04.05.2013 Views

Isometries and spectra of multiplication operators on the Bloch space

Isometries and spectra of multiplication operators on the Bloch space

Isometries and spectra of multiplication operators on the Bloch space

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8 ROBERT F. ALLEN AND FLAVIA COLONNA<br />

where I is <strong>the</strong> identity operator. The spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> T is defined as σ(T ) = C \ ρ(T ).<br />

The approximate point spectrum, a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spectrum, is defined as<br />

σap(T ) = {λ ∈ C : T − λI is not bounded below},<br />

i.e. for every M > 0, <strong>the</strong>re exists x ∈ E such that ||T x|| < M ||x||.<br />

The spectrum is a n<strong>on</strong>-empty compact subset <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> closed disk centered at<br />

<strong>the</strong> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> radius ||T ||. In particular, <strong>the</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> an isometry is c<strong>on</strong>tained<br />

in D. Fur<strong>the</strong>rmore <strong>the</strong> boundary ∂σ(T ) <str<strong>on</strong>g>of</str<strong>on</strong>g> σ(T ) is a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> σap(T ) (see [7],<br />

Propositi<strong>on</strong> 6.7).<br />

Theorem 4.1. Let ψ be <strong>the</strong> symbol <str<strong>on</strong>g>of</str<strong>on</strong>g> a bounded <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator Mψ <strong>on</strong> B.<br />

Then σ(Mψ) = ψ(D).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. For λ ∈ C, <strong>the</strong> operator Mψ−λI can be rewritten as Mψ−λ. Thus λ ∈ σ(Mψ)<br />

if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly if Mψ−λ is not invertible. Clearly, if M −1<br />

exists, it is <strong>the</strong> <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g><br />

ψ−λ<br />

operator M (ψ−λ) −1.<br />

Let λ ∈ ψ(D). Then <strong>the</strong>re exists z0 ∈ D such that ψ(z0) = λ. So (ψ − λ) −1 has<br />

a pole at z0, which means M (ψ−λ) −1 is not a well-defined operator. Thus Mψ−λ is<br />

not invertible. This implies that ψ(D) ⊆ σ(Mψ).<br />

Suppose λ ∈ ψ(D). Then |ψ − λ| is bounded away from 0 by some positive<br />

1<br />

c<strong>on</strong>stant c. Thus <strong>the</strong> modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> functi<strong>on</strong> g(z) = ψ(z)−λ is in H∞ (D). In<br />

additi<strong>on</strong>,<br />

|g ′ (z)| = |ψ′ (z)| 1<br />

2 ≤<br />

|ψ(z) − λ| c2 |ψ′ <br />

(z)| = O<br />

1<br />

(1 − |z|) log 1<br />

1−|z|<br />

So Mg = M (ψ−λ) −1 is a bounded operator <strong>on</strong> B. Thus λ ∈ σ(Mψ). Therefore<br />

σ(Mψ) = ψ(D). <br />

This result is not surprising since it also holds for <strong>the</strong> <strong>space</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous, realvalued<br />

functi<strong>on</strong>s <strong>on</strong> a closed interval. A similar result holds for L 2 (µ), µ a probability<br />

measure. Specifically, for ψ ∈ L ∞ (µ), <strong>the</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> Mψ <strong>on</strong> L 2 (µ) is <strong>the</strong><br />

essential range <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ, that is <strong>the</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g> λ ∈ C such that <strong>the</strong> preimage under ψ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

every neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> λ has positive measure [8]. As an immediate c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theorems 3.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.1, we obtain <strong>the</strong> following result.<br />

Corollary 4.1. Let Mψ be an isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>.<br />

Then σ(Mψ) = {η}, where η is <strong>the</strong> unimodular c<strong>on</strong>stant value <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ.<br />

5. A Fur<strong>the</strong>r Glimpse at Weighted Compositi<strong>on</strong> Operators<br />

Our focus returns to weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> isometries am<strong>on</strong>gst<br />

<strong>the</strong>m. Let IW be <strong>the</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g> weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> Wψ,ϕ such that ψ<br />

induces an isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator <str<strong>on</strong>g>and</str<strong>on</strong>g> ϕ induces an isometric compositi<strong>on</strong><br />

operator. Clearly <strong>the</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g> isometric weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> c<strong>on</strong>tains IW .<br />

Observati<strong>on</strong> 5.1. In Theorem 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> [6], it was shown that ϕ induces an isometric<br />

compositi<strong>on</strong> operator <strong>on</strong> B if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly if ϕ(0) = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> βϕ = 1. In particular,<br />

Corollary 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> [6] proved that ϕ is ei<strong>the</strong>r a rotati<strong>on</strong> or <strong>the</strong> zero set <str<strong>on</strong>g>of</str<strong>on</strong>g> ϕ forms an<br />

infinite sequence {an} in D such that<br />

lim sup<br />

n→∞<br />

(1 − |an| 2 ) |ϕ ′ (an)| = 1.<br />

<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!