc. Rev., 2010, 39, 1280–1290, and references<br />

cited therein.<br />

[16] (a) D. Raut, K. Wankhede, V. Vaidya, S. Bhilare, N. Darwatkar, A. Deorukhkar, G. Trivedi,<br />

M. Salunkhe. (2009) Catalysis Communications. 10 1240–1243. (b) A. Sarkar, T. Mukherjee,<br />

S. Kapoor. (2008) J. Phys. Chem. C 112, 3334 3340.


Crystal and Molecular Structure Analysis of<br />

DP-7: A New Multi Drug Resistance Reverter<br />

Lead Molecule


Chapter-5<br />

“Crystal and Molecular Structure Analysis of DP-7: A New<br />

Multi Drug Resistance Reverter Lead Molecule”<br />

O<br />

N<br />

H<br />

O<br />

O<br />

The synthesis of this 3,5-Dibenzoyl-4-(3-methoxyphenyl)-1,4-dihydro-2,6-dimethyl<br />

pyridine DP7, bearing dibenzoyl groups at C(3) and C(5), respectively, has been<br />

achieved by applying the modified Hantzsch-type condensation of 1,3-Diketone (2<br />

equiv) and aromatic aldehydes (1 equiv) using ammonium carbonate as nitrogen<br />

source. The product obtained was characterized by spectroscopic techniques & in<br />

order to correlate structure activity relationship, the X-ray crystallographic study of<br />

DP-7 has been carried out.<br />

Publication:<br />

[1] Synthesis, Characterization, Crystal and molecular structure analysis of DP-7:<br />

A new Multi Drug Resistance Reverter Lead Molecule Cryst. Res. Technol. (2010)<br />

Manuscript in preparation.


5.1 Introduction<br />

The membrane efflux protein P-glycoprotein, a member of the ATP binding cassette<br />

(ABC) family, recognizes and transports structurally, chemically, and<br />

armacologically diverse hydrophobic compounds, giving rise to a phenomenon known<br />

as multidrug resistance (MDR). Development of MDR is one of the main reasons of<br />

failure in cancer chemotherapy, as tumour cells, by increasing drug efflux, acquire<br />

cross-resistance to many structurally and functionally unrelated anticancer agents,<br />

which therefore never achieve effective intracellular concentrations 1 . In the past few<br />

years, extensive studies have been performed with the aim of developing effective<br />

chemo sensitizers to overcome MDR of human cancer cells. Potent P-glycoprotein<br />

inhibitors have been tested in clinical trials so far, including Ca2+ channel blockers<br />

such as verapamil and dihydropyridines 2,3 . However, clinical application of these<br />

agents has not been extensively pursued to date, owing to their unwanted and<br />

sometimes life threatening cardiovascular side effects such as atria-ventricular block<br />

and hypotension. As a consequence, in the last few years, much attention has been<br />

focused on congeners of these first generation-MDR inhibitors, in order to develop<br />

compounds characterized by appropriate potency and selectivity but also by reduced<br />

cardiovascular toxicity.<br />

Very recently, 3,5-Dibenzoyl-4-(3-phenoxyphenyl)-1,4-dihydro-2,6-dimethylpyridine<br />

(DP7) was proposed as a new MDR reverter. It was found that DP7, at a<br />

concentration two order of magnitude higher than its IC50 as a P-glycoprotein<br />

inhibitor, was devoid of cardiovascular effects in in vitro rat preparations 4,5 . These<br />

data were not considered sufficient evidence of DP7 safety before this drug could be<br />

subjected to clinical investigation. Several 1,4 dihydropyridine calcium antagonists<br />

are substrate of CYP enzymes. In particular, CYP3A4 metabolizes dihydropyridines<br />

into the corresponding pyridines 6 . The dihydropyridine can also inhibit the activity of<br />

CYP3A4. For example, Katoh 7 reported that nicardipine, benidipine, maidipine and<br />

barnidipine strongly inhibited human CYP3A4 activity, while nivaldipine, nifedipine,<br />

nitrendepine and amlodipine exhibited a weak inhibition.<br />

The DP-7 was very well explored for variety of biological activity 8 . It was very<br />

important to study the X-ray Crystal structure of this molecule which was not studied


so far and therefore development of single crystal was taken up in the current work.<br />

Thus the synthesis was optimized and studied.<br />

5.2 Reaction Scheme<br />

5.2.1 Scheme-1 1-phenylbutane-1,3-dione<br />

5.2.2 Scheme-2 DP-7<br />

Ph<br />

O<br />

O<br />

O<br />

(NH 4) 2CO 3<br />

Ph<br />

O<br />

Ph<br />

5.3 Method of Crystallization<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Ph<br />

CH 3ONa<br />

0 o C<br />

Ph<br />

MeOH<br />

18 Hrs reflux<br />

O O<br />

Ph<br />

O<br />

N<br />

H<br />

O Ph<br />

0.1gm of DP-7 was taken in 25 ml of methanol into 50ml single neck RBF and<br />

Charcoal (2 g) was added. The solution was heated up to reflux temperature on a<br />

water bath for 45 min. The solution was filtered, while hot through Whatmann 42<br />

filter paper. The resulting solution was kept in a stopper conical flask slightly opened.<br />

After 10 days, crystals grew in cubic shape due to thin layer evaporation. They were<br />

filtered and washed with chilled methanol.<br />

5.4 Crystal structure determination:<br />

A single crystal of suitable size was chosen for X-ray diffraction studies. The data<br />

were collected at room temperature on a DIPLabo Image Plate system with graphite<br />

monochromated radiation MoKα. Each exposure of the image plate was set to a period<br />

of 400 s. Thirty-six frames of data were collected in the oscillation mode with an<br />

O<br />

Ph


oscillation range of 5˚ and processed using Denzo 9 . The reflections were merged with<br />

Scalepack. All the frames could be indexed using a primitive trilinic lattice. The<br />

structure was solved by direct methods using SHELXS-97 10 . Least-squares refinement<br />

using SHELXL-97 10 with isotropic displacement parameters for all the non-hydrogen<br />

atoms converged the residual to 0.1999. Subsequent refinements were carried out with<br />

anisotropic thermal parameters for the non-hydrogen atoms. After eight cycles of<br />

refinement the residuals converged to 0.0578. The hydrogen atoms were fixed at<br />

chemically acceptable positions, and were allowed to ride on their parent atoms.<br />

