01.05.2013 Views

21st-century directions in de Broglie Broglie-Bohm Bohm theory and beyond

21st-century directions in de Broglie Broglie-Bohm Bohm theory and beyond

21st-century directions in de Broglie Broglie-Bohm Bohm theory and beyond

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Quantum Q many-particle y p computations p with <strong>Bohm</strong>ian trajectories j<br />

Xavier Oriols E.mail: Xavier.Oriols@uab.es<br />

<strong>21st</strong>-<strong>century</strong> <strong>directions</strong> <strong>in</strong><br />

<strong>de</strong> <strong>Broglie</strong> <strong>Broglie</strong>-<strong>Bohm</strong> <strong>Bohm</strong> <strong>theory</strong> <strong>and</strong> <strong>beyond</strong><br />

Saturday 28th August - Saturday 4th September 2010<br />

Vallico Sotto, Tuscany, Italy


Quantum Q many-particle y p computations p with <strong>Bohm</strong>ian trajectories j<br />

1.- Quantum Many-Particle Computations with <strong>Bohm</strong>ian Trajectories:<br />

11.1.- 1 Introduction<br />

1.2.- Our Many-particle y p <strong>Bohm</strong>ian trajectories j (MPBT) ( ) theorem<br />

2.- Application pp to Electron Transport p <strong>in</strong> Nanoelectronic Devices:<br />

2.1.- The electron transport problem at the nanoscale<br />

2.2.- Our quantum Monte Carlo algorithm<br />

33.- CConclusions l i <strong>and</strong> d Future F t workk


Quantum Q many-particle y p computations p with <strong>Bohm</strong>ian trajectories j<br />

1.- Quantum Many-Particle Computations with <strong>Bohm</strong>ian Trajectories:<br />

1 1.1.- 1 Introduction<br />

1.1.1.- Why to use <strong>Bohm</strong>ian mechanics<br />

1.1.2.- The “many-body” y y problem p<br />

1.1.3.- Does <strong>Bohm</strong>ian mechanics provi<strong>de</strong> any help?<br />

1.2.- Our Many-particles y p <strong>Bohm</strong>ian trajectories j (MPBT) ( ) theorem<br />

1.3.- Approximation<br />

2.- Application to Electron Transport <strong>in</strong> Nanoelectronic Devices:<br />

3.- Conclusions <strong>and</strong> Future work


1.1.1.- Introduction: Why to use <strong>Bohm</strong>ian mechanics?<br />

Reason 1: <strong>Bohm</strong>ian Th<strong>in</strong>k<strong>in</strong>g:<br />

.-Look<strong>in</strong>g for extensions/limitations/contradictions of ‘Orthodox’ QM.<br />

Reason 2: <strong>Bohm</strong>ian Expla<strong>in</strong><strong>in</strong>g:<br />

.- An <strong>in</strong>tuitive/simpler/causal explanation of QM phenomena.<br />

<br />

J ( r,.., r , t)<br />

v ( r,.., r , t)<br />

<br />

<br />

ix 1 N<br />

ix 1 N 2<br />

( r1,.., rN, t)<br />

Average values<br />

<strong>and</strong> fluctuations<br />

<br />

( r1<br />

,.., rN<br />

, 0)<br />

<br />

,.., r , t)<br />

“Quantum equilibrium”<br />

( r1 N<br />

4


1.1.1.- Introduction: Why <strong>Bohm</strong>ian mechanics?<br />

Reason 3. <strong>Bohm</strong>ian comput<strong>in</strong>g:<br />

“Analytical” : <strong>Bohm</strong>ian trajectories from the wavefunction<br />

“Synthetical” : without explicitly comput<strong>in</strong>g the wavefunction<br />

Quantum Hamilton-Jacobi equation<br />

2 <br />

Srt<br />

( , ) S<br />

<br />

U( r, t) Q( r, t)<br />

0<br />

t<br />

2m<br />

Quantum potential<br />

<br />

<br />

Qrt ( , ) <br />

Rrt ( , ) 2 m<br />

2 2<br />

1 Rrt ( , )<br />

CCont<strong>in</strong>uity i i equation i<br />

<br />

( , ) 0<br />

2<br />

N<br />

R ( r, t) 2 S( r, t)<br />

<br />

R r t <br />

t k 1<br />

m <br />

Unknowns:<br />

<br />

Rrt ( , )<br />

<br />

Srt ( , )<br />

Synthetical examples from the Physical-Chemistry community:<br />

With Without t trajectories: t j t i HHydrodynamic drod namicq quantum ant m equation: eq ation:BB. Kendrix<br />

With trajectories:<br />

Lagrangian (mov<strong>in</strong>g with the flow): Robert E.Wyatt<br />

Complex Action: D.Tannor<br />

Valid for 1, 2, 3... <strong>de</strong>grees of freedom<br />

5


1.1.2.- Introduction: The “many-body” problem<br />

P.A.M. Dirac, 1929<br />

“The general <strong>theory</strong> of quantum mechanics is now<br />

almost complete. The un<strong>de</strong>rly<strong>in</strong>g physical laws<br />

necessary for the mathematical <strong>theory</strong> of a large part<br />

of physics <strong>and</strong> the whole of chemistry are thus<br />

completely known, <strong>and</strong> the difficulty is only that the<br />

exact application of these laws leads to equations<br />

much too complicated to be soluble.”<br />

Max Born, 1960<br />

”It would <strong>in</strong><strong>de</strong>ed be remarkable if Nature fortified herself<br />

aga<strong>in</strong>st further advances <strong>in</strong> knowledge beh<strong>in</strong>d the<br />

analytical difficulties of the many-body problem problem. ”<br />

6


1.2.- Introduction: The “many-body” problem<br />

The many-particle (non-relativistic sp<strong>in</strong>less) Schröd<strong>in</strong>ger equation<br />

