30.04.2013 Views

Download (PDF) - Maxon motor

Download (PDF) - Maxon motor

Download (PDF) - Maxon motor

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Formulae<br />

Handbook<br />

Jan Braun<br />

V CC n L M L<br />

maxon academy


Start<br />

drive selection<br />

Overview, system analysis,<br />

preselection of controller & sensor<br />

Chap. A.1<br />

Motion of the load<br />

Chap. A.2<br />

Mechanical<br />

transformation?<br />

Mechanical drive design<br />

Chap. A.3<br />

Use of<br />

gearhead?<br />

Yes<br />

Yes<br />

Gearhead selection<br />

Chap. 3.4<br />

Motor type selection<br />

Chap. 6.5<br />

Winding selection<br />

Chap. 6.5<br />

Verification of controller & sensor<br />

Chap. A.3<br />

Drive selected<br />

No<br />

No<br />

Selection process<br />

Step 1<br />

System<br />

Overview<br />

Ambient<br />

conditions<br />

v(t), F(t)<br />

Load<br />

Step 2<br />

Load<br />

Step 3<br />

Drive<br />

Gear Motor<br />

Step 4<br />

Gearhead<br />

Communicaton<br />

Step 5 + 6<br />

Motor type<br />

Winding<br />

Step 7<br />

Sensor<br />

Controller<br />

When performing a system analysis <br />

overview<br />

See chapter<br />

A.1: Overview, system analysis<br />

<br />

<br />

See chapter A.2: Motion of the load<br />

<br />

mechanical transformation.<br />

Mechanical drives<br />

See chapter A.3:<br />

Mechanical drives.<br />

gearhead selection<br />

<br />

maxon gearhead<br />

See<br />

chapter 3.4: maxon gearhead<br />

types of<br />

<strong>motor</strong>sSee chapter<br />

6.5: Motor selection<br />

selection of the winding<br />

See chapter<br />

6.5: Motor selection<br />

<br />

<br />

<br />

Power<br />

Controller


Foreword<br />

This Formulae Handbook lists the most important formulae in relation to all components of<br />

<br />

Numerous illustrations and the clear descriptions of the symbols on the respective page help the<br />

reader to understand the formulae.<br />

Roughly speaking, it is a collection of the most important formulae from the maxon catalog, as<br />

<br />

<br />

<br />

<br />

for engineers, professors, lecturers and students, as a perfect supplement to the above mentioned<br />

book.<br />

Thank you<br />

<br />

<br />

<br />

<br />

have read the manuscript and have given valuable suggestions for improvements. I also received


