Progress in Polymer Science

Progress in Polymer Science Progress in Polymer Science

homepage.ntu.edu.tw
from homepage.ntu.edu.tw More from this publisher
30.04.2013 Views

Progress in Polymer Science 35 (2010) 837–867 Contents lists available at ScienceDirect Progress in Polymer Science journal homepage: www.elsevier.com/locate/ppolysci Polymer nanocomposites based on functionalized carbon nanotubes Nanda Gopal Sahoo a , Sravendra Rana b , Jae Whan Cho b,∗ , Lin Li a,∗∗ , Siew Hwa Chan a a School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore b Department of Textile Engineering, Konkuk University, Seoul 143-701, Republic of Korea article info Article history: Received 5 August 2008 Received in revised form 10 March 2010 Accepted 12 March 2010 Available online 16 March 2010 Keywords: Nanocomposites Carbon nanotubes Mechanical properties Functionalization Contents abstract Carbon nanotubes (CNTs) exhibit excellent mechanical, electrical, and magnetic properties as well as nanometer scale diameter and high aspect ratio, which make them an ideal reinforcing agent for high strength polymer composites. However, since CNTs usually form stabilized bundles due to Van der Waals interactions, are extremely difficult to disperse and align in a polymer matrix. The biggest issues in the preparation of CNT-reinforced composites reside in efficient dispersion of CNTs into a polymer matrix, the assessment of the dispersion, and the alignment and control of the CNTs in the matrix. There are several methods for the dispersion of nanotubes in the polymer matrix such as solution mixing, melt mixing, electrospinning, in-situ polymerization and chemical functionalization of the carbon nanotubes, etc. These methods and preparation of high performance CNT-polymer composites are described in this review. A critical comparison of various CNT functionalization methods is given. In particular, CNT functionalization using click chemistry and the preparation of CNT composites employing hyperbranched polymers are stressed as potential techniques to achieve good CNT dispersion. In addition, discussions on mechanical, thermal, electrical, electrochemical and optical properties and applications of polymer/CNT composites are included. © 2008 Elsevier Ltd. All rights reserved. 1. Introduction ........................................................................................................................ 838 2. Functionalization of CNT........................................................................................................... 838 2.1. Defect functionalization .................................................................................................... 838 2.2. Non-covalent functionalization ............................................................................................ 839 2.3. Covalent functionalization ................................................................................................. 840 2.4. Functionalization using click chemistry ................................................................................... 842 3. Preparation methods of polymer/CNT nanocomposites .......................................................................... 847 3.1. Solution mixing ............................................................................................................ 847 3.2. Melt mixing................................................................................................................. 848 3.3. In-situ polymerization ..................................................................................................... 848 4. Preparation of CNT nanocomposites using dendritic polymers ................................................................... 850 4.1. CNT nanocomposites via covalently functionalized CNT-dendritic polymers ............................................ 850 4.2. CNT nanocomposites via non-covalently functionalized CNT-dendritic polymers ....................................... 852 ∗ Corresponding author. Tel.: +82 2 450 3513; fax: +82 2 457 8895. ∗∗ Corresponding author. Tel: +65 67906285; fax: +6794 2035. E-mail addresses: jwcho@konkuk.ac.kr (J.W. Cho), mlli@ntu.edu.sg (L. Li). 0079-6700/$ – see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.progpolymsci.2010.03.002

<strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

Contents lists available at <strong>Science</strong>Direct<br />

<strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong><br />

journal homepage: www.elsevier.com/locate/ppolysci<br />

<strong>Polymer</strong> nanocomposites based on functionalized carbon nanotubes<br />

Nanda Gopal Sahoo a , Sravendra Rana b , Jae Whan Cho b,∗ , L<strong>in</strong> Li a,∗∗ , Siew Hwa Chan a<br />

a School of Mechanical and Aerospace Eng<strong>in</strong>eer<strong>in</strong>g, Nanyang Technological University, 50 Nanyang Avenue, 639798 S<strong>in</strong>gapore, S<strong>in</strong>gapore<br />

b Department of Textile Eng<strong>in</strong>eer<strong>in</strong>g, Konkuk University, Seoul 143-701, Republic of Korea<br />

article <strong>in</strong>fo<br />

Article history:<br />

Received 5 August 2008<br />

Received <strong>in</strong> revised form 10 March 2010<br />

Accepted 12 March 2010<br />

Available onl<strong>in</strong>e 16 March 2010<br />

Keywords:<br />

Nanocomposites<br />

Carbon nanotubes<br />

Mechanical properties<br />

Functionalization<br />

Contents<br />

abstract<br />

Carbon nanotubes (CNTs) exhibit excellent mechanical, electrical, and magnetic properties<br />

as well as nanometer scale diameter and high aspect ratio, which make them an ideal<br />

re<strong>in</strong>forc<strong>in</strong>g agent for high strength polymer composites. However, s<strong>in</strong>ce CNTs usually form<br />

stabilized bundles due to Van der Waals <strong>in</strong>teractions, are extremely difficult to disperse<br />

and align <strong>in</strong> a polymer matrix. The biggest issues <strong>in</strong> the preparation of CNT-re<strong>in</strong>forced<br />

composites reside <strong>in</strong> efficient dispersion of CNTs <strong>in</strong>to a polymer matrix, the assessment of<br />

the dispersion, and the alignment and control of the CNTs <strong>in</strong> the matrix. There are several<br />

methods for the dispersion of nanotubes <strong>in</strong> the polymer matrix such as solution mix<strong>in</strong>g,<br />

melt mix<strong>in</strong>g, electrosp<strong>in</strong>n<strong>in</strong>g, <strong>in</strong>-situ polymerization and chemical functionalization of the<br />

carbon nanotubes, etc. These methods and preparation of high performance CNT-polymer<br />

composites are described <strong>in</strong> this review. A critical comparison of various CNT functionalization<br />

methods is given. In particular, CNT functionalization us<strong>in</strong>g click chemistry and the<br />

preparation of CNT composites employ<strong>in</strong>g hyperbranched polymers are stressed as potential<br />

techniques to achieve good CNT dispersion. In addition, discussions on mechanical,<br />

thermal, electrical, electrochemical and optical properties and applications of polymer/CNT<br />

composites are <strong>in</strong>cluded.<br />

© 2008 Elsevier Ltd. All rights reserved.<br />

1. Introduction ........................................................................................................................ 838<br />

2. Functionalization of CNT........................................................................................................... 838<br />

2.1. Defect functionalization .................................................................................................... 838<br />

2.2. Non-covalent functionalization ............................................................................................ 839<br />

2.3. Covalent functionalization ................................................................................................. 840<br />

2.4. Functionalization us<strong>in</strong>g click chemistry ................................................................................... 842<br />

3. Preparation methods of polymer/CNT nanocomposites .......................................................................... 847<br />

3.1. Solution mix<strong>in</strong>g ............................................................................................................ 847<br />

3.2. Melt mix<strong>in</strong>g................................................................................................................. 848<br />

3.3. In-situ polymerization ..................................................................................................... 848<br />

4. Preparation of CNT nanocomposites us<strong>in</strong>g dendritic polymers ................................................................... 850<br />

4.1. CNT nanocomposites via covalently functionalized CNT-dendritic polymers ............................................ 850<br />

4.2. CNT nanocomposites via non-covalently functionalized CNT-dendritic polymers ....................................... 852<br />

∗ Correspond<strong>in</strong>g author. Tel.: +82 2 450 3513; fax: +82 2 457 8895.<br />

∗∗ Correspond<strong>in</strong>g author. Tel: +65 67906285; fax: +6794 2035.<br />

E-mail addresses: jwcho@konkuk.ac.kr (J.W. Cho), mlli@ntu.edu.sg (L. Li).<br />

0079-6700/$ – see front matter © 2008 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.progpolymsci.2010.03.002


838 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

5. Mechanical properties of polymer/CNT nanocomposites ......................................................................... 853<br />

5.1. Polyurethane/CNT composites ............................................................................................. 853<br />

5.2. Polyimide/CNT nanocomposites ........................................................................................... 855<br />

6. Electrical conductivity of polymer/CNT nanocomposites ......................................................................... 856<br />

7. Optical properties of polymer/CNT nanocomposites.............................................................................. 857<br />

8. Applications ........................................................................................................................ 858<br />

9. Conclud<strong>in</strong>g remarks................................................................................................................ 859<br />

Acknowledgments ................................................................................................................. 859<br />

References ......................................................................................................................... 859<br />

1. Introduction<br />

S<strong>in</strong>ce the discovery of carbon nanotubes (CNTs) <strong>in</strong><br />

1991 by Iijima [1], they have received much attention for<br />

their many potential applications, such as nanoelectronic<br />

and photovoltaic devices [2,3], superconductors [4], electromechanical<br />

actuators [5], electrochemical capacitors<br />

[6], nanowires [7], and nanocomposite materials [8,9]. Carbon<br />

nanotubes may be classified as s<strong>in</strong>gle-walled carbon<br />

nanotubes (SWNTs) [10,11], double-walled carbon nanotubes<br />

(DWNTs) [12,13] or multi-walled carbon nanotubes<br />

(MWNTs) [1]. SWNT and DWNT comprise cyl<strong>in</strong>ders of one<br />

or two (concentric), respectively, graphene sheets, whereas<br />

MWNT consists several concentric cyl<strong>in</strong>drical shells of<br />

graphene sheets. CNTs are synthesized <strong>in</strong> a variety of ways,<br />

such as arc discharge [10], laser ablation [14], high pressure<br />

carbon monoxide (HiPCO) [15], and chemical vapor<br />

deposition (CVD) [16,17]. CNTs exhibit excellent mechanical,<br />

electrical, thermal and magnetic properties [18,19]. The<br />

exact magnitude of these properties depends on the diameter<br />

and chirality of the nanotubes and whether they are<br />

s<strong>in</strong>gle-walled, double-walled or multi-walled form. Typical<br />

properties of CNTs are collected <strong>in</strong> Table 1 [20–25].<br />

Because of these excellent properties, CNTs can be used<br />

as ideal re<strong>in</strong>forc<strong>in</strong>g agents for high performance polymer<br />

composites. Ajayan et al. [26] reported the first polymer<br />

nanocomposites us<strong>in</strong>g CNTs as a filler. The number of articles<br />

and patents <strong>in</strong> polymer composites conta<strong>in</strong><strong>in</strong>g CNTs<br />

is <strong>in</strong>creas<strong>in</strong>g every year [27]. Various polymer matrices<br />

are used for composites, <strong>in</strong>clud<strong>in</strong>g thermoplastics [28–30],<br />

thermosett<strong>in</strong>g res<strong>in</strong>s [31,32], liquid crystall<strong>in</strong>e polymers<br />

[33,34], water-soluble polymers [35], conjugated polymers<br />

[3], among others. The properties of polymer composites<br />

that can be improved due to presence of CNTs <strong>in</strong>clude tensile<br />

strength [36,37], tensile modulus [38,39], toughness<br />

[40], glass transition temperature [41,42], thermal conductivity<br />

[43,44], electrical conductivity [45,46], solvent<br />

resistance [47], optical properties [48,49], etc.<br />

Table 1<br />

Typical properties of CNTs [20–25].<br />

Property SWNT DWNT MWNT<br />

Tensile strength (GPa) 50–500 23–63 10–60<br />

Elastic modulus (TPa) ∼1 – 0.3–1<br />

Elongation at break (%) 5.8 28 –<br />

Density (g/cm 3 ) 1.3–1.5 1.5 1.8–2.0<br />

Electrical conductivity (S/m) ∼10 6<br />

Thermal stability >700 ◦ C (<strong>in</strong> air)<br />

Typical diameter 1 nm ∼5nm ∼20 nm<br />

Specific surface area 10–20 m 2 /g<br />

<strong>Progress</strong> <strong>in</strong> polymer/carbon nanotube composite<br />

research considered here will <strong>in</strong>cluded studies on<br />

functionalization of CNTs their mechanical, electrical<br />

conductivity and optical properties, and applications of<br />

polymer/CNT composites.<br />

2. Functionalization of CNT<br />

S<strong>in</strong>ce CNTs usually agglomerate due to Van der Waals<br />

force, they are extremely difficult to disperse and align <strong>in</strong><br />

a polymer matrix. Thus, a significant challenge <strong>in</strong> develop<strong>in</strong>g<br />

high performance polymer/CNTs composites is to<br />

<strong>in</strong>troduce the <strong>in</strong>dividual CNTs <strong>in</strong> a polymer matrix <strong>in</strong> order<br />

to achieve better dispersion and alignment and strong<br />

<strong>in</strong>terfacial <strong>in</strong>teractions, to improve the load transfer across<br />

the CNT-polymer matrix <strong>in</strong>terface. The functionalization of<br />

CNT is an effective way to prevent nanotube aggregation,<br />

which helps to better disperse and stabilize the CNTs with<strong>in</strong><br />

a polymer matrix. There are several approaches for functionalization<br />

of CNTs <strong>in</strong>clud<strong>in</strong>g defect functionalization,<br />

covalent functionalization and non-covalent functionalization<br />

[50]. These functionalization methods will be<br />

summarized here.<br />

2.1. Defect functionalization<br />

CNTs are purified by oxidative methods to remove<br />

metal particles or amorphous carbon from the raw materials<br />

[51,52]. In these methods, defects are preferentially<br />

observed at the open ends of CNTs. The purified SWNTs<br />

conta<strong>in</strong> oxidized carbon atoms <strong>in</strong> the form of –COOH group<br />

[53,54]. In this oxidiz<strong>in</strong>g method, SWNTs are broken to very<br />

short tubes (pipes) of lengths 100–300 nm [55]. Mawh<strong>in</strong>ney<br />

et al. [56] studied surface defect site density on SWNTs<br />

by measur<strong>in</strong>g the evolution of CO 2(g) and CO(g) on heat<strong>in</strong>g<br />

to 1273 K. The results <strong>in</strong>dicated that about 5% of the carbon<br />

atoms <strong>in</strong> the SWNTs are localized at defective sites.<br />

Acid base titration method [57] was used to determ<strong>in</strong>e<br />

that the percentage of acidic sites of purified SWNTs was<br />

about 1–3%. However, the defective sites created at the<br />

CNT surfaces by this method are extremely sparse, and can<br />

not promote good dispersion <strong>in</strong> the polymer/CNT composites.<br />

However, they can be used for covalent attachment of<br />

organic groups by convert<strong>in</strong>g them <strong>in</strong>to acid chlorides and<br />

subsequently react<strong>in</strong>g with am<strong>in</strong>es to give amides [58,59].<br />

The functionalized CNTs are more soluble <strong>in</strong> organic solvents<br />

than the raw CNTs. Most of the SWNT bundles<br />

exfoliate to give <strong>in</strong>dividual SWNT macromolecules [8] if the<br />

reaction time of acid chloride group with am<strong>in</strong>es is at ele-


Table 2<br />

Non-covalent functionalization of CNTs.<br />

N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 839<br />

<strong>Polymer</strong> or surfactant Nanotube type Preparation method References<br />

Surfactants<br />

Cationic (CTAB) SWNT Microemulsion [332]<br />

Cationic (CTAB) SWNT Ultrasonication [333]<br />

Cationic (CTVB) SWNT Sonication [334]<br />

Cationic (MATMAC) MWNT Emulsion polymerization [335,336]<br />

Anionic (SDS) MWNT Ultrasonication [61]<br />

Anionic (SDBS) SWNT Ultrasonication [68,70]<br />

Anionic (SDBS) SWNT Bath sonicaton [71]<br />

Non-ionic (Triton X-100) MWNTSWNT Ultrasonication [337,338]<br />

Non-ionic (Triton X-305)<br />

Biomacro-molecules<br />

MWNT Ultrasonication [339]<br />

Prote<strong>in</strong>s/DNA MWNT Immobilization [64]<br />

Glucose (Dextran) SWNT Dialysis [340]<br />

ˇ-1,3-glucans SWNT Electroactive <strong>in</strong>teraction [341]<br />

Chitosan<br />

<strong>Polymer</strong>s<br />

SWNT Ultrasonication [342]<br />

Poly(4-v<strong>in</strong>yl pyrid<strong>in</strong>e) SWNT Sol–gel chemistry [343]<br />

Poly(phenyl acetylene) MWNT Solution mix<strong>in</strong>g [344]<br />

Poly(m-phenylenev<strong>in</strong>ylene-co-2,5-dioctoxy-p-phenylenev<strong>in</strong>ylene) MWNT Solution mix<strong>in</strong>g [83]<br />

SWNT [85]<br />

Poly(styrene)-poly(methacrylic acid) SWNT<br />

MWNT<br />

Solution mix<strong>in</strong>g [90]<br />

vated temperature for 4 days and these SWNTs are soluble<br />

<strong>in</strong> organic solvents.<br />

2.2. Non-covalent functionalization<br />

Non-covalent functionalization of nanotubes is of particular<br />

<strong>in</strong>terest because it does not compromise the<br />

physical properties of CNTs, but improves solubility<br />

and processability. This type of functionalization ma<strong>in</strong>ly<br />

<strong>in</strong>volves surfactants, biomacromolecules or wrapp<strong>in</strong>g with<br />

polymers (Table 2). In the search for non-destructive<br />

purification methods, nanotubes can be transferred to the<br />

aqueous phase <strong>in</strong> the presence of surfactants [60,61]. In this<br />

case, the nanotubes are surrounded by the hydrophobic<br />

components of the correspond<strong>in</strong>g micelles. The <strong>in</strong>teraction<br />

becomes stronger when the hydrophobic part of the<br />

amphiphilic conta<strong>in</strong>s an aromatic group.<br />

CNTs can be well dispersed <strong>in</strong> water us<strong>in</strong>g anionic,<br />

cationic, and non-ionic surfactants [68–71]. Anionic surfactants<br />

such as sodium dodecylsulfate (SDS) [72–74] and<br />

sodium dodecylbenzene sulfonate (NaDDBS) [75,76] are<br />

commonly used to decrease CNT aggregation <strong>in</strong> water. The<br />

<strong>in</strong>teraction between the surfactants and the CNTs depends<br />

on the nature of the surfactants, such as its alkyl cha<strong>in</strong><br />

length, headgroup size, and charge. SDS has a weaker <strong>in</strong>teraction<br />

with the nanotube surface compared to that of<br />

NaDDBS and Triton-X100 because it does not have a benzene<br />

r<strong>in</strong>g. Indeed -stack<strong>in</strong>g <strong>in</strong>teraction of the benzene<br />

r<strong>in</strong>gs on the surface of graphite <strong>in</strong>creases the b<strong>in</strong>d<strong>in</strong>g and<br />

surface coverage of surfactant molecules to graphite significantly<br />

[71]. NaDDBS disperses better than Triton-X100<br />

because of its head group and slightly longer alkyl cha<strong>in</strong>.<br />

Fig. 1 represents the adsorption of different surfactants<br />

onto the nanotube surfaces.<br />

Direct non-surfactant mediated immobilization of prote<strong>in</strong><br />

and DNA on CNTs has been reported [64]. The<br />

hydrophobic regions of the prote<strong>in</strong>s are probably important<br />

for adsorption. A controlled and specific method for<br />

immobiliz<strong>in</strong>g prote<strong>in</strong>s onto non-covalently functionalized<br />

SWNTs has been developed [62]. The mechanism of prote<strong>in</strong><br />

immobilization on nanotubes <strong>in</strong>volves the nueleophilic<br />

substitution of N-hydroxysucc<strong>in</strong>imide by an am<strong>in</strong>e group<br />

on the prote<strong>in</strong>. In this case, non-covalent functionalization<br />

is accomplished by the <strong>in</strong>teraction of delocalized<br />

-bonds on the CNTs wall due to sp 2 hybridization with<br />

-bonds of polymer molecules of the matrix [62,63]. CNTs<br />

Fig. 1. Schematic representation of how surfactants may adsorb onto the nanotube surface. Repr<strong>in</strong>ted with permission from Ref. [71]. Copyright 2003,<br />

American Chemical Society, USA.


840 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

Fig. 2. A bundled pair of copolymer encapsulated SWNTs from unpurified material (a) and purified encapsulated SWNTs (b). Repr<strong>in</strong>ted with permission<br />

from Ref. [87]. Copyright 2003, American Chemical Society, USA.<br />

can be successfully solubilized <strong>in</strong> organic [65] or aqueous<br />

[66] solvents after non-covalent functionalization, partly<br />

attributed to the much better coverage of functional groups<br />

[67].<br />

The dispersion of CNT <strong>in</strong> both water [77,78] and organic<br />

solvents [79] may be enhanced by the physical association<br />

of polymers with CNT. This can be expla<strong>in</strong>ed by<br />

the ‘wrapp<strong>in</strong>g’ mechanism [78] that attributed to specific<br />

<strong>in</strong>teractions between the polymer and the CNTs.<br />

<strong>Polymer</strong>s can wrap around CNTs, form<strong>in</strong>g supramolecular<br />

complexes [80–82]. In these cases, -stack<strong>in</strong>g<br />

<strong>in</strong>teractions between the polymer and the nanotube surface<br />

are responsible for the close association of the<br />

structures. Blau and co-workers [83–86] prepared a<br />

nanotube-polymer hybrid by suspended SWNTs <strong>in</strong> organic<br />

solvents poly(p-phenylenev<strong>in</strong>ylene-co-2,5-dioctyloxy-mphenylenev<strong>in</strong>ylene)<br />

to wrap the copolymer around the<br />

nanotubes. The electrical properties of these hybrids were<br />

improved relative to those of the <strong>in</strong>dividual components. A<br />

non-covalent method has been used to modify SWNTs by<br />

encapsulat<strong>in</strong>g SWNTs with<strong>in</strong> crossl<strong>in</strong>ked and amphiphilic<br />

poly(styrene)-block-poly(acrylic acid) copolymer micelles<br />

(Fig. 2) [87]. This encapsulation significantly enhanced<br />

the dispersion of SWNTs <strong>in</strong> a wide variety of polar and<br />

non-polar solvents and polymer matrices because the<br />

copolymer shell was permanently fixed. Thus, encapsulated<br />

SWNTs may be stabilized with respect to typical<br />

polymer process<strong>in</strong>g and recovery from the polymer matrix.<br />

Non-wrapp<strong>in</strong>g approaches have also been used for dispersion<br />

and solubility of CNT <strong>in</strong> different media [88,89]. In<br />

these cases, copolymers of various different structures and<br />

compositions act efficiently as stabilizers, and may be tailored<br />

so as to disperse the tubes <strong>in</strong> a variety of solvents.<br />

Nativ-Roth et al. [90] suggested that the block copolymers<br />

adsorbed to the nanotubes by a non-wrapp<strong>in</strong>g mechanism,<br />

and the solvophilic blocks act as a steric barrier that<br />

leads to the formation of stable dispersions of <strong>in</strong>dividual<br />

SWNTs and MWNTs above a threshold concentration of<br />

the polymer. The strong – <strong>in</strong>teraction between polymer<br />

backbone and nanotube surface led to soluble SWNTs. The<br />

ma<strong>in</strong> potential disadvantage of non-covalent attachment<br />

is that the forces between the wrapp<strong>in</strong>g molecule and the<br />

nanotube might be weak, thus as a filler <strong>in</strong> a composite the<br />

efficiency of the load transfer might be low.<br />

2.3. Covalent functionalization<br />

Because of the -orbitals of the sp 2 -hybridized C atoms,<br />

CNTs are more reactive than those with a flat graphene<br />

sheet, they have an enhanced tendency to covalently attach<br />

with chemical species [91]. In the case of covalent functionalization,<br />

the translational symmetry of CNTs is disrupted<br />

by chang<strong>in</strong>g sp 2 carbon atoms to sp 3 carbon atoms, and<br />

the properties of CNT, such as electronic and transport<br />

are <strong>in</strong>fluenced [92]. But this functionalization of CNT can<br />

improve solubility as well as dispersion <strong>in</strong> solvents and<br />

polymer. Covalent functionalization can be accomplished<br />

by either modification of surface-bound carboxylic acid<br />

groups on the nanotubes or by direct reagents to the side<br />

walls of nanotubes (Table 3). Generally, functional groups<br />

such as –COOH or –OH are created on the CNTs dur<strong>in</strong>g<br />

the oxidation by oxygen, air, concentrated sulfuric acid,<br />

nitric acid, aqueous hydrogen peroxide, and acid mixture<br />

[55,93]. The surface of the acid treated MWNTs <strong>in</strong>dicates<br />

the presence of some defects <strong>in</strong> the carbon–carbon bond<strong>in</strong>g<br />

associated with the formation of carboxylic acid groups on<br />

the surface, while the raw MWNTs show uniform surfaces<br />

and a clear diffraction pattern because of their perfect lattice<br />

structure of carbon–carbon bonds (Fig. 3) [94–96]. The<br />

number of –COOH groups on the surface of CNT depends<br />

on acid treatment temperature and time, <strong>in</strong>creas<strong>in</strong>g with<br />

<strong>in</strong>creas<strong>in</strong>g temperature [95]. The extent of the <strong>in</strong>duced<br />

–COOH and –OH functionality also depends on the oxidation<br />

procedures and oxidiz<strong>in</strong>g agents [97]. Nanotube ends<br />

can be opened dur<strong>in</strong>g the oxidation process.<br />

The presence of carboxylic acid groups on the nanotube<br />

surface is more convenient than others because a<br />

variety of chemical reactions can be conducted with this<br />

group. The presence of –COOH or –OH groups on the nanotube<br />

surface helps the attachment of organic [58,59,98]<br />

or <strong>in</strong>organic materials, which is important for solubiliz<strong>in</strong>g<br />

nanotubes. CNTs have been covalently functionalized


Table 3<br />

Covalent functionalization of CNTs.<br />

N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 841<br />

Nanotube type Preparation approach <strong>Polymer</strong>/organic molecules Catalyst/reagent References<br />

MWNT Graft<strong>in</strong>g from (ROP) Poly(-caprolactone) Sn(Oct)2 [138]<br />