5.5 Results and discussion:<br />

The details of crystal data and refinement are given in Table 1. The bond lengths and<br />

bond angles of all the non-hydrogen atoms (Table 2 and 3.) and are in good agreement<br />

with the standard values 10 . Figure 1 represents the ORTEP 12 diagram of the molecule<br />

with thermal ellipsoids drawn at 50% probability.<br />

In the title compound C33H27NO3, the 1,4-dihydropyridine ring is in boat<br />

conformation, with atoms N1 and C4 deviating from the plane 13 (Cremer and Pople,<br />

1975) defined by the atoms N1/C2/C3/C4/C5/C6 by 0.1793(2)Å and 0.271(2)Å,<br />

respectively. The 1,4-dihydropyridine ring is puckered. The puckering parameters are<br />

Q = 0.406(2)Å, θ =106.0(3)˚ and Φ =2.4(3)˚. The dihedral angle between the least<br />

squares planes of the ring 1 and 2 is 87.70(1)˚, indicating that the ring 2 is nearly<br />

orthogonal to the dihydropyridine ring. The dihedral angles between the plane (1,3),<br />

(1,4) and (3,4) are 60.74(1)˚, 53.54˚ and 79.49˚, respectively. The structural<br />

conformation of carbomyl groups at C3 and C5 position is described by the torsion<br />

angle values of 50.09˚ and 161.10˚ and have -syn-periplanar and -anti-periplanr<br />

conformations. The structure exhibits coplanarity of the carbomyl group (C=O) with<br />

the conjugated double bond of the 1,4-dihydropyridine ring. The structure exhibit<br />

both inter and intramolecular hydrogen bonds of the type N–H. . .O and C–H. . .O, the<br />

hydrogen bonds bind the molecules into infinite one- dimensional chain. The<br />

observed hydrogen bonds are listed in Table 4. The packing of the molecules down b<br />

axis is shown in the Figure 2.


Empirical formula C33H27NO3<br />

Formula weight 485.56<br />

Temperature 293 k<br />

Wavelength 0.71073 Å<br />

Crystal system Triclinic<br />

Space group Pī<br />

a = 7.4310(6Å), b =12.2580(16)Å, c =<br />

Cell dimensions 14.4180(17)Å, α = 92.066(3)˚, β=95.319(7)˚, γ=<br />

96.235(7)˚<br />

Volume 1298.5(3)Å 3<br />

Z 2<br />

Density(calculated) 1.242Mg/m 3<br />

Absorption coefficient 0.079 mm -1<br />

F000<br />

Crystal size 0.30 x 0.27 x 0.25 mm<br />

Theta range for data collection 3.07˚ to 25.02˚<br />

Index ranges -8


C12-C13 1.372(4) C32-C37 1.390(3)<br />

C13-C14 1.383(4) C33-C34 1.382(3)<br />

C13-O15 1.392(3) C34-C35 1.372(4)<br />

O15-C16 1.387(3) C35-C36 1.379(4)<br />

C16-C17 1.353(4) C36-C37 1.378(3)<br />

C16-C21 1.362(5)<br />

Table-2: Bond lengths (Å)<br />

Atoms Angle(˚) Atoms Angle(˚)<br />

C2-N1-C6 122.62(2) C21-C16-O15 117.5(3)<br />

N1-C2-C3 118.10(2) C16-C17-C18 118.2(3)<br />

N1-C2-C8 113.33(2) C19-C18-C17 119.5(4)<br />

C3-C2-C8 128.53(2) C20-C19-C18 121.0(4)<br />

C2-C3-C30 126.66(2) C19-C20-C21 120.7(4)<br />

C2-C3-C4 118.06(2) C20-C21-C16 119.1(3)<br />

C30-C3-C4 115.09(2) O23-C22-C5 123.7(2)<br />

C3-C4-C5 108.93(1) O23-C22-C24 119.5(2)<br />

C3-C4-C9 114.15(2) C5-C22-C24 116.65(2)<br />

C5-C4-C9 109.54(2) C25-C24-C29 118.8(3)<br />

C6-C5-C22 122.16(2) C25-C24-C22 121.4(2)<br />

C6-C5-C4 118.62(2) C29-C24-C22 119.7(2)<br />

C22-C5-C4 119.04(2) C26-C25-C24 120.6(3)<br />

C5-C6-N1 117.99(2) C27-C26-C25 119.9(3)<br />

C5-C6-C7 127.0(2) C26-C27-C28 120.0(3)<br />

N1-C6-C7 114.96(2) C27-C28-C29 120.9(3)<br />

C10-C9-C14 117.8(2) C28-C29-C24 119.8(3)<br />

C10-C9-C4 123.18(2) O31-C30-C3 118.58(2)<br />

C14-C9-C4 118.97(2) O31-C30-C32 117.36(2)<br />

C9-C10-C11 120.7(2) C3-C30-C32 123.99(2)<br />

C12-C11-C10 121.3(3) C33-C32-C37 119.10(2)<br />

C11-C12-C13 118.6(2) C33-C32-C30 118.92(2)<br />

C12-C13-C14 121.0(2) C37-C32-C30 121.67(2)<br />

C12-C13-O15 116.8(2) C34-C33-C32 120.4(2)<br />

C14-C13-O15 122.0(3) C35-C34-C33 120.1(2)<br />

C13-C14-C9 120.5(2) C34-C35-C36 119.9(2)<br />

C16-O15-C13 119.0(2) C37-C36-C35 120.6(2)<br />

C17-C16-C21 121.5(3) C36-C37-C32 119.9(2)<br />

C17-C16-O15 120.8(3)<br />

Table-3: Bond angles (˚)<br />

Atoms Length (Å) Angle(˚) Symmetry codes<br />

N1–H1. . .O31 2.999(2) 156 1 + x, y, z<br />

Table-4: Hydrogen bonding geometry


Fig.-1: ORTEP of the molecule with thermal ellipsoids drawn at 50%<br />

probability.<br />

Fig.-2: Packing of the molecules when viewed down the a axis. The dashed line<br />

represents the hydrogen bond.


Fig.-3: Packing of the molecules when viewed down the b axis. The dashed line<br />

represents the hydrogen bond.<br />

Fig.-4: Packing of the molecules when viewed down the c axis. The dashed line<br />

represents the hydrogen bond.<br />

5.6 Conclusion:<br />

3,5-Dibenzoyl-4-(3-methoxyphenyl)-1,4-dihydro-2,6-dimethyl pyridine (DP-7) has<br />

been shown to be a powerful P-gp inhibitor, almost devoid of cardiovascular effects,<br />

but capable of inhibiting liver CYP3A, thus it can be conclude that DP-7 is a good<br />

lead compound for the synthesis of new dihydropyridines. As DP-7 shown promising<br />

MDR activity and looking to the scientific publications of DP-7, studied of X-ray<br />

crystal structure of DP-7 performed.