<br />

<br />

<br />

( r ,.., r<br />

, t)<br />

( ,.., , ) · ( ,.., , )<br />

<br />

Many particle wave function<br />

N 2<br />

( r1,.., rN, t)<br />

<br />

2 <br />

<br />

<br />

i r U r<br />

k 1 rN t r1<br />

rN t<br />

t k k<br />

1 2· m<br />

1<br />

N<br />

The practical solution is <strong>in</strong>accesible for more than very few electrons<br />

Exercise: Number of hard disks to load the (f<strong>in</strong>ite-difference) wavefunction<br />

<strong>in</strong> a PC memory y for N=10 particles, p , L=50nm length g (Δx=1 ( nm) )<br />

nº of variables (1 particle) = 50 3 = 125000 variables !!<br />

nº of variables (Total <strong>de</strong>grees of freedom) = 50 3N = 50 30 variables !!<br />

nº of bits = 5030 variables *16 bits/variable ̴̴<br />

138 Terabytes !!<br />

nº of PCs ̴̴<br />

100000000000000000000000000000000000000 Hard disks<br />

7


1.1.2.- Introduction: Some ‘Orthodox’ solutions available <strong>in</strong> the literature<br />

Orthodox solutions:<br />

Hartree-Fock<br />

•Many-electron wave-functions hav<strong>in</strong>g the form of antysimmetric product<br />

of s<strong>in</strong>gle-particle wave-functions (“orbitals”).<br />

• Leads to an effective s<strong>in</strong>gle-particle Schrod<strong>in</strong>ger equation with a<br />

potential <strong>de</strong>term<strong>in</strong>ed by all others “orbitals” orbitals .<br />

Density Functional Theory (W.Kohn)<br />

•The The “orbitals” orbitals are solutions of s<strong>in</strong>gle s<strong>in</strong>gle-particle particle Schrod<strong>in</strong>ger equation which<br />

<strong>de</strong>pends on the charge <strong>de</strong>nsity rather than the “orbitals” themselves.<br />

•There are terms (the exchange potentials) that are unknown <strong>and</strong> have to be<br />

approximated.<br />

pp<br />

Quantum Monte Carlo (ex: CASINO Mike Towler)<br />

Pseudo-<strong>Bohm</strong>ian solutions:<br />

Quantum Fluid Density Functional framework: P.K. Chataraj<br />

Hidrodynamic quantum Monte Carlo: Ivan. P. Christov<br />

DFT Super symmetric quantum mechanics, E. Bittner<br />

8


Quantum Q many-particle y p computations p with <strong>Bohm</strong>ian trajectories j<br />

1.- Quantum Many-Particle Computations with <strong>Bohm</strong>ian Trajectories:<br />

1.1.- Introduction<br />

1.2.- Our Many-particles <strong>Bohm</strong>ian trajectories (MPBT) theorem<br />

1.2.1.- The basic i<strong>de</strong>a<br />

1.2.2.- The MPT theorem<br />

1.2.3.- Good po<strong>in</strong>ts<br />

1.2.4.- Bad po<strong>in</strong>ts p<br />

1.3.- Approximation<br />

2.- Application to Electron Transport <strong>in</strong> Nanoelectronic Devices:<br />

3.- Conclusions <strong>and</strong> Future work


1.2.1.- Our MPBT Theorem: the basic i<strong>de</strong>a<br />

(<br />

x , t)<br />

S<strong>in</strong>gle-particle <strong>Bohm</strong>ian trajectory x a[t], 1<br />

t<br />

Many-particle <strong>Bohm</strong>ian trajectory x a[t],<br />

t<br />

x 1<br />

S( x , t)/ x<br />

vx ( [ t], t)<br />

<br />

1 1<br />

x x1 1<br />

m x1x1[ t]<br />

v x t x t t<br />

(<br />

x ,..., x , t)<br />

1 N a<br />

a( 1[<br />

],.., N[<br />

], ) <br />

m x x [ t],...., x x<br />

[ t]<br />

v x t x t t<br />

1<br />

N<br />

S( x ,...., x , t) / x<br />

1 1<br />

S( x [ t],.., x ,.., x [ t], t) / x<br />

m <br />

1 a N a<br />

a( 1[<br />

],.., N[<br />

], ) <br />

( x [ t],.... x ,..., x [ t], t) ( x , t)<br />

1<br />

a N a a<br />

What is the equation satisfied by this s<strong>in</strong>gle-particle wave-function ?<br />

N N<br />

x x t<br />

1 1 []<br />

10


1.2.1.- Our MPBT Theorem: the basic i<strong>de</strong>a<br />

Any arbitrary complex “function”:<br />

can be written <strong>in</strong> Schröd<strong>in</strong>ger-like equation:<br />