Content 5<br />

A. Drive selection 6<br />

<br />

<br />

<br />

1. Mass, force, torque 9<br />

<br />

<br />

<br />

<br />

2. Kinematics <br />

<br />

<br />

<br />

<br />

3. Mechanical drives <br />

<br />

<br />

<br />

<br />

4. Bearing <br />

<br />

5. Electrical principles <br />

<br />

<br />

<br />

<br />

6. maxon <strong>motor</strong>s <br />

<br />

<br />

<br />

<br />

<br />

7. maxon sensor <br />

8. maxon controller <br />

<br />

<br />

<br />

9. Thermal behavior <br />

<br />

<br />

<br />

<br />

10. Tables <br />

<br />

<br />

11. Symbol list for the Formulae Handbook 56


A. Drive selection<br />

A.1 Overview, system analysis<br />

<br />

<br />

<br />

<br />

Mechanical design<br />

J S<br />

p<br />

<br />

Set value<br />

Feedback<br />

J 2<br />

Actuator<br />

Sensor<br />

Verify the power components<br />

d1 mR Determine the boundary conditions<br />

Cost considerations<br />

l<br />

d 2<br />

<br />

J 1<br />

Output<br />

Measurement<br />

d


A.2 Motion of the load<br />

load requirements<br />

<br />

<br />

Operating points<br />

Velocity v<br />

Speed n<br />

4<br />

1 2 3 4 1<br />

Velocity v<br />

Speed n<br />

3<br />

Mechanical play of the drive<br />

2<br />

0.4<br />

0.2<br />

1<br />

Time t<br />

Force F, torque M<br />

-1500 -1000 -500 0 500 1000 1500<br />

-0.2<br />

Test torque mNm<br />

Key data<br />

Twisting angle °<br />

Force F<br />

Torque M<br />

F /M max max<br />

∆t max<br />

0<br />

-0.4<br />

∆t tot<br />

F RMS /M RMS<br />

Time t<br />

operating<br />

points<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

mechanical play of the drive<br />

<br />

key data


controller and sensor<br />

<br />

<br />

<br />

Motion controller<br />

Sensor<br />

<br />

<br />

<br />

<br />

<br />

– <br />

<br />

<br />

– <br />

<br />

– <br />

<br />

– <br />

– <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

– <br />

<br />


1. Mass, force, torque<br />

1.1 Forces in general<br />

<br />

<br />

Typical component forces in a drive system<br />

m<br />

m<br />

F G<br />

F H<br />

<br />

F a<br />

F G<br />

F N<br />

F N<br />

F R<br />

<br />

<br />

[F] = kg · m/s = kgm/s = N<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

F = m · a = m ·<br />

v<br />

a t<br />

F = m · g<br />

F H = F <br />

F N = F <br />

F R N<br />

F <br />

p F P F p <br />

Symbol Name SI<br />

<br />

F <br />

F a <br />

F <br />

F H <br />

F N <br />

<br />

F p <br />

F R <br />

F <br />

Symbol Name SI<br />

a <br />

g <br />

k <br />

m <br />

p N/m bar


Calculating the total load force consisting of component forces<br />

F L<br />

F 1 F 2 F x<br />

F 1<br />

F L<br />

F L<br />

F 1<br />

F x<br />

Symbol Name SI<br />

F L <br />

F / F / F x <br />

F 2<br />

F 2<br />

<br />

<br />

<br />

<br />

F L = F + F + ...+ F <br />

F L = F <br />

2 2<br />

F = F + F L 1 2


1.2 Torques in general<br />

<br />

<br />

<br />

General<br />

r<br />

F<br />

M <br />

<br />

Typical component torques in drive systems<br />

<br />

<br />

<br />

<br />

r<br />

<br />

M <br />

<br />

<br />

M = J ·<br />

<br />

30<br />

<br />

·<br />

<br />

<br />

<br />

M R = µ · F KL · r KL<br />

= k m <br />

Calculating the load torque consisting of component torques<br />

M 1 M 2 M x<br />

M L<br />

M L<br />

M 1<br />

M x<br />

M 2<br />

<br />

<br />

<br />

<br />

Symbol Name SI<br />

F <br />

F <br />

<br />

<br />

L <br />

R <br />

<br />

<br />

x <br />

k m <br />

L <br />

L <br />

Symbol Name SI<br />

r <br />

r <br />

<br />

<br />

<br />

<br />

<br />

Symbol Name maxon


1.3 Moments of inertia of various bodies with reference<br />

to the principal axes through the center of gravity S<br />

Body type Illustration Mass, moments of inertia<br />

Circular cylinder, disc 2 1<br />

r2 J = r x 2<br />

Hollow cylinder<br />

Circular cone<br />

Truncated circular cone<br />

Circular torus<br />

Sphere<br />

Symbol Name SI<br />

x <br />

x <br />

y <br />

y <br />

<br />

<br />

R <br />

12<br />

1<br />

J = J = (3r y z 2 + 2 )<br />

2 2 (r i ) <br />

a<br />

2 2 J (r + ri )<br />

x a<br />

J = J =<br />

<br />

y z 2<br />

1<br />

2<br />

1<br />

2 2<br />

4<br />

+ ri +<br />

a 3<br />

m =<br />

J = x<br />

J = J = (4r<br />

y z 2 + h2 3<br />

)<br />

1<br />

10<br />

3<br />

80 3<br />

r2 r2 <br />

2 2 (r + r2<br />

3<br />

r + r ) <br />

2 1 1<br />

1<br />

J <br />

3<br />

x 10<br />

r2 5 5 r1<br />

3 3 r r1 2<br />

m = 22r2 <br />

J = J =<br />

1 2 2<br />

x y 8<br />

(4 + 5r )<br />

4 1<br />

J = (4 z 2 + 3r2 )<br />

m =<br />

4<br />

3<br />

r<br />

2<br />

5<br />

3<br />

J = J = J = r x y z 2<br />

Symbol Name SI<br />

h <br />

m <br />

r <br />

r a <br />

r i <br />

r <br />

r


Body type Illustration Mass, moments of inertia<br />

Hollow sphere<br />

Cuboid<br />

Thin rod yy<br />

Square pyramid<br />

Arbitrary rotation body<br />

Steiner's theorem<br />

<br />

<br />

tion x r ss<br />

<br />

Symbol Name SI<br />

<br />

s <br />

s <br />

x <br />

x <br />

y <br />

y <br />

<br />

<br />

a a m<br />

b b m<br />

(r<br />

4<br />

3<br />

a<br />

3 3 i )<br />

J = J = J <br />

2<br />

x y z 5<br />

ra m = <br />

1 2 2 J = x 12<br />

( + )<br />

m <br />

12<br />

1<br />

J x = J z 2<br />

1<br />

3<br />

20<br />

1<br />

20 1<br />

<br />

J ( x<br />

3<br />

4<br />

2 + 2 )<br />

J ( y 2 + 2 )<br />

5 5 i<br />

3 3 r i a<br />

2 m = f (x) <br />

x1<br />

x2<br />

1<br />

4 J = x 2<br />

f (x) <br />

x1<br />

<br />

x2<br />

2 J = m r + Js<br />

x s<br />

Symbol Name SI<br />

c c m<br />

h <br />

l <br />

m <br />

r a <br />

r i <br />

r s s m<br />

<br />

x <br />

x x


2. Kinematics<br />

2.1 Linear equations of motion<br />

Uniform movement<br />

Velocity v<br />

s<br />

t<br />

v<br />

Time t<br />

<br />

<br />

<br />

Constant acceleration from a standing start<br />

Velocity v<br />

s<br />

t<br />

v<br />

Time t<br />

<br />

<br />

<br />

<br />

Constant acceleration from initial speed<br />

Velocity v<br />

s<br />

t<br />

v end<br />

v start<br />

Time t<br />

Symbol Name SI<br />

a <br />

g <br />

h <br />

<br />

Remarks:<br />

– <br />

v =<br />

<br />