MWNT Graft<strong>in</strong>g from (ROP) Poly(L-lactide) Sn(Oct)2 [139]<br />

SWNT<br />

MWNT<br />

Graft<strong>in</strong>g from (ROP) Nylon-6 Sodium [125,126]<br />

MWNT Graft<strong>in</strong>g from (ATRP) Poly(methyl methacrylate) AIBN [127]<br />

MWNT Graft<strong>in</strong>g from (ATRP) Polystyrene CuBr [129]<br />

MWNT Graft<strong>in</strong>g from (ATRP) Polystyrene Cu(I)Br/PMDETA [130]<br />

MWNT Graft<strong>in</strong>g from (ATRP) Poly(acrylic acid) Cu(I)Br/PMDETA [131]<br />

MWNT Graft<strong>in</strong>g from (ATRP) Poly(tert-butyl acrylate) Cu(I)Br/PMDETA [132]<br />

MWNT Graft<strong>in</strong>g from (ATRP) Poly(N-isopropylacrylamide) Cu(I)Br/PMDETA [133]<br />

MWNT Graft<strong>in</strong>g from (ATRP) Glycerol Monomethacrylate Cu(I)Br/PMDETA [136]<br />

SWNT<br />

MWNT<br />

Graft<strong>in</strong>g to Polyethylene glycol – [111,121]<br />

MWNT Graft<strong>in</strong>g to Polyimide – [117]<br />

SWNT Graft<strong>in</strong>g to Poly(amido am<strong>in</strong>e) – [122]<br />

MWNT Graft<strong>in</strong>g to Poly(-caprolactone)-diol – [345]<br />

SWNT<br />

MWNT<br />

Graft<strong>in</strong>g to Poly(v<strong>in</strong>yl acetate-co-v<strong>in</strong>yl alcohol) – [114]<br />

MWNT Graft<strong>in</strong>g to Poly(2-v<strong>in</strong>yl pyrid<strong>in</strong>e) – [119]<br />

SWNT Cycloaddition of azometh<strong>in</strong>e ylides 3,4-dihydroxybenzaldehyde N-methylglyc<strong>in</strong>e [346]<br />

MWNT Cycloaddition of azometh<strong>in</strong>e ylides 7-bromo-9,9-dioctyl fluor<strong>in</strong>e-2-carbaldehyde L-lys<strong>in</strong>e [347]<br />

SWNT<br />

MWNT<br />

Cycloaddition of azometh<strong>in</strong>e ylides Am<strong>in</strong>o-acid Paraformaldehyde [348]<br />

SWNT<br />

MWNT<br />

Cycloaddition of azometh<strong>in</strong>e ylides Peptides, Nucleic acids R-NHCH2COOH [349]<br />

MWNT [4 + 2] Cycloadditions 3,6-diam<strong>in</strong>otetraz<strong>in</strong>e Temp. [350]<br />

SWNT [4 + 2] Cycloadditions Triazol<strong>in</strong>edione Temp. [351]<br />

SWNT [4 + 2] Cycloadditions 2,3-dimethoxy-1,3-butadiene Cr(CO)6 [352]<br />

SWNT [2 + 1] Cycloadditions Alkyl azidoformate Nitrene [106]<br />

Dipyridyl imidazolidene Carbene<br />

SWNT<br />

MWNT<br />

[2 + 1] Cycloadditions Dichlorocarbene Carbene [353]<br />

SWNT [2 + 1] Cycloadditions PEG di-azidocarbonate ester Nitrene [354]<br />

SWNT Radical additions Polystyrene Nitroxide [355]<br />

SWNT Radical additions Methoxyphenylhydraz<strong>in</strong>e Microwave [356]<br />

with thiocarboxilic and dithiocarboxylic esters that help<br />

crossl<strong>in</strong>k<strong>in</strong>g between CNTs [99]. CNTs can be functionalized<br />

at end caps or at the sidewall to enhance their dispersion<br />

as well as solubilization <strong>in</strong> solvents and <strong>in</strong> polymer<br />

matrices [91,100]. SWNTs were fluor<strong>in</strong>ated at their side<br />

walls by pass<strong>in</strong>g elemental fluor<strong>in</strong>e at different temperatures<br />

[101]. The fluor<strong>in</strong>ated SWNTs exhibited improved<br />

solubility <strong>in</strong> isopropanol or dimethyl formamide by ultrasonication<br />

[102,103]. Fluor<strong>in</strong>ated SWNTs may be converted<br />

to side wall alkylated SWNTs by reaction with Grignard<br />

reagent or alkyllithium compounds that are soluble <strong>in</strong> chloroform<br />

[104]. SWNTs have also been solubilized by direct<br />

functionalization of their side walls by nitrenes [105,106],<br />

carbenes [106], and arylation [107,108].<br />

Functionalization of CNTs with polymer molecules<br />

(polymer graft<strong>in</strong>g) is particularly important for process<strong>in</strong>g<br />

of polymer/CNT nanocomposites [109,110]. Two ma<strong>in</strong><br />

categories “graft<strong>in</strong>g to” and “graft<strong>in</strong>g from” approaches<br />

have been reported for the covalent graft<strong>in</strong>g of polymers to<br />

nanotubes. The “graft<strong>in</strong>g to” approach is based on attachment<br />

of as-prepared or commercially available polymer<br />

molecules on the CNT surface by chemical reactions, such<br />

as amidation, esterification, radical coupl<strong>in</strong>g, etc. The polymer<br />

must have suitable reactive functional groups for<br />

preparation of composites <strong>in</strong> this approach. Fu et al. [111]<br />

reported functionalization of CNTs by us<strong>in</strong>g “graft<strong>in</strong>g to”<br />

method. They refluxed CNTs conta<strong>in</strong><strong>in</strong>g carboxylic acid<br />

groups with thionyl chloride to convert acid groups to<br />

acylchlorides. Then, the CNTs with surface-bound acylchloride<br />

moieties were used <strong>in</strong> the esterification reactions<br />

with the hydroxyl groups of dendritic poly(polyethylene<br />

glycol) polymer. Another example of the “graft<strong>in</strong>g to”<br />

approach has been reported by Q<strong>in</strong> et al. [112]. They<br />

grafted SWNTs with polystyrene (PS) with functionalized<br />

end groups PS (–N 3), via a cycloaddition reaction.<br />

<strong>Polymer</strong> grafted CNTs have been formed by covalently<br />

attach<strong>in</strong>g nanotubes to highly soluble l<strong>in</strong>ear polymers, such<br />

as poly(propionylethylenim<strong>in</strong>e-co-ethylenim<strong>in</strong>e) (PPEI-EI)<br />

via amide l<strong>in</strong>kages or poly(v<strong>in</strong>yl acetate-co-v<strong>in</strong>yl alcohol)<br />

(PVA-VA) via ester l<strong>in</strong>kages [113,114]. The result<strong>in</strong>g PVAgrafted<br />

CNTs were soluble <strong>in</strong> PVA solution and PVA-CNT<br />

nanocomposites films showed very high optical quality


842 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

Fig. 3. TEM pictures of raw MWNTs (upper) and surface-modified MWNTs (lower). Repr<strong>in</strong>ted with permission from Ref. [95]. Copyright 2005, Wiley-VCH,<br />

Germany.<br />

without any observable phase separation. Many other l<strong>in</strong>ear<br />

polymers such as poly(sodium 4-stryrenesulfonate)<br />

[115], poly(methyl methacrylate) (PMMA) [116], polyimide<br />

[117,118], poly-(2-v<strong>in</strong>ylpyrid<strong>in</strong>e) [119], PPEI-EI<br />

[120], and poly(m-am<strong>in</strong>obenzenesulfonic acid) [35] as<br />

well as dendrons [121], dendrimers [122], and hyperbranched<br />

polymers [123] have been successfully bonded to<br />

CNTs.<br />

A novel route to polymer re<strong>in</strong>forcement via preparation<br />

of polymer-functionalized nanotubes us<strong>in</strong>g organometallic<br />

approach has been reported [124]. In the work, CNTs were<br />

first functionalized by organometallic n-butyl lithium, and<br />

then covalently attached to a chlor<strong>in</strong>ated polypropylene<br />

via a coupl<strong>in</strong>g reaction. The ma<strong>in</strong> limitation of the “graft<strong>in</strong>g<br />

to” method is that the grafted polymer content is quite low<br />

due to the relatively small fraction of active sites on the<br />

CNT, and the depress<strong>in</strong>g effects of steric h<strong>in</strong>derence <strong>in</strong> the<br />

reactivity of polymer [123].<br />

In the “graft<strong>in</strong>g from” approach, the polymer is<br />

bound to the CNT surface by <strong>in</strong>-situ polymerization of<br />

monomers <strong>in</strong> presence of reactive CNTs or CNT supported<br />

<strong>in</strong>itiators. The ma<strong>in</strong> advantage of this approach<br />

is that the polymer-CNTs composites can be prepared<br />

with high graft<strong>in</strong>g density. This approach has been<br />

used successfully to graft many polymers such as<br />

polyamide 6 [125,126], PMMA [127,128], PS [129,130],<br />

poly(acrylic acid) (PAA) [131], poly-(tert-butyl acrylate)<br />

[132], poly(N-isopropylacrylamide) (NIPAM) [133], poly(4v<strong>in</strong>ylpyrid<strong>in</strong>e)<br />

[134], and poly(N-v<strong>in</strong>ylcarbazole) [135] on<br />

CNT via radical, cationic, anionic, r<strong>in</strong>g-open<strong>in</strong>g, and condensation<br />

polymerizations. Gao et al. [136] described<br />

the functionalization of MWNTs with a hydrophilic polymer,<br />

glycerol monomethacrylate (GMA) by the “graft<strong>in</strong>g<br />

from” approach. In this work, the oxidized MWNTs<br />

were treated with thionyl chloride, glycol, and 2-<br />

bromo-2-methylpropionyl bromide to produce MWNT-Br<br />

macro<strong>in</strong>itiators for the atom transfer radical polymerization<br />

of GMA as shown <strong>in</strong> Scheme 1. The grafted polymer<br />

content can be controlled by the feed ratio of monomer<br />

to macro<strong>in</strong>itiators. The hydroxyl groups of the polyGMA<br />

cha<strong>in</strong>s grafted on the MWNTs are highly active and can be<br />

further converted to carboxylic acid groups. MWNTs were<br />

covalently functionalized with poly(L-lys<strong>in</strong>e) by a surface<br />

<strong>in</strong>itiated r<strong>in</strong>g-open<strong>in</strong>g polymerization method [137]. Zeng<br />

et al. [138] reported “graft<strong>in</strong>g from” approach based on<br />

<strong>in</strong>-situ r<strong>in</strong>g-open<strong>in</strong>g polymerization of -caprolactone to<br />

covalently graft biodegradable poly(-caprolactone) onto<br />

CNT surfaces. CNT-graft-poly(L-lactide) by us<strong>in</strong>g surface<strong>in</strong>itiated<br />

r<strong>in</strong>g-open<strong>in</strong>g polymerization has been studied by<br />

Chen et al. [139].<br />

A few additional techniques for functionalization of<br />

CNTs <strong>in</strong>to polymer matrixes have been utilized. Yan et al.<br />

[140] used Ar plasma for the generation of defect sites<br />

<strong>in</strong> the SWNT caps and sidewalls, with subsequent UVgraft<strong>in</strong>g<br />

of 1-v<strong>in</strong>ylimidazole from the defect sites. Yang et<br />

al. [141] obta<strong>in</strong>ed soluble MWNTs via amidation reaction<br />

of octadecylam<strong>in</strong>e with purified MWNTs when they were<br />

mixed with copolymers of methyl and ethyl methacrylate<br />

(poly(MMA-co-EMA)).<br />

2.4. Functionalization us<strong>in</strong>g click chemistry<br />

“Click” chemistry, co<strong>in</strong>ed for the Huisgen [3 + 2] dipolar<br />

cycloaddition reaction [142], is an ideal reaction for<br />

material synthesis and modification and for self assembly<br />

of nanomaterials. A Cu (I)-catalyzed Huisgen [3 + 2] dipolar<br />

cycloaddition reaction between term<strong>in</strong>al alkynes and<br />

azides result<strong>in</strong>g <strong>in</strong> the formation of 1,2,3-triazoles has been<br />

utilized elegantly <strong>in</strong> recent years [143,144]. This reaction is<br />

very useful for synthesiz<strong>in</strong>g small molecules [145], den-


N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 843<br />

Scheme 1. Functionalization of MWNTs with PolyGMA by atom transfer radical polymerization. Repr<strong>in</strong>ted with permission from Ref. [136]. Copyright<br />

2005, American Chemical Society, USA.<br />

drimers [146,147], dendronized polymers [148–150], and<br />

biologically derived macromolecular structures [151]. Click<br />

chemistry benefits by the facile <strong>in</strong>troduction of azide and<br />

alkyne groups <strong>in</strong>to organic and polymer molecules, the stability<br />

of these groups to many reaction conditions, and the<br />

tolerance of the reaction <strong>in</strong> presence of other functional<br />

groups. The ma<strong>in</strong> advantages of click chemistry are its toleration<br />

of other functional groups, a short reaction time,<br />

and high yield, high purity, and regiospecificity, as well<br />

as its suitability for use under aqueous conditions [152].<br />

Azides and acetylenes are stable across a broad range of<br />

organic reaction conditions and <strong>in</strong> biological environments,<br />

yet they are highly energetic functional groups and the<br />

products are screened directly from the reaction mixture<br />

because no protect<strong>in</strong>g groups are used. The triazole is used<br />

as a rigid l<strong>in</strong>ker that can mimic the atom placement and<br />

electronic properties of a peptide bond without the same<br />

susceptibility to hydrolytic cleavage [153,154], as shown <strong>in</strong><br />

Scheme 2.<br />

Apart from the synthetic promise, triazole moieties<br />

are relatively stable to metabolic degradation and can<br />

participate <strong>in</strong> hydrogen bond<strong>in</strong>g, which may be useful<br />

<strong>in</strong> the context of bimolecular targets and solubility, and<br />

is extremely stable to hydrolysis, oxidation or reduction<br />

[144]. Click chemistry may be an ideal modular methodology<br />

for the <strong>in</strong>troduction of a wide variety of molecules<br />

onto the surface of CNTs [155–157] as shown <strong>in</strong> Fig. 4. By<br />

apply<strong>in</strong>g this approach, one can easily functionalize CNTs<br />

with desired molecules, which enhance their importance<br />

from nanoelectronics to nanobiotechnology.<br />

An application of the Huisgen cycloaddition to the functionalization<br />

of SWNTs with PS was reported by Adronov<br />

and co-workers [155]. To achieve a high degree of functionalization<br />

by us<strong>in</strong>g alkyne groups on the nanotube surface<br />

with the Pschorr-type arylation, subsequent <strong>in</strong>troduction<br />

of PS was achieved by first <strong>in</strong>stall<strong>in</strong>g azide functionality<br />

at the polymer cha<strong>in</strong> end. The Cu(I)-catalyzed formation<br />

of 1,2,3-triazoles by coupl<strong>in</strong>g azide-term<strong>in</strong>ated polymer<br />

and alkyne-functionalized SWNTs was found to occur <strong>in</strong><br />

an efficient manner under a variety of favorable conditions.<br />

This resulted <strong>in</strong> relatively high nanotube graft densities, full<br />

control over polymer molecular weight, and good solubility<br />

<strong>in</strong> organic solvents. The grafted PS was further modified<br />

via sulfonation and the sulfonated PS grafted CNTs were<br />

highly soluble <strong>in</strong> aqueous medium and <strong>in</strong>soluble <strong>in</strong> organic<br />

medium [158].<br />

Cho and co-workers [156] focused on the covalent<br />

attachment of bioactive molecules with SWNTs (Scheme 3).<br />

The functionalization of the SWNTs was achieved by covalently<br />

bonded organic molecules derived from am<strong>in</strong>o acids<br />

through click chemistry. The alkyne-functionalized SWNTs<br />

were prepared by the treatment of p-am<strong>in</strong>o propargyl<br />

ether with SWNTs us<strong>in</strong>g a solvent free diazotization procedure<br />

to produce alkyne functionalized CNTs. In order<br />

Scheme 2. The coupl<strong>in</strong>g of azides and alkynes created triazole l<strong>in</strong>kages <strong>in</strong> absence and presence of Cu(I) catalyst, the useful topological and electronic<br />

feathers with nature’s ubiquitous amide connectors. Repr<strong>in</strong>ted with permission from Ref. [153,154]. Copyright 2002, Wiley-VCH, Germany and Copyright<br />

2004, American Chemical Society, USA.


844 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

Fig. 4. Typical scheme of click chemistry for functionalization of carbon nanotube [156].<br />

to attach different azides derived from am<strong>in</strong>o acids, a<br />

series of well-def<strong>in</strong>ed chiral azides from correspond<strong>in</strong>g<br />

-am<strong>in</strong>o acids were prepared. The alkyne functionalized<br />

SWNTs <strong>in</strong> dimethylformamide (DMF)-pyrid<strong>in</strong>e-butanol<br />

solution were treated with azide-functionalized am<strong>in</strong>o<br />

acid compound, followed by CuI, ascorbic acid and N,N ′ -<br />

diisopropylethylam<strong>in</strong>e. The 1,2,3-triazole r<strong>in</strong>g has been<br />

utilized as a l<strong>in</strong>ker between the chiral molecules and<br />

SWNTs, which can provide a new strategy for the attachment<br />

of bioactive molecules like peptides, polysaccharides<br />

and others [156]. They also functionalized SWNTs by<br />

the covalent attachment of azide moiety conta<strong>in</strong><strong>in</strong>g<br />

polyurethane (PU) with alkyne functionalized SWNTs us<strong>in</strong>g<br />

click chemistry approach. The CNTs were functionalized<br />

with PCL-based PU us<strong>in</strong>g click chemistry, followed by the<br />

reaction of alkyne-decorated CNTs and azide-moiety conta<strong>in</strong><strong>in</strong>g<br />

PCL-diol [159].<br />

Hybrid materials based on CNTs and metal nanoparticles<br />

are under consideration for major roles for several<br />

applications, <strong>in</strong>clud<strong>in</strong>g catalytic, optical, electronic and<br />

magnetic applications [160–162]. Gao and co-workers<br />

[162] reported magnetic nanohybrids from magnetic<br />

nanoparticles and polymer coated nanomaterials via a<br />

Cu(I)-catalyzed azide alkyne cycloaddition reaction. The<br />

nanohybrids were prepared from Fe 3O 4 nanoparticles<br />

and polymer coated MWNTs. The authors prepared controlled<br />

size Fe 3O 4 nanoparticles then functionalized with<br />

azide moieties (Fe 3O 4-N 3) and f<strong>in</strong>ally with alkyne moieties<br />

(Fe 3O 4-Alk). MWNTs were separately modified with polymer<br />

conta<strong>in</strong><strong>in</strong>g abundant azide groups (MWNT-pAz) and<br />

polymer conta<strong>in</strong><strong>in</strong>g abundant of alkyne groups (MWNT-<br />

pAlk). (Fe 3O 4-N 3) and (Fe 3O 4-Alk) were coupled with<br />

polymer coat<strong>in</strong>g nanotubes to give magnetic nanohybrids<br />

of MWNT-pAz@Fe 3O 4 and MWNT-pAlk@Fe 3O 4,<br />

respectively. Fig. 5 presents the TEM images of both<br />

MWNT-pAz and MWNT-pAlk, evenly decorated with<br />

magnetic nanoparticles. Cho and co-workers [163] prepared<br />

gold nanoparticles functionalized SWNTs us<strong>in</strong>g a<br />

click chemistry approach. Gold nanoparticles conta<strong>in</strong><strong>in</strong>g<br />

octanethiol were prepared by the reduction of tetrachloroauric<br />

acid us<strong>in</strong>g sodium borohydride <strong>in</strong> presence of<br />

alkanethiol. The alkyl thiol protected gold nanoparticles<br />

were further treated with azidoundecane thiol to yield<br />

azide moiety conta<strong>in</strong><strong>in</strong>g gold nanoparticles, which were<br />

reacted with alkyne functionalized SWNTs. Campidelli et<br />

al. [157] decorated SWNTs with phthalocyan<strong>in</strong>e us<strong>in</strong>g a<br />

click coupl<strong>in</strong>g approach. The authors functionalized SWNTs<br />

with 4-(2-trimethylsilyl)ethynylanil<strong>in</strong>e <strong>in</strong> the presence of<br />

isoamyl nitrite, which were then treated with azide moiety<br />

conta<strong>in</strong><strong>in</strong>g Z<strong>in</strong>c-phthalocyan<strong>in</strong>e (ZnPc) <strong>in</strong> the presence<br />

of CuSO 4 and sodium ascorbate to give the nanotubephthalocyan<strong>in</strong>e<br />

hybrid. They also studied the photovoltaic<br />

properties of synthesized materials and observed that the<br />

photocurrent of SWNT-ZnPc was higher and more stable<br />

and reproducible than that of prist<strong>in</strong>e SWNTs.<br />

Layer-by-layer (LbL) covalent functionalization of<br />

MWNTs was achieved by Gao and co-workers [164].<br />

The clickable polymer poly(2-azidoethyl methacrylate)<br />

was synthesized by atom transfer radical<br />

polymerization (ATRP) and another clickable polymer<br />

poly(propargyl methacrylate) was synthesized by<br />

reverse addition–fragmentation cha<strong>in</strong> transfer (RAFT)<br />

Scheme 3. Scheme of application of click chemistry for synthesis of bioactive molecule bonded SWNT. (a) (i) CbzCl, 2 M NaOH solution, 0 ◦ C, 2 h, then 2 M<br />

HCl, pH 3, (ii) SOCl2, MeOH, RT, 8 h (iii) NaBH4 (excess), MeOH, RT over night. (b) (i) TsCl (1.2 equiv.), Et3N (1.3 equiv.), 0 ◦ C to RT 4 h (ii) NaN3, DMSO:1,4dioxane,<br />

80 ◦ C, 16 h, 78–81% yields <strong>in</strong> two steps. (c) CuI (0.15 M), ascorbic acid (0.08 M) and DIPEA (0.17 M) <strong>in</strong> DMF-pyridene-butanol, RT, 14 h, followed by<br />

80 ◦ C for 4 h [156].


N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 845<br />

Fig. 5. TEM images of (a) Fe3O4-N3, (b and c) MWNT-pAlk@Fe3O4, (d) MWNT-pAz@Fe3O4. Repr<strong>in</strong>ted with permission from Ref. [162]. Copyright 2009, The<br />

Royal Society of Chemistry, UK.<br />

polymerization. Both polymers were alternately coated<br />

on alkyne-modified MWNTs us<strong>in</strong>g the reliable Cu(I)catalyzed<br />

Huisgen 1,3-dipolar cycloaddition reaction.<br />

Poly(2-azidoethyl methacrylate) was clicked on the<br />

preprepared alkyne-modified MWNTs as the first polymer<br />

layer. Alkyne side groups conta<strong>in</strong><strong>in</strong>g poly(propargyl<br />

methacrylate) were coated as the second polymer layer<br />

via click coupl<strong>in</strong>g. Poly(2-azidoethyl methacrylate) was<br />

clicked on the second polymer layer coated MWNTs,<br />

and the residual clickable azido groups of third layer<br />

coated MWNTs were further clicked with alkyne-modified<br />

rhodam<strong>in</strong>e B and monoalkyne-term<strong>in</strong>ated PS. The post<br />

modification supports the usefulness of functionalized<br />

MWNTs as a nanoplatform for further molecular design<br />

and material synthesis. Due to formation of a crossl<strong>in</strong>ked<br />

polymer network, the covalent l<strong>in</strong>kage offers several<br />

advantages, such as high stability and good control<br />

over the quantity and thickness of the polymeric layers.<br />

The authors also reported a clickable macro<strong>in</strong>itiator<br />

for build<strong>in</strong>g the amphiphillic polymer brushes on CNTs<br />

[165]. The azido and bromo groups functionalized CNTs<br />

were prepared by the reaction of poly(3-azido-2-(2-<br />

bromo-2-methylpropanoyloxy)propyl methacrylate with<br />

alkynated CNTs. Both the ATRP and click coupl<strong>in</strong>g could<br />

be achieved by a one pot procedure us<strong>in</strong>g bromo and<br />

azido moieties as <strong>in</strong>itiators for PS and PEG graft<strong>in</strong>g (Fig. 6).<br />

The reaction could be easily accomplished with SWNTs<br />

and MWNTs us<strong>in</strong>g “graft<strong>in</strong>g to” and “graft<strong>in</strong>g from”<br />

approaches for functionalization with multiple k<strong>in</strong>ds of<br />

polymers.<br />

Functionalization of CNTs with stimuli-responsive<br />

materials is expected to be useful for manufactur<strong>in</strong>g<br />

advanced biosensors and bioprobes [166]. Li and<br />

co-workers [167] <strong>in</strong>troduced an alkyne functionalized nanotube<br />

surface us<strong>in</strong>g a carbamate l<strong>in</strong>kage. The azide moiety<br />

conta<strong>in</strong><strong>in</strong>g a thermoresponsive diblock copolymer composed<br />

of N,N-dimethylacrylamide (DMA) and NIPAM was<br />

covalently attached with alkynated MWNTs via the Cu(I)catalyzed<br />

[3 + 2] Huisgen cycloaddition. The copolymer<br />

conta<strong>in</strong><strong>in</strong>g hydrophilic DMA, as well as a smart NIPAM<br />

block, is capable of form<strong>in</strong>g micelles with response to<br />

changes <strong>in</strong> the aqueous solution temperature. The micelles<br />

size and transition temperature can be controlled through<br />

NIPAM block length. Due to the higher azide concentra-


846 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

Fig. 6. Synthesis of amphiphilic/Janus polymer brushes-grafted multiwalled and s<strong>in</strong>gle-walled carbon nanotubes (MWNTs and SWNTs) by a comb<strong>in</strong>ation of<br />

click chemistry and atom transfer radical polymerization (ATRP) approach. Repr<strong>in</strong>ted with permission from Ref. [165]. Copyright 2008, American Chemical<br />