2 2<br />

a( xa, t) a(<br />

xa, t)<br />

2<br />

<br />

( x , t)<br />

a a<br />

i W( xa, t)· a(<br />

xa, t)<br />

t 2 m * xa<br />

with a complex p potential: p<br />

<br />

i<br />

<br />

Wr( xa, t) iWi( xa, t)<br />

<br />

( x , t)<br />

2 2<br />

a( xa, t) <br />

a( xa, t)<br />

<br />

2<br />

t 2 m m* <br />

x xa<br />

What is the complex “potential” satisfied by this s<strong>in</strong>gle-particle wave-function ?<br />

a a<br />

11


1.2.1.- Our MPBT Theorem: the basic i<strong>de</strong>a<br />

What is the complex “potential” satisfied by this s<strong>in</strong>gle-particle wave-function ?<br />

<br />

i<br />

<br />

W Wr ( x xa, t t) ) iW iWi( ( x xa, t t)<br />

) <br />

( x , t)<br />

1 st step<br />

2 nd step<br />

2 2<br />

a( xa, t) <br />

a( xa, t)<br />

<br />

2<br />

t 2 m* xa<br />

a a<br />

a ( x a a, t) ) ( ( x 1 1[],.,<br />

t x a a,., x N N[],)<br />

t t)<br />

<br />

t t<br />

( x ,) t (<br />

x [],., t x ,., x [],) t t<br />

1<br />

2 2<br />

a a<br />

2<br />

xa 1 a<br />

2<br />

xa<br />

N<br />

<br />

a b<br />

( x [ t],. x ., x [ t], t) R( x , x [ t], t)· e<br />

a N a b<br />

<br />

iS ( x , x [ t], t)/<br />

<br />

3rd step Use the quantum Hamiltonian-Jacobi Hamiltonian Jacobi equations<br />

12


1.2.2.- Our MPBT Theorem: Good po<strong>in</strong>ts<br />

2 2 <br />

( xa, t)<br />

<br />

i i U ( x , x [], [ t] t) ) G( ( x , x [], [ t] t) ) i· J ( x , x [], [ t] t) ) (<br />

( x , t)<br />

)<br />

2 a xa xb t t G xa xb t t i J xa xb t t <br />

xa t<br />

t 2 m* xa<br />

<br />

Good po<strong>in</strong>ts :<br />

[X. Oriols, Phys. Rev. Lett. 98, 066803 (2007)]<br />

1 st An exact procedure for comput<strong>in</strong>g many-particle <strong>Bohm</strong>ian trajectories<br />

2 nd The rest of trajectories <strong>in</strong> the potentials have to be <strong>Bohm</strong>ian trajectories<br />

3rd The correlations are <strong>in</strong>troduced <strong>in</strong>to the time-<strong>de</strong>pen<strong>de</strong>nt p ppotentials<br />

4 th The <strong>in</strong>teract<strong>in</strong>g potential for “classical” correlations<br />

5th h i l i l f l i l l i<br />

th There is a real potential to account for “non-classical” correlations<br />

6 th There is a imag<strong>in</strong>ary potential to account for non-conserv<strong>in</strong>g norms<br />

7 st “Analytical” (for 1D,2D,..TDSE) + “Synthetical” (for the rest).<br />

13


1.2.2.- Our MPBT Theorem: Bad po<strong>in</strong>ts<br />

2 2 <br />

( xa, t)<br />

<br />

i i U ( x , x [], [ t] t) ) G( ( x , x [], [ t] t) ) i· J ( x , x [], [ t] t) ) (<br />

( x , t)<br />

)<br />

2 a xa xb t t G xa xb t t i J xa xb t t <br />

xa t<br />

t 2 m* xa<br />

<br />

Bad po<strong>in</strong>ts :<br />

1 st The <strong>Bohm</strong> trajectories for the rest of particles have to be known<br />

Ok! no problem, we will use a s<strong>in</strong>gle-particle equation for each particles<br />

2nd The terms G <strong>and</strong> J <strong>de</strong>pends on the many-particle wave-function<br />

<br />

N<br />

<br />

S(<br />

x,<br />

t)<br />

G ( x , xb,<br />

t)<br />

Ub<br />

( xb,<br />

t)<br />

Kk<br />

( x,<br />

t)<br />

Qk<br />

( x,<br />

t)<br />

· vk<br />

( x[<br />

t],<br />

t)<br />

<br />

<br />

Ga<br />

( xa,<br />

xb,<br />

t)<br />

Ub<br />

( xb,<br />

t)<br />

Kk<br />

( x,<br />

t)<br />

Qk<br />

( x,<br />

t)<br />

vk<br />

( x[<br />

t],<br />

t)<br />

k 1,<br />

k a <br />

xk<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

N 2 <br />

2 <br />

<br />

R ( x,<br />

t)<br />

<br />

R ( x,<br />

t)<br />

S(<br />

x,<br />

t)<br />

J a(<br />

xa,<br />

xb,<br />

t)<br />

· vk<br />

( x[<br />

t],<br />

t)<br />

·<br />

2 2 2·<br />

R ( x,<br />

t )<br />

<br />

<br />

k1, ka<br />

xk<br />

xk<br />

m xk<br />

<br />

K<br />

a<br />

2<br />

2 2 <br />

1 S(<br />

x,<br />

t)<br />

R(<br />

x,<br />

t)<br />

/ x<br />

( x,<br />

t)<br />

<br />

; Qa<br />

( x,<br />

t)<br />

<br />

2·<br />

m <br />

<br />

x <br />

<br />

<br />

2 m <br />

<br />

xa<br />

<br />

2 2·<br />

m R ( x x,<br />

t )<br />

¡ This is exactly the same difficulty found <strong>in</strong> the DFT (or TD-DFT) !<br />

