04.05.2013 Views

Geometric algebra of strictly convex Minkowski planes

Geometric algebra of strictly convex Minkowski planes

Geometric algebra of strictly convex Minkowski planes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Geometric</strong> <strong>algebra</strong> <strong>of</strong> <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> ∗<br />

Margarita Spirova<br />

TU Chemnitz<br />

Emerging Developments in Real Algebraic Geometry<br />

February 20-24, 2012, Magdeburg<br />

∗ Based on joint work with Horst Martini and Karl Strambach<br />

1 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Motivation<br />

2 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Isometries in <strong>Minkowski</strong> spaces<br />

Let (M d ,·) be a <strong>Minkowski</strong> space, i.e., a finite dimensional real<br />

vector space equipped with a norm ·.<br />

3 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Isometries in <strong>Minkowski</strong> spaces<br />

Let (M d ,·) be a <strong>Minkowski</strong> space, i.e., a finite dimensional real<br />

vector space equipped with a norm ·.<br />

An isometry from (X,·X) to (Y,·Y) is a mapping such that<br />

for all x1,x2 in X we have<br />

x1 −x2X = Tx1 −Tx2Y.<br />

3 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Isometries in <strong>Minkowski</strong> spaces<br />

• Translations, the identity map I, and the symmetry −I are<br />

isometries for any <strong>Minkowski</strong> space.<br />

3 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Isometries in <strong>Minkowski</strong> spaces<br />

• Translations, the identity map I, and the symmetry −I are<br />

isometries for any <strong>Minkowski</strong> space.<br />

• Mazur-Ulam Theorem: If (X,·X) to (Y,·Y) are<br />

<strong>Minkowski</strong> spaces and T is an isometry <strong>of</strong> (X,·X) into<br />

(Y,·Y) with T(0) = 0 then T is linear.<br />

3 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Isometries in <strong>Minkowski</strong> spaces<br />

• Translations, the identity map I, and the symmetry −I are<br />

isometries for any <strong>Minkowski</strong> space.<br />

• Mazur-Ulam Theorem: If (X,·X) to (Y,·Y) are<br />

<strong>Minkowski</strong> spaces and T is an isometry <strong>of</strong> (X,·X) into<br />

(Y,·Y) with T(0) = 0 then T is linear.<br />

• Álvarez Paiva-Thompson Remark: A general <strong>Minkowski</strong><br />

plane does not admit many isometries itself.<br />

3 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Isometries in <strong>Minkowski</strong> spaces<br />

• Translations, the identity map I, and the symmetry −I are<br />

isometries for any <strong>Minkowski</strong> space.<br />

• Mazur-Ulam Theorem: If (X,·X) to (Y,·Y) are<br />

<strong>Minkowski</strong> spaces and T is an isometry <strong>of</strong> (X,·X) into<br />

(Y,·Y) with T(0) = 0 then T is linear.<br />

• Álvarez Paiva-Thompson Remark: A general <strong>Minkowski</strong><br />

plane does not admit many isometries itself.<br />

⎧<br />

⎨<br />

⎩<br />

x = (ξ1,ξ2) :=<br />

|ξ1|+2 −1 |ξ2| if sgnξ1 = sgnξ1 and |ξ2| ≤ 2|ξ1|,<br />

|ξ2| if sgnξ1 = sgnξ1 and |ξ2| > 2|ξ1|,<br />

(ξ2 1 +ξ2 2 )12<br />

if sgnξ1 = −sgnξ1.<br />

3 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Reflections in <strong>Minkowski</strong> <strong>planes</strong><br />

H. Busemann, P. J. Kelly: Projective Geometry and<br />

Projective metrics, New York, 1953.<br />

4 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Reflections in <strong>Minkowski</strong> <strong>planes</strong><br />

H. Busemann, P. J. Kelly: Projective Geometry and<br />

Projective metrics, New York, 1953.<br />

• An isometry <strong>of</strong> a <strong>Minkowski</strong> plane has either no fixed points,<br />

one fixed point, a line <strong>of</strong> fixed points, or it is identity.<br />