Society, USA.<br />

tion on their periphery, micelles afford improved graft<strong>in</strong>g<br />

efficiency and solubility of nanotubes, compared to coils <strong>in</strong><br />

solution.<br />

The oligosaccharide ˇ-cyclodextr<strong>in</strong> is well known<br />

to encapsulate biological molecules <strong>in</strong> its hydrophobic<br />

cavities <strong>in</strong> an aqueous solution, enhanc<strong>in</strong>g its utility as<br />

a drug carrier and enzyme mimic. Zheng et al. reported<br />

a ˇ-cyclodextr<strong>in</strong>-modified SWNT nanohybrid through<br />

Huisgen cycloaddition [168]. Mono-6-(p-toluenesulfonyl)-<br />

ˇ-cyclodextr<strong>in</strong>, prepared by reaction of ˇ-cyclodextr<strong>in</strong><br />

with p-toluenesulfonyl chloride, was treated with<br />

sodium azide to convert it to an azide-functionalized<br />

cyclodextr<strong>in</strong>. Purified SWNTs were reacted with p-(2-<br />

propynyloxy)-benzenam<strong>in</strong>e <strong>in</strong> o-dichlorobenzene (ODCB)<br />

us<strong>in</strong>g a diazotization coupl<strong>in</strong>g procedure to produce<br />

alkyne-functionalized SWNTs. The azide-functionalized<br />

cyclodextr<strong>in</strong> was further reacted with alkynated SWNTs<br />

via click coupl<strong>in</strong>g. The ˇ-cyclodextr<strong>in</strong> functionalized<br />

SWNTs show good solubility <strong>in</strong> water, enhanc<strong>in</strong>g<br />

their biological importance for drug delivery applications.<br />

Though there are not so many examples of employ<strong>in</strong>g<br />

the click chemistry for CNT functionalization, related<br />

papers are <strong>in</strong>creas<strong>in</strong>gly reported recently. Scheme 4 shows<br />

the attachment of different functionalities on CNTs via click<br />

coupl<strong>in</strong>g. The wide range of attached molecules enhances


N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 847<br />

Scheme 4. The attachment of different functionalities on CNTs via click coupl<strong>in</strong>g.<br />

the importance of click chemistry and opens the new vista<br />

of CNTs based nanomaterials.<br />

3. Preparation methods of polymer/CNT<br />

nanocomposites<br />

As emphasized <strong>in</strong> the preced<strong>in</strong>g, the dispersion of CNTs<br />

<strong>in</strong> polymer matrices is a critical issue <strong>in</strong> the preparation<br />

of CNT/polymer composites. Better re<strong>in</strong>forc<strong>in</strong>g effects of<br />

CNTs <strong>in</strong> polymer composites will be achieved if they do<br />

not form aggregates and as such, they must be well dispersed<br />

<strong>in</strong> polymer matrixes. Currently there are several<br />

methods used to improve the dispersion of CNTs <strong>in</strong> polymer<br />

matrices such as solution mix<strong>in</strong>g, melt blend<strong>in</strong>g, and<br />

<strong>in</strong>-situ polymerization method.<br />

3.1. Solution mix<strong>in</strong>g<br />

In this approach, a dispersion of CNTs <strong>in</strong> a suitable solvent<br />

and polymers are mixed <strong>in</strong> solution. The CNT/polymer<br />

composite is formed by precipitation or by evaporation<br />

of the solvent. It is well known that it is very difficult<br />

to properly disperse prist<strong>in</strong>e CNTs <strong>in</strong> a solvent by simple<br />

stirr<strong>in</strong>g. A high power ultrasonication process is more<br />

effective <strong>in</strong> form<strong>in</strong>g a dispersion of CNTs. Ultrasonic irradiation<br />

has been extensively used <strong>in</strong> dispersion, emulsify<strong>in</strong>g,<br />

crush<strong>in</strong>g, and activat<strong>in</strong>g the particles. By tak<strong>in</strong>g advantage<br />

of the multi-effects of ultrasound, the aggregates and<br />

entanglements of CNTs can be effectively broken down. For<br />

example, Li et al. [169] used a simple solution–precipitation<br />

technique to improve the dispersion of CNTs <strong>in</strong> a poly-<br />

carbonate solution by sonication at a frequency of 20 kHz<br />

for 10 m<strong>in</strong>. They showed that the CNTs were uniformly<br />

dispersed <strong>in</strong> polycarbonate matrix on its consolidation. In<br />

this case, ultrasonic wave as well as mechanically stirr<strong>in</strong>g<br />

played important roles <strong>in</strong> the formation of the composites<br />

with a uniform particle size. The chemical effects of ultrasound<br />

are associated with the rapid (microsecond time<br />

scale), violent collapse of cavitation bubbles created as<br />

the ultrasonic waves pass through a liquid medium [170].<br />

Sonochemical theory and the correspond<strong>in</strong>g studies suggested<br />

that ultrasonic cavitation can generate a high local<br />

temperature of 5000 K and a local pressure of 500 atm<br />

[171], which is a very rigorous environment. Safadi et al.<br />

[172] dispersed MWNTs <strong>in</strong> PS us<strong>in</strong>g ultrasonication and<br />

dismembrator at 300 W for 30 m<strong>in</strong>. Uniform dispersions of<br />

CNTs <strong>in</strong> PS were achieved by us<strong>in</strong>g sonication. Recently Cho<br />

and co-workers successfully prepared PU/MWNTs composites<br />

with better dispersion of CNTs up to 20 wt% <strong>in</strong> PU<br />

[173]. In the research, the necessary weight fractions of<br />

carboxylate MWNTs were first dispersed <strong>in</strong> DMF solution<br />

under sonication at room temperature for 1 h us<strong>in</strong>g a high<br />

power ultrasonic processor. Thereafter, PU was added <strong>in</strong>to<br />

this solution and stirred for 1 h. The mixtures were then<br />

sonicated aga<strong>in</strong> for 1 h. The SEM photographs of the crosssectional<br />

fracture of composites of the achieved dispersion<br />

for the <strong>in</strong>vestigated MWNTs are shown <strong>in</strong> Fig. 7. The homogeneous<br />

dispersion <strong>in</strong> the composites was achieved by the<br />

addition of a higher amount of MWNT-COOH (20 wt%).<br />

Us<strong>in</strong>g a proper surfactant is another efficient method to<br />

disperse higher load<strong>in</strong>g of nanotubes [70,174,175]. The<br />

use of non-ionic surfactants such as polyoxyethylene-8-


848 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

Fig. 7. SEM micrographs of PU/CNT composites: (a) 10 wt% prist<strong>in</strong>e MWNT and (b) 20 wt% MWNT-COOH. Repr<strong>in</strong>ted with permission from Ref. [173].<br />

Copyright 2006, Wiley-VCH, Germany.<br />

lauryl has been demonstrated to improve the dispersion<br />

and strong <strong>in</strong>teraction between MWNTs and epoxy res<strong>in</strong>s<br />

[42].<br />

Barrau et al. [176] found that amphiphilic palmitic acid<br />

facilitate an efficient dispersion of CNTs <strong>in</strong> an epoxy matrix.<br />

The hydrophobic part of palmitic acid is absorbed onto<br />

the nanotube surface, whereas the hydrophilic head group<br />

<strong>in</strong>duces electrostatic repulsions between nanotubes, prevent<strong>in</strong>g<br />

their aggregation. The co-solvent also affects the<br />

dispersion of nanotubes <strong>in</strong> polymer matrix. Recently, Camponeschi<br />

et al. [177] reported on the use of trifluoroacetic<br />

acid as a co-solvent for the dispersion of MWNTs <strong>in</strong> a<br />

conjugated polymer poly(3-hexylthiophene), and PMMA<br />

through a solution process. Scann<strong>in</strong>g electron microscopy<br />

(SEM), optical microscopy, and light transmittance studies<br />

revealed that the better dispersion of CNTs <strong>in</strong> polymer<br />

matrixes was obta<strong>in</strong>ed by us<strong>in</strong>g trifluoroacetic acid.<br />

Many other polymer composites such as PU/CNT [178],<br />

PS/CNT [179–181], epoxy/CNT [180,182,183], Poly(v<strong>in</strong>yl<br />

alcohol)/CNT [184], P(MMA-co-EMA)/CNT [141], polyacrylonitrile/CNT<br />

[185], and polyethylene(PE)/CNT [186] have<br />

been fabricated by this method.<br />

3.2. Melt mix<strong>in</strong>g<br />

For solution mix<strong>in</strong>g, the matrix polymer must be soluble<br />

<strong>in</strong> at least one solvent. This is problematic for many<br />

polymers. Melt mix<strong>in</strong>g is a common and simple method,<br />

particularly useful for thermoplastic polymers. In melt process<strong>in</strong>g,<br />

CNTs are mechanically dispersed <strong>in</strong>to a polymer<br />

matrix us<strong>in</strong>g a high temperature and high shear force<br />

mixer or compounder [187]. This approach is simple and<br />

compatible with current <strong>in</strong>dustrial practices. The shear<br />

forces help to break nanotube aggregates or prevent their<br />

formation. Zhang et al. [188] prepared nylon-6/MWNTs<br />

composites conta<strong>in</strong><strong>in</strong>g 1 wt% MWNTs via a melt compound<strong>in</strong>g<br />

method us<strong>in</strong>g a Brabender tw<strong>in</strong>-screw mixer.<br />

SEM image showed a homogeneous dispersion of MWNTs<br />

achieved through the matrix polymer, associated with<br />

significant enhancements <strong>in</strong> mechanical properties. Bocch<strong>in</strong>i<br />

et al. [189] fabricated MWNTs/l<strong>in</strong>ear low density<br />

polyethylene (LLDPE) nanocomposites via melt-blend<strong>in</strong>g<br />

us<strong>in</strong>g a Brabender Plasticorder <strong>in</strong>ternal mixer. MWNTs<br />

dispersed <strong>in</strong> LLDPE delay thermal and oxidative degradation<br />

with respect to that for virg<strong>in</strong> LLDPE. PE/MWNT<br />

nanocomposites were prepared us<strong>in</strong>g tw<strong>in</strong> screw melt<br />

compound<strong>in</strong>g [190]. Microscopic observations across the<br />

length scales and X-ray diffraction measurements <strong>in</strong>dicate<br />

that the MWNTs are very well distributed and dispersed <strong>in</strong><br />

the PE matrix. Melt mix<strong>in</strong>g has been successfully applied<br />

for the preparation of different polymers-CNT composites<br />

such as polypropylene/CNT [191–193], high density<br />

PE/CNT [194], polycarbonate/CNT [195–197], PMMA/CNT<br />

[198–201], polyoxymethylene/CNT [202], polyimide/CNT<br />

[203], PA6/CNT [204], etc. The disadvantage of this method<br />

is that the dispersion of CNTs <strong>in</strong> a polymer matrix is quite<br />

poor compared to the dispersion that may be achieved<br />

through solution mix<strong>in</strong>g. In addition, the CNTs must be<br />

lower due to the high viscosities of the composites at higher<br />

load<strong>in</strong>g of CNTs.<br />

3.3. In-situ polymerization<br />

In this polymerization method, the CNTs are dispersed<br />

<strong>in</strong> monomer followed by polymerization. A higher percentage<br />

of CNTs may be easily dispersed <strong>in</strong> this method, and<br />

form a strong <strong>in</strong>teraction with the polymer matrixes. This<br />

method is useful for the preparation of composites with<br />

polymers that can not be processed by solution or melt<br />

mix<strong>in</strong>g, e.g., <strong>in</strong>soluble and thermally unstable polymers.<br />

Hu et al. [205] synthesized MWNT-re<strong>in</strong>forced polyimide<br />

nanocomposites by <strong>in</strong>-situ polymerization of monomers <strong>in</strong><br />

the presence of acylated MWNTs, as shown <strong>in</strong> Scheme 5.In<br />

this work, MWNTs were functionalized with acyl groups,<br />

and then reacted with 3,3 ′ ,4,4 ′ -biphenyltetracarboxylic<br />

dianhydride to form MWNT-poly(amic acid). The f<strong>in</strong>al<br />

MWNT-polyimide nanocomposite films were obta<strong>in</strong>ed<br />

by imidization of MWNT-poly-(amic acid) at 350 ◦ C for<br />

1 h under vacuum. In this method, the CNTs were uniformly<br />

dispersed <strong>in</strong> polymer matrix. Recently, Cho et<br />

al. fabricated MWNTs-re<strong>in</strong>forced polyimide nanocomposites<br />

by <strong>in</strong>-situ polymerization us<strong>in</strong>g 4,4 ′ -oxydianill<strong>in</strong>e,<br />

MWNT-COOH, and pyromellitic dianhydride followed by<br />

cast<strong>in</strong>g, evaporation, and thermal imidization [206]. A


Scheme 5. Outl<strong>in</strong>e of the preparation of MWNT-polyimide nanocomposite<br />

films. Repr<strong>in</strong>ted with permission from Ref. [205]. Copyright 2006,<br />

Wiley-VCH, Germany.<br />

homogeneous dispersion of MWNT-COOH was achieved<br />

<strong>in</strong> polyimide matrix as evidenced by scann<strong>in</strong>g electron<br />

microscopy (Fig. 8). This method has been widely used<br />

for the preparation of PMMA-CNT composites [207–210].<br />

Jia et al. [207] first synthesized PMMA by <strong>in</strong>-situ radical<br />

polymerization method. They used free radical <strong>in</strong>itiator of<br />

2,2 1 -azobisisobutyronitrile, AIBN, to <strong>in</strong>itiate open CNTs bonds<br />

to participate <strong>in</strong> PMMA polymerization, form<strong>in</strong>g a<br />

strong <strong>in</strong>terface between the CNTs and the PMMA matrix.<br />

Other researchers used similar free radical <strong>in</strong>itiator AIBN<br />

to prepare SWNT-PMMA composites by <strong>in</strong>-situ polymerization<br />

[127,211].<br />

Conduct<strong>in</strong>g polymers are attached to CNTs surfaces<br />

by <strong>in</strong>-situ polymerization to improve the processability,<br />

and electrical, magnetic and optical properties of CNTs<br />

[212–215]. Cho and co-workers [216] described a simple<br />

approach to the synthesis of MWNT/polypyrrole (PPy) nanotubes<br />

by the <strong>in</strong>-situ chemical polymerization of pyrrole on<br />

the CNTs us<strong>in</strong>g ferric chloride as an oxidant. They <strong>in</strong>vestigated<br />

the effect of the monomer concentration on the<br />

coat<strong>in</strong>g and properties of the result<strong>in</strong>g complex nanotubes.<br />

By chang<strong>in</strong>g the pyrrole/MWNT ratio, the layer thickness<br />

of PPy could be easily controlled <strong>in</strong> MWNT-PPy complex<br />

nanotubes, as shown <strong>in</strong> Fig. 9. Long et al. [213] synthe-<br />

N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 849<br />

Fig. 8. SEM images of PI/MWNTs nanocomposites: PI/MWNT-COOH<br />

5 wt%. Repr<strong>in</strong>ted with permission from Ref. [206]. Copyright 2007, Elsevier<br />

<strong>Science</strong> Ltd., UK.<br />

sized the CNT/PPy nanocables through an <strong>in</strong>-situ chemical<br />

oxidative polymerization method. They showed that the<br />

conductivity of nanocables <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g nanotube<br />

weight percentage.<br />

In-situ polymerization method has also been used<br />

for the preparation of polyurethane/CNT nanocomposites.<br />

PU/MWNT composites were synthesized by two <strong>in</strong>-situ<br />

polymerization methods [217]. In one method, a calculated<br />

amount of carboxylate MWNT and 1,4-butanediol (BD) was<br />

added to a prepolyurethane solution <strong>in</strong> the subsequent<br />

cha<strong>in</strong>-extension step. In the second method, the necessary<br />

weight fractions of MWNTs were first dispersed <strong>in</strong><br />

poly(-caprolactone)diol (PCL). Thereafter, 4,4 ′ -methylene<br />

bis(phenylisocyanate) (MDI) was added <strong>in</strong>to this mixture.<br />

The cha<strong>in</strong> extender BD was added to this prepolymer<br />

and the f<strong>in</strong>al PU-MWNTs composite was synthesized. The<br />

MWNTs were relatively well dispersed <strong>in</strong> the PU matrix<br />

of the PU-MWNT sample <strong>in</strong> second method. Xia and Song<br />

[218] found that MWNTs could be <strong>in</strong>dividually dispersed <strong>in</strong><br />

Fig. 9. TEM photographs of PPy-coated MWNTs: (a) MWNT:PPy = 1:2; (b) MWNT:PPy = 1:5. Repr<strong>in</strong>ted with permission from Ref. [216]. Copyright 2007,<br />

Elsevier <strong>Science</strong> Ltd., UK.


850 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

Fig. 10. FT-IR spectra of samples obta<strong>in</strong>ed (a) dur<strong>in</strong>g prepolymerization (first step) with reaction time and (b) dur<strong>in</strong>g reaction of prepolymer with<br />

functionalized MWNTs (second step). Repr<strong>in</strong>ted with permission from Ref. [220]. Copyright 2006, Wiley-VCH, Germany.<br />

the PU matrix by <strong>in</strong>-situ polymerization method with the<br />

aid of a dispers<strong>in</strong>g agent. But SWNTs were not dispersed<br />

well <strong>in</strong> this method. Later they synthesized PU/SWNTs<br />

nanocomposites us<strong>in</strong>g PU-grafted SWNT which improved<br />

the dispersion of SWNT <strong>in</strong> the PU matrix and strengthened<br />

the <strong>in</strong>terfacial <strong>in</strong>teraction between the PU and SWNT [219].<br />

A novel concept has been proposed to prepare<br />

PU-MWNTs composite via <strong>in</strong>-situ polymerization of a prepolymer<br />

<strong>in</strong> the presence of carboxylated MWNTs [220].<br />

Synthesis of PU/MWNT nanocomposites was carried out<br />

<strong>in</strong> a two-step process as follows. First, prepolymer was<br />

prepared from a reaction of MDI and PCL at 80 ◦ C for<br />

90 m<strong>in</strong> <strong>in</strong> a four-neck cyl<strong>in</strong>drical vessel equipped with a<br />

mechanical stirrer. In the second stage, a calculated amount<br />

of carboxilated MWNTs was added to the prepolymer at<br />

110 ◦ C, and they were reacted for 150 m<strong>in</strong> to obta<strong>in</strong> the<br />

f<strong>in</strong>al crossl<strong>in</strong>ked MWNT-PU nanocomposite. In this case,<br />

any cha<strong>in</strong> extender was not used at the second stage reaction.<br />

PU cha<strong>in</strong>s were crossl<strong>in</strong>ked to MWNTs by a reaction<br />

between the carboxylic acid groups of the MWNTs and<br />

the NCO groups of prepolyurethane (Fig. 10). These PUcrossl<strong>in</strong>ked<br />

MWNTs composites were never dissolved <strong>in</strong> PU<br />

solvents such as N,N-dimethylformamide, dimethyl sulfoxide,<br />

dimethylacetamide, or tetrahydrofuran.<br />

The <strong>in</strong>-situ polymerization of caprolactam <strong>in</strong> the presence<br />

of SWNTs allowed the cont<strong>in</strong>uous sp<strong>in</strong>n<strong>in</strong>g of<br />

SWNTs-PA6 fibers [221]. In addition, caprolactam is an<br />

excellent solvent for carboxylic acid-functionalized SWNTs<br />

(SWNTs-COOH). This allows the efficient dispersion of the<br />

SWNTs and subsequent graft<strong>in</strong>g of PA6.<br />

4. Preparation of CNT nanocomposites us<strong>in</strong>g<br />

dendritic polymers<br />

Due to their three-dimensional globular and spherelike<br />

structural architectures, dendritic polymers (DP) such<br />

as dendrimeric and hyperbranched polymers, have generated<br />

great excitement <strong>in</strong> polymer research, ow<strong>in</strong>g to<br />

their wide range of applications from drug delivery to<br />

chemical sensors [222–224]. Dendrimers have unique size,<br />

controlled and symmetric structure with ideally branch-<br />

<strong>in</strong>g units without any structural defects [225,226], but<br />

require a multi-step synthesis reaction, whereas the Hyperbranched<br />

polymers exhibit a randomly branched structure,<br />

with a s<strong>in</strong>gle step synthesis process [227,228]. Recently,<br />

dendritic polymers have been used to enhance the dispersion<br />

of CNTs <strong>in</strong> polymer matrices, tak<strong>in</strong>g advantage<br />

of their highly functionalized three-dimensional globular,<br />

non-entangled structures. They exhibit higher solubility<br />

and lower viscosity <strong>in</strong> the melt and solution states compared<br />

to l<strong>in</strong>ear polymers of the same molar mass [229,230].<br />

Dendritic polymer/CNT nanocomposites may be formed via<br />

covalent and non-covalent functionalization of CNTs. Dendritic<br />

polymers are effective for enhanc<strong>in</strong>g mechanical and<br />

electrical properties of polymer nanocomposites because<br />

the prist<strong>in</strong>e CNTs can be used to obta<strong>in</strong> well dispersed CNTs<br />

<strong>in</strong> polymer matrix, without any CNT modification.<br />

4.1. CNT nanocomposites via covalently functionalized<br />

CNT-dendritic polymers<br />

Graft<strong>in</strong>g of dendritic polymers on CNTs is a novel<br />

approach for fabricat<strong>in</strong>g the nanomaterials and nanodevices<br />

[231–234]. Newkome and co-workers [235]<br />

fabricated unique CdS quantum dot composite assemblies<br />

us<strong>in</strong>g dendronized SWNTs. Acyl chloride functionalized<br />

MWNTs were treated with am<strong>in</strong>o-polyester dendron to<br />

prepare [(Den)n-SWNT]. The ester groups were further<br />

changed <strong>in</strong>to carboxylic groups us<strong>in</strong>g formic acid, and<br />

reacted with Cd(NO 3) 2 to generate encapsulated CdS quantum<br />

dots tethered to the SWNT surface. An electrode<br />

material based on hyperbranched polymer-functionalized<br />

MWNTs for lithium batteries showed good reversible<br />

capacities and excellent capacity retention [236]. Sun and<br />

co-workers [237], prepared the dendron functionalized<br />

CNTs via amidation and esterification and their photophysical<br />

properties were studied. Prato and co-workers<br />

[238] reported the synthesis of SWNTs functionalized with<br />

polyamidoam<strong>in</strong>e dendrimers. The dendrimers present on<br />

the nanotube sidewalls have been further functionalized<br />

with porphyr<strong>in</strong> moieties, and the photophysical properties<br />

of nanoconjugates have studied. Under visible light irra-


N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 851<br />

Scheme 6. Synthetic process for the MWNT-hyperbranched polyether nanohybrids. Repr<strong>in</strong>ted with permission from Ref. [233]. Copyright 2004, American<br />

Chemical Society, USA.<br />

diation, porphyr<strong>in</strong>-SWNT nanoconjugate give rise to fast<br />

charge separation (1.5 ± 0.5) × 10 10 s −1 evolv<strong>in</strong>g from the<br />

photoexcited porph<strong>in</strong> chromophores. Haddleton and coworkers<br />

[239] described a poly(amidoam<strong>in</strong>e) dendrimer<br />

(PAMAM) functionalized MWNTs via ester l<strong>in</strong>kage. The<br />

dendron functionalized MWNTs were used as a template<br />

for the deposition of silver nanoparticles on the<br />

MWNT surface. Park and co-workers [240] studied the<br />

antimicrobial effects of silver nanoparticles functionalized<br />

PAMAM-MWNTs nanohybrids. The dendritic-MWNTs/Ag<br />

was found to have a stronger antimicrobial effect than<br />

dendritic-MWNTs. The role of the architecture of dendritic<br />

molecules on CNT photoelectrical behavior has also been<br />

discussed [241]. These super-structured CNTs exhibit a<br />

peculiar response to electron beams. Gao and co-workers<br />

[233] prepared multihydroxyl hyperbranched polymer on<br />

the surface of MWNTs. In situ r<strong>in</strong>g-open<strong>in</strong>g polymerization<br />

was employed for grow<strong>in</strong>g multihydroxyl dendritic macromolecules<br />

on the surface of MWNTs, as shown <strong>in</strong> Scheme 6.<br />

Tree like multihydroxy hyperbranched polyether were<br />

covalently grafted on the MWNTs us<strong>in</strong>g MWNTs-OH as an<br />

<strong>in</strong>itiator. The amount of polymer grafted is controllable<br />

us<strong>in</strong>g this approach. The molecular weight of the grafted<br />

hyperbranched polymer <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g a feed<br />

ratio of the monomer.<br />

Biocompatible polymers on CNTs are arous<strong>in</strong>g<br />

<strong>in</strong>terest due to the great significance of the nanohybrids<br />

<strong>in</strong> bionanotechnology [242,243]. Mueller and<br />

co-workers [244] prepared hyperbranched glycopolymers<br />

functionalized MWNTs by atom transfer radical<br />

polymerization of 3-O-methacryloyl-1,2:5,6-di-Oisopropylidene-D-glucofuranose<br />

(MAIG) and self<br />

condens<strong>in</strong>g v<strong>in</strong>yl copolymerization of MAIG and AB*<br />

<strong>in</strong>imer, 2-(2-bromoisobutyryloxy)ethyl methacrylate. The<br />

hyperbranched glycopolymers are biocompatible and<br />

water soluble, and the result<strong>in</strong>g polymer-functionalized<br />

MWNTs would be very useful for bionanotechnology<br />

applications. Hyperbranched poly(citric acid) (PCA)<br />

grafted MWNTs based nanocomposites were synthesized<br />

by Hekmatara and co-workers [245]. The CNT-g-PCA<br />

nanocomposites were soluble <strong>in</strong> water freely. Hong et al.<br />

[246] reported the coat<strong>in</strong>g of MWNTs with hyperbranched<br />

polymer shell by self-condens<strong>in</strong>g v<strong>in</strong>yl polymerization<br />