2<br />

a<br />

14


Quantum Q many-particle y p computations p with <strong>Bohm</strong>ian trajectories j<br />

1.- Quantum Many-Particle Computations with <strong>Bohm</strong>ian Trajectories:<br />

1.1.- Introduction<br />

1.2.- Our Many-particles <strong>Bohm</strong>ian trajectories (MPBT) theorem<br />

13 1.3.- Approximation<br />

1.3.1.- The simplest approximation<br />

132 1.3.2.- AApplication li i to systems with i hnon-i<strong>de</strong>ntical id i l particles i l<br />

1.3.4.- Application to systems with ‘i<strong>de</strong>ntical’ particles<br />

2.- Application to Electron Transport <strong>in</strong> Nanoelectronic Devices:<br />

3.- Conclusions <strong>and</strong> Future work


1.3.1.- Approximate methods for G <strong>and</strong> J terms: The simplest approximation<br />

Exercise: What happens if the many-particle wave-function is separable ?<br />

( x ,..., x , t) ( x , t)·....· ( x , t)<br />

1 N 1 1<br />

N N<br />

2 2 <br />

2 a b a b a b a<br />

2 a<br />

( xa, t)<br />

i <br />

t <br />

m x<br />

U( x , x [],) t t G( x , x [],) t t i· J( x , x [],) t t (<br />

x ,) t<br />

<br />

N<br />

<br />

dSk( xk[ t], t)<br />

G( xa, xb[ t], t) G( xb[ t], t)<br />

<br />

k1, ka dt<br />

N<br />

<br />

J( x , x [],) t t J( x [],) t t <br />

d 2<br />

ln R ( x [],) t t <br />

a b b k k<br />

k1, ka2dt a() t i· a()<br />

t<br />

( x t) ( x t)· e <br />

a( xa, t) a( xa, t) e 1 ( x x1 [ t t] ], t t)· ) ... a ( x xa, t t) ).. · <br />

N ( x xN [ t t] ], t )<br />

16


1.3.1.- Approximate methods for G <strong>and</strong> J terms: The simplest approximation<br />

2 2<br />

x t <br />

<br />

a t <br />

2 a b a b a b <br />

a<br />

t 2m<br />

xa<br />

( , )<br />

<br />

i U( x , x [],) t t G( x , x [],) t t i· J( x , x [],) t t ( x ,) t<br />

<br />

<br />

<br />

Guess: G( xa, xb(),) t t G( xa(), t xb(),) t t ...<br />

<br />

J( x , x (),) t t J( x (), t x (),) t t ...<br />

a b a b<br />

a a<br />

( x , t) ( x , t)· e <br />

( x , t) ( x , t) e<br />

a a a a<br />

() t i· () t <br />

N=2 system The global time-<strong>de</strong>pen<strong>de</strong>nt phase does not affect the velocity<br />

<br />

<br />

<br />

i U x x t t x t x t x t dt<br />

2 2<br />

t<br />

1 ( x1, t ) <br />

J1 ( x1, t)<br />

)<br />

( 2 1, 2[ ], ) <br />

1( 1, ) ; 1[ ] 1[<br />

o]<br />

<br />

2<br />

t 2 m x <br />

1 | <br />

<br />

1( x1 , t)| t x x<br />

[] t<br />

<br />

<br />

<br />

i i U x t x t x t x t x t ddt<br />

2 2<br />

t<br />

2 ( x 2 , t ) J2( x2, t)<br />

( [ ] ) 2( 2,<br />

)<br />

( 1[ ], 2, ) 2( 2 ) 2[ ] 2[<br />

]<br />

2 (<br />

, ) ; [] [ o]<br />

<br />

2<br />

t 2 m x <br />

2 | <br />

<br />

2( x2 , t)| t x x<br />

[] t<br />

o<br />

o<br />

2 2<br />

1 1<br />

17


1.3.2.- Application to systems with non-i<strong>de</strong>ntical particles<br />

Example: two Coulomb <strong>in</strong>teract<strong>in</strong>g particles<br />

18


Positioon<br />

x [t] <strong>and</strong>d<br />

x [t] (nmm)<br />

1 2<br />

1.3.2.- Application to systems with non-i<strong>de</strong>ntical particles<br />

Example: two <strong>in</strong>teract<strong>in</strong>g tunnel<strong>in</strong>g particles<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