4 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Reflections in <strong>Minkowski</strong> <strong>planes</strong><br />

H. Busemann, P. J. Kelly: Projective Geometry and<br />

Projective metrics, New York, 1953.<br />

• An isometry <strong>of</strong> a <strong>Minkowski</strong> plane has either no fixed points,<br />

one fixed point, a line <strong>of</strong> fixed points, or it is identity.<br />

• When an isometry Φ is involutory it always has fixed points.<br />

4 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Reflections in <strong>Minkowski</strong> <strong>planes</strong><br />

H. Busemann, P. J. Kelly: Projective Geometry and<br />

Projective metrics, New York, 1953.<br />

• An isometry <strong>of</strong> a <strong>Minkowski</strong> plane has either no fixed points,<br />

one fixed point, a line <strong>of</strong> fixed points, or it is identity.<br />

• When an isometry Φ is involutory it always has fixed points.If<br />

Φ has a line G <strong>of</strong> fixed points than it is called a reflections in<br />

G.<br />

4 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Reflections in <strong>Minkowski</strong> <strong>planes</strong><br />

H. Busemann, P. J. Kelly: Projective Geometry and<br />

Projective metrics, New York, 1953.<br />

• An isometry <strong>of</strong> a <strong>Minkowski</strong> plane has either no fixed points,<br />

one fixed point, a line <strong>of</strong> fixed points, or it is identity.<br />

• When an isometry Φ is involutory it always has fixed points.If<br />

Φ has a line G <strong>of</strong> fixed points than it is called a reflections in<br />

G.<br />

• If any line in a <strong>Minkowski</strong> plane M 2 admits a reflection then<br />

M 2 is Euclidean.<br />

4 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Reflections in <strong>Minkowski</strong> <strong>planes</strong><br />

H. Busemann, P. J. Kelly: Projective Geometry and<br />

Projective metrics, New York, 1953.<br />

• An isometry <strong>of</strong> a <strong>Minkowski</strong> plane has either no fixed points,<br />

one fixed point, a line <strong>of</strong> fixed points, or it is identity.<br />

• When an isometry Φ is involutory it always has fixed points.If<br />

Φ has a line G <strong>of</strong> fixed points than it is called a reflections in<br />

G.<br />

• If any line in a <strong>Minkowski</strong> plane M 2 admits a reflection then<br />

M 2 is Euclidean.<br />

H. Martini, M. S.: Reflections in <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong>, Aequationes Math. 78 (2009), 71-85.<br />

4 / 24


Motivation<br />

Isometries in<br />

<strong>Minkowski</strong> spaces<br />

Reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Reflections in <strong>Minkowski</strong> <strong>planes</strong><br />

H. Busemann, P. J. Kelly: Projective Geometry and<br />

Projective metrics, New York, 1953.<br />

• An isometry <strong>of</strong> a <strong>Minkowski</strong> plane has either no fixed points,<br />

one fixed point, a line <strong>of</strong> fixed points, or it is identity.<br />

• When an isometry Φ is involutory it always has fixed points.If<br />

Φ has a line G <strong>of</strong> fixed points than it is called a reflections in<br />

G.<br />

• If any line in a <strong>Minkowski</strong> plane M 2 admits a reflection then<br />

M 2 is Euclidean.<br />

H. Martini, M. S.: Reflections in <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong>, Aequationes Math. 78 (2009), 71-85.<br />

Bachmann, F.: Aufbau der Geometrie aus dem<br />

Spiegelungsbegriff, Springer-Verlag, Berlin-Göttingen-Heidelberg,<br />

1959.<br />

4 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Preliminares<br />

5 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

Let (M d ,·) be a <strong>Minkowski</strong> space.<br />

6 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

Birkh<strong>of</strong>f orthogonality<br />

6 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

Birkh<strong>of</strong>f orthogonality<br />

A non-zero vector x ∈ M d is Birkh<strong>of</strong>f orthogonal to a non-zero<br />

vector y ∈ M d , denoted by x ⊥B y, if<br />

for all λ ∈ R.<br />

x ≤ x+λy<br />

6 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

Birkh<strong>of</strong>f orthogonality<br />

A non-zero vector x ∈ M d is Birkh<strong>of</strong>f orthogonal to a non-zero<br />

