2007, Piran, Slovenia

2007, Piran, Slovenia 2007, Piran, Slovenia

30.04.2013 Views

Environmental Ergonomics XII Igor B. Mekjavic, Stelios N. Kounalakis & Nigel A.S. Taylor (Eds.), © BIOMED, Ljubljana 2007 DISCUSSION Skeletal muscle atrophy is one of the primary problems associated with microgravity and simulated weightlessness models. Our findings confirm previous observation of a greater susceptibility to atrophy of the postural muscles, such as the GM, and least of the non-antigravity muscles, such as the BB. Contractile changes were described for contraction time (Tc) and the peak amplitude (Dm) of the twitch muscle contraction response. Tc changes were significantly reduced in ES and increased in GM muscles. This observation is somewhat surprising in that both the ES and GM are extensor, i.e. antigravity, muscles. Whereas the decrease in Tc seems consistent with a greater expression of fast MHC isoforms with disuse (Trappe et al., 2004), an increase Tc in the GM is difficult to explain, particularly because previous bed rest studies have found an increase in fast MHC isoforms expression (Trappe et al., 2004). Dm changes were more predictable as we observed increased Dm in all leg and lower back muscles. Statistical significance was confirmed in GM, VM and BF muscles. As the subjects were allowed to move their arms freely no affect was observed in BB muscle, neither in Dm nor in Tc. Dm confirmed that subjects with stiffer muscles in the baseline had bigger Dm increase after bed-rest (P < 0.05 in BB, BF and VM). This observation may be explained by, 1) an increase in intramuscular connective tissue, known to occur with atrophy and, 2) an increase in antagonist muscle co-activation, frequently found in atrophy and sarcopenia (Reeves et al. 2006). It seems plausible that an increase in muscle stiffness may be needed to compensate for the loss in tendon stiffness known to occur with prolonged bed rest (Reeves et al. 2005), since this may preserve the stiffness of the muscle-tendon complex as a whole. REFERENCES Adams G.R., Caiozzo V.J. & Baldwin K.M. (2003). Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95, 2185-2201. Caiozzo V.J., Haddad F., Baker M.J., Herrick R.E., Prietto N. & Baldwin K.M. (1996). Microgravity-induced transformations of myosin isoforms and contractile properties of skeletal muscle. Journal of Applied Physiology 81, 123-132. Caiozzo V.J., Baker M.J., Herrick R.E., Tao M. & Baldwin K.M. (1994) Effect of spaceflight on skeletal muscle: mechanical properties and myosin isoform content of a slow muscle. J Appl Physiol 76, 1764-1773. Dahmane R., Valenčič V., Knez N. & Eržen I. (2000). Evaluation of the ability to make non-invasive estimation of muscle contractile properties on the basis of the muscle belly response. Med Biol Eng Comput 83, 51-55. Dahmane R.G., Djordjevič S., Šimunič B. & Valenčič V. (2005). Spatial fiber type distribution in normal human muscle histochemical and tensiomyographical evaluation. J Biomech, 38(12), 2451-2459. Delagi E.F., Perotto A., Iazzetti J., & Morrison D. (1975). Anatomic guide for the electromyographer: the limbs. Charles C. Thomas, Springfield, Illinois, USA. 54

Gravitational Physiology Edgerton V.R., Zhou M.Y., Ohira Y., Klitgaard H., Jiang B., Bell G., Harri, B., Saltin B., Gollnick P.D., Roy R.R., Day M.K. & Greenisen M. (1995). Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. Journal of Applied Physiology 78, 1733-1739. Evetovich T.K., Housh T.J., Stout J.R., Johnson G.O., Smith D.B. & Ebersole K.T. (1997). Mechanomyographic responses to concentric isokinetic muscle contractions, Europ J Appl Occup Physiol 75(2), 166-169. Fitts R.H., Riley D.R. & Widrick J.J. (2000). Microgravity and skeletal muscle. J. Appl. Physiol. 89, 823–839. Grigoryeva L.S. & Kozlovskaya I.B. (1987). Effect of weightlessness and hypokinesis on velocity and strength properties of human muscles. Kosmicheskaya Biologiya I Aviakosmicheskaya Meditsina 21, 27-30. Koryak Y. (1995). Contractile properties of the human triceps surae muscle during simulated weightlessness. Eur J Appl Physiol 70, 344–350. LeBlanc A., Rowe R., Schneider V., Evans H. & Hedrick T. (1995). Regional muscle loss after duration spaceflight. Aviat Space Environ Med 66, 1151-1154. Ohira Y., Yoshinaga T., Ohara M., Nonaka I., Yoshioka T., Yamashita-Goto K., Shenkman B.S., Kozlovskaya I.B., Roy R.R. & Edgerton V.R. (1999). Myonuclear domain and myosin phenotype in human soleus after bed rest with or without loading. J Appl Physiol 87, 1776–1785. Pišot R., Valenčič V., Šimunič B. (2002). Influence of biomechanical properties of particular skeletal muscles on child motor development. Ann Ser hist nat 12, 99- 106. Reeves N.J., Maganaris C.N., Ferretti G., Narici M.V. (2002). Influence of simulated microgravity on human skeletal muscle architecture and function. J Gravit Physiol 9(1), 153-154. Reeves N.D., Maganaris C.N., Ferretti G., Narici M.V. (1998). Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol. 98(6), 2278-86. Reeves N.D., Narici M.V., Maganaris C.N. (2002). Myotendinous plasticity to ageing and resistance exercise in humans. Exp Physiol, 91(3), 483-98. Toursel T., Stevens L., Granzier H. & Mounier Y. (2002). Passive tension of rat skeletal muscle fibres: effects of unloading conditions. J Appl Physiol 92(4), 1465- 1472. Trappe S., Trappe T., Gallagher P., Harber M., Alkner B., Tesch P. (2004). Human single muscle fibre function with 84 day bed-rest and resistance exercise. J Physiol 557(2), 501-513. Valenčič V. (1990). Direct measurement of the skeletal muscle tonus. Advances in External Control of Human Extremities, Nauka, Beograd. Widrick J.J., Knuth S.T., Norenberg K.M., Romatowski J.G., Bain J.L., Riley D.A., Karhanek M., Trappe S.W., Trappe T.A., Costill D.L. & Fitts R.H. (1999). Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J Physiol 516, 915–930. Zhou M.Y., Klitgaard H., Saltin B., Roy R.R., Edgerton V.R. & Gollnick P.D. (1995). Myosin heavy chain isoforms of human muscle after short-term spaceflight. J Appl Physiol 78, 1740-1744. 55