40<br />

20<br />

(a)<br />

(b)<br />

(c)<br />

x 1 [t] 1D <strong>Bohm</strong><br />

x 1 [t] 2D <strong>Bohm</strong><br />

Area=A=2.25 m 2<br />

Area=A=3600 nm 2<br />

2 6 2 4 2 nm<br />

A<br />

x=0 x=L<br />

x<br />

x [t] 1D <strong>Bohm</strong><br />

2<br />

x [t] 2D <strong>Bohm</strong><br />

Collector<br />

Emitter<br />

x [t] 2D <strong>Bohm</strong><br />

2<br />

Area A 3600 nm<br />

Area=A=36 nm 2<br />

x=L<br />

x=0<br />

Electrostatic potential<br />

x<br />

x 1 [t o ]<br />

x [t] 1<br />

~ ~<br />

x ,t ) 1 o<br />

Collector<br />

Active region<br />

Emitter<br />

t<br />

x 1 ,t)<br />

0<br />

-20<br />

-40 40<br />

x<br />

x=L<br />

x=0<br />

x [t ] 2 o<br />

~<br />

x x ,t ) 2 o<br />

~<br />

x ,t) 2<br />

x [t]<br />

0 20 40 60 80 100 120 140<br />

[ o ] x [t] 2<br />

t<br />

Time t (fs)<br />

V ( x1,<br />

x2)<br />

U E ( x1)<br />

U<br />

E<br />

( x<br />

2<br />

2<br />

q<br />

) <br />

4<br />

· r r<br />

0<br />

1<br />

2<br />

19


1.3.3.- Application to systems with “i<strong>de</strong>ntical” particles<br />

The exchange g <strong>in</strong>teraction appears pp <strong>in</strong> the symmetries y of the many-particle y p<br />

wave-function (<strong>in</strong> the configuration space) when particles are exchanged<br />

Where is the exchange <strong>in</strong>teraction ?<br />

2 2<br />

( xa, t)<br />

<br />

i i U ( x , xb (),) t t G ( x , xb (),) t t i· J( ( x , xb(),) ( t), t) <br />

(<br />

( x ,) , t)<br />

2 a xa xbt t G xaxbt t i J xaxbt t xat t 2 m* xa<br />

<br />

<br />

<br />

N<br />

<br />

S(<br />

x,<br />

t)<br />

Ga<br />

( xa,<br />

xb,<br />

t)<br />

Ub<br />

( xb,<br />

t)<br />

Kk<br />

( x,<br />

t)<br />

Qk<br />

( x,<br />

t)<br />

· vk<br />

( x[<br />

t],<br />

t)<br />

k k 1 1,<br />

k k<br />

a <br />

<br />

x k <br />

J<br />

a<br />

( x<br />

a<br />

<br />

, x , t)<br />

b<br />

<br />

N 2 <br />

<br />

2 <br />

R<br />

( x,<br />

t)<br />

R ( x,<br />

t)<br />

S(<br />

x,<br />

t)<br />

<br />

v <br />

<br />

<br />

<br />

k x t t<br />

2 <br />

· ( [ ], )<br />

· <br />

2 2·<br />

R ( x , t ) k k 1 1,<br />

k k<br />

a <br />

<br />

x k<br />

<br />

x k <br />

m <br />

x k <br />

<br />

<br />

<br />

The exchange <strong>in</strong>teraction appears (<strong>in</strong> the real space) as a potential energy !!<br />

20


1.3.3.- Application to systems with “i<strong>de</strong>ntical” particles<br />

How we <strong>in</strong>clu<strong>de</strong> the exchange g <strong>in</strong>teraction ?<br />

Write, the fermionic/bosonic wave function as a sum of a waveffunctions<br />

ti without ith t exchange h i<strong>in</strong>teraction. t ti<br />

One wave-function with exchange <strong>in</strong>teraction:<br />

<br />

( x1, x2 ,.., xN, t) C· P(<br />

xp(1) , xp(2) ,.., xp( N)<br />

, t)<br />

Many wave-functions without exchange <strong>in</strong>teraction,<br />

<br />

() t i· () t <br />

pa pa<br />

( x , t) C· ( x , t)· e<br />

a a pa a<br />

How can we know the phases without comput<strong>in</strong>g them ?<br />

21


1.3.3.- Application to systems with “i<strong>de</strong>ntical” particles<br />

How can we know the phases without comput<strong>in</strong>g them ?<br />

By impos<strong>in</strong>g exchange conditions on the set of “no exchange” wave-functions<br />

Example: NN=2 2 fermions<br />

2 Conditions:<br />

( x , x ,0) ( x ,0)· ( x ,0) ( x ,0)· ( x ,0)<br />

1 2 1 1 2 2 1 2 2 1<br />

1( x1, t) 11( x1, t)· w11( t) <br />

21( x1,0)· w21( t)<br />

( x , t ) ( x , t t)· ) w () ( t t) <br />

( x ,0) 0)· w () ( t t)<br />

2 2 12 2 12 22 2 22<br />

( x [ t], t)<br />

0<br />

1 2<br />

( x [ t], t)<br />

0<br />

2 1<br />

22


1.3.3.- Application to systems with “i<strong>de</strong>ntical” particles<br />

General expression:<br />

N !<br />

( x , t) ( x[ t], t)·...· ( x , t)·...· <br />

<br />

( x [ t], t)· s( p( j))<br />

<br />

a a a, p( j) 1 1 a, p( j) a a a, p( j) N N<br />

j j1<br />

1<br />

<br />

<br />

a,1<br />

<br />

a,2<br />

.....<br />

<br />

aN ,<br />

1 [] x t 2 [] x t x [] t<br />

<br />

.....<br />

a ,11<br />

aN ,<br />

a a,22<br />

x t 2 [] x t<br />

[]<br />

1 []<br />

2 2<br />

2 2<br />

( t) <br />

<br />

1( x1, t)<br />

<br />

<br />

i U( x 2 1, x2[ t],...., xN[ t], t) <br />

1( x1, t)<br />

t 2m<br />

x1<br />

Only N·N N N wave-functions wave functions are nee<strong>de</strong>d!<br />

Potential<br />

Energy (mmeV)<br />

Source<br />

15<br />

12<br />

9<br />

6<br />

3<br />

<br />

N<br />

xN t<br />

02<br />

4 6 8 10 12 14 16 18 20<br />

X Position (nm)<br />

4<br />

8<br />

Dra<strong>in</strong><br />

12<br />

16<br />

Y Po<br />

20<br />

osition (nm)<br />

23


<strong>and</strong> x [t] (nmm)<br />

2<br />

Position P x [t] 1<br />

1.3.3.- Application to systems with “i<strong>de</strong>ntical” particles<br />

Example: two (Coulomb <strong>and</strong> Exchange) <strong>in</strong>teract<strong>in</strong>g particles<br />