<br />

<br />

<br />

t 2 1<br />

2<br />

<br />

h = · g · t 2 1<br />

2<br />

v end = v start + a <br />

2 1<br />

2<br />

Symbol Name SI<br />

<br />

<br />

v end <br />

v start


2.2 Rotary equations of motion<br />

General<br />

2π rad 360°<br />

1m<br />

1rad<br />

1m<br />

1 rad = 57.2958°<br />

1m<br />

Uniform movement<br />

Angular velocity,<br />

Speed n<br />

<br />

t<br />

1m<br />

,n<br />

Time t<br />

<br />

<br />

1 rad 360°<br />

2<br />

rad <br />

<br />

<br />

<br />

<br />

of rotation<br />

<br />

<br />

[] = rad/s<br />

<br />

n = <br />

[n] = /min <br />

Constant acceleration from a standing start<br />

Angular velocity,<br />

Speed n<br />

<br />

t<br />

, n<br />

Time t<br />

<br />

<br />

[] = /s = rad/s <br />

Constant acceleration from initial speed<br />

Angular velocity,<br />

Speed n<br />

<br />

t<br />

end , n end<br />

start , n start<br />

Time t<br />

Symbol Name SI<br />

<br />

<br />

<br />

<br />

end <br />

30<br />

<br />

30 <br />

<br />

<br />

t<br />

<br />

30<br />

<br />

<br />

t<br />

30<br />

<br />

<br />

Remarks:<br />

– <br />

– = <br />

<br />

<br />

t<br />

<br />

t<br />

t<br />

30<br />

t <br />

t 2<br />

t<br />

30<br />

t <br />

t 1<br />

2<br />

t<br />

1 <br />

2 30<br />

2 1<br />

2<br />

t<br />

1 <br />

2 30<br />

t<br />

endstartt end start<br />

30<br />

n = n t<br />

end start <br />

t start 2<br />

30<br />

n = n t<br />

end start <br />

1<br />

t start 2<br />

<br />

1 <br />

nt<br />

30 start 2 30<br />

2 1<br />

2<br />

<br />

1 <br />

nt<br />

30 start 2 30<br />

Symbol Name SI<br />

start <br />

Symbol Name maxon<br />

<br />

n end <br />

n start


General Symmetrical<br />

Suitability<br />

Diagram<br />

Task:<br />

<br />

in time tot<br />

at a<br />

v max<br />

v max<br />

∆t a<br />

∆s<br />

∆tb ∆ttot <br />

<br />

<br />

∆t c<br />

v =<br />

<br />

max<br />

2<br />

ac a = max vmax a a c<br />

=<br />

v<br />

+ 2<br />

max<br />

vmax a = max a v max<br />

∆s<br />

∆t a ∆t b ∆t a<br />

∆t tot<br />

v =<br />

<br />

max ( ) a<br />

<br />

a max = ( a ) · a<br />

= a<br />

a max =<br />

at a<br />

=<br />

<br />

a · max a<br />

amax v = a · max max a<br />

<br />

totv max<br />

<br />

tot<br />

a max<br />

v max<br />

a max<br />

a c b<br />

Symbol Name SI<br />

a max <br />

v max <br />

<br />

v max<br />

v max<br />

a<br />

a<br />

<br />

· v<br />

2<br />

max<br />

vmax a a = max max<br />

a<br />

v ( ) · v a max<br />

max<br />

a · ( ) · max a a<br />

v = a · max max a<br />

Symbol Name SI<br />

a <br />

b <br />

c <br />

tot


3/3 Trapezoidal Triangle<br />

<br />

<br />

<br />

<br />

v max<br />

v max = 1.5 ·<br />

a max = 4.5 ·<br />

∆s<br />

∆t tot<br />

<br />

2 <br />

<br />

= 1.5 · <br />

v max<br />

a = 2 · max v2<br />

max<br />

<br />

= <br />

3<br />

2<br />

·<br />

<br />

amax ·<br />

<br />

amax v = max<br />

<br />

2<br />

· · a · a max max<br />

<br />

2<br />

· · v<br />

3<br />

max<br />

a max 3 · v max<br />

<br />

<br />

<br />

<br />

a max<br />

<br />

v max<br />

v max = 2 ·<br />

a max = 4 ·<br />

∆s<br />

∆t tot<br />

<br />

2 <br />

<br />

= 2 · <br />

v max<br />

a = max v2<br />

max<br />

<br />

= 2 ·<br />

<br />

a max<br />

v = · a max max<br />

1<br />

2<br />

a = 2 · max v · · v max<br />

max<br />

<br />

2<br />

9<br />

3 1<br />

· a · t max<br />

v = · a · t · a t max max tot max tot<br />

2<br />

tot · amax t2 tot · a · max 2 1<br />

4<br />

1<br />

2<br />

v<br />

amax 2<br />

max<br />

2 ·<br />

vmax = 3 · amax<br />

v<br />

amax 2<br />

max<br />

<br />

vmax 2 · amax Symbol Name SI<br />

a max <br />

v max <br />

<br />

v max = · a max · <br />

Symbol Name SI<br />

<br />

tot


General Symmetrical<br />

Suitability<br />

Diagram<br />

Task:<br />

<br />

in time tot<br />

<br />

n max<br />

n max<br />

∆t a<br />

30<br />

n = ·<br />

max <br />

∆<br />

∆tb ∆ttot <br />

of rotation<br />

<br />

<br />

∆t c<br />

2<br />

a + c = max<br />

2<br />

<br />

a + c a 30 a + c = ·<br />

n<br />

+<br />

2<br />

max<br />

nmax = max 30<br />

·<br />

ta at a<br />

<br />

of max <br />

<br />

=<br />

30<br />

totnmax · n ·<br />

= · max n max<br />

30 a <br />

time tot max <br />

of n max<br />

max<br />

Symbol Name SI<br />

max <br />

a <br />

b <br />

c <br />

tot <br />

a c + b<br />

2<br />

n max<br />

n max =<br />

∆<br />

∆t a ∆t b ∆t a<br />

∆t tot<br />

30<br />

·<br />

<br />

( )<br />

a<br />

<br />

max = ( a ) · a<br />

30 <br />

= n + a<br />

max<br />

·<br />

nmax = max 30 a ·<br />

<br />

= + max · a<br />

a<br />

n =<br />

30<br />

· · max max a<br />

<br />

·( )<br />

a<br />

30 · nmax = · max n max<br />

30 a max ( a ) a<br />

n max = 30<br />

<br />

· max · a<br />

Symbol Name SI<br />

<br />

Symbol Name maxon<br />

n max


3/3 Trapezoidal Triangle<br />

<br />

<br />

<br />

<br />

n max<br />

30<br />

n = 1.5 · ·<br />

max <br />

∆<br />

∆t tot<br />

<br />

<br />

= 4.5 · max 2 t tot<br />

30 <br />

= 1.5 ·<br />

· nmax n<br />

= 2 · · max <br />

2 max<br />

2<br />

302 3 <br />

= ·<br />

2 <br />

·<br />

max max n =<br />

1<br />

·<br />

30<br />

· · · · max max max<br />

2<br />

<br />

3 2<br />

<br />

<br />

·<br />

30<br />

· · n max<br />

<br />

= 3 · ·<br />

max 30<br />

n max<br />

<br />

<br />

2<br />

· · t<br />

9 max 2<br />

tot· t2 tot<br />

n =<br />

1<br />

· · · · max 3<br />

max max <br />

30<br />

<br />

30 <br />

n = 2 · max <br />

·<br />

ttot <br />

= 4 · max 2 t tot<br />

Symbol Name SI<br />

max <br />

tot <br />

<br />

<br />

<br />

<br />

max<br />

<br />

n max<br />

30<br />

n = 2 · ·<br />

max <br />

<br />

= 4 · max 2 t tot<br />

= 2 ·<br />

= max n2<br />

<br />

max<br />

30<br />

·<br />

∆<br />

∆t tot<br />

<br />

ttot <br />

n max<br />

· 2<br />

30 2<br />

= 2 · <br />

<br />

max 30<br />

n = max · max <br />

1<br />

2<br />

= · · · n<br />

30 max<br />

nmax = 2 · · max 30 <br />

· · t max 2<br />

1<br />

4<br />

tot<br />

n =<br />

1 30<br />

max 2<br />

·<br />

<br />

· max · n<br />

max 2 max<br />

= 30<br />

·<br />

nmax = 2 · 30<br />

·<br />