vector y ∈ M d , denoted by x ⊥B y, if<br />

for all λ ∈ R.<br />

x ≤ x+λy<br />

6 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

Birkh<strong>of</strong>f orthogonality<br />

A non-zero vector x ∈ M d is Birkh<strong>of</strong>f orthogonal to a non-zero<br />

vector y ∈ M d , denoted by x ⊥B y, if<br />

for all λ ∈ R.<br />

x ≤ x+λy<br />

6 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

Birkh<strong>of</strong>f orthogonality<br />

A non-zero vector x ∈ M d is Birkh<strong>of</strong>f orthogonal to a non-zero<br />

vector y ∈ M d , denoted by x ⊥B y, if<br />

for all λ ∈ R.<br />

x ≤ x+λy<br />

6 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

Birkh<strong>of</strong>f orthogonality<br />

A non-zero vector x ∈ M d is Birkh<strong>of</strong>f orthogonal to a non-zero<br />

vector y ∈ M d , denoted by x ⊥B y, if<br />

for all λ ∈ R.<br />

x ≤ x+λy<br />

6 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

James orthogonality<br />

6 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

James orthogonality<br />

A non-zero vector x ∈ M d is said to be (isosceles or) James<br />

orthogonal to a non-zero vector y, denoted by x ⊥J y, if<br />

x+y = x−y.<br />

6 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

James orthogonality<br />

A non-zero vector x ∈ M d is said to be (isosceles or) James<br />

orthogonal to a non-zero vector y, denoted by x ⊥J y, if<br />

x+y = x−y.<br />

6 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

James orthogonality<br />

A non-zero vector x ∈ M d is said to be (isosceles or) James<br />

orthogonal to a non-zero vector y, denoted by x ⊥J y, if<br />

x+y = x−y.<br />

6 / 24


Motivation<br />

Preliminares<br />

Different types <strong>of</strong><br />

orthogonality in<br />

<strong>Minkowski</strong> spaces<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Different types <strong>of</strong> orthogonality in <strong>Minkowski</strong> spaces<br />

James orthogonality<br />

A non-zero vector x ∈ M d is said to be (isosceles or) James<br />

orthogonal to a non-zero vector y, denoted by x ⊥J y, if<br />

x+y = x−y.<br />

6 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

A point reflection in<br />

the stabilizer <strong>of</strong> the<br />

isometry group<br />

Affine reflections<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Isometries in <strong>Minkowski</strong> <strong>planes</strong> and<br />

reflections in the group <strong>of</strong> affine<br />

transformations<br />

7 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

A point reflection in<br />

the stabilizer <strong>of</strong> the<br />

isometry group<br />

Affine reflections<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Isometries in <strong>Minkowski</strong> <strong>planes</strong><br />

8 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

A point reflection in<br />

the stabilizer <strong>of</strong> the<br />

isometry group<br />

Affine reflections<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Isometries in <strong>Minkowski</strong> <strong>planes</strong><br />

Theorem: If (M 2 ,·) is a <strong>Minkowski</strong> plane which is<br />

non-Euclidean, then the group S <strong>of</strong> isometries <strong>of</strong> (M 2 ,·) is the<br />

semi-direct product <strong>of</strong> the translation group T <strong>of</strong> R 2 with a finite<br />

group which is either a cyclic group <strong>of</strong> rotations or the dihedral<br />

group D to 2n with 2 ≤ n < ∞ generated by two different affine<br />

reflections.<br />

8 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

A point reflection in<br />

the stabilizer <strong>of</strong> the<br />

isometry group<br />

Affine reflections<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

A point reflection in the stabilizer <strong>of</strong> the isometry group<br />

9 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

A point reflection in<br />

the stabilizer <strong>of</strong> the<br />

isometry group<br />

Affine reflections<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

A point reflection in the stabilizer <strong>of</strong> the isometry group<br />