Only antisymmetrical wave-functions are valid<br />

20<br />

0<br />

-20<br />

-40<br />

20<br />

0<br />

-20<br />

-40<br />

(a) Collector<br />

Emitter<br />

~<br />

(b) Collector<br />

Emitter<br />

x<br />

x<br />

x 1 [t o ]<br />

x 2 [t o ]<br />

x 1 ,t o )<br />

t o<br />

~<br />

t o<br />

~<br />

x 2 ,t o )<br />

x 1 ,t o )<br />

~<br />

x 2 ,t o )<br />

Area=A=2.25 m 2<br />

~<br />

x [t] 1 x ,t) t) 1<br />

x 1 [t]<br />

t<br />

~<br />

x 1 ,t)<br />

x 1 [t] 1D' <strong>Bohm</strong><br />

1 []<br />

2<br />

Area=A=900 nm 2<br />

~<br />

x 2 ,t)<br />

x 1 [t] 2D <strong>Bohm</strong><br />

x 2 [t] 1D' <strong>Bohm</strong><br />

x 2 [t] 2D <strong>Bohm</strong><br />

0 20 40 60 80 100 120 140 160 180 200 220<br />

Time t (fs)<br />

t<br />

~<br />

x 2 ,t)<br />

x 2 (nm)<br />

Position<br />

20<br />

10<br />

0<br />

-10 10<br />

-20<br />

-30<br />

(c) Collector<br />

What is the difference due<br />

to the Exchange g <strong>in</strong>teraction?<br />

Emitter<br />

x' [0]=-40.50 nm<br />

1<br />

x' [0]= -23.25 nm<br />

2<br />

x [0]=-23.25 nm<br />

1<br />

x [0]= -40.50 nm<br />

2<br />

Area=A=900 nm 2<br />

1D' <strong>Bohm</strong><br />

2D <strong>Bohm</strong><br />

Emitterr<br />

Collecttor<br />

-30 -20 -10 0 10 20<br />

PPosition iti x ( (nm) ) 1<br />

Observable results are i<strong>de</strong>ntical when we <strong>in</strong>terchange the <strong>in</strong>itial position of electrons<br />

24


Quantum Q many-particle y p computations p with <strong>Bohm</strong>ian trajectories j<br />

1.- Quantum Many-Particle Computations with <strong>Bohm</strong>ian Trajectories:<br />

2.- Application to Electron Transport <strong>in</strong> Nanoelectronic Devices:<br />

2.1.- Electron transport at the nanoscale<br />

2.1.1.- The “many-body” problem<br />

22.1.2.- 1 2 Solid Solid-state state approximations<br />

2.1.3.- The <strong>Bohm</strong>ian prediction of the current<br />

2.2.- BITLLES simulator: our quantum Monte Carlo algorithm<br />

33.- CConclusions l i <strong>and</strong> d Future F t workk


2.1.1.- The electron transport at the nanoscale: the “many-body” problem<br />

Many Many-particle particle Schröd<strong>in</strong>ger equation<br />

for electron <strong>de</strong>vices:<br />

Hˆ<br />

T<br />

U<br />

<br />

<br />

2<br />

2 <br />

2<br />

2 <br />

<br />

<br />

2<br />

<br />

1 q<br />

<br />

<br />

<br />

<br />

<br />

k <br />

<br />

<br />

<br />

g <br />

2 <br />

<br />

<br />

g<br />

2 M <br />

k 2 m0 g 2 M g 2 k j 4 4<br />

0 r<br />

<br />

( R 1 , R 2 , R 3 3,...)<br />

, ) U C ( r k , R 1 , R 2 , R 3 3,...)<br />

, )<br />

<br />

<br />

k j<br />

( r )<br />

0 E k<br />

E g<br />

k<br />

k<br />

g<br />

ki k<strong>in</strong>etic ti energy of f the th electrons l t<br />

k<strong>in</strong>etic energy of the atoms<br />

electron electron-electron electron coulomb <strong>in</strong>teraction<br />

U<br />

<br />

<br />

kj<br />

U '<br />

( R<br />

Bias<br />

<br />

) <br />

<br />

atom atom-atom atom coulomb <strong>in</strong>teraction<br />

electron electron-atom l t atom t coulomb l bi <strong>in</strong>teraction t ti<br />

electron electron-potential potential due to external bias<br />

atom potential p due to external bias<br />

26


2.1.1.- The electron transport at the nanoscale: the “many-body” problem<br />

What iis an electron <strong>de</strong>vice i ?<br />

1.- Open system<br />

2.- Statistical system<br />

3.- Far from equilibrium<br />

4.- Strongly correlated system<br />

What we measure ?<br />

CCont<strong>in</strong>uity ti it equation ti<br />

We measure the total (conduction + displacement) current <strong>in</strong><br />

the ammeter ammeter, which which is i<strong>de</strong>ntical to that <strong>in</strong> a surface of the<br />

active region.<br />

<br />

<br />

/ <br />

t <br />

<br />

<br />

J <br />

0 t<br />

I () t I () t<br />

c<br />

J <br />

<br />

D / <br />

<br />

0<br />

J c<br />

S S<br />

A D<br />

27


Quantum Q many-particle y p computations p with <strong>Bohm</strong>ian trajectories j<br />