(SCVP) of 2-((bromobutyryl)-oxy) ethyl acrylate via<br />

ATRP. The synthesized hyperbranched polymers have<br />

a large number of functional groups facilitat<strong>in</strong>g further<br />

functionalization of MWNTs and provid<strong>in</strong>g a method to<br />

homogeneously disperse MWNT conduct<strong>in</strong>g layers with<strong>in</strong><br />

electrolum<strong>in</strong>escent devices.<br />

Core–shell nanostructures were prepared by Xie and<br />

co-workers [234,247] with MWNTs and hyperbranched<br />

poly(urea-urethane)s (HPU) as the hard core and the soft<br />

shell, respectively The authors have synthesized HPUfunctionalized<br />

MWNTs by a polycondensation method;<br />

the solution rheology of HPU functionalized MWNTs were<br />

studied. A large number of proton-donor and protonacceptor<br />

groups were located <strong>in</strong> the HPU functionalized<br />

MWNT; <strong>in</strong>tra- and <strong>in</strong>termolecular H-bonds were easily<br />

formed by their <strong>in</strong>teractions. At low temperature, shear<strong>in</strong>g<br />

forces <strong>in</strong>duce conversion from <strong>in</strong>tra- to <strong>in</strong>termolecular Hbonds.<br />

The rheological behavior of the HPU-functionalized<br />

MWNT solutions showed a strong dependence on concentration,<br />

temperature, and thermal and shear<strong>in</strong>g prehistory.<br />

Baek and co-workers [248,249] prepared hyperbranched<br />

poly(ether ketone)s (PEK) grafted MWNTs us<strong>in</strong>g an <strong>in</strong><br />

situ polymerization method. Hyperbranched ether–ketone<br />

polymer conta<strong>in</strong><strong>in</strong>g different monomer ratios were synthesized<br />

<strong>in</strong> the presence of MWNTs to afford PEK-g-MWNTs<br />

nanocomposites. Due to the molecular architecture of<br />

hyperbranched polymers, the morphology of the nanocomposites<br />

resembles mushroom-like clusters on MWNTs<br />

stalks [250]. The resultant nanocomposites were soluble <strong>in</strong><br />

most strong acids, such as trifluoroacetic acid, methanesulfonic<br />

acid and sulfuric acid. UV curable functional groups<br />

conta<strong>in</strong><strong>in</strong>g hyperbranched polymers were synthesized for<br />

modification of CNTs [251]. The hyperbranched polyester


852 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

Fig. 11. Current AFM images of l<strong>in</strong>ear (a) and hyperbranched (b) polyurethane nanocomposites conta<strong>in</strong><strong>in</strong>g prist<strong>in</strong>e multi-walled carbon nanotubes of<br />

20 wt% [254].<br />

functionalized MWNTs were reacted with difunctional<br />

molecules synthesized from toluene 2,4-diisocyanate and<br />

hydroxylethyl acrylate to get UV curable hyperbranched<br />

polymer. The modified MWNTs conta<strong>in</strong><strong>in</strong>g large amount<br />

of UV-curable acrylate group were dispersed with UV curable<br />

aliphatic urethane acrylate res<strong>in</strong>s. In the presence of<br />

UV irradiation, crossl<strong>in</strong>k<strong>in</strong>g reaction developed between<br />

MWNTs and acrylate res<strong>in</strong>s, lead<strong>in</strong>g to the covalent bond<strong>in</strong>g<br />

of MWNTs to the matrix, a more stable coupl<strong>in</strong>g than<br />

simply physical bond<strong>in</strong>g. Due to the excellent mechanical<br />

properties of MWNTs, both the tensile strength and toughness<br />

of the nanocomposites were enhanced by nearly 41%<br />

and 105%, respectively, with only 0.1 wt% MWNTs.<br />

4.2. CNT nanocomposites via non-covalently<br />

functionalized CNT-dendritic polymers<br />

The disruption of electronic conjugation by covalent<br />

modification motivates research on non-covalent functionalization<br />

of CNTs. In fact, excellent modification of<br />

CNTs through non-covalent <strong>in</strong>teraction between the system<br />

of CNT and the functional group of polymer can<br />

be achieved. Star and Stoddart [252] studied the dispersion<br />

and solubilization of SWNTs with a hyperbranched<br />

polymer (poly[(m-phenylenev<strong>in</strong>ylene)-co-(2,5-dioctoxyp-phenylene)<br />

v<strong>in</strong>ylene] (PmPV). The hyperbranched polymer<br />

exhibits more efficiency at dispers<strong>in</strong>g nanotube<br />

bundles than its parent PmPV polymer. The branch<strong>in</strong>g<br />

of PmPV makes it less efficient for wrapp<strong>in</strong>g bundles of<br />

SWNTs. They studied the molecular model<strong>in</strong>g of hyperbranched<br />

polymer and found that the pockets provided<br />

by the hyperbranched polymer offer a better fit for the<br />

SWNTs. Cho and co-workers [253] also prepared the hyperbranched<br />

polyurethane (HBPU)-MWNTs nanocomposites<br />

us<strong>in</strong>g an <strong>in</strong> situ polymerization method. They prepared<br />

different hard segment conta<strong>in</strong><strong>in</strong>g PU nanocomposites via<br />

a two step process. Novel dispersion of MWNTs <strong>in</strong> the<br />

HBPU matrix was observed, as well as good solubility<br />

of nanocomposites <strong>in</strong> organic solvents. Because of the<br />

good dispersion of MWNTs <strong>in</strong> the polymer matrix, the PU<br />

nanocomposites showed dom<strong>in</strong>ant shape recovery properties<br />

of 84–96%, and enhanced mechanical properties.<br />

They also studied the dispersion of high concentration<br />

MWNTs (5–40 wt%) us<strong>in</strong>g an HBPU matrix [254]. The<br />

MWNTs dispersion was analyzed on the basis of surface<br />

morphology us<strong>in</strong>g current AFM images (Fig. 11), <strong>in</strong>clud<strong>in</strong>g<br />

dispersions of 20 wt% MWNT <strong>in</strong> l<strong>in</strong>ear, as well as hyperbranched<br />

polymer matrix. The aggregated MWNTs were<br />

observed <strong>in</strong> l<strong>in</strong>ear PU/MWNTs nanocomposites, whereas<br />

well dispersed MWNTs were observed for HBPU/MWNTs<br />

nanocomposites. Compared to l<strong>in</strong>ear PU nanocomposites,<br />

the hyperbranched nanocomposites give remarkable high<br />

electrical conductivity.<br />

Nakamoto and co-workers [255] presented the construction<br />

of <strong>in</strong>sulat<strong>in</strong>g conduct<strong>in</strong>g wire composed of<br />

SWNTs and phenolic polymers as a conduct<strong>in</strong>g wire<br />

and as an <strong>in</strong>sulat<strong>in</strong>g coat<strong>in</strong>g, respectively. A hyperbranched<br />

phenolic polymer (HBP) was synthesized from<br />

3,4,5-trimethoxytoluene (A 2) and 1,3,5-tribromomethyl-<br />

2,4,6-trimethoxybenzene (B 3) us<strong>in</strong>g a Lewis acid-catalyzed<br />

polycondensation method. Fig. 12 shows the TEM and AFM<br />

images for the samples. The images show the cover<strong>in</strong>g<br />

of the SWNT surface by HBPs, which <strong>in</strong>dicates solubilization<br />

of SWNTs with physical adsorption of HBPs. In the<br />

presence of HBP polymer, SWNTs were homogeneously<br />

dispersed <strong>in</strong> DMF solution, <strong>in</strong> contrast to the use of l<strong>in</strong>ear<br />

polymer, where SWNTs were <strong>in</strong>soluble <strong>in</strong> DMF, even<br />

after sonication. The authors also studied the impact of solvent<br />

on the solubility of SWNTs with HBP. The SWNTs were<br />

sparsely soluble <strong>in</strong> THF solution with HBP, whereas typically<br />

SWNTs van Hove s<strong>in</strong>gularities were found with HBP <strong>in</strong><br />

DMF. A non-covalent method for prepar<strong>in</strong>g the crossl<strong>in</strong>ked<br />

amphiphillic hyperbranch polymer micelle-encapsulated<br />

CNTs was proposed to improve the dispersion of CNTs <strong>in</strong><br />

water [256]. Fig. 13 shows the TEM images of uncrossl<strong>in</strong>ked<br />

and crossl<strong>in</strong>ked encapsulated CNTs. Zheng and co-workers<br />

[257] reported an MWNTs based solvent-free nanofluids at<br />

room temperature us<strong>in</strong>g hyperbranched poly(am<strong>in</strong>e-ester)<br />

(HPAE). Acid functionality conta<strong>in</strong><strong>in</strong>g MWNTs were homogeneously<br />

dispersed <strong>in</strong> HPAE matrix. The ternary am<strong>in</strong>e<br />

of HPAE were protonated with the carboxylic groups of<br />

MWNTs via an acid–base reaction, which leads to ionic<br />

attachment on the surface of MWNTs as well as hydrogen<br />

bond<strong>in</strong>g <strong>in</strong>teraction between the –OH, C O groups


N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 853<br />

Fig. 12. (a) TM-AFM height image of SWNTs solubilized by extended HBP. (b) Height profile along dash l<strong>in</strong>e <strong>in</strong> (a). (c) Proposed structure of hybrids<br />

composed of HBP and SWNTs on mica surface. The extended TM-AFM (d) height and (e) phase images <strong>in</strong> box area <strong>in</strong> (a). Repr<strong>in</strong>ted with permission from<br />

Ref. [255]. Copyright 2008, Elsevier <strong>Science</strong> Ltd., UK.<br />

and the ternary am<strong>in</strong>e groups to form a homogeneous<br />

hybrid system. The preparation of fluor<strong>in</strong>ated oligomeric<br />

aggregates/CNTs nanocomposites possess<strong>in</strong>g a higher dispersibility<br />

and stability <strong>in</strong> water is of particular <strong>in</strong>terest<br />

for develop<strong>in</strong>g new fluor<strong>in</strong>ated functional materials [258].<br />

Sawada et al. [259] synthesized a dendrimer copolymer<br />

conta<strong>in</strong><strong>in</strong>g fluoroalkyl segments [260] for the dispersion of<br />

SWNTs <strong>in</strong> water. They demonstrated that the fluor<strong>in</strong>ated<br />

dendrimer block copolymers could form new fluor<strong>in</strong>ated<br />

molecular aggregates to have higher dispersion ability,<br />

not only for SWNTs and fullerenes, but also for magnetic<br />

nanoparticles <strong>in</strong> water. Valent<strong>in</strong>i et al. [261] reported<br />

naphthalenediimide modified electrically conduct<strong>in</strong>g dendrimer<br />

poly(amidoam<strong>in</strong>e)/SWNTs nanocomposites. The<br />

electric conductance of SWNTs drastically <strong>in</strong>creased upon<br />

adsorption of the conduct<strong>in</strong>g dendrimer, ow<strong>in</strong>g to the<br />

<strong>in</strong>teraction between SWNTs and the conduct<strong>in</strong>g dendrimer.<br />

The effective immobilization of glucose oxidase (GOx)<br />

on the CNT surface is a key issue for develop<strong>in</strong>g a glucosebased<br />

biosensor [262–264]. Zhu and co-workers [265]<br />

prepared the glucose biosensor based on layer-by-layer<br />

electrostatic adsorption of glucose oxidase and dendrimerencapsulated<br />

Pt nanoparticles on MWNTs. LBL technique<br />

provide a favorable microenvironment to keep the bioactivity<br />

of glucose oxidase, and prevent enzyme molecule<br />

leakage. The enzyme electrode showed good characteristics,<br />

such as short response time, high sensitivity, and<br />

stability. The (GOx/Pt-DENs) 4/CNTs electrode showed bet-<br />

ter chronoampermetric response than the unmodified<br />

CNTs electrode.<br />

5. Mechanical properties of polymer/CNT<br />

nanocomposites<br />

As remarked above, their extraord<strong>in</strong>ary mechanical<br />

properties and large aspect ratio make CNTs excellent candidates<br />

for the development of CNT-re<strong>in</strong>forced polymer<br />

nanocomposites. Indeed, a wide range of polymer matrixes<br />

have been used for the development of such nanocomposites.<br />

This section focuses on the mechanical properties of<br />

composites of CNT composites <strong>in</strong> two polymer matrixes<br />

well represented <strong>in</strong> the literature.<br />

5.1. Polyurethane/CNT composites<br />

Polyurethane is one of the most versatile materials<br />

today. It is widely used <strong>in</strong> coat<strong>in</strong>gs, adhesives, shape<br />

memory polymers, medical fields and composites. PU is<br />

consist<strong>in</strong>g of alternat<strong>in</strong>g hard and soft segments. The<br />

hard segment is composed of alternat<strong>in</strong>g diisocyanate and<br />

cha<strong>in</strong>-extender molecules (i.e., diol or diam<strong>in</strong>e), whereas<br />

the soft segment is formed from a l<strong>in</strong>ear, long-cha<strong>in</strong> diol.<br />

Phase separation occurs <strong>in</strong> PUs because of the thermodynamic<br />

<strong>in</strong>compatibility of the hard and soft segments.<br />

PU/CNT composites [266–275] are of significant current<br />

<strong>in</strong>terest. The mechanical properties for different PU composites<br />

are summarized <strong>in</strong> Table 4.


854 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

Fig. 13. TEM images of (A) empty micelles, (B) uncrossl<strong>in</strong>ked e-MWNT, and (C and D) crossl<strong>in</strong>ked e-MWNT. Repr<strong>in</strong>ted with permission from Ref. [256].<br />

Copyright 2008, Elsevier <strong>Science</strong> Ltd., UK.<br />

Incorporation of CNTs <strong>in</strong>to PU can dramatically <strong>in</strong>crease<br />

the tensile strength and modulus. For example, the addition<br />

of carboxylated MWNTs <strong>in</strong>to the PU matrix by solvent mix<strong>in</strong>g<br />

improved the tensile strength and modulus of the PU<br />

matrix [173,276] as shown <strong>in</strong> Fig. 14. The tensile strength<br />

of a composite conta<strong>in</strong><strong>in</strong>g 10 wt% of MWNT-COOH was<br />

enhanced by 108% as compared to pure PU, while an<br />

Table 4<br />

Mechanical properties of PU-CNT composites.<br />

Nanotube type Preparation method % of modulus improvement at<br />

1% CNT<br />

<strong>in</strong>crease of 68% was achieved by <strong>in</strong>corporat<strong>in</strong>g the same<br />

amount of raw MWNTs <strong>in</strong> the PU matrix. F<strong>in</strong>ally, the tensile<br />

strength and modulus of nanocomposites <strong>in</strong>creased<br />

from 7.6 MPa <strong>in</strong> pure PU to 21.3 MPa (an <strong>in</strong>crease of 180%)<br />

and 50 to 420 MPa (an <strong>in</strong>crease of 740%), respectively,<br />

when the functionalized MWNTs content reached 20 wt%<br />

<strong>in</strong> composites. The hydrophilic functional groups on the<br />

% of tensile strength<br />

improvement at 1% CNT<br />

SWNT Solution 25 50 [357]<br />

MWNT-functional Solution 140 20 [162]<br />

MWNT-functional Solution – 63 [279]<br />

SWNT-functional Electrosp<strong>in</strong><strong>in</strong>g 250 104 [281]<br />

MWNT Addition polymerization 561 397 [280]<br />

MWNT In-situ polymerization 35 114 [277]<br />

MWNT-functional In-situ polymerization 54 25 [358]<br />

MWN-functional Solution 12 6 [274]<br />

MWNT In-situ polymerization 90 90 [359]<br />

MWNT-functional In-situ polymerization 40 7 [266]<br />

Reference


Fig. 14. Stress–stra<strong>in</strong> profiles of PU composites at different MWNT<br />

load<strong>in</strong>g. Repr<strong>in</strong>ted with permission from Ref. [173]. Copyright 2006,<br />

Wiley-VCH, Germany.<br />

MWNTs were helpful <strong>in</strong> improv<strong>in</strong>g the <strong>in</strong>teraction with<br />

–CONH– groups <strong>in</strong> PU. Therefore, the strong <strong>in</strong>teraction<br />

between the functionalized MWNTs and the PU matrix<br />

greatly enhanced the dispersion as well as the <strong>in</strong>terfacial<br />

adhesion, thus strengthen<strong>in</strong>g the overall mechanical<br />

performance of the composite. The mechanical properties<br />

of composites depends on the acid treatment temperature<br />

of the CNTs. Composites conta<strong>in</strong><strong>in</strong>g MWNTs reacted<br />

at 90 ◦ C resulted <strong>in</strong> a greater <strong>in</strong>creased modulus compared<br />

with those at 140 ◦ C, <strong>in</strong>dicat<strong>in</strong>g that severe surface<br />

modification lowers mechanical properties [95]. Kuan et<br />

al. [277] <strong>in</strong>corporated am<strong>in</strong>o functionalized MWNTs <strong>in</strong>to<br />

waterborne PU. They found an <strong>in</strong>crease <strong>in</strong> modulus from<br />

77 MPa for the polymer to 131 MPa for a 4 phr composite<br />

(an <strong>in</strong>crease of 70%) and a tensile strength <strong>in</strong>crease<br />

from 5.1 MPa to 18.9 MPa (an <strong>in</strong>crease of 270%) at the same<br />

load<strong>in</strong>g level. Covalent bond formation between am<strong>in</strong>o<br />

functionalized MWNTs and PU promoted <strong>in</strong>creased <strong>in</strong>terfacial<br />

strength and tensile strength. MWNT is more effective<br />

to the improvement of modulus, whilst SWNT is better for<br />

elongation and tensile strength. The different re<strong>in</strong>forc<strong>in</strong>g<br />

effects of MWNT and SWNT on PU were correlated to the<br />

shear th<strong>in</strong>n<strong>in</strong>g exponent and the shape factor of CNTs <strong>in</strong><br />

polyol dispersion.<br />

<strong>Polymer</strong> graft<strong>in</strong>g is very effective <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g dispersion<br />

and the mechanical properties of composites due to<br />

its strong chemical bond<strong>in</strong>g between polymer and CNTs.<br />

Xia et al. [278] studied polycaprolactone-based PU-grafted<br />

Table 5<br />

Mechanical properties of PI-CNT composites.<br />

N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 855<br />

SWNTs (SWNT-g-PU) and poly(propylene glycol)-grafted<br />

MWNTs <strong>in</strong>to PU by <strong>in</strong>-situ polymerization. Mechanical<br />

property improvements were observed <strong>in</strong> both cases. The<br />

<strong>in</strong>corporation of 0.7 wt% SWNT-g-PU <strong>in</strong>to PU improved<br />

the Young’s modulus by ∼278% and ∼188% compared to<br />

the pure PU and ungrafted prist<strong>in</strong>e SWNT/PU composites,<br />

respectively. This is due to the better dispersion of SWNTg-PU<br />

and MWNT-g-PU and stronger <strong>in</strong>terfacial <strong>in</strong>teractions<br />

between the CNTs and PU. Wang and Tseng [279] also<br />

found that add<strong>in</strong>g 1–10 wt% PU functionalized MWNT to<br />

PU <strong>in</strong>creased the tensile strength by 63–210%. The storage<br />

modulus and soft segment Tg (from tan ) <strong>in</strong>creased with<br />

<strong>in</strong>creas<strong>in</strong>g PU-functionalized MWNT <strong>in</strong> the PU. The Tg of<br />

the soft segments of the nanocomposite films shifted from<br />

−20 to −5 ◦ C, suggest<strong>in</strong>g that PU functionalized MWNTs<br />

are compatible with the amorphous regions of the soft<br />

segments <strong>in</strong> the PU matrix. Recently McClory et al. [280]<br />

reported thermosett<strong>in</strong>g PU-MWNTs nanocomposites by an<br />

addition polymerization reaction. The Young’s modulus<br />

<strong>in</strong>creased by 97 and 561% on the addition of 0.1 wt% and<br />

1 wt% MWNTs <strong>in</strong> the PU, respectively, whereas ultimate<br />

tensile strength <strong>in</strong>creased by 397% when either 0.1 or 1 wt%<br />

MWNTs added to PU. In this composite, the percentage<br />

of elongation-at-break <strong>in</strong>creased from 83 to 302% on the<br />

addition of 0.1 wt% CNT compared to pure PU res<strong>in</strong>.<br />

Improvement of mechanical properties has been<br />

reported for melt-processed composite fibers. Young’s<br />

modulus of composite fibers <strong>in</strong>creased by 27 folds compared<br />

to unfilled PU fiber. Sen et al. [281] studied the<br />

fabrication of membranes of SWNT-filled PU by the<br />

electrosp<strong>in</strong>n<strong>in</strong>g technique. The tensile strength of esterfunctionalized<br />

SWNT/PU membranes was enhanced by<br />

∼104%, and the tangent modulus improved by ∼250%<br />

compared to PU membrane. So, these enhancements <strong>in</strong><br />

mechanical properties can be attributed to the high dispersion<br />

of CNTs through the polymer matrix and good<br />

<strong>in</strong>terfacial <strong>in</strong>teraction between CNT and PU.<br />

5.2. Polyimide/CNT nanocomposites<br />

Polyimide (PI) is a candidate polymer for a variety of<br />

applications such as packag<strong>in</strong>g materials, circuit boards,<br />

and <strong>in</strong>terlayer dielectrics due to their good dielectric<br />

properties, flexibility, high glass transition temperature,<br />

excellent thermal stability, and radiation resistance. Polyimides<br />

serve as excellent polymer matrices for polymeric<br />

CNT nanocomposites [282,283]. The mechanical properties<br />

for different PI composites are summarized <strong>in</strong> Table 5.<br />

Nanotube type Sample type CNT content (wt%) % of modulus improvement % of tensile strength improvement Reference<br />

SWNT-functional Film 1 89 9 [287]<br />

MWNT-functional Film 5 33 7 [206]<br />

MWNT-functional Film 5 – 40 [285]<br />

MWNT-functional Film 0.5 110 100 [289]<br />

MWNT-functional Film 0.5 60 61 [290]<br />

MWNT-functional Film 6.98 61 31 [284]<br />

SWNT Film 1 10 10 [203]<br />

SWNT Rod 1 0 11 [203]<br />

SWNT Fiber 1 45 0 [203]<br />

MWNT-functional Film 7.5 52 21 [282]


856 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

Most studies report nanocomposites with CNT result<br />

<strong>in</strong>improvements <strong>in</strong> the mechanical properties of PI. For<br />

example, <strong>in</strong> situ polymerized PI conta<strong>in</strong><strong>in</strong>g 5 wt% MWNT-<br />

COOH showed <strong>in</strong>crease <strong>in</strong> modulus (33%) and tensile<br />

strength (7%) as compared to neat PI [206]. However,<br />

compared to that of the neat PI, the modulus and tensile<br />

strength of raw CNT/PI nanocomposites showed only<br />

a slight <strong>in</strong>crease.The better improvement <strong>in</strong> the tensile<br />

strength and modulus of PI/MWNT-COOH may be caused<br />

by the strong <strong>in</strong>teractions between PI matrix and MWNT-<br />

COOH. As discussed above, the functionalized MWNTs<br />

prepared by acid treatment conta<strong>in</strong> –COOH groups, which<br />

facilitate improved <strong>in</strong>teraction with –O– groups <strong>in</strong> the PI<br />

cha<strong>in</strong>.<br />

Another study revealed moderate <strong>in</strong>creases <strong>in</strong> the modulus<br />

and tensile strength of PI when mixed with plasma<br />

modified MWNT [289]. The addition of 0.5 wt% of the<br />

plasma modified MWNT to the PI <strong>in</strong>creased the modulus<br />

from 2.17 to 4.56 GPa and the tensile strength from 124.5<br />

to 249 MPa, or <strong>in</strong>creases of 110% and 100%, respectively.<br />

These impressive results were attributed to chemical bond<br />

formation between the plasma modified MWNT and the<br />

PI. When the modified MWNTs content was higher (above<br />

0.5 wt), the modulus and tensile strength were decreased<br />

at high modified MWNT content. This result is consistent<br />

with other reports [285,286]. Zhu et al. [285] found that the<br />

tensile strength of the PI/MWNT composites <strong>in</strong>creased with<br />

<strong>in</strong>creased MWNT content up to 5 wt%, then decreased with<br />

further <strong>in</strong>crease <strong>in</strong> MWNTs. The <strong>in</strong>corporation of 5 wt%<br />

MWNTs <strong>in</strong>to PI resulted <strong>in</strong> an enhanced tensile strength by<br />

40% compared to pure PI, attributed to good dispersion of<br />

MWNTs <strong>in</strong> the nanocomposite. At higher level of MWNTs,<br />

the MWNTs could not be well-dispersed, agglomerat<strong>in</strong>g<br />

to large clusters and result<strong>in</strong>g <strong>in</strong> a decrease of the tensile<br />

strength. Jiang et al. [286] also observed that the Young<br />

modulus of PI/MWNT composites improved by add<strong>in</strong>g up<br />

to 1.89 vol% MWNT and decreased with MWNT content<br />

further <strong>in</strong>crease.<br />

A study utiliz<strong>in</strong>g SWNTs reported that the mechanical<br />

properties of SWNT/PI composites with a low level<br />

of SWNTs (0.30 wt%) showed a slight <strong>in</strong>crease (5% tensile<br />

strength and 18% Young modulus) compared to PI, whereas<br />

composites with higher SWNT level (1 wt%) showed significant<br />

improvement of the mechanical properties (9% tensile<br />

strength and 90% Young modulus) [287].<br />

The mechanical properties of PI/CNT composites<br />

depend on the nature of any functionalization of the CNT.<br />

At lower level of MWNT (up to 0.99 wt%), the tensile<br />

properties of am<strong>in</strong>e-modified MWNT/PI composites was<br />

higher than that of acid-modified MWNT/PI composites<br />

[284]. However, acid-modified MWNTs improved the tensile<br />

properties of the PI more than am<strong>in</strong>e-modified MWNT<br />

for MWNTs content above 2.44 wt%. The acid-modified<br />

MWNTs may form hydrogen bonds with the C O bonds of<br />

the PI molecules. However, the bond<strong>in</strong>g of am<strong>in</strong>e-modified<br />