Proposition: Let α be the reflection at the point 0 in the<br />

stabilizer S0 <strong>of</strong> the isometry group S <strong>of</strong> a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·). If S0 is a dihedral group, then the<br />

lines Gτ and Gτα, which are axes <strong>of</strong> the affine reflections τ resp.<br />

τα, are mutually orthogonal.<br />

9 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

A point reflection in<br />

the stabilizer <strong>of</strong> the<br />

isometry group<br />

Affine reflections<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Affine reflections<br />

10 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

A point reflection in<br />

the stabilizer <strong>of</strong> the<br />

isometry group<br />

Affine reflections<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Affine reflections<br />

All affine reflections with the axis through 0 and (cost,sint) are<br />

given by the set M <strong>of</strong> matrices <strong>of</strong> the form<br />

1 cos2t− 2bsin2t sin2t+bcos2 t<br />

sin2t−bsin 2t −cos2t+ 1<br />

2bsin2t <br />

.<br />

10 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

A point reflection in<br />

the stabilizer <strong>of</strong> the<br />

isometry group<br />

Affine reflections<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Affine reflections<br />

All affine reflections with the axis through 0 and (cost,sint) are<br />

given by the set M <strong>of</strong> matrices <strong>of</strong> the form<br />

1 cos2t− 2bsin2t sin2t+bcos2 t<br />

sin2t−bsin 2t −cos2t+ 1<br />

2bsin2t <br />

.<br />

Lemma: Let ΨG1 and ΨG2 be two affine reflections along the<br />

non-parallel lines G1 and G2.<br />

(a) The reflections ΨG1 and ΨG2 leave a line H through G1 ∩G2<br />

invariant if and only if their product is a shear with H as axis.<br />

(b) The product ΨG1 ◦ΨG2 has only the intersection p <strong>of</strong> G1 and<br />

G2 as a fixed point if and only if ΨG1 ◦ΨG2 is not a shear.<br />

10 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Left-reflections in <strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 11 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Definition<br />

Definition: Let there be given a line G in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·). A transformation<br />

ΨG : M 2 → M 2<br />

is called a left-reflection along the line G if<br />

(i) p ΨG := p for any p ∈ G;<br />

(ii) p ΨG := p ′<br />

such that 〈p,p ′ 〉 ⊥B G and the midpoint <strong>of</strong> [p,p ′ ] lies on G if<br />

p ∈ G.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 12 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Basic properties<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 13 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Basic properties<br />

Theorem: Let ΨG be a left-reflection in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·). Then ΨG has the following properties.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 13 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Basic properties<br />

Theorem: Let ΨG be a left-reflection in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·). Then ΨG has the following properties.<br />

(i) ΨG is involutory.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 13 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Basic properties<br />

Theorem: Let ΨG be a left-reflection in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·). Then ΨG has the following properties.<br />

(i) ΨG is involutory.<br />

(ii) ΨG is affine.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 13 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Basic properties<br />

Theorem: Let ΨG be a left-reflection in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·). Then ΨG has the following properties.<br />

(i) ΨG is involutory.<br />

(ii) ΨG is affine.<br />

(iii) If H is an arbitrary line and H ΨG = H ′ , then either<br />

H H ′ G or H ∩H ′ ∈ G.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 13 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Basic properties<br />

Theorem: Let ΨG be a left-reflection in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·). Then ΨG has the following properties.<br />

(i) ΨG is involutory.<br />

(ii) ΨG is affine.<br />

(iii) If H is an arbitrary line and H ΨG = H ′ , then either<br />

H H ′ G or H ∩H ′ ∈ G.<br />

(iv) The only fixed lines <strong>of</strong> ΨG except for G are those which are<br />

Birkh<strong>of</strong>f orthogonal to G, i.e., the lines Birkh<strong>of</strong>f orthogonal <strong>of</strong><br />

G form the direction <strong>of</strong> ΨG.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 13 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Basic properties<br />

Theorem: Let ΨG be a left-reflection in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·). Then ΨG has the following properties.<br />

(i) ΨG is involutory.<br />

(ii) ΨG is affine.<br />

(iii) If H is an arbitrary line and H ΨG = H ′ , then either<br />

H H ′ G or H ∩H ′ ∈ G.<br />

(iv) The only fixed lines <strong>of</strong> ΨG except for G are those which are<br />