max Symbol Name maxon<br />

n max


Notes


3. Mechanical drives<br />

3.1 Mechanical transformation<br />

Output power/transformation, general<br />

Spindle<br />

Ball screw<br />

Trapezoidal screw<br />

Eccentric drive<br />

Crankshaft<br />

Gearhead<br />

Spur gearhed<br />

Planetary gearhead<br />

Bevel gear<br />

Worm gear<br />

Wolfrom gear<br />

Linear<br />

Rotation<br />

Rack and pinion<br />

Conveyor belt<br />

Crane<br />

Rover<br />

Belt<br />

Toothed belt<br />

Chain drive<br />

Special design<br />

Cyclo gear<br />

Harmonic Drive ®<br />

Symbol Name SI<br />

F <br />

F L <br />

<br />

L <br />

in <br />

mech <br />

mech,in <br />

mech,L <br />

v <br />

Output power, linear motion<br />

[]<br />

mech<br />

Transformation, general<br />

P mech,L =<br />

Pmech,in <br />

M in in<br />

v F = L L <br />

Output power, rotary motion<br />

[] = s <br />

30<br />

<br />

P <br />

mech<br />

Transformation, general<br />

P mech,L =<br />

Pmech,in <br />

M in in<br />

M =<br />

L L <br />

Designations in the formulae<br />

– L<br />

– in<br />

Symbol Name SI<br />

v L <br />

<br />

<br />

L <br />

in <br />

Symbol Name maxon<br />

n


3.2 Transformation of mechanical drives, linear<br />

Spindle drive<br />

J S<br />

p<br />

Belt drive/conveyor belt/crane<br />

m B<br />

J 2<br />

d 2<br />

d 1<br />

J 1<br />

d 1<br />

J 1<br />

<br />

<br />

60<br />

n = in p<br />

· vL p FL M = ·<br />

in 2 <br />

<br />

in a<br />

m L S<br />

<br />

M in S <br />

<br />

<br />

<br />

<br />

<br />

in L<br />

60<br />

n = in <br />

<br />

4 2<br />

p 2<br />

2 p<br />

vL <br />

d1 FL 2 M = in <br />

d1 <br />

30<br />

<br />

in a<br />

J2 M = J + J + <br />

1 <br />

<br />

<br />

Symbol Name SI<br />

F L <br />

in <br />

<br />

<br />

X X <br />

<br />

<br />

in <br />

<br />

d X X m<br />

d <br />

d <br />

m <br />

2 d1 2 d2 +<br />

JX <br />

<br />

2<br />

in L d1 <br />

2 d1 2 +<br />

dX in a 2<br />

m + m d L B 1<br />

<br />

<br />

4<br />

<br />

<br />

30<br />

a Symbol Name SI<br />

m L <br />

m <br />

p <br />

v L <br />

L <br />

a <br />

in <br />

<br />

Symbol Name maxon<br />

n in <br />

in


Rack-and-pinion drive<br />

Rover<br />

p<br />

m z<br />

m F<br />

J P , z<br />

d<br />

J W<br />

60<br />

n = v in p z L<br />

<br />

M = in 2<br />

p z FL <br />

<br />

<br />

in a<br />

p<br />

M = J + J +<br />

in, in P 2 z2 m + m L Z<br />

in<br />

<br />

4 a 2 30<br />

<br />

<br />

<br />

M in =<br />

in = L <br />

60 vL n = <br />

in d<br />

2<br />

p z<br />

<br />

F L<br />

d<br />

<br />

2 <br />

<br />

in a m + m d L F<br />

<br />

M = 4<br />

<br />

a 2<br />

J + J + W <br />

30<br />

<br />

<br />

Symbol Name SI<br />

F L <br />

in <br />

<br />

<br />

<br />

<br />

in <br />

<br />

d <br />

m F <br />

m L <br />

m Z <br />

p <br />

= s <br />

2<br />

in L d<br />

Symbol Name SI<br />

v L <br />

<br />

L <br />

a <br />

in <br />

<br />

Symbol Name maxon<br />

n in <br />

in


Eccentric drive<br />

e<br />

J E<br />

<br />

n in<br />

<br />

v L (t) = · n in · e · sin · n in · t<br />

30 30<br />

<br />

m L<br />

30 n F <br />

<br />

a a L in<br />

2<br />

e cos<br />

<br />

in L a <br />

in L a <br />

<br />

e<br />

M = F F<br />

L1 + F + + F<br />

in,RMS a1 L2 a2<br />

2 <br />

2 2 2 2<br />

<br />

in a<br />

M E <br />

<br />

30<br />

Symbol Name SI<br />

F L <br />

F L <br />

F a <br />

F a <br />

<br />

F a <br />

F a <br />

in <br />

<br />

<br />

<br />

<br />

in <br />

<br />

a Symbol Name SI<br />

in <br />

e <br />

m L <br />

v L <br />

t <br />

a <br />

<br />

<br />

Symbol Name maxon<br />

n in <br />

in


3.3 Transformation of mechanical drives, rotation<br />

Gearhead<br />

J 2<br />

Belt drive<br />

J 2<br />

m R<br />

d 2<br />

i G J1<br />

d 1<br />

J 1<br />

n in = n L · i <br />

<br />

=<br />

i · G<br />

<br />

M in<br />

M L<br />

<br />

in a<br />

M = J + J + 1 JL + J 2<br />

<br />

2 2<br />

i G · <br />

in L <br />

<br />

<br />

<br />

<br />

i G<br />

· ·<br />

·<br />

30<br />

=<br />

·<br />

<br />

J + J + G 30 a<br />

a<br />

JL i · G<br />

z + z 1 3<br />

=<br />

z1 d2 n = n ·<br />

in L d1 M in =<br />

d1 d2 M L<br />

· <br />

<br />

in a<br />

M =<br />

J in + J 1 + J L + J 2<br />

in L<br />

Symbol Name SI<br />

<br />

<br />

in <br />

<br />

L <br />

x X <br />

<br />

<br />

in <br />

<br />

L <br />

d x X m<br />

d <br />

d <br />

<br />

J x<br />

2<br />

2<br />

2<br />

d d m d R · 1 <br />

1<br />

1<br />

· 2 + · 2 +<br />

4 · <br />

·<br />

30<br />

·<br />

d 2<br />

= ·<br />

d<br />

d<br />

2<br />

1<br />

d x<br />

nin ta Symbol Name SI<br />

i <br />

m R <br />

<br />

<br />

a <br />

in <br />

L <br />

<br />

Symbol Name maxon<br />

n in <br />

n L <br />

in


3.4 maxon gear<br />

<br />

GP<br />

Gearhead design type<br />

GS Spur gearhead<br />

GP Planetary gearhead<br />

KD Koaxdrive<br />

22<br />

A<br />

Diameter<br />

Version<br />

in mm<br />

A Metal version<br />

B Version with enlarged internal gear<br />

C Ceramic version<br />

HD Heavy Duty – for applications in oil<br />

HP High power version<br />

K Plastic version<br />

L Low-cost version<br />

M Sterilizable version for medical application<br />

S Spindle drive with axial bearing<br />

V Reinforced version<br />

Operating ranges of gearheads<br />

Z Low backlash version<br />

<br />

<br />

<br />

<br />

Load speed nL Max. load speed<br />

(determined by gearhead input speed)<br />

n max,L<br />

Continuous operation<br />

M G,cont<br />

Short-term operation<br />

Symbol Name SI<br />

<br />

<br />

<br />

<br />

i <br />

M G,max<br />

n max,L =<br />

Load torque M L<br />

<br />

n max,L<br />

n max,in<br />

i G<br />

n max,in<br />

Symbol Name maxon<br />

n max,in <br />

n max,L


4. Bearing<br />

4.1 Comparison of characteristics of sintered sleeve bearings and ball bearings<br />

Operating<br />

modes<br />

Speed<br />

range<br />

Radial /<br />

axial load<br />

Additional<br />

operating<br />

criteria<br />

Bearing<br />

play<br />

<br />

of friction<br />

Lubrication<br />

Sintered sleeve bearings Ball bearings<br />

– <br />

– <br />

<br />

<br />