MWCNT to polyamic acid may reduce its imidization. The<br />

mechanical strength of polyamic acid is less than that of<br />

PI and polyamic acid is more brittle than PI. So, am<strong>in</strong>emodified<br />

MWNT is added to the PI matrix may affect the<br />

mechanical properties of the polymer. The same group<br />

also re<strong>in</strong>forced PI by the addition of v<strong>in</strong>yltriethoxysi-<br />

lane functionalized MWNT [290]. They observed that the<br />

modulus and tensile strength of 0.5 wt% functionalized<br />

MWNT-PI composites <strong>in</strong>creased 60 and 61%, respectively,<br />

as compared to neat PI. This improvement of mechanical<br />

properties depends on the ratio of v<strong>in</strong>yltriethoxysilane to<br />

MWNTs. When the ratio of v<strong>in</strong>yltriethoxysilane to MWCNT<br />

is 2:1, the composite showed better tensile properties than<br />

other composites with different ratios and neat PI, because<br />

only this ratio of v<strong>in</strong>yltriethoxysilane to MWCNT can form<br />

<strong>in</strong>terpenetrat<strong>in</strong>g network <strong>in</strong> PI matrix.<br />

A number of other studies have observed <strong>in</strong>creases<br />

<strong>in</strong> modulus, but either no <strong>in</strong>crease or decrease <strong>in</strong> tensile<br />

strength [203,288]. Compared with the neat polymer,<br />

the addition of CNTs resulted <strong>in</strong> <strong>in</strong>crease <strong>in</strong> the modulus<br />

and decrease <strong>in</strong> the tensile strength (18%). However,<br />

the <strong>in</strong>crease <strong>in</strong> the elastic modulus was small, e.g. 37%<br />

for 14.3 wt% of CNT addition [288]. The improvement of<br />

mechanical property SWNT/PI nanocomposite depends on<br />

sample type, such as film, rod and fiber [203]. The tensile<br />

modulus, ultimate strength, and elongation-at-break<br />

were <strong>in</strong>creased for the composite films with 1 wt% SWNT.<br />

In case of extruded composite rod (∼1 mm <strong>in</strong> diameter),<br />

there was no significant change <strong>in</strong> mechanical properties.<br />

But the mechanical properties were significantly changed<br />

when the extruded rods were drawn down to much smaller<br />

diameters. Tensile strength and modulus were <strong>in</strong>creased<br />

with decreas<strong>in</strong>g fiber diameter because of <strong>in</strong>creased alignment<br />

<strong>in</strong>duced by the post extrusion fiber draw<strong>in</strong>g process.<br />

6. Electrical conductivity of polymer/CNT<br />

nanocomposites<br />

CNTs exhibit the high aspect ratio and high conductivity,<br />

which makes CNTs excellent candidates for<br />

conduct<strong>in</strong>g composites. Percolation theory predicts that<br />

there is a critical concentration at which composites conta<strong>in</strong><strong>in</strong>g<br />

conduct<strong>in</strong>g fillers <strong>in</strong> <strong>in</strong>sulat<strong>in</strong>g polymers become<br />

electrically conductive. Accord<strong>in</strong>g to percolation theory,<br />

c = A(V − Vc) ˇ , where c is the conductivity of the composites,<br />

V is the CNT volume fraction, Vc is the CNT<br />

volume fraction at the percolation threshold, and A and<br />

ˇ are fitted constant. The percolation threshold has been<br />

reported to rang<strong>in</strong>g from 0.0025 wt% [291] to several wt%<br />

[302]. The percolation threshold for the electrical conductivity<br />

<strong>in</strong> polymer-CNT nanocomposites depends on<br />

dispersion [291,292,183], alignment [293,294], aspect ratio<br />

[292,295,296], degree of surface modification [95] of CNTs,<br />

polymer types [301] and composite process<strong>in</strong>g methods<br />

[292]. The electrical conductivity and percolation threshold<br />

of CNT-polymer composites are shown <strong>in</strong> Table 6.<br />

The aligned CNTs <strong>in</strong> epoxy decrease the percolation<br />

threshold by an order of magnitude compared to entangled<br />

nanotubes [291]. The entangled CNTs were dispersed<br />

completely dur<strong>in</strong>g the shear <strong>in</strong>tensive stirr<strong>in</strong>g process,<br />

whereas aligned CNTs led to a superior dispersion after<br />

shear-<strong>in</strong>tensive process<strong>in</strong>g. The well dispersed CNTs easily<br />

form conductive paths due to their relatively homogeneous<br />

dispersion of the nanoparticles, compared with that for the<br />

aggregated CNTs. The percolation threshold <strong>in</strong> CNT/epoxy<br />

composites with palmitic acid reduced by 2 compared to<br />

those composites without palmitic acid, attributed to the


Table 6<br />

Electrical conductivity of CNT-polymer composites.<br />

N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 857<br />

<strong>Polymer</strong> type Nanotube type Percolation threshold (wt%) CNT content (wt%) Maximum conductivity (S/m) Reference<br />

Polystyrene MWNT 0.15–0.2 2 10 3 [300]<br />

Polycarbonate SWNT-functional 0.11 7 4.81 × 10 2 [301]<br />

Polystyrene SWNT-functional 0.045 7 6.89 [301]<br />

Poly(v<strong>in</strong>yl acetate) XD grade CNT – 20 4.8 × 10 3 [361]<br />

Poly(methyl methacrylate) MWNT 0.3 40 3 × 10 3 [362]<br />

Poly(methyl methacrylate) SWNT 0.17 10 1.7 × 10 3 [363]<br />

Poly(methyl methacrylate) SOCl2-doped SWNT 0.17 13.5 10 4 [363]<br />

Poly(v<strong>in</strong>yl alcohol) MWNT 5–10 60 100 [302]<br />

Poly(v<strong>in</strong>yl acetate) SWNT 0.04 4 ≈15 [360]<br />

Epoxy MWNT 0.0025 1 2 [291]<br />

efficient dispersion of CNTs <strong>in</strong> the epoxy matrix promoted<br />

by the palmitic acid [176]. The electrical conductivity of<br />

SWNT/epoxy nanocomposites with SWNTs aligned under a<br />

25 T magnetic field was <strong>in</strong>creased by 35% compared to similar<br />

composites without magnetic aligned SWNTs [293].In<br />

contrast, Fangm<strong>in</strong>g et al. [294] found that the electric conductivity<br />

of the aligned CNT <strong>in</strong> PMMA was 10 −10 S/cm and<br />

unaligned CNT was 10 −4 S/cm for 2% SWNT/PMMA composites.<br />

This <strong>in</strong>dicates that the alignment of the nanotubes<br />

<strong>in</strong> the composite decreased the electrical conductivity and<br />

also the percolation threshold. The reason is that there<br />

are fewer contacts between the nanotubes when they are<br />

highly aligned <strong>in</strong> the composites, and so aligned composites<br />

require more nanotubes to reach the percolation threshold.<br />

The aspect ratio of the CNT has a tremendous <strong>in</strong>fluence<br />

on the percolation threshold of the polymer nanocomposites<br />

without vary<strong>in</strong>g other important parameters, such as<br />

the polymer matrix or the dispersion and aggregation state<br />

of the CNTs. Recently Grossiord et al. [300] reported that the<br />

percolation threshold of polystyrene/MWNT nanocomposites<br />

made from 2 wt% high-aspect ratio nanotubes grown<br />

<strong>in</strong> vertically aligned films was 0.15–0.5 wt%, which is 5<br />

times smaller than that for low aspect ratio <strong>in</strong>dustricallyproduced<br />

nanotubes polymer composites. They found<br />

an electrical conductivity of 10 3 S/m with 2 wt% CNTs.<br />

The percolation threshold was observed at 0.045 wt%<br />

non-covalently functionalized, soluble SWNT load<strong>in</strong>g for<br />

a SWNT-PS composite, with a maximum conductivity<br />

of 6.89 S/m at 7 wt% of nanotube load<strong>in</strong>g. The same<br />

preparation method for a SWNT-PC composite resulted<br />

<strong>in</strong> a material for which the conductivity <strong>in</strong>creased to<br />

4.81 × 10 2 S/m at 7 wt% of nanotubes, with a very low percolation<br />

threshold reached at 0.11 wt% of nanotubes [301].<br />

It is well known that chemical functionalization disrupts<br />

the extended -conjugation of nanotubes and hence<br />

reduces the electrical conductivity of functionalized CNTs.<br />

Silane-functionalized CNT/epoxy nanocomposites showed<br />

lower electrical conductivity than that of the untreated<br />

CNTs composites at identical nanotube content [297]. Cho<br />

et al. [94] reported that the electrical conductivity of the<br />

surface-modified MWNT composites was lower than that<br />

of the unreacted MWNT composites that had the same nanotube<br />

content. This is attributed to <strong>in</strong>creased defects <strong>in</strong><br />

the lattice structure of carbon-carbon bonds on the nanotube<br />

surface as a result of the acid treatment. In particular,<br />

the severe modification of the nanotubes significantly lowered<br />

the conductivity. Several researchers reported that the<br />

functionalization of CNTs can improve the electrical con-<br />

ductivity of the composites [298,299]. Tamburri et al. [298]<br />

found that the functionalization SWNTs with –COOH and<br />

–OH groups enhanced the composites conductivity compared<br />

to untreated SWNTs.<br />

7. Optical properties of polymer/CNT<br />

nanocomposites<br />

CNTs exhibit unique one-dimensional p-electron conjugation,<br />

mechanical strength, and high thermal and<br />

chemical stability, which make them very attractive for<br />

use <strong>in</strong> many applications. Optical limit<strong>in</strong>g, an important<br />

non-l<strong>in</strong>ear optical behavior, can develop with <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong>put fluence of a light pulse, such that the transmitted<br />

fluence tends to a constant, <strong>in</strong>dependent of the <strong>in</strong>put fluence.<br />

For dispersions of CNTs <strong>in</strong> a number of solvents, it<br />

appears that optical limit<strong>in</strong>g is pr<strong>in</strong>cipally due to the nonl<strong>in</strong>ear<br />

scatter<strong>in</strong>g due to bubbles formed by light absorption<br />

<strong>in</strong>duced heat<strong>in</strong>g, although sublimation, a gradual reduction<br />

<strong>in</strong> size for a CNT at high temperature, may contribute, <strong>in</strong><br />

contrast to a m<strong>in</strong>imal role of reverse saturable absorption<br />

(RSA), an effect dependent on absorption by excited electronic<br />

states [303–305]. O’Flaherty et al. [306] reported that<br />

the optical limit<strong>in</strong>g of the poly(9,9-di-n-octylfluorenyl-2,7diyl)/MWNTs<br />

samples is dependent on the mass fraction<br />

of CNTs. The magnitude of the non-l<strong>in</strong>ear effect <strong>in</strong>creased<br />

systematically when the mass fraction of the nanotubes<br />

<strong>in</strong>creased from 0.011 to 0.038. The non-l<strong>in</strong>ear optical<br />

ext<strong>in</strong>ction of nanosecond laser pulses by a set of conjugated<br />

copolymer poly(para-phenylenev<strong>in</strong>ylene-co-2,5dioctyloxy-meta-phenylenev<strong>in</strong>ylene)/MWNTs<br />

composites<br />

dispersed <strong>in</strong> solution has been reported [307]. In this case,<br />

either the MWNTs or the polymer dom<strong>in</strong>ates the nonl<strong>in</strong>ear<br />

response of the composite, depend<strong>in</strong>g on the relative<br />

mass of polymer to nanotube. The non-l<strong>in</strong>ear ext<strong>in</strong>ction<br />

was 0% for 0, 1.3, and 2.5 wt% MWNT at 10 J/cm 2 , whereas<br />

the samples with 3.6 wt% and 5.9 wt% MWNTs were a normalized<br />

non-l<strong>in</strong>ear ext<strong>in</strong>ction of 12% and 41%, respectively.<br />

Thus the materials display a dramatic improvement <strong>in</strong> the<br />

optical-limit<strong>in</strong>g performance when the MWNT mass content<br />

is <strong>in</strong>creased from 1.3% to 3.6%.<br />

Several polymer-coated and polymer-grafted MWNTs<br />

were synthesized and their non-l<strong>in</strong>ear optical properties<br />

of composites were <strong>in</strong>vestigated us<strong>in</strong>g 532 nm nanosecond<br />

laser pulses [110]. The authors reported that the<br />

optical limit<strong>in</strong>g thresholds of the all composite samples<br />

to be approximately 1 J cm −2 , which is similar to that<br />

of the MWNT-DMF suspension. The results showed that


858 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

Fig. 15. Optical and electrical properties of CNT/S-PEEK composite films: (a) transparent film on a labeled paper and (b) optical transmittance measurement.<br />

Repr<strong>in</strong>ted with permission from Ref. [311]. Copyright 2008, American Chemical Society, USA.<br />

the polymers and process<strong>in</strong>g methods do not change the<br />

non-l<strong>in</strong>ear optical properties of MWNTs. The optical limit<strong>in</strong>g<br />

performance of double-C60-end-capped poly(ethylene<br />

oxide)/MWNTs were also studied and found better<br />

than the aqueous MWNTs suspension [308]. In case of<br />

SWNT/poly(3-octylthiophenes) composite films, the optical<br />

properties did not significantly change with low fraction<br />

of CNT changes [309]. In a study of the optical properties<br />

of poly(para phenylene v<strong>in</strong>ylene) (PPV)/CNT composites<br />

[310], different concentration SWCNT-PPV films were prepared<br />

us<strong>in</strong>g a solution mix<strong>in</strong>g process, heated at 120 ◦ C.<br />

The authors observed that the optical spectra at 120 ◦ C PPV<br />

conversion temperature was dramatically changed with<br />

respect to those obta<strong>in</strong>ed at 300 ◦ C. It was also found that<br />

the effect of the low conversion temperature on all the optical<br />

spectra was similar to that of <strong>in</strong>creas<strong>in</strong>g the nanotube<br />

concentration <strong>in</strong> standard PPV.<br />

A novel preparation of optically transparent CNT/<br />

polymer composites with highly aligned nanotubes has<br />

reported recently [311]. First, CNT arrays were grown on<br />

silicon by a CVD process. Uniform CNT sheets were then<br />

pulled out of the arrays and stabilized on glass. Composite<br />

films were f<strong>in</strong>ally produced by sp<strong>in</strong>-coat<strong>in</strong>g or cast<strong>in</strong>g<br />

polymer solutions onto the CNT sheets, followed by evaporation<br />

of the solvents. Film thickness was controlled by<br />

vary<strong>in</strong>g the concentration of polymer solutions and coat<strong>in</strong>g<br />

times. PS, PMMA, and sulfonated poly(ether ether ketones)<br />

derived composite films with more than 80% optical transparency<br />

were prepared us<strong>in</strong>g this technique (Fig. 15). These<br />

results suggest that the optical properties of the composites<br />

can be tailored <strong>in</strong> a predeterm<strong>in</strong>ed manner by controll<strong>in</strong>g<br />

Table 7<br />

Application of CNT-polymer composites.<br />

the nanotube content, orientation and precursor conversion<br />

temperature, thus open<strong>in</strong>g a pathway for develop<strong>in</strong>g<br />

optically functional materials.<br />

8. Applications<br />

As developed <strong>in</strong> the preced<strong>in</strong>g sections, because of<br />

their excellent mechanical, electrical, and magnetic properties,<br />

as well as nanometer scale diameter and high<br />

aspect ratio, CNTs can be very useful materials <strong>in</strong> composites<br />

to improve a particular property for specific<br />

applications (Table 7). The addition of CNTs to conjugated<br />

polymers was found to improve the quantum<br />

efficiency of -conjugated polymers because the <strong>in</strong>teraction<br />

between the highly delocalized -electrons of<br />

CNTs and the -electrons correlated with the lattice of<br />

the polymer skeleton [3]. Such composites are widely<br />

used <strong>in</strong> photovoltaic devices [312] and light-emitt<strong>in</strong>g<br />

diodes [313]. CNT-conduct<strong>in</strong>g polymer composites have<br />

a potential application <strong>in</strong> supercapacitors [314,315]. The<br />

PANI/MWNTs composites electrodes showed much higher<br />

specific capacitance (328 F g −1 ) than pure PANI electrodes<br />

[316]. The capacitances of a CNT-polypyrrole composite-<br />

CNT-poly(3-methyl-thiophene) composite based supercapacitor<br />

prototype and a CNTs-CNTs-polypyrrole based<br />

hybrid supercapacitor prototype were 87 and 72 F g −1 ,<br />

respectively, much larger the 21 F g −1 for the CNTs/CNTs<br />

correspond<strong>in</strong>g supercapacitor prototype due to the Faraday<br />

effect of the conduct<strong>in</strong>g polymers [317].<br />

CNTs are also widely used <strong>in</strong> actuators [318,319].<br />

The addition of CNTs to PANI fibers <strong>in</strong>creased the elec-<br />

Nanotube type <strong>Polymer</strong> type Applications References<br />

SWNT Poly(3-octylthiophene) Photovoltaic devices [312]<br />

MWNT; SWNT Polyanil<strong>in</strong>e, polypyrrole, poly-(3,4-ethylenedioxythiophene),<br />

poly(3-methyl-thiophene<br />

Supercapacitors [314,316,317,364,365]<br />

SWNT Nafion Actuators [318]<br />

MWNT Poly(v<strong>in</strong>yl alcohol), poly(2-acrylamido-2-methyl-1-propanesulfonic acid) [366]<br />

MWNT Nafion Fuel cell [367]<br />

MWNT-functional Sulfonated poly(arylene sulfone), [368]<br />

SWNT; MWNT Polypyrrole Biosensors [369,324]<br />

SWNT Poly(methyl methacrylate) Biocatalytic films [370]<br />

SWNT-functional;<br />

MWNT-functional<br />

DNA (polynucleotide) Gene delivery [371]


tromechanical actuation because the CNTs improved the<br />

mechanical, electronic, and electrochemical properties of<br />

the PANI fibers [320].<br />

Composites based on CNTs are studied for a variety<br />

of sensor applications [321,322]. For example, polypyrrole<br />

or PANI deposited on s<strong>in</strong>gle-walled CNT networks<br />

that can be used as solid state pH sensors [323]. A DNA<br />

sensor was created from a composite of polypyrrole and<br />

CNTs functionalized with carboxylic groups to covalently<br />

immobilize DNA onto CNTs [324]. In another example,<br />

polypyrrole films doped with CNTs functionalized with<br />

oligonucleotides were successfully implemented for DNA<br />

biosensors us<strong>in</strong>g direct impedance measurements [325].In<br />

general, the presence of CNTs tends to <strong>in</strong>crease the overall<br />

sensitivity and selectivity of biosensors. The thermal transport<br />

properties of polymer composites can be improved<br />

with the addition of CNTs due to the excellent thermal<br />

conductivity of CNTs. Such composite are quite attractive<br />

for usages as pr<strong>in</strong>ted circuit boards, connectors, thermal<br />

<strong>in</strong>terface materials, heat s<strong>in</strong>ks, lids, hous<strong>in</strong>gs, etc. [8].<br />

The superior properties of CNTs are not limited to<br />

electrical and thermal conductivities, but also <strong>in</strong>clude<br />

mechanical properties, such as stiffness, toughness, and<br />

strength. CNTs with their high aspect ratio and excellent<br />

mechanical properties have the potential to strengthen and<br />

toughen hydroxyapatite without offsett<strong>in</strong>g its bioactivity,<br />

thus open<strong>in</strong>g up a wider range of cl<strong>in</strong>ical applications [326].<br />

Bianco et al. studied the application of CNTs as new vectors<br />

for the delivery of therapeutic molecules [327,328].<br />

CNTs have been shown to cross cell membranes easily and<br />

to deliver peptides, prote<strong>in</strong>s, and nucleic acids <strong>in</strong>to cells<br />

[329,330].<br />

CNTs were employed to re<strong>in</strong>force the <strong>in</strong>terfaces<br />

between ultra high molecular weight PE polymer particles,<br />

enhanc<strong>in</strong>g composite strength, stiffness, impact toughness<br />

as well as structural damp<strong>in</strong>g [331]. These composites<br />

are attractive for applications <strong>in</strong> aerospace and naval<br />

eng<strong>in</strong>eer<strong>in</strong>g. The high strength and toughness-to-weight<br />

characteristics of CNTs may also prove valuable as part<br />

of composite components <strong>in</strong> fuel cells that are deployed<br />

<strong>in</strong> transport applications, where durability is extremely<br />

important.<br />

9. Conclud<strong>in</strong>g remarks<br />

There are several approaches for develop<strong>in</strong>g high<br />

performance CNT-polymer nanocomposites utiliz<strong>in</strong>g the<br />

unique properties of CNTs. The critical challenge is the<br />

development of methods to improve the dispersion of CNTs<br />

<strong>in</strong> a polymer matrix because their enhanced dispersion <strong>in</strong><br />

polymer matrices greatly improves the mechanical, electrical<br />

and optical properties of composites. Despite various<br />

methods, such as melt process<strong>in</strong>g, solution process<strong>in</strong>g, <strong>in</strong>situ<br />

polymerization, and chemical functionalization, there<br />

are still opportunities and challenges to be found <strong>in</strong> order to<br />

improve dispersion and modify <strong>in</strong>terfacial properties. One<br />

of challenges is to achieve the optimal functionalization of<br />

CNTs, which can maximize <strong>in</strong>terfacial adhesion between<br />

CNTs and the polymer matrix. A specific functionalization<br />

of CNTs is required for strong <strong>in</strong>terfacial adhesion between<br />

CNTs and a given polymer matrix, which may also simul-<br />

N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 859<br />

taneously improve the dispersion of CNTs <strong>in</strong> the polymer<br />

matrix.<br />

The mechanical properties of CNT-polymer nanocomposites<br />

may be compromised between carbon–carbon<br />

bond damage and <strong>in</strong>creased CNT-polymer <strong>in</strong>teraction due<br />

to CNT functionalization. Similarly, electrical conductivity<br />

of a CNT-polymer nanocomposite is determ<strong>in</strong>ed by the negative<br />

effect of carbon–carbon bond damage and the positive<br />

effect of improved CNT dispersion due to CNT functionalization.<br />

In either case, the choice and control of tailored<br />

functionalization sites for chemical modification of CNTs<br />

are necessary. As an example, selective CNT functionalization<br />

can be achieved via click chemistry by prepar<strong>in</strong>g<br />

azide-functionalized polymers. However, this may be limited<br />

<strong>in</strong> the practical use ow<strong>in</strong>g to the need for multi-step<br />

reactions for azide and alkyl groups to apply click chemistry.<br />

The employment of hyperbranched polymers for<br />

improv<strong>in</strong>g CNT dispersion may be also useful because it<br />

can result <strong>in</strong> enhanced electrical conductivity, as well as<br />

mechanical properties of nanocomposites, without modification<br />

of CNT.<br />

In practice, the problems regard<strong>in</strong>g melt process<strong>in</strong>g<br />

need to be solved, as melt mix<strong>in</strong>g is the most common commercial<br />

method used to prepare CNT-polymer composites.<br />

To achieve the best performance of CNT-polymer composites,<br />

it is important to choose the CNT functionalization<br />

method, a suitable polymer matrix for CNT dispersion and<br />

molecular <strong>in</strong>teraction control with CNTs as well as polymer<br />

composite process<strong>in</strong>g conditions such as temperature,<br />

shear rate, shear force, and mix<strong>in</strong>g time. In conclusion, the<br />

CNT functionalization and matrix polymer design for dispersion<br />

of CNTs and <strong>in</strong>terfacial adhesion between CNTs and<br />

a polymer matrix are the key challenges for development<br />

of high performance CNT composites.<br />

Acknowledgments<br />

This work was supported by the SRC/ERC Program<br />

of MOST/KOSEF (R11-2005-065) and A*STAR SERC Grant<br />

(0721010018).<br />

References<br />

[1] Iijima S. Helical microtubules of graphitic carbon. Nature<br />

1991;354:56–8.<br />

[2] Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with<br />

carbon nanotube transistors. <strong>Science</strong> 2001;294:1317–20.<br />

[3] Ago H, Petritsch K, Shaffer MSP, W<strong>in</strong>dle AH, Friend RH. Composites<br />

of carbon nanotubes and conjugated polymers for photovoltaic<br />

devices. Adv Mater 1999;11:1281–5.<br />

[4] Kasumov AY, Deblock R, Kociak M, Reulet B, Bouchiat H, Khodos I, et<br />

al. Supercurrents through s<strong>in</strong>gle-walled carbon nanotubes. <strong>Science</strong><br />

1999;284:1508–11.<br />

[5] Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Sp<strong>in</strong>ks GM,<br />

et al. Carbon nanotube actuators. <strong>Science</strong> 1999;284:1340–4.<br />

[6] Niu C, Sichel EK, Hoch R, Moy D, Tennet H. High power electrochemical<br />

capacitors based on carbon nanotube electrodes. Appl Phys Lett<br />

1997;70:1480–2.<br />

[7] Ajayan PM, Iijima S. Capillarity-<strong>in</strong>duced fill<strong>in</strong>g of carbon nanotubes.<br />

Nature 1993;361:333–4.<br />

[8] Xie XL, Mai YW, P<strong>in</strong>g X. Dispersion and alignment of carbon<br />

nanotubes <strong>in</strong> polymer matrix: a review. Mater Sci Eng Rep<br />

2005;49:89–112.<br />

[9] Andrews R, Weisenberger MC. Carbon nanotube polymer composites.<br />

Curr Op<strong>in</strong> Solid State Mater Sci 2004;8:31–7.