Birkh<strong>of</strong>f orthogonal to G, i.e., the lines Birkh<strong>of</strong>f orthogonal <strong>of</strong><br />

G form the direction <strong>of</strong> ΨG.<br />

(v) The product <strong>of</strong> three left-reflections along parallel lines is a<br />

left-reflection along another line belonging to the same pencil<br />

<strong>of</strong> parallel lines.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 13 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Relations between point reflections and left-reflection<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 14 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Relations between point reflections and left-reflection<br />

Proposition: Let p be an arbitrary point in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·). For the symmetry Υp with respect to<br />

any point p there exist two mutually Birkh<strong>of</strong>f orthogonal lines G1<br />

and G2 through p such that<br />

Υp = ΨG2<br />

◦ΨG1 .<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 14 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Relations between point reflections and left-reflection<br />

Proposition: Let p be an arbitrary point in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·). For the symmetry Υp with respect to<br />

any point p there exist two mutually Birkh<strong>of</strong>f orthogonal lines G1<br />

and G2 through p such that<br />

Υp = ΨG2<br />

◦ΨG1 .<br />

Lemma: Let G1, G2 be two intersecting lines in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane, and ΨG1 , ΨG2 be the left reflections along these<br />

lines. Then the following statements are equivalent.<br />

(i) G1 and G2 are mutually Birkh<strong>of</strong>f orthogonal;<br />

(ii) ΨG2 ◦ΨG1 = ΨG1 ◦ΨG2 ;<br />

(iii) ΨG1 ◦ΨG2 is the symmetry with respect to the intersection<br />

point <strong>of</strong> G1 and G2.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 14 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Characterizations <strong>of</strong> special classes <strong>of</strong> norms via<br />

left-reflections<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 15 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Characterizations <strong>of</strong> special classes <strong>of</strong> norms via<br />

left-reflections<br />

Proposition: If every left-reflection in a <strong>strictly</strong> <strong>convex</strong>, smooth<br />

<strong>Minkowski</strong> plane (M 2 ,·) preserves Birkh<strong>of</strong>f orthogonality, then<br />

(M 2 ,·) is a Radon plane.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 15 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Characterizations <strong>of</strong> special classes <strong>of</strong> norms via<br />

left-reflections<br />

Proposition: If every left-reflection in a <strong>strictly</strong> <strong>convex</strong>, smooth<br />

<strong>Minkowski</strong> plane (M 2 ,·) preserves Birkh<strong>of</strong>f orthogonality, then<br />

(M 2 ,·) is a Radon plane.<br />

Theorem: In a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·), let<br />

G1,G2,G3 be three lines having a common point p. The plane<br />

(M 2 ,·) is Euclidean if and only if there exists a line G4 through<br />

p such that<br />

ΨG3<br />

◦ΨG2 ◦ΨG1 = ΨG4 .<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 15 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Bachmann’s concept on reflections and left-reflections<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 16 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Bachmann’s concept on reflections and left-reflections<br />

Let R be the set <strong>of</strong> all left-reflections in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·), and let<br />

R 2 := {Ψ2 ◦Ψ1 : Ψ1,Ψ2 ∈ R,} and<br />

R 3 := {Ψ3 ◦Ψ2 ◦Ψ1 : Ψ1,Ψ2,Ψ3 ∈ R}.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 16 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Bachmann’s concept on reflections and left-reflections<br />

Let R be the set <strong>of</strong> all left-reflections in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·), and let<br />

R 2 := {Ψ2 ◦Ψ1 : Ψ1,Ψ2 ∈ R,} and<br />

R 3 := {Ψ3 ◦Ψ2 ◦Ψ1 : Ψ1,Ψ2,Ψ3 ∈ R}.<br />

Theorem: In a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·) the set<br />

R ∗ = R 3 ∪ R 2 is a group if and only if (M 2 ,·) is Euclidean.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 16 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Bachmann’s concept on reflections and left-reflections<br />

Let R be the set <strong>of</strong> all left-reflections in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·), and let<br />