5.7 Experimental:<br />

5.7.1 Preparation of 1-phenylbutane-1,3-dione<br />

Cool peaces of freshly prepared sodium methoxide (6 gm) at 0 o C using ice cold<br />

water. To that added ethyl acetate (100 ml) slowly and stirred at 0 o C for 10 min. to<br />

that solution added acetophenone (30 ml) drop wise over 45 min and stirred for<br />

another 12 hrs. After completion of reaction filtered the reaction mass, washed with<br />

diethyl ether and dried in rotavap. After that dissolved the crude product in to water<br />

and filter it to removed unwanted crude material. To that filtrate added gl. acetic acid<br />

to set Ph 3. Solid formed was filtered and dried to give titled compound as white<br />

powder (mp. 61 o C).<br />

5.7.2 Synthesis of 3,5-Dibenzoyl-4-(3-methoxyphenyl)-1,4-dihydro-2,6-dimethyl<br />

pyridine(DP-7)<br />

To a solution of 1-phenylbutane-1,3-dione (20mmol) in dry methanol (25ml), 3phenoxybenzaldehyde<br />

(10mmol) and ammonium carbonate (1.5g) was added and the<br />

reaction mixture was refluxed for 18hrs with vigorous stirring. After completion of<br />

the reaction, reaction mixture was cooled to RT and was poured on to ice-water<br />

mixture (100ml) and extracted with dichloromethane (2 x 100ml). The organic<br />

extracts were combined and dried over sodium sulfate and the solvent was removed at<br />

reduced pressure. The residue was subjected to the column chromatography (silica<br />

gel; Hexane-Ethyl acetate, 5:5 v/v) to give titled compound as light yellow crystals<br />

(M.P. 190-192°C).<br />

5.8 Characterization<br />

3,5-Dibenzoyl-4-(3-methoxyphenyl)-1,4-dihydro-2,6-dimethyl pyridine(DP-7)<br />

Ph<br />

O<br />

N<br />

H<br />

O Ph<br />

O<br />

Ph


1<br />

H NMR (400 MHz CDCl3): δ = 7.57-7.53 (m 4H), 7.46-7.42 (m 2H), 7.36-7.31 (m<br />

4H), 7.28-7.24 (m 2H), 7.10-7.02 (m 2H), 6.86-6.84 (m 2H), 6.72-6.70 (d of d 2H, J =<br />

2,2), 6.67 (t 1H, J =2), 5.68 (s 1H), 5.15 (s 1H), 1.92 (s 6H). 13 C NMR (400 MHz<br />

CDCl3): δ = 197.8 (×2), 157.2 (×2), 147.8 (×2), 140.3 (×2), 131.5, 129.8 (×3), 129.2<br />

(×2), 128.4 (×4), 128.2 (×4), 122.8, 122.3, 118.5, 117.9 (×2), 117.1, 112.6 (×2), 43.7,<br />

19.0 (×2). MS (m/z): 485 (M+, 62%), 316 (100%). IR (KBr, cm-1): 3396(N–H<br />

stretching), 3030(C-H stretching, Asymmetric), 2930(C–H stretching, Symmetric),<br />

1703(C=O stretching, ester), 1670(C=O stretching, ketone), 1589(N–H deformation).


5.9 Representative NMR spectra<br />

5.9.1<br />

1 H NMR spectra of bs-DP-7


5.9.2 13 C spectra of bs-DP-7


5.10 References<br />

[1] Fusi F., Saponara S., Valoti M., Dragoni S., D'Elia P., Sgaragli T., Alderighi D., Kawase M.,<br />

Shah A., Motohashi N., Sgaragli G. (2006)Curr. Drug Targets. 8, 949–959.<br />

[2] Bates, S.E., Regis, J.I., Robey, R.W., Zhan, Z., Scala, S., Meadows, B.J. (1994)<br />

Chemoresistance in the clinic: overview. Bull. Cancer 81 (suppl 2), 55–61.<br />

[3] Bellamy, W.T. (1996) Annu. Rev. Pharmacol. Toxicol. 36, 161–183<br />

[4] Saponara S., Kawase M., Shah A., Motohashi N., Molnar J., Ugocsai K., Sgaragli G., Fusi F.<br />

(2004) Br. J. Pharm. 141, 415-422.<br />

[5] Saponara S., Ferrara A., Gorelli B., Shah A., Kawase M., Motohashi N., Molnar J., Sgaragli<br />

G., Fusi F. (2007) Eur. J. Pharmacol. 563, 160–163.<br />

[6] Guengerich, F.B., Brian, W.R., Iwasaki, M., Sari, M.A., Baarnhielm, C., Berntsson, P. (1991)<br />

J. Med. Chem. 34, 1838–1844.<br />

[7] Katoh, M., Nakajima, M., Shimada, N., Yamazaki, H., Yokoi, T. (2000) Eur. J. Clin.<br />

Pharmacol. 55, 843–852<br />

[8] For synthesis and biological activity see (a) Paolo D'Elia , Francesco De Matteis , Stefania<br />

Dragoni , Anamik Shah ,Giampietro Sgaragli, Massimo Valoti. (2009) European Journal of<br />

Pharmacology. 614, 7–13 (b) Masami Kawase, Anamik Shah, Harsukh Gaveriya, Noboru<br />

Motohashi, Hiroshi Sakagami, Andreas Vargae, Joseph Molnar. (2002) Bioorganic &<br />

Medicinal Chemistry. 10, 1051–1055. (c) Prashant S. Kharkar, Bhavik Desai, Harsukh<br />

Gaveria, Bharat Varu, Rajesh Loriya, Yogesh Naliapara, Anamik Shah, Vithal M. Kulkarni.<br />

(2002) J. Med. Chem. 45, 4858-4867<br />

[9] Otwinowski, Z. Minor, W. In: Methods in Enzymology, 276, Carter, C. W. Jr., Sweet, R. M.,<br />

(1997) New York: Academic Press, 307-326.<br />

[10] Sheldrick, G.M. (2008) Acta Cryst., A64, 112-122.<br />

[11] Allen, F.H., Kennard, O., Watson, D.G., Brummer, L., Orpen, A.G., Taylor, R. (1987) J.<br />

Chem. Soc. Perkin Trans, II:S1.<br />

[12] Spek, A.L. (2003) J. Appl. Cryst. 36, 7-13.<br />

[13] Cremer, D., and Pople, J.A. (1975) J. Am. Chem. Soc. 97, 1354-1358.