860 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

[10] Iijima S, Ichihashi T. S<strong>in</strong>gle-shell carbon nanotubes of 1-nm diameter.<br />

Nature 1993;363:603–5.<br />

[11] Bethune DS, Kiang CH, Devries MS, Gorman G, Savoy R, Vazquez<br />

J, et al. Cobalt-catalyzed growth of carbon nanotubes with s<strong>in</strong>gleatomic-layer<br />

walls. Nature 1993;363:605–7.<br />

[12] Sugai T, Yoshida H, Shimada T, Okazaki T, Sh<strong>in</strong>ohara H. New<br />

synthesis of high-quality double-walled carbon nanotubes by hightemperature<br />

pulsed arc discharge. Nano Lett 2003;3:769–73.<br />

[13] Bandow S, Takizawa M, Hirahara K, Yudasaka M, Iijima S. Raman<br />

scatter<strong>in</strong>g study of double-wall carbon nanotubes derived from the<br />

cha<strong>in</strong>s of fullerenes <strong>in</strong> s<strong>in</strong>gle-wall carbon nanotubes. Chem Phys<br />

Lett 2001;337:48–54.<br />

[14] Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE. Catalytic growth<br />

of s<strong>in</strong>gle-walled nanotubes by laser vaporization. Chem Phys Lett<br />

1995;243:49–54.<br />

[15] Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT,<br />

Smith KA, et al. Gas-phase catalytic growth of s<strong>in</strong>gle-walled carbon<br />

nanotubes from carbon monoxide. Chem Phys Lett 1999;313:91–7.<br />

[16] Joseyacaman M, Mikiyoshida M, Rendon L, Santiesteban JG. Catalytic<br />

growth of carbon microtubules with fullerene structure. Appl<br />

Phys Lett 1993;62:657–9.<br />

[17] Huang SM, Woodson M, Smalley RE, Liu J. Growth mechanism of<br />

oriented long s<strong>in</strong>gle walled carbon nanotubes us<strong>in</strong>g fast-heat<strong>in</strong>g<br />

chemical vapor deposition process. Nano Lett 2004;4:1025–8.<br />

[18] Treacy MM, Ebessen TW, Gibson JM. Exceptionally high Young’s<br />

modulus observed for <strong>in</strong>dividual carbon nanotubes. Nature<br />

1996;381:678–80.<br />

[19] Saito R, Dresselhaus G, Dresselhaus MS. Physical properties of carbon<br />

nanotubes. London: Imperial College Press; 1998.<br />

[20] Chae HG, Liu J, Kumar S. Carbon nanotubes properties and applications.<br />

In: O’Connell MJ, editor. Carbon nanotube-enabled materials.<br />

Boca Raton: Taylor & Francis Group, LLC; 2006.<br />

[21] Ma C, Zhang W, Zhu Y, Ji L, Zhang R, Koratkar N, et al. Alignment and<br />

dispersion of functionalized carbon nanotubes <strong>in</strong> polymer composites<br />

<strong>in</strong>duced by an electric field. Carbon 2008;46:706–10.<br />

[22] Ajayan PM, Schadler LS, Braun PV. Nanocomposite science and technology.<br />

We<strong>in</strong>heim, Germany: Wiley-VCH, GmbH & Co. KgaA; 2003.<br />

[23] Lu JP. Elastic properties of carbon nanotubes and nanoropes. Phys<br />

Rev Lett 1997;79:1297–300.<br />

[24] Li Y, Wang K, Wei J, Gu Z, Wang Z, Luo J, et al. Tensile properties<br />

of long aligned double-walled carbon nanotube strands. Carbon<br />

2005;43:31–5.<br />

[25] Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength<br />

and break<strong>in</strong>g mechanism of multiwalled carbon nanotubes under<br />

tensile load. <strong>Science</strong> 2000;287:637–40.<br />

[26] Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube<br />

arrays formed by cutt<strong>in</strong>g a polymer res<strong>in</strong>-nanotube composite. <strong>Science</strong><br />

1994;265:1212–4.<br />

[27] Moniruzzaman M, W<strong>in</strong>ey KI. <strong>Polymer</strong> nanocomposites conta<strong>in</strong><strong>in</strong>g<br />

carbon nanotubes. Macromolecules 2006;39:5194–205.<br />

[28] Jamal A, Ali R, Somayeh M. Preparation and characterization of l<strong>in</strong>ear<br />

low density polyethylene/carbon nanotube nanocomposites. J<br />

Macromol Sci Part B: Phys 2007;46:877–89.<br />

[29] Li L, Li CY, Ni C, Rong LX, Hsiao B. Structure and crystallization<br />

behavior of Nylon 66/multi-walled carbon nanotube nanocomposites<br />

at low carbon nanotube contents. <strong>Polymer</strong> 2007;48:3452–60.<br />

[30] Morales-Teyssier O, Sanchez-Valdes S, Ramos-de Valle LF. Effect of<br />

carbon nanofiber functionalization on the dispersion and physical<br />

and mechanical properties of polystyrene nanocomposites. Macromol<br />

Mater Eng 2006;291:1547–55.<br />

[31] Gryshchuk O, Karger-Kocsis J, Thomann R, Konya Z, Kiricsi I. Multiwall<br />

carbon nanotube modified v<strong>in</strong>ylester and v<strong>in</strong>ylester-based<br />

hybrid res<strong>in</strong>s. Compos Part A 2006;37:1252–9.<br />

[32] Ghose S, Watson KA, Delozier DM, Work<strong>in</strong>g DC, Siochi EJ, Connell<br />

JW. Incorporation of multi-walled carbon nanotubes <strong>in</strong>to high<br />

temperature res<strong>in</strong> us<strong>in</strong>g dry mix<strong>in</strong>g techniques. Compos Part A<br />

2006;37:465–75.<br />

[33] Mrozek RA, Kim BS, Holmberg VC, Taton TA. Homogeneous, coaxial<br />

liquid crystal doma<strong>in</strong> growth from carbon nanotube seeds. Nano<br />

Lett 2003;3:1665–9.<br />

[34] Bliznyuk VN, S<strong>in</strong>gamaneni S, Sanford RL, Chiappetta D, Crooker B,<br />

Shibaev PV. Matrix mediated alignment of s<strong>in</strong>gle wall carbon nanotubes<br />

<strong>in</strong> polymer composite films. <strong>Polymer</strong> 2006;47:3915–21.<br />

[35] Zhao B, Hu H, Haddon RC. Synthesis and properties of a watersoluble<br />

s<strong>in</strong>gle-walled carbon nanotube-poly(m-am<strong>in</strong>obenzene<br />

sulfonic acid) graft copolymer. Adv Funct Mater 2004;14:<br />

71–6.<br />

[36] Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MSA,<br />

Simoes JAO. Mechanical properties of high density polyethy-<br />

lene/carbon nanotube composites. Compos Sci Technol 2007;67:<br />

3071–7.<br />

[37] Kim JY, Han SI, Kim SH. Crystallization behaviors and mechanical<br />

properties of poly(ethylene 2,6-naphthalate)/multiwall carbon<br />

nanotube nanocomposites. Polym Eng Sci 2007;47:1715–23.<br />

[38] J<strong>in</strong> SH, Park YB, Yoon KH. Rheological and mechanical properties<br />

of surface modified multi-walled carbon nanotube-filled PET composite.<br />

Compos Sci Technol 2007;67:3434–41.<br />

[39] Wang Z, Ciselli P, Peijs T. The extraord<strong>in</strong>ary re<strong>in</strong>forc<strong>in</strong>g efficiency<br />

of s<strong>in</strong>gle-walled carbon nanotubes <strong>in</strong> oriented poly(v<strong>in</strong>yl alcohol)<br />

tapes. Nanotechnology 2007;18, 455709/1–9.<br />

[40] Yang BX, Shi JH, Pramoda KP, Goh SH. Enhancement of stiffness,<br />

strength, ductility and toughness of poly(ethylene oxide) us<strong>in</strong>g<br />

phenoxy-grafted multiwalled carbon nanotubes. Nanotechnology<br />

2007;18, 125606/1–7.<br />

[41] Pham JQ, Mitchell CA, Bahr JL, Tour JM, Krishanamoorti R, Green PF.<br />

Glass transition of polymer/s<strong>in</strong>gle-walled carbon nanotube composite<br />

films. J Polym Sci Part B Polym Phys 2003;41:3339–45.<br />

[42] Gong XY, Liu J, Baskaran S, Voise RD, Young JS. Surfactant-assisted<br />

process<strong>in</strong>g of carbon nanotube/polymer composites. Chem Mater<br />

2000;12:1049–52.<br />

[43] S<strong>in</strong>gh IV, Tanaka M, Zhang J, Endo M. Evaluation of effective<br />

thermal conductivity of CNT-based nano-composites by element<br />

free Galerk<strong>in</strong> method. Int J Numer Meth Heat Fluid Flow<br />

2007;17:757–69.<br />

[44] Sergei S, Xue L, Rahmi O, Pawel K, David GC. Role of thermal boundary<br />

resistance on the heat flow <strong>in</strong> carbon-nanotube composites. J<br />

Appl Phys 2004;95:8136–44.<br />

[45] Sankapal BR, Setyowati K, Chen J, Liu H. Electrical properties of airstable,<br />

iod<strong>in</strong>e-doped carbon-nanotube-polymer composites. Appl<br />

Phys Lett 2007;91, 173103/1–3.<br />

[46] Grossiord N, Miltner HE, Loos J, Meuldijk J, Van Mele B, Kon<strong>in</strong>g<br />

CE. On the crucial role of wett<strong>in</strong>g <strong>in</strong> the preparation of conductive<br />

polystyrene-carbon nanotube composites. Chem Mater<br />

2007;19:3787–92.<br />

[47] Guo H, Sreekumar TV, Liu T, M<strong>in</strong>us M, Kumar S. Structure and properties<br />

of polyacrylonitrile/s<strong>in</strong>gle wall carbon nanotube composite<br />

films. <strong>Polymer</strong> 2005;46:3001–5.<br />

[48] Ichida M, Mizuno S, Kataura H, Achiba Y, Nakamura A. Anisotropic<br />

optical properties of mechanically aligned s<strong>in</strong>gle-walled carbon<br />

nanotubes <strong>in</strong> polymer. Appl Phys A 2004;78:1117–20.<br />

[49] Weglikowska UD, Kaempgen M, Hornbostel B, Skakalova1 V, Wang<br />

J, Liang J, et al. Conduct<strong>in</strong>g and transparent SWNT/polymer composites.<br />

Phys Stat Sol B 2006;243:3440–4.<br />

[50] Hirsch A. Functionalization of s<strong>in</strong>gle-walled carbon nanotubes.<br />

Angew Chem Int Ed 2002;41:1853–9.<br />

[51] Nalwa HS, editor. Handbook of nanostructured materials and nanotechnology,<br />

vol. 5. New York: Academic Press; 2000.<br />

[52] Ebbesen TW, Ajayan PM, Hiura H, Tanigaki K. Purification of nanotubes.<br />

Nature 1994;367:519–1519.<br />

[53] Hiura H, Ebbesen TW, Tanigaki K. Open<strong>in</strong>g and purification of carbon<br />

nanotubes <strong>in</strong> high yields. Adv Mater 1995;7:275–6.<br />

[54] Kuznetsova A, Mawh<strong>in</strong>ney DB, Naumenko V, Yates JT, Liu J, Smalley<br />

RE. Enhancement of adsorption <strong>in</strong>side of s<strong>in</strong>gle-walled nanotubes:<br />

open<strong>in</strong>g the entry ports. Chem Phys Lett 2000;321:292–6.<br />

[55] Liu J, R<strong>in</strong>zler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, et al. Fullerene<br />

pipes. <strong>Science</strong> 1998;280:1253–6.<br />

[56] Mawh<strong>in</strong>ney DB, Naumenko V, Kuznetsova A, Yates Jr JT, Liu J,<br />

Smalley RE. Surface defect site density on s<strong>in</strong>gale walled carbon<br />

nanotubes by titration. Chem Phys Lett 2000;324:213–6.<br />

[57] Hu H, Bhowmik P, Zhao B, Hamon MA, Itkis ME, Haddon RC.<br />

Determ<strong>in</strong>ation of the acidic sites of purified s<strong>in</strong>gle-walled carbon<br />

nanotubes by acid-base titration. Chem Phys Lett 2001;345:25–8.<br />

[58] Hemon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, et al. Dissolution<br />

of s<strong>in</strong>gle-walled carbon nanotubes. Adv Mater 1999;11:834–40.<br />

[59] Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, et al.<br />

Solution properties of s<strong>in</strong>gle-walled carbon nanotubes. <strong>Science</strong><br />

1998;282:95–8.<br />

[60] Bandow S, Rao AM, Williams KA, Thess A, Smalley RE, Eklund PC.<br />

Purification of s<strong>in</strong>gle-wall carbon nanotubes by microfiltration. J<br />

Phys Chem B 1997;101:8839–42.<br />

[61] Duesberg GS, Burghard M, Muster J, Philipp G. Separation of carbon<br />

nanotubes by size exclusion chromatography. Chem Commun<br />

1998:435–6.<br />

[62] Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization<br />

of s<strong>in</strong>gle-walled carbon nanotubes for prote<strong>in</strong><br />

immobilization. J Am Chem Soc 2001;123:3838–9.<br />

[63] Lordi V, Yao N. Molecular mechanics of b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> carbonnanotube-polymer<br />

composites. J Mater Res 2000;15:2770–9.


[64] Guo Z, Sadler PJ, Tsang SC. Immobilization and visualization of DNA<br />

and prote<strong>in</strong>s on carbon nanotubes. Adv Mater 1998;10:701–3.<br />

[65] O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, et al.<br />

Reversible water-solubilization of s<strong>in</strong>gle-walled carbon nanotubes<br />

by polymer wrapp<strong>in</strong>g. Chem Phys Lett 2001;342:265–71.<br />

[66] Steuerman DW, Star A, Narizzano R, Choi H, Ries RS, Nicol<strong>in</strong>i C,<br />

et al. Interactions between conjugated polymers and s<strong>in</strong>gle-walled<br />

carbon nanotubes. J Phys Chem B 2002;106:3124–30.<br />

[67] Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, et<br />

al. Preparation and properties of polymer-wrapped s<strong>in</strong>gle-walled<br />

carbon nanotubes. Angew Chem Int Ed 2001;40:1721–5.<br />

[68] Paredes JI, Burghard M. Dispersions of <strong>in</strong>dividual s<strong>in</strong>gle-walled carbon<br />

nanotubes of high length. Langmuir 2004;20:5149–52.<br />

[69] Duesberg GS, Muster J, Krstic V, Burghard M, Roth S. Chromatographic<br />

size separation of s<strong>in</strong>gle-wall carbon nanotubes. Appl Phys<br />

A 1998;67:117–9.<br />

[70] Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt<br />

J, et al. Individually suspended s<strong>in</strong>gle-walled carbon nanotubes <strong>in</strong><br />

various surfactants. Nano Lett 2003;3:1379–82.<br />

[71] Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG. High weight<br />

fraction surfactant solubilization of s<strong>in</strong>gle-wall carbon nanotubes<br />

<strong>in</strong> water. Nano Lett 2003;3:269–73.<br />

[72] Yurekli K, Mitchell CA, Krishnamootri R. Small angle neutron<br />

scatter<strong>in</strong>g from surfactant assisted aqueous dispersion of carbon<br />

nanotubes. J Am Chem Soc 2004;126:9902–3.<br />

[73] Jiang L, Gao L, Sun J. Production of aqueous colloidal dispersions of<br />

carbon nanotubes. J Coll Interf Sci 2003;260:89–94.<br />

[74] Poul<strong>in</strong> P, Vigolo B, Launois P. Films and fibers of oriented s<strong>in</strong>gle wall<br />

nanotubes. Carbon 2002;40:1741–9.<br />

[75] Sáfar GAM, Ribeiro HB, Malard LM, Plentz FO, Fant<strong>in</strong>i C, Santos AP,<br />

et al. Optical study of porphyr<strong>in</strong>-doped carbon nanotubes. Chem<br />

Phys Lett 2008;462:109–11.<br />

[76] Tan Y, Resasco DE. Dispersion of s<strong>in</strong>gle-walled carbon nanotubes of<br />

narrow diameter distribution. J Phys Chem B 2005;109:14454–60.<br />

[77] Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R.<br />

Stabilization of <strong>in</strong>dividual carbon nanotubes <strong>in</strong> aqueous solutions.<br />

Nano Lett 2002;2:25–8.<br />

[78] Pei X, Hu L, Liu W, Hao J. Synthesis of water-soluble carbon<br />

nanotubes via surface <strong>in</strong>itiated redox polymerization and their tribological<br />

properties as water-based lubricant additive. Eur Polym<br />

J 2008;44:2458–64.<br />

[79] Wu HX, Qiu XQ, Cao WM, L<strong>in</strong> YH, Cai RF, Qian SX. <strong>Polymer</strong>-wrapped<br />

multiwalled carbon nanotubes synthesized via microwaveassisted<br />

<strong>in</strong> situ emulsion polymerization and their optical limit<strong>in</strong>g<br />

properties. Carbon 2007;45:2866–72.<br />

[80] Cheng F, Im<strong>in</strong> P, Maunders C, Botton G, Adronov A. Soluble,<br />

discrete supramolecular complexes of s<strong>in</strong>gle-walled carbon nanotubes<br />

with fluorene-based conjugated polymers. Macromolecules<br />

2008;41:2304–8.<br />

[81] Yang L, Zhang B, Liang Y, Yang B, Kong T, Zhang LM. In situ synthesis<br />

of amylose/s<strong>in</strong>gle-walled carbon nanotubes supramolecular<br />

assembly. Carbohydrate Res 2008;343:2463–7.<br />

[82] Ogoshi T, Yamagishi TA, Nakamoto Y. Supramolecular s<strong>in</strong>glewalled<br />

carbon nanotubes (SWCNTs) network polymer made by<br />

hybrids of SWCNTs and water-soluble calix[8]arenas. Chem Commun<br />

2007:4776–8.<br />

[83] Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, et<br />

al. A composite from poly(m-phenylenev<strong>in</strong>ylene-co-2,5-dioctoxyp-phenylenev<strong>in</strong>ylene)<br />

and carbon nanotubes: a novel material for<br />

molecular optoelectronics. Adv Mater 1998;10:1091–3.<br />

[84] Coleman JN, Dalton AB, Curran S, Rubio A, Davey AP, Drury A, et<br />

al. Phase separation of carbon nanotubes and turbostratic graphite<br />

us<strong>in</strong>g a functional organic polymer. Adv Mater 2000;12:213–6.<br />

[85] McCarthy B, Coleman JN, Czerw R, Dalton AB, Carroll DL, Blau WJ.<br />

Microscopy studies of nanotube-conjugated polymer <strong>in</strong>teractions.<br />

Synth Met 2001;121:1225–6.<br />

[86] Dalton AB, Stephan C, Coleman CSJN, McCarthy B, Ajayan<br />

PM, Lefrant S, et al. Selective <strong>in</strong>teraction of a semiconjugated<br />

organic polymer with s<strong>in</strong>gle-wall nanotubes. J Phys Chem B<br />

2000;104:10012–6.<br />

[87] Kang Y, Taton TA. Micelle-encapsulated carbon nanotubes: a route<br />

to nanotube composites. J Am Chem Soc 2003;125:5650–1.<br />

[88] Shvartzman-Cohen R, Nativ-Roth E, Baskaran E, Levi-Kalisman<br />

Y, Szleifer I, Yerushalmi-Rozen R. Selective dispersion of s<strong>in</strong>glewalled<br />

carbon nanotubes <strong>in</strong> the presence of polymers: the<br />

role of molecular and colloidal length scales. J Am Chem Soc<br />

2004;126:14850–7.<br />

[89] Shvartzman-Cohen R, Kalisman YL, Navi-Roth E, Yerushalmi-<br />

Rozen R. Generic approach for dispers<strong>in</strong>g s<strong>in</strong>gle-walled carbon<br />

N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 861<br />

nanotubes: the strength of a weak <strong>in</strong>teraction. Langmuir<br />

2004;20:6085–8.<br />

[90] Nativ-Roth E, Shvartzman-Cohen R, Bounioux C, Florent M, Zhang<br />

D, Szleifer I, et al. Physical adsorption of block copolymers to<br />

SWNT and MWNT: a nonwrap<strong>in</strong>g mechanism. Macromolecules<br />

2007;40:3676–85.<br />

[91] Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, et<br />

al. Chemistry of s<strong>in</strong>gle-walled carbon nanotubes. Acc Chem Res<br />

2002;35:1105–13.<br />

[92] Park H, Zhao J, Lu JP. Effects of sidewall functionalization on conduct<strong>in</strong>g<br />

properties of s<strong>in</strong>gle wall carbon nanotubes. Nano Lett<br />

2006;6:916–9.<br />

[93] Zhang X, Sreekumar TV, Liu T, Kumar S. Properties and structure of<br />

nitric acid oxidized s<strong>in</strong>gle wall carbon nanotube films. J Phys Chem<br />

B 2004;108:16435–40.<br />

[94] Cho JW, Kim JW, Jung YC, Goo NS. Electroactive shape-memory<br />

polyurethane composites <strong>in</strong>corporat<strong>in</strong>g carbon nanotubes. Macromol<br />

Rapid Commun 2005;26:412–6.<br />

[95] Georgakilas V, Kordatos K, Prato M, Guldi DM, Holz<strong>in</strong>gger M, Hirsch<br />

A. Organic functionalization of carbon nanotubes. J Am Chem Soc<br />

2002;124:760–1.<br />

[96] Zhang Y, Shi Z, Gu Z, Iijima S. Structure modification of s<strong>in</strong>gle-wall<br />

carbon nanotubes. Carbon 2000;38:2055–9.<br />

[97] Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A,<br />

et al. Chemical oxidation of multiwalled carbon nanotubes. Carbon<br />

2008;46:833–40.<br />

[98] Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, et al.<br />

Dissolution of full-length s<strong>in</strong>gle-walled carbon nanotubes. J Phys<br />

Chem B 2001;105:2525–8.<br />

[99] Vasiliev I, Curran SA. Cross l<strong>in</strong>k<strong>in</strong>g of thiolated carbon nanotubes:<br />

an ab <strong>in</strong>itio study. J Appl Phys 2007;102, 024317/1–5.<br />

[100] Zhou O, Flem<strong>in</strong>g RM, Murphy DW, Chen CH, Haddon RC,<br />

Ramirez AP, et al. Defects <strong>in</strong> carbon nanostructures. <strong>Science</strong><br />

1994;263:1744–7.<br />

[101] Mickelson ET, Huffman CB, R<strong>in</strong>zler AG, Smalley RE, Hauge RH, Margrave<br />

JL. Fluor<strong>in</strong>ation of s<strong>in</strong>gle-wall carbon nanotubes. Chem Phys<br />

Lett 1998;296:188–94.<br />

[102] Mickelson ET, Chiang IW, Zimmerman JL, Boul PJ, Lozano J, Liu J, et<br />

al. Solvation of fluor<strong>in</strong>ated s<strong>in</strong>gle-wall carbon nanotubes <strong>in</strong> alcohol<br />

solvents. J Phys Chem B 1999;103:4318–22.<br />

[103] Kelly KF, Chiang IW, Mickelson ET, Hauge RH, Margrave JL, Wang<br />

X, et al. Insight <strong>in</strong>to the mechanism of sidewall functionalization<br />

of s<strong>in</strong>gle-walled nanotubes: an STM study. Chem Phys Lett<br />

1999;313:445–50.<br />

[104] Boul PJ, Liu J, Mickelson ET, Huffman CB, Ericson LM, Chiang IW, et<br />

al. Reversible sidewall functionalization of buckytubes. Chem Phys<br />

Lett 1999;310:367–72.<br />

[105] Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM. Dissolution<br />

of small diameter s<strong>in</strong>gle-wall carbon nanotubes <strong>in</strong> organic<br />

solvents? Chem Commun 2001:193–4.<br />

[106] Holz<strong>in</strong>ger M, Vostrowsky O, Hirsch A, Hennrich F, Kappes M, Weiss<br />

R, et al. Sidewall functionalization of carbon nanotubes. Angew<br />

Chem Int Ed 2001;40:4002–5.<br />

[107] Bahr JL, Yang J, Kosynk<strong>in</strong> DV, Bronikowski MJ, Smalley RE, Tour JM.<br />

Functionalization of carbon nanotubes by electrochemical reduction<br />

of aryl diazonium salts: a bucky paper electrode. J Am Chem<br />

Soc 2001;123:6536–42.<br />

[108] Bahr JL, Tour JM. Highly functionalized carbon nanotubes<br />

us<strong>in</strong>g <strong>in</strong>-situ generated diazonium compounds. Chem Mater<br />

2001;13:3823–4.<br />

[109] Baek JB, Lyons CB, Tan LS. Graft<strong>in</strong>g of vapor-grown carbon<br />

nanofibers via <strong>in</strong> situ polycondensation of 3-phenoxybenzoic acid<br />

<strong>in</strong> poly(phosphoric acid). Macromolecules 2004;37:8278–85.<br />

[110] J<strong>in</strong> Z, Sun X, Xu G, Goh SH, Ji W. Nonl<strong>in</strong>ear optical properties of<br />

some polymer/multi-walled carbon nanotube composites. Chem<br />

Phys Lett 2000;318:505–10.<br />

[111] Fu K, Huang W, L<strong>in</strong> Y, Riddle LA, Carroll DL, Sun YP. Defunctionalization<br />

of functionalized carbon nanotubes. Nano Lett 2001;1:439–41.<br />

[112] Q<strong>in</strong> S, Q<strong>in</strong> D, Ford WT, Resasco DE, Herrera JE. Functionalization<br />

of s<strong>in</strong>gle-walled nanotubes with polystyrene via graft<strong>in</strong>g<br />

to and graft<strong>in</strong>g from methods. Macromolecules 2004;37:<br />

752–7.<br />

[113] Riggs JE, Guo Z, Carroll DL, Sun YP. Strong lum<strong>in</strong>escence of solubilized<br />

carbon nanotubes. J Am Chem Soc 2000;122:5879–80.<br />

[114] L<strong>in</strong> Y, Zhou B, Fernando KAS, Liu P, Allard LF, Sun YP. <strong>Polymer</strong>ic carbon<br />

nanocomposites from carbon nanotubes functionalized with<br />

matrix polymer. Macromolecules 2003;36:7199–204.<br />

[115] Q<strong>in</strong> S, Q<strong>in</strong> D, Ford WT, Herrera JE, Resasco DE, Bachilo SM, et al. Solubilization<br />

and purification of s<strong>in</strong>gle-wall carbon nanotubes <strong>in</strong> water