R 2 := {Ψ2 ◦Ψ1 : Ψ1,Ψ2 ∈ R,} and<br />

R 3 := {Ψ3 ◦Ψ2 ◦Ψ1 : Ψ1,Ψ2,Ψ3 ∈ R}.<br />

Theorem: In a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·) the set<br />

R ∗ = R 3 ∪ R 2 is a group if and only if (M 2 ,·) is Euclidean.<br />

Corollary: A <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane is Euclidean if and<br />

only if the left-reflections generate a proper closed subgroup <strong>of</strong> the<br />

equiaffine group.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 16 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Bachmann’s concept on reflections and left-reflections<br />

Let R be the set <strong>of</strong> all left-reflections in a <strong>strictly</strong> <strong>convex</strong><br />

<strong>Minkowski</strong> plane (M 2 ,·), and let<br />

R 2 := {Ψ2 ◦Ψ1 : Ψ1,Ψ2 ∈ R,} and<br />

R 3 := {Ψ3 ◦Ψ2 ◦Ψ1 : Ψ1,Ψ2,Ψ3 ∈ R}.<br />

Theorem: In a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·) the set<br />

R ∗ = R 3 ∪ R 2 is a group if and only if (M 2 ,·) is Euclidean.<br />

Corollary: A <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane is Euclidean if and<br />

only if the left-reflections generate a proper closed subgroup <strong>of</strong> the<br />

equiaffine group.<br />

Remark: Let (M 2 ,·) be <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane and<br />

S the set <strong>of</strong> reflections along all lines forming a pencil <strong>of</strong> parallel<br />

lines. Then the S 3 ∪S 2 = S∪S 2 is a group isomorphic to the<br />

group {x ↦−→ εx+b;b ∈ R,ε ∈ {−1,1}}.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 16 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Further characterizations <strong>of</strong> the Euclidean norm<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 17 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Further characterizations <strong>of</strong> the Euclidean norm<br />

Theorem: A <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·) is<br />

Euclidean if and only if the image <strong>of</strong> any circle with respect to any<br />

left-reflection is also a circle.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 17 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Further characterizations <strong>of</strong> the Euclidean norm<br />

Theorem: A <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·) is<br />

Euclidean if and only if the image <strong>of</strong> any circle with respect to any<br />

left-reflection is also a circle.<br />

Theorem: A <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·) is<br />

Euclidean if and only if every left-reflection in (M 2 ,·) preserves<br />

James orthogonality.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 17 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Products <strong>of</strong> two left-reflections along intersecting lines<br />

Remark: According to O. Veblen and J. W. Young:<br />

Projective Geometry, Vol. 2, Blaisdell Publishing Co. Ginn and<br />

Co., New York-Toronto-London, 1965, any element <strong>of</strong> the stabilizer<br />

<strong>of</strong> a point p in the equiaffine group <strong>of</strong> the real affine plane is the<br />

product <strong>of</strong> two affine reflections if it has the determinant 1, and <strong>of</strong><br />

one or three affine reflections if it has the determinant −1.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 18 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Products <strong>of</strong> two left-reflections along intersecting lines<br />

Theorem: Let (M 2 ,·) be a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane.<br />

Then (M 2 ,·) is Euclidean if and only if for any two intersecting<br />

lines G1 and G2 and an arbitrary line G ′ 1 passing through<br />

through p such that<br />

{p} = G1 ∩G2 there exists a line G ′ 2<br />

Ψ G ′ 2 ◦Ψ G ′ 1 = ΨG2<br />

◦ΨG1 ,<br />

where ΨG is the left-reflections along the line G.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 18 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Definition<br />

Basic properties<br />

Relations between<br />

point reflections and<br />

left-reflection<br />

Characterizations <strong>of</strong><br />

special classes <strong>of</strong><br />

norms via<br />

left-reflections<br />

Bachmann’s concept<br />

on reflections and<br />

left-reflections<br />

Further<br />

characterizations <strong>of</strong><br />

the Euclidean norm<br />

Products <strong>of</strong> two<br />

left-reflections along<br />

intersecting lines<br />

Products <strong>of</strong> two left-reflections along intersecting lines<br />

Theorem: In a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·) every<br />

product <strong>of</strong> two left reflections is an isometry if and only if the<br />

plane is Euclidean.<br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong> 18 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Cycles in <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> <strong>planes</strong><br />