– <br />

<br />

– <br />

– <br />

<br />

<br />

– <br />

– <br />

<br />

– <br />

<br />

– <br />

– <br />

– <br />

<br />

<br />

r<br />

– <br />

– <br />

<br />

– <br />

– <br />

<br />

– <br />

– <br />

<br />

<br />

– <br />

<br />

– <br />

<br />

<br />

– <br />

<br />

– <br />

– <br />

– – <br />

<br />

<br />

– – <br />

<br />

– <br />

<br />

<br />

– <br />

<br />

<br />

Costs


Notes


5. Electrical principles<br />

5.1 Principles of DC (Direct Current)<br />

Electric power<br />

<br />

[] <br />

<br />

Power adjustment<br />

RL = Ri P/P max<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.01<br />

Ohm's law<br />

0.1 1 10 100<br />

R /R L i<br />

+<br />

_<br />

I R i<br />

<br />

P = U · I = R · I 2 U<br />

=<br />

R<br />

2<br />

<br />

V = R I <br />

Linear source Consumer load<br />

a<br />

2 U0 P = max 4 · Ri<br />

V<br />

I<br />

U<br />

A<br />

R<br />

<br />

U<br />

I =<br />

R<br />

U<br />

R =<br />

I<br />

Symbol Name SI<br />

I <br />

<br />

max <br />

V <br />

R <br />

U 0 U kl R L<br />

I<br />

4<br />

2 · Ri =<br />

<br />

b<br />

Symbol Name SI<br />

R i <br />

R L <br />

<br />

0 <br />

kl <br />

I


Electrical time constant<br />

U out<br />

U in<br />

100<br />

%<br />

60<br />

40<br />

20<br />

63%<br />

0<br />

0 el 2 3 4 el el el<br />

Pull-up / pull-down<br />

R u<br />

R d<br />

+V<br />

Pull-up<br />

Logic<br />

Logic<br />

Pull-down<br />

Open-collector output<br />

Logic<br />

Base<br />

t<br />

+V<br />

R u<br />

I out<br />

Collector<br />

Emitter<br />

5 el<br />

Open<br />

Collector<br />

Output<br />

U out<br />

Symbol Name SI<br />

<br />

I out <br />

L <br />

R <br />

R d <br />

R u <br />

<br />

<br />

=<br />

L<br />

el<br />

<br />

R<br />

[ el]<br />

[ el]<br />

<br />

<br />

el = R · C<br />

Pull-up:<br />

– <br />

– <br />

<br />

Pull-down:<br />

– <br />

– <br />

<br />

Open-collector output (OC):<br />

– <br />

<br />

– <br />

<br />

<br />

outI out · R u<br />

Hall sensors<br />

<br />

<br />

Symbol Name SI<br />

t <br />

in <br />

out <br />

+V <br />

el


5.2 Electrical resistive circuits<br />

Series resistor circuits<br />

+<br />

–<br />

U<br />

I<br />

Parallel resistor circuits<br />

+<br />

–<br />

U<br />

I<br />

R 1<br />

I 1<br />

Symbol Name SI<br />

I <br />

I , I <br />

R <br />

R 1<br />

R 2<br />

R 2<br />

I 2<br />

U 1<br />

U 2<br />

<br />

<br />

+...<br />

R = R + R + ...<br />

U1 =<br />

U2 <br />

R 1<br />

R 2<br />

I = I + I +...<br />

1 1 1<br />

= + + ...<br />

R R1 R2<br />

R 1 · R 2<br />

R =<br />

R + R 1 2<br />

I1 I2 =<br />

R2 R1 Symbol Name SI<br />

R , R


Voltage divider, no-load<br />

+<br />

–<br />

U<br />

I<br />

R 1<br />

R 2<br />

Voltage divider, under load<br />

+<br />

–<br />

I<br />

+<br />

U<br />

–<br />

R 1<br />

U<br />

R 2<br />

I<br />

R 1<br />

R 2<br />

I R2<br />

Potentiometer<br />

+<br />

U<br />

1<br />

x<br />

0<br />

A<br />

R 0<br />

I R2<br />

U L<br />

A: Start<br />

S: Wiper<br />

E: End<br />

U L<br />

S<br />

U 1<br />

U L<br />

I L<br />

R L<br />

R L<br />

U 2<br />

I L<br />

R L<br />

<br />

–<br />

E<br />

Winding resistance<br />

RT = Rmot · <br />

Symbol Name SI<br />

I <br />

I L <br />

I R <br />

R <br />

R <br />

R , R <br />

R L <br />

R mot <br />

R R R L <br />

+<br />

–<br />

U 2 = U<br />

U1 =<br />

U2 R 1 + R 2<br />

<br />

+<br />

–<br />

<br />

R 1<br />

R x<br />

R 1<br />

R x<br />

R1 R2 U2 I =<br />

R2 R 2<br />

U<br />

=<br />

R + R 1 2<br />

R x<br />

U L = U Rx + R 1<br />

R L · R 2<br />

R x = RL + R 2<br />

R 2<br />

I L = I · RL + R 2<br />

R L<br />

I R2 = I · RL + R 2<br />

x · R 0 · R L<br />

R = (x · R0 ) + R L<br />

R<br />

U L = U R + (1 – x) · R0<br />

x<br />

U = U L R0 2 (x – x ) +1<br />

RL Symbol Name SI<br />

R T T <br />

<br />

<br />

L <br />

<br />

x <br />

Symbol Name Value


5.3 Principles of AC (Alternating Current)<br />

Alternating quantities<br />

T<br />

Ohm's law<br />

~<br />

~<br />

Resistances<br />

Reactance<br />

~<br />

~<br />

~<br />

~<br />

I<br />

V U<br />

Z<br />

XL XL XC XC Impedance (AC resistance)<br />

t<br />

A<br />

[f] = <br />

[] = / s =<br />

rad / s<br />

f = T 1<br />

<br />

tt<br />

U(t)<br />

I(t) =<br />

Z<br />

U(t)<br />

Z =<br />

I(t)<br />

X L<br />

X =<br />

1<br />

C <br />

RL, or R R2 + X 2<br />

Z =<br />

Symbol Name SI<br />

<br />

I <br />

L <br />

R <br />

T <br />

<br />

1<br />

2<br />

<br />

=<br />

Symbol Name SI<br />

X X or X L <br />

X <br />

X L <br />

Z <br />

f <br />

t


General<br />

f <br />

1<br />

f = C 2 · R · C<br />

or fC = R<br />

2 · L<br />

Uout <br />

<br />

Uin <br />

f <br />

<br />

R<br />

U in C U out<br />

L<br />

U in R U out<br />

I<br />

I<br />

U in<br />

U in<br />

<br />

U R<br />

<br />

U out<br />

U out<br />

U L<br />

U out<br />

U in<br />

<br />

1.0<br />

0.5<br />

0.2<br />

0.1<br />

90°<br />

<br />

0.707<br />

f = f C<br />

45°<br />

0°<br />

0.1 0.2 0.5 1 2 5<br />

f/f C<br />

10<br />

Uout Uin <br />

f <br />

C<br />

U in R U out<br />

R<br />

U in L U out<br />

I<br />

<br />

I<br />

U in<br />

U in<br />

U out<br />

Symbol Name SI<br />

<br />

I <br />

L <br />

R <br />

<br />

in <br />

L <br />

<br />

U R<br />

U C<br />

U out<br />

U out<br />

U in<br />

<br />

1.0<br />

0.5<br />

0.2<br />

0.1<br />

90°<br />

0.707<br />

f = f C<br />

45°<br />

0°<br />

0.1 0.2 0.5 1 2 5<br />

f/f C<br />

10<br />

=<br />

1<br />

1 + ( f / f C ) 2<br />

Xc U = U out in 2 2 R + Xc<br />

R<br />

U = U out in 2 2 R + XL<br />

Uout Uin 1 + ( f C / f ) 2<br />

Symbol Name SI<br />

out <br />

R <br />

X <br />

X L <br />

f <br />

f <br />

<br />

=<br />

1<br />

R<br />

U = U out in 2 2 R + XC<br />

X L<br />

U = U out in 2 2 R + XL


6. maxon <strong>motor</strong>s<br />

6.1 General<br />

What is special about maxon <strong>motor</strong>s?<br />

heartself-supporting ironless copper winding<br />

<br />

– <br />

– <br />

– <br />

– <br />

– <br />

– <br />

– <br />

– <br />

maxon DC <strong>motor</strong> (brushed permanent-magnet energized DC <strong>motor</strong>s)<br />