SUMMARY<br />

The work represented in the thesis entitled “Synthesis and Characterization of New<br />

heterocyclic compounds & their application” is divided into five chapters which can<br />

be summarized as under.<br />

Chapter-1 covers basic introduction to Microwave assisted organic synthesis<br />

including comparison of conventional vs microwave assisted reaction and<br />

introduction of 2-aminoimidazole and their presence as naturally occurring marine<br />

alkaloids described. In this part various synthetic approaches toward 2aminoimidazole<br />

and short review on 2-aminoimidazole as pharmacophores also<br />

presented. Finally basic concept of anti biofilm activity described.<br />

Chapter-2 deals with microwave assisted one pot synthesis and Structure Activity<br />

Relationship of 2-Hydroxy-2-phenyl-2,3-dihydro-imidazo[1,2-a] pyrimidinium Salts<br />

and 2N-Substituted 4(5)-Phenyl-2-Amino-1H-imidazoles as Inhibitors of the Biofilm<br />

Formation by Salmonella Typhimurium and Pseudomonas aeruginosa.<br />

Chapter-3 entitled “Structure Activity Relationship of N1-Substituted 2-<br />

Aminoimidazoles as Inhibitors of Biofilm Formation by Salmonella Typhimurium<br />

and Pseudomonas aeruginosa.” In this chapter a library of N1-substituted 4(5)-phenyl-<br />

2-aminoimidazoles was synthesized and tested for the antagonistic effect against<br />

biofilm formation by Salmonella Typhimurium and Pseudomonas aeruginosa. The<br />

substitution pattern of the 4(5)-phenyl group and the nature of the N1-substituent were<br />

found to have a major effect on the biofilm inhibitory activity. The most active<br />

compounds of this series were shown to inhibit the biofilm formation at low<br />

micromolar concentrations.<br />

Chapter-4 deals with microwave-assisted Cu-catalyzed one pot protocol for the<br />

synthesis of 2-aminoimidazole-triazole framework via two consecutive steps of<br />

dimorth rearrangement and click reaction was demonstrated. Library of 22<br />

compounds have been synthesized and were subjected to test for antibiofilm activity.<br />

However, the antibiofilm activities of these classes of compounds are under pipeline.


After careful study of Structure Activity Relationship, a fresh libraries of N1substituted<br />

2-aminoimidazoles and N1-unsubstituted 2-aminoimidazoles have been<br />

synthesized and tested for anti biofilm activity. In Chapter-4 microwave assisted one<br />

pot protocol for synthesis of 2-aminoimidazole-triazoel framework has been described<br />

and all newly synthesized compounds were tested for antibiofilm activity. However<br />

activities of these calls of compounds are under pipeline.<br />

Chapter-5 entitled “Crystal and molecular structure analysis of DP-7: A new Multi<br />

Drug Resistance Reverter Lead Molecule” deal with crystal and molecular structure<br />

analysis. 3,5-Dibenzoyl-4-(3-methoxyphenyl)-1,4-dihydro-2,6-dimethyl pyridine<br />

(DP-7) has been shown to be a powerful P-gp inhibitor, almost devoid of<br />

cardiovascular effects, but capable of inhibiting liver CYP3A, thus it can be conclude<br />

that DP-7 is a good lead compound for the synthesis of new dihydropyridines. As DP-<br />

7 demonstrated promising MDR activity, several scientific publications on this<br />

molecule appeared. However study of X-ray crystallography was done first time and<br />

presented in the current work.<br />

All newly synthesized compounds have been characterized by 1 H NMR, 13 C NMR<br />

and HRMS. Some representative copy of 1 H and 13 C NMR spectra also presented.


CONFERENCES/SEMINARS/WORKSHOPS ATTENDED<br />

“International Conference On The Interface of Chemistry-Biology In<br />

Biomedical Research” jointly organized by ISCBC and Birla Institute of<br />

Technology & Science, Pilani. February, 22-24, 2008<br />

“National Workshop On Management And Use Of Chemistry Database<br />

And Patent Literature” organized by GUJCOST & Dept. of Chemistry of<br />

<strong>Saurashtra</strong> <strong>University</strong>, Rajkot, (Gujarat), February, 27-29, 2008.<br />

“A National Workshop On Updates In Process And Medicinal Chemistry”<br />

jointly organized by National Facility for Drug Discovery through New<br />

Chemicals Entities Development & Instrumentation support to Small<br />

Manufacturing Pharma Enterprises and DST FIST, UGC-SAP & DST-DPRP<br />

Funded Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot March, 3-4,<br />

2009.<br />

“National Conference On Selected Topics In Spectroscopy And<br />

Stereochemistry” organized by the Department of Chemistry, <strong>Saurashtra</strong><br />

<strong>University</strong>, Rajkot, March, 18-20, 2009.<br />

“12th Belgian Organic Synthesis Symposium” (BOSS XII) Namur, Belgium<br />

July 11-16, 2010.


Paper/Poster presented at the International Conference:<br />

“Microwave-Assisted One Pot Synthesis Of Anti-Biofilm Active 2-<br />

Aminoimidazole -Triazole Conjugates Using Copper Nanoparticles”<br />

Bharat S. Savalia, Denis S. Ermolat’ev, Anamik K. Shah and Erik V. Van der<br />

Eycken.“12th Belgian Organic Synthesis Symposium” (BOSS XII) Namur,<br />

Belgium (2010)<br />

“A General Approach To 2-Aminoimidazole Marine Sponge Alkaloids<br />

From Leucetta sp.”<br />

Denis S. Ermolat’ev, Bharat S. Savalia, Jitender B. Bariwal and Erik V. Van<br />

der Eycken,“12th Belgian Organic Synthesis Symposium” (BOSS XII)<br />

Namur, Belgium (2010)<br />

“Crystal Structure Of DP-7: A New MDR Reverting Agent Against<br />

Tumor Cells”<br />

Manisha Parmar, Bharat Savaliya, Harsukh Gaveriya, Lakshminarayana B.N.<br />

J. Shashidhara Prasad, M. A. Sridhar and Anamik Shah. ISCBC.<br />

Lucknow,India, 2010.<br />

“Rapid Synthesis Of Fused Bicyclic Thiazolo-Pyrimidine And Purimido-<br />

Thiazine Derivatives Devoid Of Use Of Catalyst By Microwave Assisted<br />

Method.”<br />

Bharat S.Savaliya, Vijay Virsodia, Punit Rasadia, Nikhil Vekaria, Rupesh<br />

Khunt And Anamik Shah.ISCBC., BITS-Pilani, India.2008


PUBLICATIONS<br />

[1] One-Pot Microwave-Assisted Protocol For The Synthesis Of Substituted 2-<br />