862 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

by <strong>in</strong> situ radical polymerization of sodium 4-styrenesulfonate.<br />

Macromolecules 2004;37:3965–7.<br />

[116] Koshio A, Yudasaka M, Zhang M, Iijima S. A simple way to chemically<br />

react s<strong>in</strong>gle-wall carbon nanotubes with organic materials<br />

us<strong>in</strong>g ultrasonication. Nano Lett 2001;1:361–3.<br />

[117] Qu LW, L<strong>in</strong> Y, Hill DE, Zhou B, Wang W, Sun X, et al. Polyimidefunctionalized<br />

carbon nanotubes: synthesis and dispersion <strong>in</strong><br />

nanocomposite films. Macromolecules 2004;37:6055–60.<br />

[118] Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, et al.<br />

Dispersion of s<strong>in</strong>gle wall carbon nanotubes by <strong>in</strong> situ polymerization<br />

under sonication. Chem Phys Lett 2002;364:303–8.<br />

[119] Lou XD, Detrembleur C, Pagnoulle C, Jerome R, Bocharova V, Kiriy<br />

A, et al. Surface modification of multiwalled carbon nanotubes by<br />

poly(2-v<strong>in</strong>ylpyrid<strong>in</strong>e): dispersion, selective deposition, and decoration<br />

of the nanotubes. Adv Mater 2004;16:2123–7.<br />

[120] Riggs JE, Walker DB, Carroll DL, Sun Y-P. Optical limit<strong>in</strong>g properties<br />

of suspended and solubilized carbon nanotubes. J Phys Chem B<br />

2000;104:7071–6.<br />

[121] Sun Y-P, Huang W, L<strong>in</strong> Y, Fu K, Kitaygorodskiy A, Riddle LA, et<br />

al. Soluble dendron-functionalized carbon nanotubes: preparation,<br />

characterization, and properties. Chem Mater 2001;13:2864–9.<br />

[122] Sano M, Kam<strong>in</strong>o A, Sh<strong>in</strong>kai S. Construction of carbon nanotube stars<br />

with dendrimers. Angew Chem Int Ed 2001;40:4661–3.<br />

[123] Cao L, Yang W, Yang J, Wang C, Fu S. Hyperbranched<br />

poly(amidoam<strong>in</strong>e)-modified multi-walled carbon nanotubes via<br />

graft<strong>in</strong>g-from method. Chem Lett 2004;33:490–1.<br />

[124] Blake R, Gunko YK, Coleman J, Cadek M, Fonseca A, Nagy JB, et<br />

al. A generic organometallic approach toward ultra-strong carbon<br />

nanotube polymer composites. J Am Chem Soc 2004;126:10226–7.<br />

[125] Qu L, Veca LM, L<strong>in</strong> Y, Kitaygorodskiy A, Chen B, McCall AM, et al.<br />

Soluble nylon-functionalized carbon nanotubes from anionic r<strong>in</strong>gopen<strong>in</strong>g<br />

polymerization from nanotube surface. Macromolecules<br />

2005;38:10328–31.<br />

[126] Yang M, Gao Y, Li H, Adronov A. Functionalization of multiwalled<br />

carbon nanotubes with polyamide 6 by anionic r<strong>in</strong>g-open<strong>in</strong>g polymerization.<br />

Carbon 2007;45:2327–33.<br />

[127] Park SJ, Cho MS, Lim ST, Cho HJ, Jhon MS. Synthesis and dispersion<br />

characteristics of multi-walled carbon nanotube composites with<br />

poly(methyl methacrylate) prepared by <strong>in</strong>-situ bulk polymerization.<br />

Macromol Rapid Commun 2003;24:1070–3.<br />

[128] Yao Z, Braidy N, Botton GA, Adronov A. <strong>Polymer</strong>ization from the surface<br />

of s<strong>in</strong>gle-walled carbon nanotubes—preparation and characterization<br />

of nanocomposites. J Am Chem Soc 2003;125:16015–24.<br />

[129] Baskaran D, Mays JW, Bratcher MS. <strong>Polymer</strong>-grafted multiwalled<br />

carbon nanotubes through surface-<strong>in</strong>itiated polymerization.<br />

Angew Chem Int Ed 2004;43:2138–42.<br />

[130] Kong H, Gao C, Yan D. Functionalization of multiwalled carbon<br />

nanotubes by atom transfer radical polymerization and defunctionalization<br />

of the products. Macromolecules 2004;37:4022–30.<br />

[131] Kong H, Luo P, Gao C, Yan D. Polyelectrolyte-functionalized<br />

multiwalled carbon nanotubes: preparation, characterization and<br />

layer-by-layer self-assembly. <strong>Polymer</strong> 2005;46:2472–85.<br />

[132] Kong H, Gao C, Yan D. Construct<strong>in</strong>g amphiphilic polymer brushes<br />

on the convex surfaces of multi-walled carbon nanotubes by<br />

<strong>in</strong> situ atom transfer radical polymerization. J Mater Chem<br />

2004;14:1401–5.<br />

[133] Kong H, Li W, Gao C, Yan D, J<strong>in</strong> Y, Walton DRM, et al. Poly(Nisopropylacrylamide)-coated<br />

carbon nanotubes: temperaturesensitive<br />

molecular nanohybrids <strong>in</strong> water. Macromolecules<br />

2004;37:6683–6.<br />

[134] Q<strong>in</strong> S, Q<strong>in</strong> D, Ford WT, Herrera JE, Resasco DE. Graft<strong>in</strong>g of poly(4v<strong>in</strong>ylpyrid<strong>in</strong>e)<br />

to s<strong>in</strong>gle-walled carbon nanotubes and assembly of<br />

multilayer films. Macromolecules 2004;37:9963–7.<br />

[135] Wu W, Zhang S, Li Y, Li J, Liu L, Q<strong>in</strong> Y, et al. PVK-modified s<strong>in</strong>glewalled<br />

carbon nanotubes with effective photo<strong>in</strong>duced electron<br />

transfer. Macromolecules 2003;36:6286–8.<br />

[136] Gao C, Vo CD, J<strong>in</strong> YZ, Li W, Armes SP. Multihydroxy polymerfunctionalized<br />

carbon nanotubes: synthesis, derivation, and metal<br />

load<strong>in</strong>g. Macromolecules 2005;38:8634–48.<br />

[137] Li J, He WD, Yang LP, Sun XL, Hua Q. Preparation of multiwalled<br />

carbon nanotubes grafted with synthetic poly(L-lys<strong>in</strong>e)<br />

through surface-<strong>in</strong>itiated r<strong>in</strong>g open<strong>in</strong>g polymerization. <strong>Polymer</strong><br />

2007;48:4352–60.<br />

[138] Zeng HL, Gao C, Yan DY. Poly(-caprolactone)-functionalized carbon<br />

nanotubes and their biodegradation properties. Adv Funct<br />

Mater 2006;16:812–8.<br />

[139] Chen GX, Kim HS, Park BH, Yoon JS. Synthesis of poly(L-lactide)functionalized<br />

multiwalled carbon nanotubes by r<strong>in</strong>g-open<strong>in</strong>g<br />

polymerization. Macromol Chem Phys 2007;208:389–98.<br />

[140] Yan YH, Cui J, Chan-Park MB, Wang X, Wu QY. Systematic studies of<br />

covalent functionalization of carbon nanotubes via argon plasmaassisted<br />

UV graft<strong>in</strong>g. Nanotechnology 2007;18, 115712/1–7.<br />

[141] Yang J, Hu J, Wang C, Q<strong>in</strong> Y, Guo Z. Fabrication and characterization<br />

of soluble multi-walled carbon nanotubes re<strong>in</strong>forced P(MMA-co-<br />

EMA) composites. Macromol Mat Eng 2004;289:828–32.<br />

[142] Huisgen R. 1,3-Dipolar cycloadditions-<strong>in</strong>troduction, survey, mechanism<br />

<strong>in</strong> 1,3-dipolar cycloaddition chemistry. In: Padwa A, editor.<br />

1,3-Dipolar cycloaddition chemistry, vol. 1. New York: Wiley; 1984.<br />

p. 1–176.<br />

[143] Kolb HC, F<strong>in</strong>n MG, Sharpless KB. Click chemistry: diverse chemical<br />

function from a few good reactions. Angew Chem Int Ed<br />

2001;40:2004–21.<br />

[144] Kolb HC, Sharpless KB. The grow<strong>in</strong>g impact of click chemistry on<br />

drug discovery. Drug Disc Today 2003;8:1128–37.<br />

[145] Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid<br />

phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3dipolar<br />

cycloadditions of term<strong>in</strong>al alkynes to azides. J Org Chem<br />

2002;67:3057–64.<br />

[146] Joralemon MJ, OReilly RK, Matson JB, Nugent AK, Hawker CJ, Wooley<br />

KL. Dendrimers clicked together divergently. Macromolecules<br />

2005;38:5436–43.<br />

[147] Wu P, Feldman AK, Nugent AK, Hawker CJ, Scheel A, Voit B, et al.<br />

Efficiency and fidelity <strong>in</strong> a click-chemistry route to triazole dendrimers<br />

by the copper(I)-catalyzed ligation of azides and alkynes.<br />

Angew Chem Int Ed 2004;43:3928–32.<br />

[148] Helms B, Mynar JL, Hawker CJ, Frechet JMJ. Dendronized l<strong>in</strong>ear<br />

polymers via click chemistry. J Am Chem Soc 2004;126:<br />

15020–1.<br />

[149] Malkoch M, Schleicher K, Drockenmuller E, Hawker CJ, Russell TP,<br />

Wu P, et al. Structurally diverse dendritic libraries: a highly efficient<br />

functionalization approach us<strong>in</strong>g click chemistry. Macromolecules<br />

2005;38:3663–78.<br />

[150] Lee JW, Kim JH, Kim BK, Sh<strong>in</strong> WS, J<strong>in</strong> SH. Synthesis of Frechet type<br />

dendritic benzyl propargyl ether and Frechet type triazole dendrimer.<br />

Tetrahedron 2006;62:894–900.<br />

[151] L<strong>in</strong>k AJ, V<strong>in</strong>k MKS, Tirrell DA. Presentation and detection of azide<br />

functionality <strong>in</strong> bacterial cell surface prote<strong>in</strong>s. J Am Chem Soc<br />

2004;126:10598–602.<br />

[152] Kumar I, Rode CV. Efficient synthesis of fused 1,2,3-triazolo-deltalactams<br />

us<strong>in</strong>g huisgen [3+2] dipolar cycloaddition click-chemistry<br />

<strong>in</strong> water. Chem Lett 2007;36:592–3.<br />

[153] Rostovtsev VV, Green LG, Fok<strong>in</strong> VV, Sharpless KB. A stepwise<br />

huisgen cycloaddition process: copper(I)-catalyzed regioselective<br />

ligation of azides and term<strong>in</strong>al alkynes. Angew Chem Int Ed<br />

2002;41:2596–9.<br />

[154] Horne WS, Yadav MK, Stout CD, Ghadiri MR. Heterocyclic peptide<br />

backbone modifications <strong>in</strong> an alpha-helical coiled coil. J Am Chem<br />

Soc 2004;126:15366–7.<br />

[155] Li H, Cheng F, Duft AM, Adronov A. Functionalization of s<strong>in</strong>glewalled<br />

carbon nanotubes with well-def<strong>in</strong>ed polystyrene by click<br />

coupl<strong>in</strong>g. J Am Chem Soc 2005;127:14518–24.<br />

[156] Kumar I, Rana S, Rode CV, Cho JW. Functionalization of s<strong>in</strong>glewalled<br />

carbon nanotubes with azides derives from am<strong>in</strong>o acids<br />

us<strong>in</strong>g click chemistry. J Nanosci Nanotech 2008;8:3351–6.<br />

[157] Campidelli S, Ballesteros B, Filoramo A, Dıaz DD, Torre G, Torres T,<br />

et al. Facile decoration of functionalized s<strong>in</strong>gle-wall carbon nanotubes<br />

with phthalocyan<strong>in</strong>es via click chemistry. J Am Chem Soc<br />

2008;130:11503–9.<br />

[158] Li H, Adronov A. Water soluble SWCNTs from sulfonation of<br />

nanotube-bound polystyrene. Carbon 2007;45:984–90.<br />

[159] Rana S, Cho JW. Synthesis and characterization of polyurethanefunctionalized<br />

carbon nanotubes with shape memory effect us<strong>in</strong>g<br />

click chemistry. Proceed <strong>in</strong>tern confer <strong>in</strong>telligent textiles 2007, Seoul,<br />

Korea; 2007. p. 142–3.<br />

[160] Wildgoose GG, Banks CE, Compton RG. Metal nanoparticles and<br />

related materials supported on carbon nanotubes: methods and<br />

applications. Small 2006;2:182–93.<br />

[161] Voggu R, Suguna P, Chandrasekaran S, Rao CNR. Assembl<strong>in</strong>g covalently<br />

l<strong>in</strong>ked nanocrystals and nanotubes through click chemistry.<br />

Chem Phys Lett 2007;443:118–21.<br />

[162] He H, Zhang Y, Gao C, Wu J. Clicked magnetic nanohybrids with a<br />

soft polymer <strong>in</strong>terlayer. Chem Commun 2009:1655–7.<br />

[163] Rana S, Kumar I, Yoo HJ, Cho JW. Assembly of gold nanoparticles on<br />

s<strong>in</strong>gle-walled carbon nanotubes by us<strong>in</strong>g click chemistry. J Nanosci<br />

Nanotech 2009;9:3261–3.<br />

[164] Zhang Y, He H, Gao C, Wu J. Covalent layer-by-layer functionalization<br />

of multiwalled carbon nanotubes by click chemistry. Langmuir<br />

2009;25:5814–24.


[165] Zhang Y, He H, Gao C. Clickable macro<strong>in</strong>itiator strategy to<br />

build amphiphilic polymer brushes on carbon nanotubes. Macromolecules<br />

2008;41:9581–94.<br />

[166] Hong CY, Pan CY. Functionalized carbon nanotubes responsive to<br />

environmental stimuli. J Mater Chem 2008;18:1831–6.<br />

[167] Liu J, Nie Z, Gao Y, Adronov A, Li H. Click coupl<strong>in</strong>g between<br />

alkyne-decorated multiwalled carbon nanotubes and reactive<br />

PDMA-PNIPAM micelles. J Polym Sci Part A Polym Chem<br />

2008;46:7187–99.<br />

[168] Guo Z, Liang L, Liang JJ, Ma YF, Yang XY, Ren DM, et al. Covalently<br />

-cyclodextr<strong>in</strong> modified s<strong>in</strong>gle-walled carbon nanotubes: a novel<br />

artificial receptor synthesized by click chemistry. J Nanopart Res<br />

2008;10:1077–83.<br />

[169] Li C, Pang XJ, Qu MZ, Zhang QT, Wang B, Zhang BL, et al. Fabrication<br />

and characterization of polycarbonate/carbon nanotubes<br />

composites. Compos Part A 2005;37:1485–9.<br />

[170] Xia H, Wang Q, Qiu G. <strong>Polymer</strong>-encapsulated carbon nanotubes<br />

prepared through ultrasonically <strong>in</strong>itiated <strong>in</strong> situ emulsion polymerization.<br />

Chem Mater 2003;15:3879–86.<br />

[171] Suslick KS. Sonochemistry. <strong>Science</strong> 1990;247:1439–45.<br />

[172] Safadi B, Andrews R, Grulke EA. Multiwalled carbon nanotubes<br />

polymer composites: synthesis and characterization of th<strong>in</strong> films.<br />

J Appl Polym Sci 2002;84:2660–9.<br />

[173] Sahoo NG, Jung YC, Yoo HJ, Cho JW. Effect of functionalized<br />

carbon nanotubes on molecular <strong>in</strong>teraction and properties<br />

of polyurethane composites. Macromol Chem Phys 2006;207:<br />

1773–80.<br />

[174] Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, et<br />

al. Macroscopic fibers and ribbons of oriented carbon nanotubes.<br />

<strong>Science</strong> 2000;290:1331–4.<br />

[175] Saran N, Parikh K, Suh DS, Munoz E, Kolla H, Manhor SK. Fabrication<br />

and characterization of th<strong>in</strong> films of s<strong>in</strong>gle-walled carbon<br />

nanotubes bundles on flexible plastic substrates. J Am Chem Soc<br />

2004;126:4462–3.<br />

[176] Barrau S, Demont P, Perez E, Peigney A, Laurent C, Lacabanne<br />

C. Effect of palmitic acid on the electrical conductivity<br />

of carbon nanotubes-epoxy res<strong>in</strong> composites. Macromolecules<br />

2003;36:9678–80.<br />

[177] Camponeschi E, Florkowski B, Vance R, Garrett G, Garmestani<br />

H, Tannenbaum R. Uniform directional alignment of s<strong>in</strong>glewalled<br />

carbon nanotubes <strong>in</strong> viscous polymer flow. Langmuir<br />

2006;22:1858–62.<br />

[178] Chen W, Tao X. Self-organiz<strong>in</strong>g alignment of carbon nanotubes<br />

<strong>in</strong> thermoplastic polyurethane. Macromol Rapid Commun<br />

2005;26:1763–7.<br />

[179] Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation<br />

mechanisms <strong>in</strong> carbon nanotube-polystyrene composites.<br />

Appl Phys Lett 2000;76:2868–70.<br />

[180] Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K. Physical<br />

<strong>in</strong>teraction at carbon nanotube-polymer <strong>in</strong>terface. <strong>Polymer</strong><br />

2003;44:7757–64.<br />

[181] Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell<br />

D, Raghavan SR, et al. Electrical and reheological percolation<br />

<strong>in</strong> polystyre/MWCNT nanocomposites. Macromolecules<br />

2007;40:7400–6.<br />

[182] Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, W<strong>in</strong>dle<br />

AH. Development of a dispersion process for carbon nanotubes <strong>in</strong><br />

an epoxy matrix and the result<strong>in</strong>g electrical properties. <strong>Polymer</strong><br />

1999;40:5967–71.<br />

[183] Song YS, Youn JR. Influence of dispersion states of carbon nanotubes<br />

on physical properties of epoxy nanocomposites. Carbon<br />

2005;43:1378–85.<br />

[184] Shaffer MSP, W<strong>in</strong>dle AH. Fabrication and characterization of<br />

carbon nanotube/poly(v<strong>in</strong>yl alcohol) composites. Adv Mater<br />

1999;11:937–41.<br />

[185] Chae HG, Sreekumar TV, Uchida T, Kumar S. A comparison<br />

of re<strong>in</strong>forcement efficiency of various types of carbon<br />

nanotubes <strong>in</strong> polyacrylonitrile fiber. <strong>Polymer</strong> 2005;46:<br />

10925–35.<br />

[186] B<strong>in</strong> Y, Kitanaka M, Zhu D, Matsuo M. Development of highly<br />

oriented polyethylene filled with aligned carbon nanotubes<br />

by gelation/crystallization from solutions. Macromolecules<br />

2003;36:6213–9.<br />

[187] Andrews R, Jacques D, M<strong>in</strong>ot M, Rantell T. Fabrication of carbon<br />

multiwall nanotube/polymer composites by shear mix<strong>in</strong>g. Micromol<br />

Mater Eng 2002;287:395–403.<br />

[188] Zhang WD, Shen L, Phang IY, Liu T. Carbon nanotubes re<strong>in</strong>forced<br />

nylon-6 composite prepared by simple melt-compound<strong>in</strong>g. Macromolecules<br />

2004;37:256–9.<br />

N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 863<br />

[189] Bocch<strong>in</strong>i S, Frache A, Cam<strong>in</strong>o G, Claes M. Polyethylene thermal<br />

oxidative stabilisation <strong>in</strong> carbon nanotubes based nanocomposites.<br />

Eur Polym J 2007;43:3222–35.<br />

[190] McNally T, Potschkeb P, Halley P, Murphy M, Mart<strong>in</strong> D, Bell SEJ, et al.<br />

Polyethylene multiwalled carbon nanotube composites. <strong>Polymer</strong><br />

2005;46:8222–32.<br />

[191] Lopez Manchado MA, Valent<strong>in</strong>i L, Biagiotti J, Kenny JM. Thermal<br />

and mechanical properties of s<strong>in</strong>gle-walled carbon nanotubespolypropylene<br />

composites prepared by melt process<strong>in</strong>g. Carbon<br />

2005;43:1499–505.<br />

[192] Valent<strong>in</strong>i L, Biagiotti J, Kenny JM, Santucci S. Morphological<br />

characterization of s<strong>in</strong>gle-wall carbon nanotube/polypropylene<br />

composites. Compos Sci Technol 2003;63:1149–53.<br />

[193] Zhang H, Zhang Z. Impact behaviour of polypropylene filled with<br />

multi-walled carbon nanotubes. Eur Polym J 2007;43:3197–207.<br />

[194] Tang W, Santare MH, Advani SG. Melt process<strong>in</strong>g and mechanical<br />

property characterization of multi-walled carbon nanotube/high<br />

density polyethylene (MWNT/HDPE) composite films. Carbon<br />

2003;41:2779–85.<br />

[195] Potschke P, Fornes TD, Paul DR. Rheological behavior of multiwalled<br />

carbon nanotube/polycarbonate composites. <strong>Polymer</strong><br />

2002;43:3247–55.<br />

[196] Potschke P, Bhattacharyya AR, Janke A. Morphology and electrical<br />

resistivity of melt mixed blends of polyethylene and carbon<br />

nanotube filled polycarbonate. <strong>Polymer</strong> 2003;44:8061–9.<br />

[197] Pötschke P, Bhattacharyya AR, Janke A. Melt mix<strong>in</strong>g of polycarbonate<br />

with multiwalled carbon nanotubes: microscopic studies on the<br />

state of dispersion. Eur Polym J 2004;40:137–48.<br />

[198] J<strong>in</strong> Z, Pramoda KP, Xu G, Goh SH. Dynamic mechanical behavior<br />

of melt-processed multi-walled carbon nanotube/poly(methyl<br />

methacrylate) composites. Chem Phys Lett 2001;337:43–7.<br />

[199] Zeng J, Saltysiak B, Johnson WS, Schiraldi DA, Kumar S. Process<strong>in</strong>g<br />

and properties of poly(methyl methacrylate)/carbon nano fiber<br />

composites. Compos Part B 2004;35:173–8.<br />

[200] Haggenmueller R, Gommans HH, R<strong>in</strong>zler AG, Fischer JE, W<strong>in</strong>ey KI.<br />

Aligned s<strong>in</strong>gle-wall carbon nanotubes <strong>in</strong> composites by melt process<strong>in</strong>g<br />

methods. Chem Phys Lett 2000;330:219–25.<br />

[201] Gorga RE, Cohen RE. Toughness enhancements <strong>in</strong> poly(methyl<br />

methacrylate) by addition of oriented multiwall carbon nanotubes.<br />

J Polym Sci Part B Polym Phys 2004;42:2690–702.<br />

[202] Zeng Y, Y<strong>in</strong>g Z, Du J, Cheng HM. Effects of carbon nanotubes on<br />

process<strong>in</strong>g stability of polyoxymethylene <strong>in</strong> melt-mix<strong>in</strong>g process.<br />

J Phys Chem C 2007;111:13945–50.<br />

[203] Siochi EJ, Work<strong>in</strong>g DC, Park C, Lillehei PT, Rouse JH, Topp<strong>in</strong>g CC,<br />

et al. Melt process<strong>in</strong>g of SWNT-polyimide nanocomposite fibres.<br />

Compos Part B 2004;35:439–46.<br />

[204] Me<strong>in</strong>cke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer<br />

M, Warth H. Mechanical properties and electrical conductivity of<br />

carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene.<br />

<strong>Polymer</strong> 2004;45:739–48.<br />

[205] Hu N, Zhou H, Dang G, Rao X, Chen C, Zhang W. Efficient dispersion<br />

of multi-walled carbon nanotubes by <strong>in</strong> situ polymerization. Polym<br />

Int 2007;56:655–9.<br />

[206] So HH, Cho JW, Sahoo NG. Effect of carbon nanotubes on mechanical<br />

and electrical properties of polyimide/carbon nanotubes nanocomposites.<br />

Eur Polym J 2007;43:3750–6.<br />

[207] Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, et al. Study on poly(methyl<br />

methacrylate): carbon nanotube composites. Mater Sci Eng A<br />

1999;271:395–400.<br />

[208] Putz KW, Mitchell CA, Krishnamoorti R, Green PF. Elastic modulus<br />

of s<strong>in</strong>gle-walled carbon nanotube/poly(methyl methacrylate)<br />

nanocomposites. J Polym Sci Part B Polym Phys 2004;42:<br />

2286–93.<br />

[209] Sung JH, Kim HS, J<strong>in</strong> HJ, Choi HJ, Ch<strong>in</strong> IJ. Nanofibrous membranes<br />

prepared by multiwalled carbon nanotube/poly(methyl methacrylate)<br />

composites. Macromolecules 2004;37:9899–902.<br />

[210] Hwang GL, Shieh YT, Hwang KC. Efficient load transfer to polymergrafted<br />

multiwalled carbon nanotubes <strong>in</strong> polymer composites. Adv<br />

Funct Mater 2004;14:487–91.<br />

[211] Velasco-Santos C, Mart<strong>in</strong>ez-Hernandez AL, Fisher FT, Ruoff R, Castano<br />

VM. Improvement of thermal and mechanical properties of<br />

carbon nanotube composites through chemical functionalization.<br />

Chem Mater 2003;15:4470–5.<br />

[212] Karim MR, Lee CJ, Park YT, Lee MS. SWNTs coated by conduct<strong>in</strong>g<br />

polyanil<strong>in</strong>e: synthesis and modified properties. Synt Met<br />

2005;151:131–5.<br />

[213] Long Y, Chen Z, Zhang X, Zhang J, Liu Z. Electrical properties of multiwalled<br />

carbon nanotube/polypyrrole nanocables: percolationdom<strong>in</strong>ated<br />

conductivity. J Phys D Appl Phys 2004;37:1965–9.