RE program<br />

– <br />

– <br />

<br />

– <br />

– <br />

A-max program<br />

– <br />

– <br />

– <br />

RE-max program<br />

– <br />

– <br />

<br />

<br />

– <br />

Properties of the two brush systems<br />

Graphite brushes<br />

– <br />

<br />

– <br />

<br />

– <br />

– <br />

– <br />

– <br />

– <br />

– <br />

<br />

<br />

Precious metal brushes<br />

– <br />

<br />

– <br />

– <br />

– <br />

– <br />

– <br />

– <br />

<br />


maxon EC <strong>motor</strong><br />

<br />

– <br />

– <br />

– <br />

maxon EC range<br />

– <br />

<br />

– <br />

– <br />

– <br />

EC-max range<br />

– <br />

– <br />

– <br />

– <br />

EC-4pole range<br />

– <br />

– ® <br />

<br />

– <br />

– <br />

<br />

– <br />

<br />

<br />

– <br />

– <br />

<br />

– <br />

<br />

– <br />

maxon EC-i range<br />

– <br />

<br />

– <br />

<br />


Electronic commutation<br />

Commutation type Rotor position determination<br />

Block commutation <br />

Block-shaped phase currents<br />

0° 60° 120°180° 240°300° 360°<br />

Turning angle<br />

Signal sequence diagram<br />

for the Hall sensors (HS)<br />

HS 1<br />

HS 2<br />

HS 3<br />

Supplied <strong>motor</strong> voltage<br />

(phase to phase)<br />

+<br />

U1-2<br />

+<br />

U2-3<br />

+<br />

U<br />

3-1<br />

0°<br />

1<br />

0<br />

1<br />

0<br />

1<br />

0<br />

60 120 180 240 300 360<br />

Sinusoidal commutation <br />

Sinusoidal phase currents<br />

0° 60° 120° 180° 240° 300° 360°<br />

Turning angle<br />

Comparison of DC and EC <strong>motor</strong>s<br />

DC <strong>motor</strong> (brushed)<br />

– <br />

<br />

– <br />

– <br />

– <br />

0° 60° 120° 180° 240° 300° 360°<br />

<br />

<br />

EMF<br />

EC <strong>motor</strong> with HS Encoder<br />

<br />

<br />

EMF<br />

Legend<br />

Star point<br />

Time delay 30°<br />

Zero crossing of EMF<br />

EC <strong>motor</strong> (brushless)<br />

– <br />

<br />

– <br />

– <br />

– <br />

<br />


6.2 Power consideration of the DC <strong>motor</strong>: in general<br />

Motor as energy converter<br />

P el = U mot mot<br />

<br />

Power P<br />

Speed n<br />

n 0<br />

P L<br />

P L<br />

M H<br />

U mot > U N<br />

U mot = U N<br />

Torque M<br />

Symbol Name SI<br />

I mot <br />

<br />

H <br />

<br />

el <br />

<br />

L <br />

R mot <br />

<br />

2<br />

P = R J mot mot<br />

elL 30<br />

<br />

2<br />

U · I = · n · M + R · I mot mot mot mot<br />

<br />

P = n · M<br />

L 30<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Symbol Name SI<br />

mot <br />

N <br />

<br />

Symbol Name maxon<br />

n <br />

n


6.3 Motor constants and diagrams<br />

Motor constants<br />

speed constant kntorque constant kM <br />

Speed constant kn knn n = knind ind <br />

Torque constant k M<br />

k <br />

I.<br />

Information:<br />

Dependence between k n and k M<br />

<br />

Speed-torque line<br />

<br />

mot<br />

Speed n<br />

n 0<br />

M R<br />

I 0<br />

∆n<br />

U mot > U N<br />

∆M<br />

U mot = U N<br />

M H<br />

I A<br />

Torque M<br />

Motor current I mot<br />

Symbol Name SI<br />

I mot <br />

I <br />

I <br />

k <br />

<br />

H <br />

R <br />

R mot <br />

ind <br />

mot<br />

30 000<br />

k · k = n M <br />

rpm mNm<br />

[ ·<br />

V A ]<br />

<br />

= 1<br />

n n mot<br />

H = k <br />

R = k <br />

rad<br />

s · V<br />

Nm<br />

·<br />

A<br />

<br />

<br />

mot <br />

<br />

<br />

n 30 000<br />

=<br />

M <br />

<br />

·<br />

R n mot 0<br />

2 k MH<br />

M<br />

Symbol Name SI<br />

mot <br />

N <br />

Symbol Name maxon<br />

k n /<br />

n <br />

n


Voltage equation, <strong>motor</strong><br />

+<br />

U mot<br />

–<br />

I mot<br />

EMF<br />

<br />

Efficiency <br />

Speed n<br />

n 0<br />

max<br />

L mot<br />

R mot<br />

U ind<br />

U mot = U N<br />

M H<br />

Torque M<br />

Symbol Name SI<br />

<br />

I <br />

I <br />

I mot <br />

k <br />

L mot <br />

<br />

H <br />

R <br />

R mot <br />

N <br />

ind <br />

<br />

U = L · + R · I + U R · I + U <br />

<br />

<br />

<br />

<br />

mot <br />

<br />

<br />

0 <br />

<br />

<br />

·<br />

30 000 Umotmot max =<br />

( ) (withR M 0 )<br />

<br />

1 –<br />

I0 IA 2<br />

Symbol Name SI<br />

mot <br />

<br />

<br />

<br />

max N <br />

Symbol Name maxon<br />

k n <br />

n <br />

n


6.4 Acceleration<br />

Angular acceleration: Start with constant current<br />

n 0<br />

n0 nL Speed n<br />

M , n L L<br />

Speed n<br />

l mot = constant<br />

M H<br />

t Time t<br />

Torque M<br />

<br />

M k I M mot<br />

<br />

J J R L R L<br />

<br />

J R L<br />

<br />

30 M<br />

Angular acceleration: Start with constant terminal voltage<br />

n 0<br />

n0 nL Speed n<br />

M , n L L<br />

Speed n<br />

m<br />

U mot = constant<br />

t<br />

M H<br />

Time t<br />

Torque M<br />

Symbol Name SI<br />

I mot <br />

L <br />

R <br />

k <br />

<br />

H <br />

L <br />

R <br />

R mot <br />

t <br />

mot <br />

<br />

max = JR + J L<br />

J R L<br />

<br />

30 kMI <br />

M H<br />

<br />

' · ln m<br />

1 –<br />

1 –<br />

M + M L R · n0 MH M + M L R · n – n 0 L<br />

MH <br />

(J + J ) · R<br />

' R L mot<br />

= m<br />

2 kM Symbol Name SI<br />

<br />

max <br />

<br />

m <br />

m <br />

L <br />

Symbol Name maxon<br />

n <br />

n <br />

n L


6.5 Motor selection<br />

Motor type selection<br />

Speed n<br />

Continuous<br />

operation<br />

Max. permissible speed<br />

M M RMS N<br />

Short-term operation<br />

M max<br />

M H<br />

Torque M<br />

<br />

<br />

N Hmax <br />

1 2 2 2 M = (t1 · M + t2 · M + ... + tn · M )<br />

RMS ttot<br />

1<br />

2<br />

n<br />

Remark:<br />

<br />

<br />

<br />

Winding selection<br />

<br />

Speed n<br />

kn <br />

n0,theor Speed-torque line<br />

<br />

high enough for all<br />

n n + max<br />

0,theor max <br />

k = =<br />

operating points<br />

n n,theor Umot<br />

n max<br />

Deceleration Acceleration<br />

M max<br />

Safety<br />

factor<br />

~ 20%<br />

Torque M<br />

<br />

<br />

U mot<br />

n max max <br />

<br />

<br />

Recommendation:k n <br />

k n<br />

M max<br />

