04.05.2013 Views

Isometries and spectra of multiplication operators on the Bloch space

Isometries and spectra of multiplication operators on the Bloch space

Isometries and spectra of multiplication operators on the Bloch space

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4 ROBERT F. ALLEN AND FLAVIA COLONNA<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let f ∈ B such that ||f|| B = 1. Then<br />

||Wψ,ϕf|| B ≤ |ψ(0)| |f(ϕ(0))| + sup (1 − |z|<br />

z∈D<br />

2 ) |ψ(z)| |f ′ (ϕ(z))| |ϕ ′ (z)|<br />

+ sup (1 − |z|<br />

z∈D<br />

2 ) |ψ ′ (z)| |f(ϕ(z))|<br />

= |ψ(0)| |f(ϕ(0))| + sup<br />

z∈D<br />

1 − |z| 2<br />

+ sup (1 − |z|<br />

z∈D<br />

2 ) |ψ ′ (z)| |f(ϕ(z))|<br />

1 − |ϕ(z)| 2 |ψ(z)| |ϕ′ (z)| (1 − |ϕ(z)| 2 ) |f ′ (ϕ(z))|<br />

≤ |ψ(0)| |f(ϕ(0))| + τ ∞ ψ,ϕβf + sup (1 − |z|<br />

z∈D<br />

2 ) |ψ ′ (z)| |f(ϕ(z))| .<br />

By Lemma 2.1, we have |f(ϕ(z))| ≤ |f(0)| + 1<br />

2 βf log<br />

1 + |ϕ(z)|<br />

. Thus<br />

1 − |ϕ(z)|<br />

||Wψ,ϕf|| B ≤ |ψ(0)| |f(ϕ(0))| + τ ∞ ψ,ϕβf + βψ |f(0)| + σ ∞ ψ,ϕβf .<br />

Since |f(ϕ(0))| ≤ |f(0)| + 1<br />

2βf 1 + |ϕ(0)|<br />

log<br />

1 − |ϕ(0)| , <str<strong>on</strong>g>and</str<strong>on</strong>g> recalling that |f(0)| = 1 − βf we<br />

deduce<br />

<br />

1 1 + |ϕ(0)|<br />

||Wψ,ϕf|| B ≤ ||ψ|| B |f(0)| + |ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ <br />

ψ,ϕ βf<br />

<br />

1 1 + |ϕ(0)|<br />

= ||ψ|| B + |ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ <br />

ψ,ϕ − ||ψ|| B<br />

If 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ ψ,ϕ ≤ ||ψ|| B , <strong>the</strong>n<br />

||Wψ,ϕf|| B ≤ ||ψ|| B .<br />

If 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ ψ,ϕ ≥ ||ψ|| B , <strong>the</strong>n<br />

Therefore,<br />

||Wψ,ϕf|| B ≤ ||ψ|| B + 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ ψ,ϕ − ||ψ|| B<br />

= 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ ψ,ϕ.<br />

||Wψ,ϕ|| ≤ max<br />

<br />

||ψ|| B , 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ <br />

ψ,ϕ ,<br />

as desired. <br />

To determine a lower bound <strong>on</strong> ||Wψ,ϕ||, we apply <strong>the</strong> appropriate test functi<strong>on</strong>s.<br />

Theorem 2.2. Suppose ψ is an analytic functi<strong>on</strong> <strong>on</strong> D <str<strong>on</strong>g>and</str<strong>on</strong>g> ϕ is an analytic selfmap<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> D inducing a bounded weighted compositi<strong>on</strong> operator Wψ,ϕ <strong>on</strong> B. Then<br />

<br />

(3) ||Wψ,ϕ|| ≥ max ||ψ|| B , 1<br />

<br />

1 + |ϕ(0)|<br />

|ψ(0)| log .<br />

2 1 − |ϕ(0)|<br />

βf .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!