Amino-1H-Imidazoles. Denis S. Ermolat’ev, Bharat Savaliya, Anamik Shah<br />

and Erik V. Van der Eycken. Molecular Diversity. (2010) DOI<br />

10.1007/s11030-010-9270-5<br />

[2] Structure Activity Relationship of 2-Hydroxy-2-phenyl-2,3-dihydro-<br />

[3]<br />

imidazo[1,2-a]pyrimidinium Salts and 2N-Substituted 4(5)-Phenyl-2-Amino-<br />

1H-imidazoles as Inhibitors of the Biofilm Formation by Salmonella<br />

Typhimurium and Pseudomonas aeruginosa. P.L. Steenackers, Denis S.<br />

Ermolat’ev, Bharat Savaliya, Ami De Weerdt, David De Coster, Anamik<br />

Shah, Erik V. Van der Eycken, Dirk E. De Vos, Jozef Vanderleyden and<br />

Sigrid C.J. De Keersmaecker. Bio. & Med. Chem. Submitted (2010)<br />

Structure Activity Relationship of 4(5)-Phenyl-2-amino-1H-imidazoles, N1-<br />

Substituted 2-Aminoimidazoles and Imidazo[1,2-a]pyrimidinium Salts as<br />

Inhibitors of Biofilm Formation by Salmonella Typhimurium and<br />

Pseudomonas aeruginosa. Hans P.L. Steenackers, Denis S. Ermolat’ev,<br />

Bharat Savaliya, Ami De Weerdt, David De Coster, Anamik Shah, Erik V.<br />

Van der Eycken, Dirk E. De Vos, Jozef Vanderleyden and Sigrid C.J. De<br />

Keersmaecker. J. Med. Chem. (2010) DOI: 10.1021/jm1011148<br />

[4] Copper Catalyzed Microwave Assisted One Pot Synthesis of 2-<br />

Aminoimidazole-Triazole Framework. Bharat Savaliya, Denis S. Ermolat’ev,<br />

Anamik Shah and Erik V. Van der Eycken. (2010) Manuscript in preparation.<br />

Org. lett.<br />

[5] Crystal And Molecular Structure Analysis Of DP-7: A New Multi Drug<br />

Resistance Reverter Lead Molecule. Bharat Savaliya, Manisha Parmar,<br />

Vaibhav Ramani, Harsukh Gevariya, B.N. Lakshminarayana, J. Shashidhara<br />

Prashad, M. A. Sridhar and Anamik Shah. (2010) Manuscript in preparation.<br />

[6] Catalyst-Free, Rapid Synthesis of Fused Bicyclic Thiazolo-Pyrimidine and<br />

Pyrimido-Thiazine Derivatives by a Microwave-Assisted Method.<br />

Vijay R. Virsodia, Nikhil R. Vekariya, Atul T. Manvar,Rupesh C. Khunt,<br />

Bhavin R. Marvania, Bharat S.Savalia and Anamik K. Shah. Phosphorus,<br />

Sulfur, and Silicon, 184:34–44 (2009)