1.- Quantum Many-Particle Computations with <strong>Bohm</strong>ian Trajectories:<br />

2.- Application to Electron Transport <strong>in</strong> Nanoelectronic Devices:<br />

2.1.- Electron transport at the nanoscale<br />

2.2.- 2.2. Our quantum Monte Carlo algorithm<br />

2.1.1.- The BITLLES simulator<br />

2.1.2.- Numerical results for DC current<br />

22.1.3.- 1 3 Numerical results for current fluctautions<br />

2.1.4.- Numerical results for transient <strong>and</strong> AC currents<br />

33.- CConclusions l i <strong>and</strong> d Future F t workk


2.2.1.- Our quantum Monte Carlo algorithm: The Bittles simulator<br />

Quantum Monte Carlo simulation for electron transport<br />

Monte Carlo Cas<strong>in</strong>o (MONACO)<br />

N N<br />

g h 1<br />

I( t) lim Igh<br />

, ( t)<br />

Ng, Nh<br />

N · N<br />

g h<br />

g g1<br />

h1<br />

G-distribution:<br />

<strong>in</strong>itial position of <strong>Bohm</strong>ian trajectory<br />

H-distribution:<br />

<strong>in</strong>itial energy of the wave-packet<br />

(Stationary <strong>and</strong> ergodic system)<br />

1 T<br />

I lim <br />

I ' h t g, h t dt dt'<br />

T<br />

T 0<br />

29


2.2.2.- Our quantum Monte Carlo algorithm: DC current<br />

DC current for a Resonant Tunnel<strong>in</strong>g g Device ( (RTD) )<br />

In the 80’s, eng<strong>in</strong>eers expected that RTDs would substitute the FET transistor<br />

Now Now, it is a very useful scenario to un<strong>de</strong>rst<strong>and</strong> QM phenomena at the nanoscale nanoscale.<br />

30


2.2.2.- Our quantum Monte Carlo algorithm: DC current<br />

DC current for a Resonant Tunnel<strong>in</strong>g Device (RTD)<br />

Current ()<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1e - mean-field 1e - many-fields<br />

Source<br />

TTmax<br />

Source<br />

Dra<strong>in</strong> Dra<strong>in</strong><br />

many-fields 1<br />

many-fields 2<br />

many-fields 3<br />

many-fields y 4<br />

mean-field 1<br />

mean-field 2<br />

mean-field 3<br />

mean-field 4<br />

T=Tmax<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Dra<strong>in</strong> Voltage (V)<br />

[G. Albareda et al. Phys. Rev. B 79, 075315 (2009)]<br />

Emitter<br />

N +<br />

Lwell<br />

Lx Wbarrier<br />

N +<br />

Lz<br />

Ly<br />

Collector<br />

Electron transport <strong>beyond</strong> the st<strong>and</strong>ard mean-field approximation.<br />

WWe <strong>in</strong>clu<strong>de</strong> i l d many-particle il <strong>in</strong>teraction i i effects ff on the h current.<br />

y<br />

z<br />

x<br />

31


2.2.3.- Our quantum Monte Carlo algorithm: current fluctuations<br />

Quantum Noise:<br />

I(t)<br />

I () t I () t I () t I C CI ( ) S SI ( w )<br />

Fluctuations Autocorrelation Fourier transform<br />

Eng<strong>in</strong>eers do not like noise, it makes errors <strong>in</strong> the <strong>de</strong>vice.<br />

Physicist enjoy noise, because it shows phenomena that are not shown <strong>in</strong> DC<br />

Fano Factor F <br />

SI( w0)<br />

I <br />

32


Cuurrent<br />

(A)<br />

Fano Factor F<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1.2<br />

1.0<br />

2.2.3.- Our quantum Monte Carlo algorithm: current fluctuations<br />

Effect of Coulomb correlation on current <strong>and</strong> noise [X.Oriols, APL,85, 3596 (2004)]<br />

(a)<br />

E EFE Emitter<br />

x=0<br />

L<br />

x=L<br />

E R<br />

Colector<br />

Our approach<br />

# Particles emitter<br />

# Particles collector<br />

Esaki results [16]<br />

E FC<br />

FROZEN POTENTIALS<br />

Our approach<br />

Buttiker results [6]<br />

(b) FROZEN POTENTIALS<br />

08 0.8<br />

0.0 0.1 0.2 0.3 0.4<br />

Applied bias (Volts)<br />

Cuurrent<br />

(A)<br />

Fanoo<br />

Factor<br />

6<br />

5<br />

3<br />

2<br />

(a)<br />

Our approach<br />

# Particles emitter<br />

# Particles collector<br />

4 Visual gui<strong>de</strong>d l<strong>in</strong>e<br />

1<br />

0<br />

1.4<br />

1.2<br />

1.0<br />

(b)<br />

Our approach<br />

Visual gui<strong>de</strong>d l<strong>in</strong>e<br />

E R FROZEN<br />

SELF-CONSISTENT POTENTIALS<br />

E R FROZEN<br />

SELF-CONSISTENT POTENTIALS<br />

08 0.8<br />

0.0 0.1 0.2 0.3 0.4<br />

Applied bias (Volts)<br />

[X.Oriols et al., APL, 2004]<br />

33


2.2.4.- Our quantum Monte Carlo algorithm: transient <strong>and</strong> AC current<br />