I mot = I 0 + kM<br />

Symbol Name SI<br />

I mot <br />

I <br />

k <br />

...n ...n <br />

<br />

H <br />

N <br />

<br />

max <br />

n <br />

mot <br />

Symbol Name SI<br />

t …n ...n <br />

t tot <br />

Symbol Name maxon<br />

k n <br />

k n,theor <br />

n <br />

n max <br />

n ,theor


7. maxon sensor<br />

maxon incremental encoder<br />

Channel A<br />

Channel B<br />

Signal edges (quadcounts)<br />

Index channel I<br />

360°e 90°e<br />

Recommended applications QUAD MEnc MR EASY MILE Optical<br />

✘ ✘ ✔ ✔ ✔ ✔<br />

✔ ✔ ✔ ✔ ✔ ✘<br />

✘ ✘ ✔ ✔ ✔ ✔<br />

<br />

<br />

<br />

<br />

<br />

✘ ✘ ✔ ✔ ✔ ✔<br />

✘, ✔ ✔ ✔ ✔ ✔ ✔<br />

✘ ✘ ✘, ✔ ✔ ✔ ✔<br />

✘ ✘ ✔ ✔ ✔ ✔<br />

✔ ✔ ✔ ✔ ✔ ✘<br />

✔ ✔ ✘ ✘ ✘ ✘<br />

✘ ✘ ✘ ✔ ✔ ✔<br />

✔ ✘ ✘ ✔ ✔ ✘<br />

✔ ✔ ✔ ✘


Counts per turn from position resolution<br />

N of the<br />

<br />

<br />

360°<br />

<br />

<br />

Remark:<br />

<br />

Measurement resolution, <strong>motor</strong> speed<br />

Example:<br />

<br />

<br />

N<br />

<br />

<br />

=<br />

Q · N<br />

<br />

= =<br />

Q · N<br />

qc<br />

1<br />

ms<br />

qc<br />

CPT<br />

CPT<br />

<br />

=<br />

qc<br />

<br />

<br />

= rpm<br />

qc<br />

Comment:<br />

<br />

Symbol Name SI<br />

N <br />

i <br />

<br />

<br />

Symbol Name SI<br />

<br />

Symbol Name maxon


8. maxon controller<br />

8.1 Operating quadrants<br />

Operating quadrants<br />

Quadrant II<br />

Braking operation<br />

Clockwise (cw)<br />

Quadrant III<br />

Motor operation<br />

Counterclockwise<br />

(ccw)<br />

M<br />

n<br />

M<br />

n<br />

8.2 Selection of power supply<br />

n<br />

M<br />

n<br />

M<br />

n<br />

Quadrant I<br />

Motor operation<br />

Clockwise (cw)<br />

Required supply voltage at given load (n L, M L)<br />

V CC <br />

M<br />

Quadrant IV<br />

Braking operation<br />

Counterclockwise<br />

(ccw)<br />

0, 1-Q operation<br />

– <br />

<br />

– <br />

– <br />

– <br />

<br />

4-Q operation<br />

– <br />

<br />

<br />

– <br />

<br />

<br />

+ (maxon units)<br />

L L max<br />

Notes:<br />

– <br />

<br />

– <br />

<br />

– <br />

<br />

Achievable speed at given voltage supply<br />

n (V U ) · (maxon units)<br />

L CC max <br />

n0,UN – L Symbol Name SI<br />

<br />

L <br />

N <br />

V <br />

max <br />

<br />

U N<br />

Symbol Name maxon<br />

n <br />

n L <br />

n N


8.3 Size of the <strong>motor</strong> choke with PWM controllers<br />

Calculation of current ripple<br />

PWM scheme 1-Q 2-level (4-Q) 3-level (4-Q)<br />

<br />

<br />

<br />

L tot<br />

V CC<br />

PP,max = 4 · Ltot · f PWM<br />

L tot = L int + mot + L ext<br />

PP,max = 2 · Ltot · f PWM<br />

<br />

V CC<br />

V CC<br />

PP,max = 4 · Ltot · f PWM<br />

<br />

L mot.<br />

L mot .<br />

– I N <br />

I N <br />

– I N <br />

<br />

Calculation, additional external <strong>motor</strong> choke<br />

PWM scheme 1-Q and 3-level (4-Q) 2-level (4-Q)<br />

V CC<br />

L ext = 6 · IN · f PWM<br />

– L int – 0.3 · L mot<br />

L ext <br />

L ext > <br />

DC amplifier<br />

PWM<br />

L int<br />

L ext<br />

DC<br />

<strong>motor</strong><br />

L mot<br />

Symbol Name SI<br />

f <br />

I N <br />

L ext <br />

<br />

L int <br />

EC amplifier<br />

PWM<br />

PWM<br />

PWM<br />

V CC<br />

L ext = 3 · IN · f PWM<br />

1 /2 L int<br />

1 /2 L int<br />

1 /2 L int<br />

1 /2 L ext<br />

1 /2 L ext<br />

1 /2 L ext<br />

– L int – 0.3 · L mot<br />

EC<br />

<strong>motor</strong><br />

L mot<br />

Symbol Name SI<br />

L mot <br />

L tot <br />

V


9. Thermal behavior<br />

9.1 Basics<br />

Heat sources<br />

Iron losses in EC <br />

<strong>motor</strong>s and <strong>motor</strong>s<br />

<br />

with iron core winding<br />

P = V, magn 30<br />

n · Mmagn<br />

<br />

V,eddy <br />

Resistance R<br />

R <br />

TW = R · Imot Joule power losses<br />

Rmot in winding<br />

R<br />

Temperature T = Rmot · · T – <br />

25°C TW Friction losses: in the bearings and in the brushes (brushed DC <strong>motor</strong>s)<br />

Losses in the<br />

gearhead<br />

Efficiency <br />

100%<br />

80%<br />

60%<br />

40%<br />

M G, cont<br />

1-stage<br />

3-stage<br />

5-stage<br />

Torque M<br />

Stall torque reduced through temperature rise<br />

<br />

<br />

k 30 <br />

P = · n · M · (1 )<br />

V,R mot mot G<br />

<br />

P = · n · M ·<br />

V,R 30 L L<br />

1G G M HT = k M · I AT = k M · RTW<br />

Storing heat<br />

th v = c = cFemot = cFe Symbol Name SI<br />

th <br />

<br />

<br />

<br />

c <br />

I T <br />

I mot <br />

k <br />

<br />

t <br />

<br />

HT T <br />

L <br />

magn <br />

mot <br />

m <br />

m <br />

m mot <br />

m <br />

<br />

V <br />

V,eddy <br />

<br />

U mot<br />

Symbol Name SI<br />

V,magn <br />

V,R <br />

<br />

R mot <br />

R T <br />

T <br />

T <br />

t <br />

mot <br />

<br />

<br />

<br />

Symbol Name maxon<br />

n <br />

n L <br />

n mot <br />

Symbol Name Value<br />

<br />

c <br />

c Fe


Analogy to electrical circuit:<br />

Power loss P V Thermal Electrical Current I<br />

C th,W<br />

R th1<br />

C th,s<br />

R th2<br />

T W<br />

T S<br />

∆T S<br />

T A<br />

∆T W<br />

Thermal <br />

<br />

Symbol Name Unit<br />

<br />

V <br />

<br />

<br />

T <br />

Rth <br />

<br />

Rth <br />

<br />

<br />

<br />

<br />

U 1<br />

U 2<br />

Electrical <br />

<br />

GND<br />

Symbol Name Unit<br />

<br />

I <br />

V<br />

V<br />

V<br />

R <br />

R <br />

F<br />

F<br />

Heating of a simple body Cooling of a simple body<br />

T end<br />

T start<br />

Temperature T<br />

th<br />

63%<br />

Heating<br />

T max = 100%<br />

–<br />

t<br />

th [ ]<br />

= end · 1<br />

Time t<br />

Symbol Name SI<br />

T <br />

T <br />

T end <br />

T start <br />

T <br />

T <br />

T start<br />

T end<br />

Temperature T<br />

th<br />

63%<br />

t<br />

th = start –<br />

R 1<br />

R 2<br />

T max = 100%<br />

Cooling<br />

C 1<br />

C 2<br />

Time t<br />

Symbol Name SI<br />

t <br />

max <br />

<br />

t <br />

th


9.2 Continuous operation<br />

<br />

<br />

<br />

Motor: Winding and stator temperature<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