Mol Divers<br />

DOI 10.1007/s11030-010-9270-5<br />

FULL-LENGTH PAPER<br />

One-pot microwave-assisted protocol for the synthesis<br />

of substituted 2-amino-1H -imidazoles<br />

D. S. Ermolat’ev · B. Savaliya · A. Shah ·<br />

E. Van der Eycken<br />

Received: 19 May 2010 / Accepted: 7 August 2010<br />

© Springer Science+Business Media B.V. 2010<br />

Abstract An efficient microwave-assisted one-pot two-step<br />

protocol was developed for the construction of disubstituted<br />

2-amino-1H-imidazoles. This process involves the sequential<br />

formation of 2,3-dihydro-2-hydroxyimidazo[1,2-a]pyrimidinium<br />

salts from readily available 2-aminopyrimidines<br />

and α-bromoketones, followed by cleavage of the pyrimidine<br />

ring with hydrazine.<br />

Keywords Heterocycles · 2-Aminoimidazoles ·<br />

Microwave-assisted synthesis · Ring opening ·<br />

Rearrangement<br />

Introduction<br />

The class of 2-aminoimidazoles has recently attracted particular<br />

interest due to various biological properties of these compounds.<br />

2-Aminoimidazole alkaloids and their metabolites,<br />

isolated from the marine sponges Hymeniacidon sp., have<br />

been described as potent antagonists of serotonergic [1] and<br />

histaminergic receptors [2]. Naamine and isonaamine alkaloids<br />

from the marine sponges Leucetta sp. exhibit antiviral<br />

and anticancer activity [3–10]. Because of these interesting<br />

Electronic supplementary material The online version of this<br />

article (doi:10.1007/s11030-010-9270-5) contains supplementary<br />

material, which is available to authorized users.<br />

D. S. Ermolat’ev · B. Savaliya · E. Van der Eycken (B)<br />

Laboratory for Organic and Microwave-Assisted Chemistry<br />

(LOMAC), Department of Chemistry, Katholieke Universiteit<br />

Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium<br />

e-mail: erik.vandereycken@chem.kuleuven.be<br />

B. Savaliya · A. Shah<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>,<br />

Rajkot 360 005, Gujarat, India<br />

N<br />

2<br />

N<br />

N<br />

R 2<br />

R 2<br />

A<br />

R1HN N<br />

B<br />

R1 = H<br />

N<br />

H<br />

1<br />

N<br />

Br<br />

Scheme 1 Synthesis of substituted 2-amino-1H-imidazoles<br />

3<br />

N<br />

N<br />

OH<br />

biological activities, numerous synthetic routes to 1-substituted<br />

and 1-unsubstituted 2-aminoimidazoles have been<br />

reported. Modern synthetic methods for accessing 1-unsubstituted<br />

2-amino-1H-imidazoles can be roughly classified<br />

as heterocyclization of substituted or protected guanidines<br />

with 1,2-dielectrophiles [11,12], heteroaromatic nucleophilic<br />

substitution, and recyclization of 2-aminooxazoles [13].<br />

Although different substituted guanidines are readily available<br />

and can be prepared in situ (e.g., from cyanamides [14]),<br />

the high basicity of guanidines together with non-regioselectivity<br />

often leads to multiple products. Protection by acetyl<br />

[11] and Boc-groups [12] requires, in turn, acidic deprotection<br />

conditions.<br />

Recently, we have described two new approaches to the<br />

synthesis of substituted 2-amino-1H-imidazoles 1. The first<br />

approach is based on the cleavage of imidazo[1,2-a]pyrimidines<br />

[15] 2 with hydrazine (Scheme 1, route A) [16]. In the<br />

second approach, the hydrazinolysis of 2-hydroxy-2,<br />

3-dihydroimidazo[1,2-a]pyrimidinium salts 3 followed<br />

by Dimroth-type rearrangement afforded trisubstituted<br />

2-amino-1H-imidazoles 1 (Scheme 1, route B) [17].<br />

2-Hydroxy-2,3-dihydroimidazo[1,2-a]pyrimidinium salts<br />

3 can be easily prepared from 2-aminopyrimidines 4 with<br />

α-bromoketones 5 under microwave irradiation (Scheme 2).<br />

We found that the outcome of this reaction strongly depends<br />

on the temperature [18]. The microwave-assisted reaction<br />

R 2<br />

R 1<br />

123


Scheme 2 Competitive<br />

formation of 1-unsubstituted<br />

and 1-substituted<br />

2-amino-1H-imidazoles upon<br />

microwave irradiation<br />

Table 1 Investigation of the<br />

condensation under<br />

conventional heating and<br />

microwave irradiation<br />

All reactions were carried out on<br />

a 1 mmol scale of<br />

2-methylaminopyrimidine<br />

(1, R1 = Me) with 1.35 equiv. of<br />

α-phenacylbromide (2, R2 =Ph)<br />

in MeCN (5 mL)<br />

a Isolated yield after<br />

recrystallization from MeCN<br />

N<br />

N<br />

NHMe<br />

N<br />

Br<br />

N<br />

4<br />

5<br />

+<br />

+ Br<br />

NHR 1<br />

O<br />

R 2<br />

MW<br />

O<br />

Ph<br />

4 (R 1 = Me) 5 (R 2 = Ph)<br />

between 2-aminopyrimidines 4 and α-bromoketones 5 performed<br />

at 80–100 ◦ C gave 2-hydroxy-2,3-dihydroimidazo<br />

[1,2-a]pyrimidinium salts 3, while irradiation of the<br />

reaction mixture at temperatures above 100 ◦ C provided<br />

aromatic 1-substituted imidazo[1,2-a ]pyrimidinium salts<br />

6 (Scheme 2). The hydrazinolysis of the salts 3 and 6 leads to<br />

the corresponding 1-unsubstituted and 1-substituted<br />

2-amino-1H-imidazoles 1 and 7. Thus, by performing the<br />

reaction at 130−150 ◦ C, we were able to prepare a library of<br />

1,4,5-trisubstituted 2-aminoimidazoles 7 via a one-pot twostep<br />

protocol [18].<br />

In continuation of our ongoing studies, herein we report<br />

a simple one-pot procedure for the synthesis of 1-unsubstituted<br />

2-amino-1H-imidazoles 1 from 2-aminopyrimidines 4<br />

and α-bromoketones 5 under microwave irradiation.<br />

123<br />

100 °C<br />

N<br />

Br<br />

Conditions<br />

N<br />

N<br />

3<br />

6<br />

N<br />

N<br />

OH<br />

R 2<br />

Br<br />

N<br />

Br<br />

R 2<br />

N<br />

R 1<br />

R 1<br />

3<br />

N<br />

N 2H 4<br />

MW<br />

N 2H 4<br />

MW<br />

N Me<br />

OH<br />

Ph<br />

+<br />

R 1HN<br />

H 2N<br />

N<br />

Mol Divers<br />

N<br />

N<br />

H<br />

N<br />

N<br />

R 1<br />

1<br />

7<br />

Ph<br />

R 2<br />

R 2<br />

N<br />

Br<br />

N Me<br />

Entry Conditions Time (min) T ( ◦ C) 3 (Yield %) a 6 (Yield %) a<br />

1 30 80 64 0<br />

2 60 80 77 0<br />

3 30 100 81 Traces<br />

4 60 100 85 Traces<br />

5 30 120 68 17<br />

6 60 120 53 28<br />

7 MW 30 80 88 0<br />

8 60 80 85 0<br />

9 30 100 48 33<br />

10 60 100 45 35<br />

11 30 120 12 79<br />

12 60 120 Traces 84<br />

Results and discussion<br />

We carefully investigated the formation and dehydratation of<br />

salt 3 resulting in the formation of salt 6 under conventional<br />

heating conditions as well as upon microwave irradiation.<br />

As a proof of concept, the condensation of 2-methylaminopyrimidine<br />

(4,R1 = Me) and α-phenacylbromide (5,R2 = Ph)<br />

was studied (Table 1). A sealed vial containing a solution of<br />

the starting compounds in acetonitrile was conventionally<br />

heated with an oil bath (Table 1, entries 1–6) or irradiated<br />

with microwaves (Table 1, entries 7–12) at different temperatures<br />

for 30–60 min. The formation of the 2-hydroxy<br />

salt 3 was faster under microwave irradiation, and this compound<br />

was obtained in 88% yield within 30 min. Further<br />

increase of the temperature up to 120 ◦ C using conventional<br />

6


Mol Divers<br />

Table 2 Microwave-assisted<br />

synthesis of substituted<br />

2-amino-1H-imidazoles 1<br />

N<br />

Br<br />

N<br />

+<br />

NHR 1<br />

O<br />

R 2<br />

1. MW 80 °C<br />

MeCN 30 min<br />

heating or microwave irradiation led to a mixture of salts 3<br />

and 6 (Table 1). Interestingly, using microwave irradiation at<br />

120 ◦ C for 60 min, we were able to drive the reaction completely<br />

to the formation of the imidazo[1,2-a]pyrimidinium<br />

salt 6 (Table 1, entry 12).<br />

As the transformation of salts 3 into salts 6 is relatively<br />

rapid at the temperatures above 100 ◦ C, the synthesis of<br />

salts 3 was conducted at 80 ◦ C. Treatment of substituted<br />

4<br />

5<br />

N<br />

Br<br />

3<br />

N<br />

N R1 OH<br />

R 2<br />

2. N 2H 4, MW 90 °C<br />

MeCN 10 min<br />

R 1HN<br />

entry 2-aminopyrymidine 4 α–bromoketone 5 product 1 yield<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

