Isometries and spectra of multiplication operators on the Bloch space

Isometries and spectra of multiplication operators on the Bloch space Isometries and spectra of multiplication operators on the Bloch space

04.05.2013 Views

2 ROBERT F. ALLEN AND FLAVIA COLONNA Suppose further that ϕ is a fixed analytic self-map ong>ofong> D. The weighted composition operator on the Bloch space is defined as Wψ,ϕ(f) = ψ(f ◦ ϕ). There is a reason for introducing the weighted composition operator at this point. The ong>multiplicationong> operator is a “degenerate” weighted composition operator; if ϕ is the identity map, then Wψ,ϕ = Mψ. Likewise, the composition operator on the Bloch space, defined as Cϕ(f) = f ◦ ϕ, is a “degenerate” weighted composition operator when ψ is taken to be the constant function 1. In [16], Ohno ong>andong> Zhao proved that Wψ,ϕ is a bounded operator on the Bloch space if ong>andong> only if the following two properties are satisfied: (1) sup (1 − |z| z∈D 2 ) |ψ ′ (z)| log (2) sup z∈D 1 − |z| 2 2 2 < ∞, 1 − |ϕ(z)| 1 − |ϕ(z)| 2 |ψ(z)| |ϕ′ (z)| < ∞. It can easily be verified that if Wψ,ϕ is bounded on the Bloch space, then ψ is a Bloch function. The characterization ong>ofong> the isometries is an open problem for most Banach spaces ong>ofong> analytic functions; the set ong>ofong> isometries, in most cases, is too large to study all at once. Even so, there are spaces for which the isometries are known. In [11], Forelli proved the isometries on the Hardy space H p , for p = 2 are certain weighted composition ong>operatorsong>. Also, El-Gebeily ong>andong> Wolfe completely characterized the isometries on the disk algebra A0 = H ∞ (D) ∩ C(∂D) [10]. For most other spaces, a complete picture ong>ofong> the isometries is not known. The surjective isometries for the Bergman space A p (see [18]) ong>andong> the weighted Bergman space A p ω (see [14]) are known. The first attempt at studying the isometries on the Bloch space was made by Cima ong>andong> Wogen in [4]. They studied the isometries on the subspace ong>ofong> the Bloch space whose elements fix the origin. On this space, they showed that the surjective isometries are normalized compressions ong>ofong> composition ong>operatorsong> induced by disk automorphisms. However, on the entire set ong>ofong> Bloch functions, a description ong>ofong> all isometries is still unknown. The current trend in the literature is to attack this problem one operator at a time. To date, the only complete characterization ong>ofong> isometries on the Bloch space are those among the composition ong>operatorsong>. Independently, two different descriptions have been developed. In [6], the second author identified the isometric composition ong>operatorsong> in terms ong>ofong> the canonical factorization ong>ofong> the symbol. Martín ong>andong> Vukotić in [15], identified the isometric composition ong>operatorsong> in terms ong>ofong> the hyperbolic derivative ong>andong> cluster set ong>ofong> the symbol. The purpose ong>ofong> this paper is to further develop the understong>andong>ing ong>ofong> the isometries on the Bloch space by characterizing the isometric ong>multiplicationong> ong>operatorsong>. The authors are unaware ong>ofong> any such description ong>ofong> the isometric ong>multiplicationong> ong>operatorsong> on the Bloch space in the literature.

ISOMETRIC MULTIPLICATION OPERATORS 3 1.1. Organization ong>ofong> the paper. In Section 2, we determine estimates on the norm ong>ofong> the weighted composition operator Wψ,ϕ on the Bloch space. As a corollary, we deduce estimates on the norm ong>ofong> the ong>multiplicationong> operator Mψ. In the case where ψ ≡ 1, the norm estimates agree with those derived by Xiong in [19] for the composition operator Cϕ. In Section 3, we prove that the symbols ong>ofong> isometric ong>multiplicationong> ong>operatorsong> are precisely the constant functions ong>ofong> modulus 1. In Section 4, we show that the spectrum ong>ofong> the ong>multiplicationong> operator is the closure ong>ofong> the range ong>ofong> the symbol. From this, we deduce the ong>spectraong> ong>ofong> the isometric ong>multiplicationong> ong>operatorsong> to be single-element subsets ong>ofong> the unit circle. In Section 5, we discuss the weighted composition ong>operatorsong> whose symbols induce isometries individually ong>andong> describe their spectrum. 2. Norm Estimates on Weighted Composition Operators In this section we establish estimates on ||Wψ,ϕ||. In order to write these estimates in a succinct way, we introduce the following notation. Let ψ ∈ B ong>andong> ϕ : D → D analytic functions satisfying conditions (1) ong>andong> (2). Let τ ∞ ψ,ϕ σ ∞ ψ,ϕ def = sup z∈D def = sup z∈D 1 − |z| 2 1 − |ϕ(z)| 2 |ψ(z)| |ϕ′ (z)| , ong>andong> 1 2 (1 − |z|2 ) |ψ ′ (z)| log which are both finite. In [19], Xiong defined τ ∞ 1 − |z| ϕ = sup z∈D 2 1 − |ϕ(z)| 2 |ϕ′ (z)| 1 + |ϕ(z)| 1 − |ϕ(z)| , to obtain an upper estimate on the norm ong>ofong> a composition operator on B. Note, if ψ ≡ 1, then τ ∞ ψ,ϕ = τ ∞ ϕ . Also, if ϕ is the identity map, then σ ∞ ψ,ϕ = σ ∞ ψ def = sup z∈D 1 2 (1 − |z|2 ) |ψ ′ 1 + |z| (z)| log 1 − |z| . To determine an upper bound on ||Wψ,ϕ|| we use the following lemma, a proong>ofong> ong>ofong> which can be found in [5] or [19]. Lemma 2.1. If f ∈ B, then for all z ∈ D. |f(z)| ≤ |f(0)| + 1 2 βf 1 + |z| log 1 − |z| , With this lemma ong>andong> the notation defined above, we are now prepared to establish an upper bound on ||Wψ,ϕ||. Theorem 2.1. Suppose ψ is an analytic function on D ong>andong> ϕ is an analytic selfmap ong>ofong> D that induce a bounded weighted composition operator Wψ,ϕ on B. Then ||Wψ,ϕ|| ≤ max ||ψ|| B , 1 1 + |ϕ(0)| |ψ(0)| log 2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ ψ,ϕ .