Temperature T<br />

Heating of the winding in accordance<br />

with the thermal time constant<br />

of the winding W<br />

Heating of the stator in accordance<br />

with the thermal time constant<br />

of the stator s<br />

Thermal equilibrium<br />

after several stator time<br />

constants<br />

<br />

<br />

Stator<br />

<br />

20<br />

Winding<br />

Temperature<br />

0<br />

difference<br />

1 10 100<br />

Time t<br />

1000 10000<br />

Gearhead: Housing temperature<br />

P V, G<br />

P V, G<br />

R th,G<br />

T G<br />

T A<br />

∆T G<br />

T W,∞<br />

T S,∞<br />

Symbol Name SI<br />

I mot <br />

<br />

<br />

R T <br />

R th, <br />

R th <br />

<br />

R th <br />

<br />

T <br />

T <br />

T <br />

T <br />

T A<br />

<br />

R th1<br />

R th2<br />

∆T W<br />

∆T S<br />

= T = R th + R th <br />

2<br />

R · R · I th1 TA mot<br />

= W 2<br />

1Cu · R · R · I th1 TA mot<br />

R th2<br />

S = S – A = Rth1 + R th2<br />

= T = R <br />

W<br />

R : R of<br />

<br />

Symbol Name SI<br />

T <br />

T <br />

T <br />

t <br />

<br />

<br />

<br />

<br />

<br />

<br />

Symbol Name Value


Permissible nominal current I N<br />

n N<br />

Speed n<br />

Max. permissible speed<br />

Continuous<br />

operation<br />

Determining R th2,mod<br />

P V<br />

T W<br />

PV TS PV TA R th1<br />

R th2, mod<br />

∆T S<br />

M N<br />

I N<br />

Short-term<br />

operation<br />

Torque M<br />

Motor current I mot<br />

<br />

<br />

<br />

I N,TA = I N ·<br />

Symbol Name SI<br />

I mot <br />

I N <br />

I T <br />

<br />

N <br />

V <br />

R T <br />

R th <br />

<br />

R th <br />

<br />

R th,mod <br />

<br />

T <br />

T – T max A<br />

T – 25°C<br />

max<br />

<br />

<br />

I N,TA = I N ·<br />

T – T R + R max A<br />

th1 th2<br />

·<br />

T – 25°C R + R max th1 th2,mod<br />

Motor under original conditions<br />

– <br />

Separate measurement during<br />

continuous operation<br />

I mot<br />

– T <br />

– T <br />

2<br />

1 · R · R · I Cu th1 TA mot<br />

R · th2,mod S 2<br />

RTA · I · (1Cu · )<br />

mot<br />

S<br />

Symbol Name SI<br />

T max <br />

<br />

T <br />

T <br />

<br />

<br />

Symbol Name maxon<br />

n <br />

n N <br />

Symbol Name Value


9.3 Cyclic and intermittent operation (continuously repeated)<br />

<br />

<br />

90.00<br />

Average<br />

80.00<br />

70.00<br />

60.00<br />

Time constant<br />

winding 9s<br />

end temparture,<br />

winding<br />

50.00<br />

40.00<br />

On Off On<br />

(1s) (3s)<br />

Off<br />

30.00<br />

0.1 1 10 100 1000 10000<br />

Time t<br />

Average temperature rise during intermittent operation<br />

<br />

<br />

2<br />

(R + R R I th1 th2 TA RMS<br />

= W 2<br />

1Cu (R + R R I th1 th2 TA RMS<br />

Temperature T<br />

Intermittent operation<br />

Current I<br />

Ion IRMS Temperature T<br />

T W,av<br />

T S,∞<br />

t on<br />

t off<br />

Time t<br />

T max<br />

Symbol Name SI<br />

I <br />

I N <br />

I T <br />

I on <br />

I <br />

R T <br />

R th <br />

<br />

R th <br />

<br />

T <br />

T <br />

R th2<br />

S = (Rth1 + R th2 ) W<br />

<br />

I RMS = I on ·<br />

<br />

t on<br />

t on + t off<br />

I <br />

<br />

T – T max A<br />

I ·<br />

on N T – 25°C max · ton – toff t on<br />

I ont on<br />

t off <br />

2 I N<br />

2 I on<br />

T max A<br />

T – 25°C<br />

max<br />

– 1 t on<br />

Symbol Name SI<br />

T max <br />

<br />

T <br />

T <br />

t <br />

t off <br />

t on <br />

<br />

<br />

Symbol Name Value


9.4 Short-term operation<br />

<br />

<br />

<br />

<br />

<br />

140<br />

120<br />

100<br />

Temperature T<br />

<br />

80<br />

60<br />

40<br />

20<br />

≤ 0.1 s <br />

Winding<br />

<br />

Stator<br />

Temperature<br />

difference<br />

0<br />

1 10 100<br />

Time t<br />

1000 10000<br />

T W,<br />

T S,<br />

T A<br />

<br />

R th1<br />

R th2<br />

∆T W<br />

Overload factor K<br />

<br />

Meaning:<br />

Imot K = ·<br />

– T max IN – ton t on<br />

t on <br />

I mot<br />

<br />

Symbol Name SI<br />

I mot <br />

I N <br />

<br />

<br />

R T <br />

R th <br />

<br />

R th <br />

<br />

T <br />

T <br />

T max <br />

<br />

K =<br />

T = T <br />

= R th <br />

2<br />

R · R · I th1 TA mot<br />

= W 2<br />

1Cu · R · R · I th1 TA mot<br />

T – 25°C R max th1<br />

·<br />

T – T R + R max S th1 th2<br />

1<br />

1 – exp – t on<br />

W<br />

K 2<br />

t on W ln K 2 – 1<br />

T max – T S<br />

I mot = K · I N · Tmax – 25 C°<br />

·<br />

R th1 + R th2<br />

R th1<br />

Symbol Name SI<br />

T <br />

T <br />

T <br />

t <br />

t on <br />

– <br />

<br />

<br />

<br />

<br />

Symbol Name Value


10. Tables<br />

10.1 maxon Conversion Tables<br />

General Information<br />

<br />

<br />

<br />

meter m<br />

<br />

<br />

<br />

<br />

<br />

<br />

ampere <br />

<br />

Conversion example<br />

<br />

<br />

<br />

<br />

Factors used for …<br />

… conversions:<br />

m<br />

… gravitational acceleration:<br />

… derived units:<br />

<br />

<br />

Decimal multiples and fractions of units<br />

<br />

<br />

of ten of ten<br />

<br />

h <br />

m <br />

6 m <br />

9 n <br />

p <br />

<br />

<br />

Power <br />

mW <br />

mW Torque <br />

<br />

<br />

<br />

<br />

<br />

<br />

Moment of inertia ]<br />

<br />

6 <br />

<br />

5<br />

<br />

Mass Force <br />

g p<br />

<br />

g <br />

<br />

<br />

6 <br />

Length <br />

in ft m mm <br />

m <br />

<br />

mm <br />

in <br />

ft <br />

Angular velocity ] Angular acceleration ]<br />

rpm min rpm Linear velocity ]<br />

m rpm<br />

<br />

<br />

5 <br />

Temperature


Type of friction Friction condition Description


Examples


11. Symbol list for the Formulae Handbook<br />

Name Symbol Unit Page number<br />

a <br />

F a <br />

F a / F a <br />

a <br />

<br />

T <br />

<br />

9<br />

<br />

<br />

<br />

end start <br />

in L <br />

T <br />

F <br />

<br />

<br />

F p 9<br />

N <br />

m <br />

I <br />

i <br />

I on <br />

<br />

R I R <br />

f <br />

<br />

d m <br />

X d X m <br />

d m <br />

d m <br />

d m <br />

l m 9<br />

m <br />

s r s m <br />

F H 9<br />

h m <br />

<br />

...n t …n <br />

e m <br />

V,eddy W <br />

<br />

<br />

<br />

el W <br />

R / R / R <br />

el <br />

<br />

T end <br />

T / T <br />

R <br />

R R L R x <br />

F <br />

f <br />

F R 9<br />

V,R W <br />

R <br />

<br />

T <br />

g <br />

<br />

th <br />

<br />

h m <br />

Z <br />

ind <br />

L <br />

L ext <br />

L int <br />

r i m <br />

R i <br />

n in rpm <br />

in <br />

in <br />

<br />

W <br />

l m <br />

abc abc m <br />

I L <br />

F L <br />

F L / F L <br />

R L <br />

n L rpm <br />

L <br />

56


Name Symbol Unit Page number<br />

v L <br />

L <br />

m <br />

m L <br />

m <br />

m R <br />

m Z <br />

m <br />

m mot <br />

m F <br />

m <br />

m <br />

a max <br />

max <br />

<br />

<br />

N max <br />

n max,in rpm <br />

n max,L rpm <br />

T max <br />

max W <br />

n max rpm <br />

max <br />

max <br />

v max <br />

max <br />

r m <br />

<br />

rpm <br />

mech,in W <br />

L mech,L W <br />

in <br />

L L <br />

mech W <br />

m <br />

L m‘ <br />

<br />

s s <br />

x x <br />

y y <br />

<br />

<br />

X X <br />

<br />

<br />

<br />

in <br />

L <br />

<br />

<br />

R <br />

<br />

I mot <br />

n mot rpm <br />

mot <br />

mot <br />

I <br />

n rpm <br />

N n rpm <br />

T I <br />

I N <br />

n N rpm <br />

N <br />

N <br />

F N 9<br />

<br />

t off <br />

t on <br />

r a m <br />

I out <br />

out <br />

<br />

I , I <br />

F / F / F x <br />

R , R <br />

x <br />

<br />

T <br />

F a <br />

<br />

p m <br />

x x / x m <br />

<br />

x <br />

W <br />

V W


Name Symbol Unit Page number<br />

V,magn W <br />

p 9<br />

R d <br />

R u <br />

f <br />

<br />

r / r / r m <br />

R m <br />

X <br />

X L <br />

i <br />

i <br />

n ,theor rpm <br />

k n,theor <br />

T R T <br />

<br />

R <br />

I <br />

<br />

v L <br />

<br />

c <br />

c <br />

c Fe <br />

<br />

n end rpm <br />

n start rpm <br />

rpm <br />

in rpm <br />

k n <br />

rpm <br />

p m <br />

k 9<br />

F 9<br />

H <br />

T HT <br />

X or X L X <br />

I <br />

T I <br />

T <br />

J <br />

+V <br />

V <br />

T <br />

T start <br />

t <br />

<br />

<br />

<br />

<br />

L mot <br />

R mot <br />

kl <br />

R <br />

R th <br />

R th,mod <br />

R th <br />

<br />

th <br />

<br />

a / b / c a b c <br />

<br />

<br />

...n ...n <br />

k <br />

<br />

magn <br />

in in <br />

<br />

k m <br />

I <br />

L tot <br />

tot <br />

t tot <br />

<br />

<br />

v end <br />

v start <br />

<br />

L R <br />

<br />

F 9<br />

T R <br />

T R <br />

T


academy.maxon<strong>motor</strong>.ch

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!