NH 2<br />

NH 2<br />

NH 2<br />

Me<br />

Piperonyl<br />

N<br />

H<br />

Pr<br />

Br<br />

Br<br />

Br<br />

Br<br />

Br<br />

Br<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OMe<br />

Ph<br />

F<br />

Cl<br />

OMe<br />

Cl<br />

Cl<br />

H 2N<br />

H 2N<br />

H 2N<br />

Me<br />

HN<br />

Piperonyl<br />

Pr<br />

HN<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

MeO<br />

N<br />

N<br />

H<br />

HN<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

1{1}<br />

1{2}<br />

1{3}<br />

1{4}<br />

1{5}<br />

1{6}<br />

Ph<br />

F<br />

Cl<br />

OMe<br />

N<br />

N<br />

H<br />

1<br />

R 2<br />

(%) a<br />

2-aminopyrimidines 4 with 15 mol% excess of α-bromoketones<br />

5 in MeCN under microwave irradiation for 30 min<br />

generated the intermediate salts 3 which, in most cases, precipitated<br />

from the reaction mixture upon cooling (Table 2).<br />

Reaction progress was monitored by mass-spectrometry.<br />

In all the cases examined, the reaction appeared to be complete<br />

after 30 min. The cleavage step was performed under<br />

microwave irradiation at 90 ◦ C, using seven equivalents of<br />

Cl<br />

Cl<br />

75<br />

79<br />

88<br />

48<br />

72<br />

70<br />

123


Table 2 continued<br />

9<br />

10<br />

11<br />

12 N<br />

hydrazine hydrate. Based on the data given in Table 2, the<br />

reaction appears to be compatible with both aryl and alkyl<br />

substitutions. All the reactions were clean, smooth, and provided<br />

the products 1{1–18} in good and high yields. The<br />

compounds were purified by column chromatography using<br />

5–10% MeOH in CH2Cl2 as the eluent. All the final 2-amino-<br />

1H-imidazoles 1{1–18} were characterized by 1 H and 13 C<br />

NMR spectroscopy. Their compositions were also confirmed<br />

by HRMS.<br />

123<br />

7<br />

8<br />

13<br />

14<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

Octyl<br />

N<br />

H<br />

Pentyl<br />

Hexyl<br />

PMB<br />

Br<br />

Br<br />

Cyclooctyl Br<br />

N<br />

H<br />

N<br />

H<br />

Bu<br />

PMB<br />

Br<br />

Br<br />

Br<br />

Br<br />

Br<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

SO 2Me<br />

Br<br />

Cl<br />

Cl<br />

F<br />

SO 2Me<br />

NO 2<br />

Mol Divers<br />

Cl<br />

Pentyl<br />

HN<br />

N<br />

61<br />

N<br />

H 1{9}<br />

Hexyl<br />

HN<br />

HN<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

1{7}<br />

SO 2Me<br />

1{10}<br />

Cl<br />

PMB N<br />

Br<br />

HN<br />

N<br />

H 1{11}<br />

F<br />

SO 2Me<br />

69<br />

44<br />

Cyclooctyl<br />

HN<br />

N<br />

66<br />

N<br />

H 1{12}<br />

Bu<br />

HN<br />

N<br />

83<br />

N<br />

H<br />

1{13}<br />

NO 2<br />

73<br />

Octyl<br />

HN<br />

N<br />

79<br />

N<br />

H<br />

1{8}<br />

PMB<br />

HN<br />

N<br />

89<br />

N<br />

H<br />

1{14}<br />

In conclusion, we have developed a simple and practical<br />

microwave-assisted procedure for the preparation of substituted<br />

2-amino-1H-imidazoles. We have investigated a onepot<br />

synthesis and cleavage of 2-hydroxy-2,3-dihydroimidazo<br />

[1,2-a]pyrimidinyl-4-ium bromides by hydrazine hydrate and<br />

found microwave irradiation to be very effective in this regard.<br />

A small library of 2-amino-1H-imidazoles was synthesized<br />

for screening for potential antiviral and antibacterial<br />

activities.


Mol Divers<br />

Table 2 continued<br />

All the reactions were carried<br />

out on a 4 mmol scale of<br />

2-alkylaminopyrimidine 4 with<br />

1.15 equiv of α-bromoketone 5<br />

in MeCN (3 mL)<br />

a Isolated yield after column<br />

chromatography<br />

Experimental section<br />

Microwave irradiation experiments<br />

15<br />

16<br />

17 N<br />

A monomode CEM-Discover microwave reactor (CEM Corporation,<br />

P.O. Box 200, Matthews, NC 28106) was used<br />

in the standard configuration as delivered, including proprietary<br />

software. All the experiments were carried out in sealed<br />

microwave process vials (10 mL) at the maximum power and<br />

temperature, as indicated in the tables. After completion of<br />

the reaction, the vial was cooled to 50 ◦ C via air-jet cooling<br />

before it was opened.<br />

General procedure for the one-pot two-step microwaveassisted<br />

synthesis of 2-amino-1H-imidazoles 1{1–18}<br />

In a microwave, vial (10 mL) was successively dissolved<br />

in dry MeCN (3 mL), the corresponding 2-aminopyrimidine<br />

(4 mmol) and α-bromoketone (4.6 mmol). The reaction tube<br />

was sealed and irradiated in a microwave reactor at a ceiling<br />

temperature of 80 ◦ C and a maximum power of 50 W for<br />

30 min. After the reaction mixture was cooled with an air<br />

flow for 15 min, hydrazine hydrate (0.9 mL, 28 mmol of a<br />

64% solution, 7 equiv.) was added, and the mixture was irradiated<br />

at a ceiling temperature of 90 ◦ C and a maximum<br />

power of 50 W for another 10 min. After the reaction mixture<br />

was cooled, hydrazine hydrate was removed by distillation<br />

with toluene (3 × 20 mL). The resulting residue was purified<br />

by column chromatography (silica gel; MeOH-DCM 1:9 v/v<br />

with 0.5% of 6 N ammonia in MeOH) to afford 1 as amorphous<br />

solid.<br />

18<br />

N<br />

N<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H<br />

Bu<br />

OMe<br />

Br<br />

Br<br />

Br<br />

Br<br />

O<br />

O<br />

O<br />

O<br />

SMe<br />

NO 2<br />

OMe<br />

Bu<br />

HN<br />

HN<br />

OMe<br />

HN<br />

HN<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

1{15}<br />

1{16}<br />

1{17}<br />

1{18}<br />

SMe<br />

NO 2<br />

OMe<br />

Acknowledgments The support for this project was provided by the<br />

Research Fund of the <strong>University</strong> of Leuven and by the F.W.O. (Fund<br />