19 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Definition<br />

In a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·) let there be given<br />

a point x and the pencil Gp <strong>of</strong> all lines passing through p = x.<br />

The locus <strong>of</strong> points which are images <strong>of</strong> x with respect to the left<br />

reflections along the lines <strong>of</strong> Gp is called the cycle <strong>of</strong> x with<br />

respect to Gp, denoted by CY(p,x).<br />

20 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Definition<br />

In a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·) let there be given<br />

a point x and the pencil Gp <strong>of</strong> all lines passing through p = x.<br />

The locus <strong>of</strong> points which are images <strong>of</strong> x with respect to the left<br />

reflections along the lines <strong>of</strong> Gp is called the cycle <strong>of</strong> x with<br />

respect to Gp, denoted by CY(p,x).<br />

20 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Properties <strong>of</strong> cycles in <strong>Minkowski</strong> <strong>planes</strong><br />

21 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Properties <strong>of</strong> cycles in <strong>Minkowski</strong> <strong>planes</strong><br />

Proposition: The cycle CY(p,x) contains a line segment if and<br />

only if the unit circle C has a corner point.<br />

21 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Properties <strong>of</strong> cycles in <strong>Minkowski</strong> <strong>planes</strong><br />

Proposition: The cycle CY(p,x) contains a line segment if and<br />

only if the unit circle C has a corner point.<br />

Proposition: If p = 0 and x = (1,0), then CY(0,(1,0)) =<br />

<br />

{(t,+ 1−sin2t·b(t)+(b(t)) 2sin2 t; t ∈ [0,2π]}.<br />

21 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Properties <strong>of</strong> cycles in <strong>Minkowski</strong> <strong>planes</strong><br />

Proposition: The cycle CY(p,x) contains a line segment if and<br />

only if the unit circle C has a corner point.<br />

Proposition: If p = 0 and x = (1,0), then CY(0,(1,0)) =<br />

<br />

{(t,+ 1−sin2t·b(t)+(b(t)) 2sin2 t; t ∈ [0,2π]}.<br />

Theorem: Any cycle CY(p,x) in a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong><br />

plane (M 2 ,·) is a simple closed Jordan curve which is<br />

starshaped with respect to x and 2p−x. Moreover, if CY(p,x)<br />

contains no segment, then CY(p,x)\{x,2p−x} is a<br />

differentiable curve.<br />

21 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Non-<strong>convex</strong>ity <strong>of</strong> cycles in <strong>Minkowski</strong> <strong>planes</strong><br />

22 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Non-<strong>convex</strong>ity <strong>of</strong> cycles in <strong>Minkowski</strong> <strong>planes</strong><br />

The line y = s intersects the cycle CY(0,(1,0)) in the point<br />

(cos2t0 − 1<br />

2 b(t0)sin2t0,s) if and only if for the function b one has<br />

b(t0) = s−sin2t0<br />

sin2t0 . If t0 < t1 < ... < tn < π<br />

2<br />

are real numbers such<br />

that for these real numbers the function cos2t− s−sin2t<br />

2sin 2 t takes<br />

different values and b(ti) = s−sin2ti<br />

sin 2 ti<br />

, then the points<br />

(cos2ti − s−sin2ti<br />

2sin2 ,s) are different points <strong>of</strong> CY(p,x). This shows<br />

ti<br />

that CY(p,x) is not <strong>convex</strong> since there are many differentiable<br />

functions b satisfying these properties. The directions <strong>of</strong> the left<br />

reflections with axes in Gp determine together the angles between<br />

the directions and the tangent lines <strong>of</strong> the unit circle. This allows<br />

to reconstruct the unit circle <strong>of</strong> a smooth <strong>Minkowski</strong> plane<br />

belonging to the function b.<br />

22 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Characterizations <strong>of</strong> special norms via cycles<br />