Time <strong>de</strong>pen<strong>de</strong>nt (particle + displacement) current<br />

<br />

H Jc<br />

D<br />

/ t<br />

Jc D<br />

/ t<br />

0<br />

D <br />

<br />

Poisson equation<br />

[A [A. Alarcon Alarcon, JSTM, JSTM 2009(P01051) (2009)]<br />

Cont<strong>in</strong>uity equation<br />

<br />

/ t<br />

J 0<br />

c<br />

34


2.2.4.- Our quantum Monte Carlo algorithm: transient <strong>and</strong> AC current<br />

Transit simulation: [G. Albareda et al. Phys. Rev. B, 82, 085301 (2010)]<br />

Non-ergodic system (ensemble average):<br />

N N<br />

g h 1<br />

I( t) lim Igh , ( t)<br />

N Ng, N h h<br />

N · N<br />

<br />

g h<br />

g1 h1<br />

35


Quantum Q many-particle y p computations p with <strong>Bohm</strong>ian trajectories j<br />

1.- Quantum Many-Particle Computations with <strong>Bohm</strong>ian Trajectories:<br />

2.- Application to Electron Transport <strong>in</strong> Nanoelectronic Devices:<br />

33.- CConclusions l i <strong>and</strong> d Future F workk


3.- Conclusions <strong>and</strong> future work<br />

We have presented a algorithm to compute many-particle <strong>Bohm</strong>ian trajectories trajectories.<br />

1.-We have shown the existence of a s<strong>in</strong>gle-particle Schrod<strong>in</strong>ger equation<br />

th that t computes t a many-particle ti l B<strong>Bohm</strong>ian h i ttrajectory. j t<br />

2.- Its practical application needs an educated guess on the potentials.<br />

We apply pp y the previous p algorithm g to a many-particle y p qquantum<br />

MC simulator<br />

for comput<strong>in</strong>g electron quantum transport<br />

We are able to compute DC, AC, transients <strong>and</strong> (current <strong>and</strong> voltage) noise<br />

with ith electron-electron l t l t correlations. l ti<br />

Simulation time 1-2 days for a complete I-V curve (N=100 electrons)<br />

37


3.- Future work<br />

The BITLLES Simulator<br />

<strong>Bohm</strong>ian Interact<strong>in</strong>g Transport <strong>in</strong> Electronic Structures<br />

We have a three years project by the M<strong>in</strong>isterio <strong>de</strong> Ciencia ee Innovación to<br />

<strong>de</strong>velop the BITLLES simulator through project TEC2009-06986.<br />

38


3.- Future work<br />

• This book provi<strong>de</strong>s the first comprehensive discussion on the<br />

practical application of <strong>Bohm</strong>ian i<strong>de</strong>as <strong>in</strong> several forefront research<br />

fields written by lead<strong>in</strong>g experts, with an extensive updated<br />

bibliography.<br />

• This book provi<strong>de</strong>s a didactic <strong>in</strong>troduction to <strong>Bohm</strong>ian mechanics<br />

easily accessible for graduate <strong>and</strong> un<strong>de</strong>rgraduate stu<strong>de</strong>nts <strong>in</strong>clud<strong>in</strong>g a<br />

thorough list of exercises <strong>and</strong> easily programmable co<strong>de</strong>s.<br />

Rea<strong>de</strong>rship<br />

The book is addressed to stu<strong>de</strong>nts <strong>in</strong> physics, physics chemistry, chemistry electrical<br />

eng<strong>in</strong>eer<strong>in</strong>g, applied mathematics, nanotechnology, as well as both<br />

theoretical <strong>and</strong> experimental researchers who seek an <strong>in</strong>tuitive<br />

un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g of the quantum world <strong>and</strong> new computational tools for<br />

their everyday research activity.<br />

978-981-4316-39-2<br />

Cloth, 400 pages (approx.)<br />

Fall 2011, US$149<br />

How to or<strong>de</strong>r<br />

You can place an or<strong>de</strong>r from any good bookstores or email<br />

us at sales@panstanford.com for more <strong>in</strong>formation.<br />

39


3.- Conclusions <strong>and</strong> future work<br />

Acknowledgment g<br />

• F.L.Traversa,<br />

• G.Albareda,<br />

• AAl A. Alarcón, ó<br />

• A.Benali,<br />

• A.Padró,<br />

• X.Cartoixà,<br />

• R.Rurali<br />

This work has been partially supported by the M<strong>in</strong>isterio <strong>de</strong> Ciencia e<br />

Innovación un<strong>de</strong>r Project No No. TEC2009-06986 TEC2009 06986 <strong>and</strong> by the DURSI of the<br />

Generalitat <strong>de</strong> Catalunya un<strong>de</strong>r Contract No. 2009SGR783.<br />

Thank h kyou very much hffor your attention<br />

i<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!