for Scientific Research—Flanders (Belgium)). E.D.S. is grateful to the<br />

<strong>University</strong> of Leuven for obtaining a postdoctoral fellowship, and S.B.<br />

to Erasmus Mundus External Cooperation Window Lot 15 India<br />

(EMECW15) for obtaining a scholarship. The authors thank Ir.<br />

B. Demarsin for HRMS measurements.<br />

References<br />

1. Cafieri F, Fattorusso E, Mangoni A, Taglialatela Scafati O<br />

(1996) Dispacamides anti-histamine alkaloids from Caribbean<br />

agelas sponges. Tetrahedron Lett 3: 3587–3590. doi:10.1016/<br />

0040-4039(96)00629-6<br />

2. Kobayashi J, Ohizumi Y, Nakamura H, Hirata Y (1986) A novel<br />

antagonist of serotonergic receptors, hymenidin, isolated from<br />

the Okinawan marine Sponge Hymeniacidon sp. Experientia 42:<br />

1176–1177. doi:10.1007/BF01941300<br />

3. Carmely S, Ilan M, Kashman Y (1989) 2-Amino imidazole alkaloids<br />

from the marine sponge leucetta chagosensis. Tetrahedron<br />

45: 2193–2200. doi:10.1016/S0040-4020(01)80079-X<br />

4. Bedoya Zurita M, Ahond A, Poupat C, Potier P (1989) Première<br />

synthèse totale de la girolline. Tetrahedron 45: 6713–6720. doi:10.<br />

1016/S0040-4020(01)89141-9<br />

5. Gross H, Kehraus S, Koenig GM, Woerheide G, Wright AD<br />

(2002) New and biologically active imidazole alkaloids from two<br />

sponges of the genus leucetta. J Nat Prod 65: 1190–1193. doi:10.<br />

1021/np020050c<br />

6. HassanW,EdradaR,EbelR,WrayV,BergA,VanSoestR,<br />

Wiryowidagdo S, Proksch P (2004) New imidazole alkaloids from<br />

the indonesian sponge leucetta chagosensis. J Nat Prod 67:<br />

817–822. doi:10.1021/np0305223<br />

7. Copp BR, Fairchild CR, Cornell L, Casazza AM, Robinson S,<br />

Ireland CM (1998) Naamidine A is an antagonist of the epidermal<br />

growth factor receptor and an in vivo active antitumor agent.<br />

J Med Chem 41: 3909–3911. doi:10.1021/jm980294n<br />

88<br />

53<br />

61<br />

60<br />

123


8. Colson G, Raboult L, Lavelle F, Zeaial A (1992) Mode of action<br />

of the antitumor compound girodazole. Biochem Pharmacol 43:<br />

1717–1723. doi:10.1016/0006-2952(92)90701-J<br />

9. Pitts WJ, Wityak J, Smallheer JM, Tobin AE, Jetter JW, Buynitsky<br />

JS, Harlow PP, Solomon KA, Corjay MH, Mousa SA, Wexler R,<br />

Jadhav PK (2000) Isoxazolines as potent antagonists of the integrin<br />

αvβ3. J Med Chem 43: 27–40. doi:10.1021/jm9900321<br />

10. Batt DG, Petraitis JJ, Houghton GC, Modi DP, Cain GA, Corjay<br />

MH, Mousa SA, Bouchard PJ, Forsythe MS, Harlow PP, Barbera<br />

FA, Spitz SM, Wexler RR, Jadhav PK (2000) Disubstituted indazoles<br />

as potent antagonists of the integrin αvβ3. J Med Chem 43:<br />

41–58. doi:10.1021/jm990049j<br />

11. Little TL, Webber SE (1994) A simple and practical synthesis<br />

of 2-aminoimidazoles. J Org Chem 59: 7299–7305. doi:10.1021/<br />

jo00103a021<br />

12. Abou JR, Ghoulami S, Martin MT, Dau ETH, Travert N, Al-Mourabit<br />

A (2004) Biogenetically inspired synthesis of marine C6N4<br />

2-aminoimidazole alkaloids: ab initio calculations, tautomerism,<br />

and reactivity. Org Lett 6: 3933–3936. doi:10.1021/ol048529e<br />

13. Lamattina JL, Mularski CJ (1984) The reaction of 5-acetyl-2aminooxazole<br />

with amines: an approach to 1H-5-acetyl-2-aminoimidazoles.<br />

Tetrahedron Lett 25: 2957–2960. doi:10.1016/<br />

S0040-4039(01)81336-8<br />

123<br />

Mol Divers<br />

14. Katritzky AR, Rogovoy B (2005) Recent developments in guanylating<br />

agents. Arkivoc Part iv:49–87 and references herein. doi:10.<br />

1002/chin.200530277<br />

15. Ermolat’ev DS, Giménez VN, Babaev EV, Van der Eycken<br />

E (2006) Efficient Pd(0)-mediated microwave-assisted arylation of<br />

2-substituted imidazo[1,2-a]pyrimidines. J Comb Chem 8: 659–<br />

663. doi:10.1021/cc060031b<br />

16. Ermolat’ev DS, Svidritsky EP, Babaev EV, Van der Eycken<br />

E (2009) Microwave-assisted synthesis of substituted 2-amino-<br />

1H-imidazoles from imidazo[1,2-a]pyrimidines. Tetrahedron Lett<br />

50: 5218–5220. doi:10.1016/j.tetlet.2009.06.128<br />

17. Ermolat’ev DS, Van der Eycken E (2008) A divergent synthesis<br />

of substituted 2-aminoimidazoles from 2-aminopyrimidines. J Org<br />

Chem 73: 6691–6697. doi:10.1021/jo8008758<br />

18. Ermolat’ev DS, Babaev EV, Van der Eycken E (2006) Efficient<br />

one-pot two-step, microwave-assisted procedure for the synthesis<br />

of polysubstituted 2-aminoimidazoles. Org Lett 8: 5781–5784.<br />

doi:10.1021/ol062421c

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!