23 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Characterizations <strong>of</strong> special norms via cycles<br />

Theorem: Every two cycles CY(p,x) and CY(q,x) in a <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·), where p,q, and x are<br />

collinear, have the unique point x in common if and only if the<br />

plane (M 2 ,·) is smooth.<br />

23 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Characterizations <strong>of</strong> special norms via cycles<br />

Theorem: Every two cycles CY(p,x) and CY(q,x) in a <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·), where p,q, and x are<br />

collinear, have the unique point x in common if and only if the<br />

plane (M 2 ,·) is smooth.<br />

Theorem: Any cycle CY(p,x) in a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong><br />

plane (M 2 ,·) is symmetric with respect to p if and only if<br />

(M 2 ,·) is a Radon plane.<br />

23 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Characterizations <strong>of</strong> special norms via cycles<br />

Theorem: Every two cycles CY(p,x) and CY(q,x) in a <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·), where p,q, and x are<br />

collinear, have the unique point x in common if and only if the<br />

plane (M 2 ,·) is smooth.<br />

Theorem: Any cycle CY(p,x) in a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong><br />

plane (M 2 ,·) is symmetric with respect to p if and only if<br />

(M 2 ,·) is a Radon plane.<br />

Theorem: Let x,y be two arbitrary different points in a <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong> plane (M 2 ,·), and p be the midpoint <strong>of</strong> the<br />

segment [x,y]. The cycles CY(p,x) and CY(p,y) coincide if and<br />

only if (M 2 ,·) is a Radon plane.<br />

23 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Characterizations <strong>of</strong> the Euclidean norm via cycles<br />

24 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Characterizations <strong>of</strong> the Euclidean norm via cycles<br />

Theorem: Let CY(p,x) be an arbitrary cycle in a <strong>strictly</strong> <strong>convex</strong>,<br />

smooth <strong>Minkowski</strong> plane. Then, for any y ∈ CY(p,x), the relation<br />

CY(p,x) ≡ CY(p,y)<br />

holds if and only if the plane is Euclidean.<br />

24 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Characterizations <strong>of</strong> the Euclidean norm via cycles<br />

Theorem: Let CY(p,x) be an arbitrary cycle in a <strong>strictly</strong> <strong>convex</strong>,<br />

smooth <strong>Minkowski</strong> plane. Then, for any y ∈ CY(p,x), the relation<br />

CY(p,x) ≡ CY(p,y)<br />

holds if and only if the plane is Euclidean.<br />

Theorem: A cycle CY(p,x) in a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane<br />

M is a circle with center p if and only if the plane is Euclidean.<br />

24 / 24


Motivation<br />

Preliminares<br />

Isometries in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

and reflections in<br />

the group <strong>of</strong> affine<br />

transformations<br />

Left-reflections in<br />

<strong>Minkowski</strong> <strong>planes</strong><br />

Cycles in <strong>strictly</strong><br />

<strong>convex</strong> <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Definition<br />

Properties <strong>of</strong> cycles<br />

in <strong>Minkowski</strong> <strong>planes</strong><br />

Non-<strong>convex</strong>ity <strong>of</strong><br />

cycles in <strong>Minkowski</strong><br />

<strong>planes</strong><br />

Characterizations <strong>of</strong><br />

special norms via<br />

cycles<br />

Characterizations <strong>of</strong><br />

the Euclidean norm<br />

via cycles<br />

Characterizations <strong>of</strong> the Euclidean norm via cycles<br />

Theorem: Let CY(p,x) be an arbitrary cycle in a <strong>strictly</strong> <strong>convex</strong>,<br />

smooth <strong>Minkowski</strong> plane. Then, for any y ∈ CY(p,x), the relation<br />

CY(p,x) ≡ CY(p,y)<br />

holds if and only if the plane is Euclidean.<br />

Theorem: A cycle CY(p,x) in a <strong>strictly</strong> <strong>convex</strong> <strong>Minkowski</strong> plane<br />

M is a circle with center p if and only if the plane is Euclidean.<br />

A lot <strong>of</strong> thanks for your attention!<br />

24 / 24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!