2 ROBERT F. ALLEN AND FLAVIA COLONNA<br />

Suppose fur<strong>the</strong>r that ϕ is a fixed analytic self-map <str<strong>on</strong>g>of</str<strong>on</strong>g> D. The weighted compositi<strong>on</strong><br />

operator <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> is defined as<br />

Wψ,ϕ(f) = ψ(f ◦ ϕ).<br />

There is a reas<strong>on</strong> for introducing <strong>the</strong> weighted compositi<strong>on</strong> operator at this point.<br />

The <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator is a “degenerate” weighted compositi<strong>on</strong> operator; if ϕ<br />

is <strong>the</strong> identity map, <strong>the</strong>n Wψ,ϕ = Mψ. Likewise, <strong>the</strong> compositi<strong>on</strong> operator <strong>on</strong> <strong>the</strong><br />

<strong>Bloch</strong> <strong>space</strong>, defined as<br />

Cϕ(f) = f ◦ ϕ,<br />

is a “degenerate” weighted compositi<strong>on</strong> operator when ψ is taken to be <strong>the</strong> c<strong>on</strong>stant<br />

functi<strong>on</strong> 1.<br />

In [16], Ohno <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhao proved that Wψ,ϕ is a bounded operator <strong>on</strong> <strong>the</strong> <strong>Bloch</strong><br />

<strong>space</strong> if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly if <strong>the</strong> following two properties are satisfied:<br />

(1) sup (1 − |z|<br />

z∈D<br />

2 ) |ψ ′ (z)| log<br />

(2) sup<br />

z∈D<br />

1 − |z| 2<br />

2<br />

2 < ∞,<br />

1 − |ϕ(z)|<br />

1 − |ϕ(z)| 2 |ψ(z)| |ϕ′ (z)| < ∞.<br />

It can easily be verified that if Wψ,ϕ is bounded <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>, <strong>the</strong>n ψ is a<br />

<strong>Bloch</strong> functi<strong>on</strong>.<br />

The characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isometries is an open problem for most Banach <strong>space</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> analytic functi<strong>on</strong>s; <strong>the</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g> isometries, in most cases, is too large to study all<br />

at <strong>on</strong>ce. Even so, <strong>the</strong>re are <strong>space</strong>s for which <strong>the</strong> isometries are known. In [11],<br />

Forelli proved <strong>the</strong> isometries <strong>on</strong> <strong>the</strong> Hardy <strong>space</strong> H p , for p = 2 are certain weighted<br />

compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g>. Also, El-Gebeily <str<strong>on</strong>g>and</str<strong>on</strong>g> Wolfe completely characterized <strong>the</strong><br />

isometries <strong>on</strong> <strong>the</strong> disk algebra A0 = H ∞ (D) ∩ C(∂D) [10]. For most o<strong>the</strong>r <strong>space</strong>s,<br />

a complete picture <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isometries is not known. The surjective isometries for<br />

<strong>the</strong> Bergman <strong>space</strong> A p (see [18]) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> weighted Bergman <strong>space</strong> A p ω (see [14]) are<br />

known.<br />

The first attempt at studying <strong>the</strong> isometries <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> was made by<br />

Cima <str<strong>on</strong>g>and</str<strong>on</strong>g> Wogen in [4]. They studied <strong>the</strong> isometries <strong>on</strong> <strong>the</strong> sub<strong>space</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Bloch</strong><br />

<strong>space</strong> whose elements fix <strong>the</strong> origin. On this <strong>space</strong>, <strong>the</strong>y showed that <strong>the</strong> surjective<br />

isometries are normalized compressi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> induced by disk<br />

automorphisms. However, <strong>on</strong> <strong>the</strong> entire set <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Bloch</strong> functi<strong>on</strong>s, a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

isometries is still unknown. The current trend in <strong>the</strong> literature is to attack this<br />

problem <strong>on</strong>e operator at a time.<br />

To date, <strong>the</strong> <strong>on</strong>ly complete characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> isometries <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> are<br />

those am<strong>on</strong>g <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g>. Independently, two different descripti<strong>on</strong>s<br />

have been developed. In [6], <strong>the</strong> sec<strong>on</strong>d author identified <strong>the</strong> isometric compositi<strong>on</strong><br />

<str<strong>on</strong>g>operators</str<strong>on</strong>g> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> can<strong>on</strong>ical factorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> symbol. Martín <str<strong>on</strong>g>and</str<strong>on</strong>g> Vukotić<br />

in [15], identified <strong>the</strong> isometric compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hyperbolic<br />

derivative <str<strong>on</strong>g>and</str<strong>on</strong>g> cluster set <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> symbol. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to fur<strong>the</strong>r<br />

develop <strong>the</strong> underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isometries <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> by characterizing <strong>the</strong><br />

isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>operators</str<strong>on</strong>g>. The authors are unaware <str<strong>on</strong>g>of</str<strong>on</strong>g> any such descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>operators</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> in <strong>the</strong> literature.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!