Gravitational Physiology<br />

Edgerton V.R., Zhou M.Y., Ohira Y., Klitgaard H., Jiang B., Bell G., Harri, B., Saltin<br />

B., Gollnick P.D., Roy R.R., Day M.K. & Greenisen M. (1995). Human fiber size<br />

and enzymatic properties after 5 and 11 days of spaceflight. Journal of Applied<br />

Physiology 78, 1733-1739.<br />

Evetovich T.K., Housh T.J., Stout J.R., Johnson G.O., Smith D.B. & Ebersole K.T.<br />

(1997). Mechanomyographic responses to concentric isokinetic muscle<br />

contractions, Europ J Appl Occup Physiol 75(2), 166-169.<br />

Fitts R.H., Riley D.R. & Widrick J.J. (2000). Microgravity and skeletal muscle. J.<br />

Appl. Physiol. 89, 823–839.<br />

Grigoryeva L.S. & Kozlovskaya I.B. (1987). Effect of weightlessness and hypokinesis<br />

on velocity and strength properties of human muscles. Kosmicheskaya Biologiya<br />

I Aviakosmicheskaya Meditsina 21, 27-30.<br />

Koryak Y. (1995). Contractile properties of the human triceps surae muscle during<br />

simulated weightlessness. Eur J Appl Physiol 70, 344–350.<br />

LeBlanc A., Rowe R., Schneider V., Evans H. & Hedrick T. (1995). Regional muscle<br />

loss after duration spaceflight. Aviat Space Environ Med 66, 1151-1154.<br />

Ohira Y., Yoshinaga T., Ohara M., Nonaka I., Yoshioka T., Yamashita-Goto K.,<br />

Shenkman B.S., Kozlovskaya I.B., Roy R.R. & Edgerton V.R. (1999).<br />

Myonuclear domain and myosin phenotype in human soleus after bed rest with or<br />

without loading. J Appl Physiol 87, 1776–1785.<br />

Pišot R., Valenčič V., Šimunič B. (2002). Influence of biomechanical properties of<br />

particular skeletal muscles on child motor development. Ann Ser hist nat 12, 99-<br />

106.<br />

Reeves N.J., Maganaris C.N., Ferretti G., Narici M.V. (2002). Influence of simulated<br />

microgravity on human skeletal muscle architecture and function. J Gravit<br />

Physiol 9(1), 153-154.<br />

Reeves N.D., Maganaris C.N., Ferretti G., Narici M.V. (1998). Influence of 90-day<br />

simulated microgravity on human tendon mechanical properties and the effect of<br />

resistive countermeasures. J Appl Physiol. 98(6), 2278-86.<br />

Reeves N.D., Narici M.V., Maganaris C.N. (2002). Myotendinous plasticity to ageing<br />

and resistance exercise in humans. Exp Physiol, 91(3), 483-98.<br />

Toursel T., Stevens L., Granzier H. & Mounier Y. (2002). Passive tension of rat<br />

skeletal muscle fibres: effects of unloading conditions. J Appl Physiol 92(4), 1465-<br />

1472.<br />

Trappe S., Trappe T., Gallagher P., Harber M., Alkner B., Tesch P. (2004). Human<br />

single muscle fibre function with 84 day bed-rest and resistance exercise. J<br />

Physiol 557(2), 501-513.<br />

Valenčič V. (1990). Direct measurement of the skeletal muscle tonus. Advances in<br />

External Control of Human Extremities, Nauka, Beograd.<br />

Widrick J.J., Knuth S.T., Norenberg K.M., Romatowski J.G., Bain J.L., Riley D.A.,<br />

Karhanek M., Trappe S.W., Trappe T.A., Costill D.L. & Fitts R.H. (1999). Effect<br />

of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J<br />

Physiol 516, 915–930.<br />

Zhou M.Y., Klitgaard H., Saltin B., Roy R.R., Edgerton V.R. & Gollnick P.D. (1995).<br />

Myosin heavy chain isoforms of human muscle after short-term spaceflight. J<br />

Appl Physiol 78, 1740-1744.<br />

55

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!