864 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

[214] An KH, Jeong SY, Hwang HR, Lee YH. Enhanced sensivity of a gar<br />

sensor <strong>in</strong>corporat<strong>in</strong>g s<strong>in</strong>gle-walled carbon nanotube-polypyrrole<br />

nanocomposites. Adv Mater 2004;16:1005–9.<br />

[215] Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S. Synthesis, characterizations,<br />

and physical properties of carbon nanotubes coated by<br />

conduct<strong>in</strong>g polypyrrole. J Appl Polym Sci 1999;74:2605–10.<br />

[216] Sahoo NG, Jung YC, So HH, Cho JW. Polypyrrole coated carbon<br />

nanotubes: synthesis, characterization, and enhanced electrical<br />

properties. Synth Met 2007;157. p. 179–374.<br />

[217] Yoo HJ, Jung YC, Sahoo NG, Cho JW. Electroactive shape memory<br />

polyurethane nanocomposites from <strong>in</strong>-situ polymerization with<br />

carbon nanotubes. J Macromol Sci Part B Phys 2006;45:441–51.<br />

[218] Xia H, Song M. Preparation and characterization of polyurethanecarbon<br />

nanotube composites. Soft Matter 2005;1:386–94.<br />

[219] Xia H, Song M. Preparation and characterization of polyurethane<br />

grafted s<strong>in</strong>gle-walled carbon nanotubes and derived polyurethane<br />

nanocomposites. J Mater Chem 2006;16:1843–51.<br />

[220] Jung YC, Sahoo NG, Cho JW. <strong>Polymer</strong>ic nanocomposites of<br />

polyurethane block copolymers and functionalized multi-walled<br />

carbon nanotubes as crossl<strong>in</strong>kers. Macromol Rapid Commun<br />

2006;27:126–31.<br />

[221] Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC. Cont<strong>in</strong>uous<br />

sp<strong>in</strong>n<strong>in</strong>g of a s<strong>in</strong>gle-walled carbon nanotube-nylon composite<br />

fiber. J Am Chem Soc 2005;127:3847–54.<br />

[222] Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Mart<strong>in</strong> S, et<br />

al. Dendritic macromolecules: synthesis of starburst dendrimers.<br />

Macromolecules 1986;19:2466–8.<br />

[223] Clon<strong>in</strong>ger MJ. Biological applications of dendrimers. Curr Op<strong>in</strong><br />

Chem Biol 2002;6:742–8.<br />

[224] Ishizu K, Tsubaki K, Mori A, Uchida S. Architecture of nanostructured<br />

polymers. Prog Polym Sci 2003;28:27–54.<br />

[225] Zeng F, Zimmerman SC. Dendrimers <strong>in</strong> superamolecular chemistry:<br />

from recognition to self-assembly. Chem Rev 1997;97:1681–712.<br />

[226] Matthews OA, Shipway AN, Stoddart JF. Dendrimers-branch<strong>in</strong>g<br />

out from curiosities <strong>in</strong>to new technologies. Prog Polym Sci<br />

1998;23:1–56.<br />

[227] Gao C, Yan D. Hyperbranched polymers: from synthesis to applications.<br />

Prog Polym Sci 2004;29:183–275.<br />

[228] Hawker CJ, Frechet JMJ. Preparation of polymers with controlled<br />

molecular architecture. A new convergent approach to dendritic<br />

macromolecules. J Am Chem Soc 1990;112:7638–47.<br />

[229] Huang F, Gibson HW. Formation of supramolecular hyperbranched<br />

polymer from self-organization of an AB2 monomer conta<strong>in</strong><strong>in</strong>g<br />

a crown ether and two paraquat moieties. J Am Chem Soc<br />

2004;126:14738–9.<br />

[230] Yates CR, Hayes W. Synthesis and applications of hyperbranched<br />

polymers. Eur Polym J 2004;40:1257–81.<br />

[231] Feng QP, Xie XM, Liu YT, Zhao W, Gao YF. Synthesis of<br />

hyperbranched aromatic polyamide-imide and its graft<strong>in</strong>g onto<br />

multiwalled carbon nanotubes. J Appl Polym Sci 2007;106:<br />

2413–21.<br />

[232] Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH. Chemical<br />

and biochemical sens<strong>in</strong>g with modified s<strong>in</strong>gle walled carbon<br />

nanotubes. Chem Eur J 2003;9:3732–9.<br />

[233] Xu Y, Gao C, Kong H, Yan D, J<strong>in</strong> YZ, Watts PCP. Grow<strong>in</strong>g multihydroxyl<br />

hyperbranched polymers on the surfaces of carbon<br />

nanotubes by <strong>in</strong> situ r<strong>in</strong>g-open<strong>in</strong>g polymerization. Macromolecules<br />

2004;37:8846–53.<br />

[234] Yang Y, Xie X, Yang Z, Wang X, Cui W, Yang J, et al.<br />

Controlled synthesis and novel solution rheology of hyperbranched<br />

poly(urea-urethane)-functionalized multiwalled carbon<br />

nanotubes. Macromolecules 2007;40:5858–67.<br />

[235] Hwang SH, Moorefield CN, Wang P, Jeong KU, Cheng SZD, Kotta<br />

KK, et al. Dendron-tethered and templated CdS quantum dots on<br />

s<strong>in</strong>gle-walled carbon nanotubes. J Am Chem Soc 2006;128:7505–9.<br />

[236] Wang X, Liu H, J<strong>in</strong> Y, Chen C. <strong>Polymer</strong>-functionalized multi-walled<br />

carbon nanotubes as lithium <strong>in</strong>tercalation hosts. J Phys Chem B<br />

2006;110:10236–40.<br />

[237] Mart<strong>in</strong> RB, Qu L, L<strong>in</strong> Y, Harruff BA, Bunker CE, Gord JR, et al. Functionalized<br />

carbon nanotubes with tethered pyrenes: synthesis and<br />

photophysical properties. J Phys Chem B 2004;108:11447–53.<br />

[238] Campidelli S, Sooambar C, Lozano DE, Ehli C, Guldi DM, Prato<br />

M. Dendrimer-functionalized s<strong>in</strong>gle-wall carbon nanotubes: synthesis,<br />

characterization, and photo<strong>in</strong>duced electron transfer. J Am<br />

Chem Soc 2006;128:12544–52.<br />

[239] Tao L, Chen G, Mantovani G, York S, Haddleton DM. Modification<br />

of multi-wall carbon nanotube surfaces with poly(amidoam<strong>in</strong>e)<br />

dendrons: synthesis and metal templat<strong>in</strong>g. Chem Commun<br />

2006:4949–51.<br />

[240] Yuan W, Jiang G, Che J, Qi X, Xu R, Chang MW, et al. Deposition of<br />

silver nanoparticles on multiwalled carbon nanotubes grafted with<br />

hyperbranched poly(amidoam<strong>in</strong>e) and their antimicrobial effects.<br />

J Phys Chem C 2008;112:18754–9.<br />

[241] Valent<strong>in</strong>i L, Trent<strong>in</strong>i M, Mengoni F, Alongi J, Armentano I,<br />

Ricco L, et al. Synthesis and photoelectrical properties of carbon<br />

nanotube–dendritic porphyr<strong>in</strong> light harvest<strong>in</strong>g molecule systems.<br />

Diamond Rel Mater 2007;16:658–63.<br />

[242] Gu L, L<strong>in</strong> Y, Qu L, Sun YP. Carbon nanotubes as a scaffold to display<br />

paired sugars <strong>in</strong> solution. Biomacromolecules 2006;7:400–2.<br />

[243] Yang H, Wang SC, Mercier P, Ak<strong>in</strong>s DL. Diameter selective dispersion<br />

of s<strong>in</strong>gle-walled carbon nanotubes us<strong>in</strong>g a water soluble biocompatible<br />

polymer. Chem Commun 2006:1425–7.<br />

[244] Gao C, Muthukrishnan S, Li W, Yuan J, Xu Y, Mueller AHE. L<strong>in</strong>ear<br />

and hyperbranched glycopolymer-functionalized carbon nanotubes:<br />

synthesis, k<strong>in</strong>etics, and characterization. Macromolecules<br />

2007;40:1803–15.<br />

[245] Adeli M, Bahari A, Hekmatara H. Carbon nanotube-graft-poly(citric<br />

acid) nanocomposites. Nano 2008;3:37–44.<br />

[246] Hong CY, You YZ, Wu D, Liu Y, Pan CY. Multiwalled carbon<br />

nanotubes grafted with hyperbranched polymer shell via SCVP.<br />

Macromolecules 2005;38:2606–11.<br />

[247] Yang Y, Xie X, Wu J, Yang Z, Wang X, Mai YW. Multiwalled<br />

carbon nanotubes functionalized by hyperbranched poly(ureaurethane)s<br />

by a one-pot polycondensation. Macromol Rapid<br />

Commun 2006;27:1695–701.<br />

[248] Choi JY, Oh SJ, Lee HJ, Wang DH, Tan LS, Baek JB. In-situ<br />

graft<strong>in</strong>g of hyperbranched poly(ether ketone)s onto multiwalled<br />

carbon nanotubes via the A3 +B2 approach. Macromolecules<br />

2007;40:4474–80.<br />

[249] Choi JY, Han SW, Huh WS, Tan LS, Baek JB. In situ graft<strong>in</strong>g<br />

of carboxylic acid-term<strong>in</strong>ated hyperbranched poly(etherketone)<br />

to the surface of carbon nanotubes. <strong>Polymer</strong> 2007;48:<br />

4034–40.<br />

[250] Jeon IY, Tan LS, Baek JB. Nanocomposites derived from <strong>in</strong> situ<br />

graft<strong>in</strong>g of l<strong>in</strong>ear and hyperbranched poly(ether-ketone)s conta<strong>in</strong><strong>in</strong>g<br />

flexible oxyethylene spacers onto the surface of multiwalled<br />

carbon nanotubes. J Polym Sci Part A Polym Chem 2008;46:<br />

3471–81.<br />

[251] Zhou W, Xu J, Shi W. Surface modification of multi-wall carbon<br />

nanotube with ultraviolet-curable hyperbranched polymer. Th<strong>in</strong><br />

Solid Films 2008;516:4076–82.<br />

[252] Star A, Stoddart JF. Dispersion and solubilization of s<strong>in</strong>gle-walled<br />

carbon nanotubes with a hyperbranched polymer. Macromolecules<br />

2002;35:7516–20.<br />

[253] Rana S, Karak N, Cho JW, Kim YH. Enhanced dispersion of carbon<br />

nanotubes <strong>in</strong> hyperbranched polyurethane and properties of<br />

nanocomposites. Nanotechnology 2008;19, 495707/1–8.<br />

[254] Kim HH, Rana S, Cho JW, Lee JY. High concentration carbon nanotubes<br />

<strong>in</strong> hyperbranched polyurethane and their characteristics,<br />

submitted.<br />

[255] Ogoshi T, Saito T, Yamagishi T, Nakamoto Y. Solubilization of s<strong>in</strong>glewalled<br />

carbon nanotubes by entanglements between them and<br />

hyperbranched phenolic polymer. Carbon 2009;47:117–23.<br />

[256] Zhou W, Lv S, Shi W. Preparation of micelle-encapsulated<br />

s<strong>in</strong>gle-wall and multi-wall carbon nanotubes with amphiphilic<br />

hyperbranched polymer. Eur Polym J 2008;44:587–601.<br />

[257] Zhang J, Zheng Y, Yu P, Mo S, Wang R. The synthesis of<br />

functionalized carbon nanotubes by hyperbranched poly(am<strong>in</strong>eester)<br />

with liquid-like behavior at room temperature. <strong>Polymer</strong><br />

2009;50:2953–7.<br />

[258] Sawada H, Sh<strong>in</strong>do K, Iidzuka J, Ueno K, Hamazaki K. Solubilization<br />

and applications of s<strong>in</strong>gle-walled carbon nanotubes<br />

<strong>in</strong>to aqueous and organic media by the use of nanometer sizecontrolled<br />

fluoroalkyl end-capped oligomeric aggregates. Eur<br />

Polym J 2005;41:2232–9.<br />

[259] Sawada H, Naitoh N, Kasai R, Suzuki M. Dispersion of s<strong>in</strong>glewalled<br />

carbon nanotubes <strong>in</strong> water by the use of novel fluor<strong>in</strong>ated<br />

dendrimer-type copolymers. J Mater Sci 2008;43:1080–6.<br />

[260] Yoshioka H, Suzuki M, Mugisawa M, Naitoh N, Sawada H. Synthesis<br />

and applications of novel fluor<strong>in</strong>ated dendrimer-type copolymer<br />

by the use of fluoroalkyanoyl peroxide as a key <strong>in</strong>termediate. J Coll<br />

Interf Sci 2007;308:4–10.<br />

[261] Valent<strong>in</strong>i L, Armentano I, Ricco L, Alongi J, Pennelli G, Mariani A,<br />

et al. Selective <strong>in</strong>teraction of s<strong>in</strong>gle-walled carbon nanotubes with<br />

conduct<strong>in</strong>g dendrimer. Diamond Rel Mater 2006;15:95–9.<br />

[262] Zheng H, Xue H, Zhang Y, Shen Z. A glucose biosensor based on<br />

microporous polyacrylonitrile synthesized by s<strong>in</strong>gle rare-earth catalyst.<br />

Biosens Bioelectron 2002;17:541–5.


[263] Yi X, Xian JH, Yuan CH. Direct electrochemistry of horseradish<br />

peroxidase immobilized on a colloid/cysteam<strong>in</strong>e-modified gold<br />

electrode. Anal Biochem 2000;278:22–8.<br />

[264] Xu JJ, Chen HY. Amperometric glucose sensor based on<br />

glucose oxidase immobilized <strong>in</strong> electrochemically generated<br />

poly(ethacrid<strong>in</strong>e). Anal Chim Acta 2000;423:101–6.<br />

[265] Xu L, Zhu Y, Tang L, Yang X, Li C. Biosensor based on<br />

self-assembl<strong>in</strong>g glucose oxidase and dendrimer-encapsulated Pt<br />

nanoparticles on carbon nanotubes for glucose detection. Electroanalysis<br />

2007;19:717–22.<br />

[266] Sahoo NG, Jung YC, So HH, Cho JW. Synthesis of polyurethane<br />

nanocomposites of functionalized carbon nanotubes by <strong>in</strong>situ<br />

polymerization methods. J Korean Phys Soc 2007;51:<br />

S1–6.<br />

[267] Potschke P, Haussler L, Pegel S, Ste<strong>in</strong>berger R, Scholz G. Thermoplastic<br />

polyurethane filled with carbon nanotubes for electrical<br />

dissipative and conductive applications. Kauts Gummi Kunst<br />

2007;60:432–7.<br />

[268] Lee CH, Liu JY, Chen SL, Wang YZ. Miscibility and properties<br />

of acid-treated multi-walled carbon nanotubes/polyurethane<br />

nanocomposites. <strong>Polymer</strong> J 2007;39:138–46.<br />

[269] Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RA.<br />

Deformation-morphology correlations <strong>in</strong> electrically conductive<br />

carbon nanotube-thermoplastic polyurethane nanocomposites.<br />

<strong>Polymer</strong> 2005;46:4405–20.<br />

[270] Ryszkowska J, Jurczyk-Kowalska M, Szymborski T, Kurzydlowski KJ.<br />

Dispersion of carbon nanotubes <strong>in</strong> polyurethane matrix. Physica E<br />

2007;39:124–7.<br />

[271] Meng Q, Hu J, Zhu Y. Shape-memory polyurethane/multiwalled<br />

carbon nanotube fibers. J Appl Polym Sci 2007;106:837–48.<br />

[272] Chen XH, Chen XJ, L<strong>in</strong> M, Zhong WB, Chen XH, Chen ZH.<br />

Functionalized multi-walled carbon nanotubes prepared by <strong>in</strong><br />

situ polycondensation of polyurethane. Macromol Chem Phys<br />

2007;208:964–72.<br />

[273] Xiong JW, Zheng Z, Q<strong>in</strong> X, Li M, Li HQ, Wang X. The thermal and<br />

mechanical properties of a polyurethane/multi-walled carbon nanotube<br />

composite. Carbon 2006;44:2701–7.<br />

[274] Kwon JY, Kim HD. Preparation and properties of acid-treated<br />

multiwalled carbon nanotube/waterborne polyurethane nanocomposites.<br />

J Appl Polym Sci 2005;96:595–604.<br />

[275] Sahoo NG, Jung YC, Cho JW. Electroactive shape memory<br />

effect of polyurethane composites filled with carbon nanotubes<br />

and conduct<strong>in</strong>g polymer. Mater Manufac Proc 2007;22:<br />

419–23.<br />

[276] Sahoo NG, Jung YC, Yoo HJ, Cho JW. Influence of carbon nanotubes<br />

and polypyrrole on the thermal, mechanical and electroactive<br />

shape-memory properties of polyurethane nanocomposites. Compos<br />

Sci Technol 2007;67:1920–9.<br />

[277] Kuan HC, Ma CCM, Chang WP, Yuen SM, Wu HH, Lee TM. Synthesis,<br />

thermal, mechanical and rheological properties of multiwall carbon<br />

nanotube/waterborne polyurethane nanocomposite. Compos<br />

Sci Technol 2005;65:1703–10.<br />

[278] Xia H, Song M, J<strong>in</strong> J, Chen L. Poly(propylene glycol)-grafted multiwalled<br />

carbon nanotube polyurethane. Macromol Chem Phys<br />

2006;27:1945–52.<br />

[279] Wang TL, Tseng CG. <strong>Polymer</strong>ic carbon nanocomposites from<br />

multiwalled carbon nanotubes functionalized with segmented<br />

polyurethane. J Appl Polym Sci 2007;105:1642–50.<br />

[280] McClory C, McNally T, Brennan GP, Ersk<strong>in</strong>e J. Thermosett<strong>in</strong>g<br />

polyurethane multiwalled carbon nanotube composites. J Appl<br />

Polym Sci 2007;105:1003–11.<br />

[281] Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, et al. Preparation<br />

of s<strong>in</strong>gle walled carbon nanotube re<strong>in</strong>forced polystyrene and<br />

polyurethane nanofibers and membranes by electrosp<strong>in</strong>n<strong>in</strong>g. Nano<br />

Lett 2004;4:459–64.<br />

[282] Yuen SM, Ma CCM, Chiang CL, L<strong>in</strong> YY, Teng CC. Preparation and<br />

morphological, electrical, and mechanical properties of polyimidegrafted<br />

MWCNT/polyimide composite. J Polym Sci Part A Polym<br />

Chem 2007;45:3349–58.<br />

[283] Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS. Electrical<br />

properties of s<strong>in</strong>gle wall carbon nanotube re<strong>in</strong>forced polyimide<br />

composites. Compos Sci Technol 2003;63:1637–46.<br />

[284] Yuen SM, Ma CCM, L<strong>in</strong> YY, Kuan HC. Preparation, morphology<br />

and properties of acid and am<strong>in</strong>e modified multiwalled<br />

carbon nanotube/polyimide composite. Compos Sci Technol<br />

2007;67:2564–73.<br />

[285] Zhu BK, Xie SH, Xu ZK, Xu YY. Preparation and properties of the<br />

polyimide/multi-walled carbon nanotubes nanocomposites. Compos<br />

Sci Technol 2006;66:548–54.<br />

N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 865<br />

[286] Jiang X, B<strong>in</strong> Y, Matsuo M. Electrical and mechanical properties of<br />

polyimide-carbon nanotubes composites fabricated by <strong>in</strong> situ polymerization.<br />

<strong>Polymer</strong> 2005;46:7418–24.<br />

[287] Yu A, Hu H, Bekyarova E, Itkis ME, Gao J, Zhao B, et al. Incorporation<br />

of highly dispersed s<strong>in</strong>gle-walled carbon nanotubes <strong>in</strong> a polyimide<br />

matrix. Compos Sci Technol 2006;66:1190–7.<br />

[288] Ogasawara T, Ishida Y, Ishikawa T, Yokota R. Characterization<br />

of multi-walled carbon nanotube/phenylethynyl term<strong>in</strong>ated polyimide<br />

composites. Compos Part A 2004;35:67–74.<br />

[289] Chou WJ, Wang CC, Chen CY. Characteristics of polyimide-based<br />

nanocomposites conta<strong>in</strong><strong>in</strong>g plasma-modified multi-walled carbon<br />

nanotubes. Compos Sci Technol 2008;68:2208–13.<br />

[290] Yuen SM, Ma CHM, Chiang CL, Teng CC, Yu YH. Poly(v<strong>in</strong>yltriethoxysilane)<br />

modified MWCNT/polyimide nanocomposites—<br />

preparation, morphological, mechanical, and electrical properties.<br />

J Polym Sci Part A Polym Chem 2008;46:803–16.<br />

[291] Sandler JKW, Kirk JE, K<strong>in</strong>loch IA, Shaffer MSP, W<strong>in</strong>dle AH. Ultra-low<br />

electrical percolation threshold <strong>in</strong> carbon-nanotube-epoxy composites.<br />

<strong>Polymer</strong> 2003;44:5893–9.<br />

[292] Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK. Correlations between<br />

percolation threshold, dispersion state, and aspect ratio of carbon<br />

nanotubes. Adv Funct Mater 2007;17:3207–15.<br />

[293] Choi ES, Brooks JS, Eaton DL, Al Haik MS, Hussa<strong>in</strong>i MY, Garmestani<br />

H, et al. Enhancement of thermal and electrical properties of carbon<br />

nanotube polymer composites by magnetic field process<strong>in</strong>g. J Appl<br />

Phys 2003;94:6034–9.<br />

[294] Fangm<strong>in</strong>g D, Fisher JE, W<strong>in</strong>ey KI. Coagulation method for prepar<strong>in</strong>g<br />

s<strong>in</strong>gle-walled carbon nanotube/poly(methyl methacrylate) composites<br />

and their modulus, electrical conductivity, and thermal<br />

stability. J Polym Sci Part B Polym Phys 2003;41:3333–8.<br />

[295] Bai JB, Allaoui A. Effect of the length and the aggregate size of<br />

MWNTs on the improvement efficiency of the mechanical and electrical<br />

properties of nanocomposites-experimental <strong>in</strong>vestigation.<br />

Compos Part A 2003;34:689–94.<br />

[296] Bryn<strong>in</strong>g MB, Islam MF, Kikkawa JM, Yodh AG. Very low conductivity<br />

threshold <strong>in</strong> bulk isotropic s<strong>in</strong>gle-walled carbon nanotube-epoxy<br />

composites. Adv Mater 2005;17:1186–91.<br />

[297] Ma PC, Kim JK, Tang BZ. Effects of silane functionalization on the<br />

properties of carbon nanotube/epoxy nanocomposites. Compos Sci<br />

Technol 2007;67:2965–72.<br />

[298] Tamburri E, Orlanducci S, Terranova ML, Valent<strong>in</strong>e F, Palleschi<br />

G, Curulli A, et al. Modulation of electrical properties <strong>in</strong> s<strong>in</strong>glewalled<br />

carbon nanotube/conduct<strong>in</strong>g polymer composites. Carbon<br />

2005;43:1213–21.<br />

[299] Li S, Q<strong>in</strong> Y, Shi J, Guo ZX, Li Y, Zhu D. Electrical properties of<br />

soluble carbon nanotube/polymer composite films. Chem Mater<br />

2005;17:130–5.<br />

[300] Grossiord N, Loos J, Laake LV, Maugey M, Zakri C, Kon<strong>in</strong>g CE, et<br />

al. High-conductivity polymer nanocomposites obta<strong>in</strong>ed by tailor<strong>in</strong>g<br />

the characteristics of carbon nanotube fillers. Adv Funct Mater<br />

2008;18:3226–34.<br />

[301] Ramasubramaniam R, Chen J, Liu H. Homogeneous carbon nanotube/polymer<br />

composites for electrical applications. Appl Phys<br />

Lett 2003;83:2928–30.<br />

[302] Li HC, Lu SY, Syue SH, Hsu WK, Chang SC. Conductivity enhancement<br />

of carbon nanotube composites by electrolyte addition. Appl Phys<br />

Lett 2008;93, 033104/1–3.<br />

[303] Mishra SR, Rawat HS, Mehendale SC, Rustagi KC, Sood AK, Bandyopadhyay<br />

R, et al. Optical limit<strong>in</strong>g <strong>in</strong> s<strong>in</strong>gle-walled carbon nanotube<br />

suspensions. Chem Phys Lett 2000;317:510–4.<br />

[304] Vivien L, Riehl D, Hache F, Anglaret E. Nonl<strong>in</strong>ear scatter<strong>in</strong>g orig<strong>in</strong><br />

<strong>in</strong> carbon nanotube suspensions. J Nonl<strong>in</strong>ear Opt Phys Mater<br />

2000;9:297–307.<br />

[305] Sun X, Xiong Y, Chen P, L<strong>in</strong> J, Ji W, Lim JH, et al. Investigation of an<br />

optical limit<strong>in</strong>g mechanism <strong>in</strong> multiwalled carbon nanotubes. Appl<br />

Opt 2000;39:1998–2001.<br />

[306] O’Flaherty SM, Murphy R, Hold SV, Cadek M, Coleman JN, Blau<br />

WJ. Material <strong>in</strong>vestigation and optical limit<strong>in</strong>g properties of<br />

carbon nanotube and nanoparticle dispersions. J Phys Chem B<br />

2003;107:958–64.<br />

[307] O’Flaherty SM, Hold SV, Brennan ME, Cadek M, Drury A, Coleman JN,<br />

et al. Nonl<strong>in</strong>ear optical response of multiwalled carbon-nanotube<br />

dispersions. J Opt Soc Am B 2003;20:49–58.<br />

[308] Goh HW, Goh SH, Xu GQ, Lee KY, Yang GY, Lee YW, et al. Optical limit<strong>in</strong>g<br />

properties of double-C60-end-capped poly(ethylene oxide),<br />

double-C60-end-capped poly(ethylene oxide)/poly(ethylene<br />

oxide) blend, and double-C60-end-capped poly(ethylene<br />

oxide)/multiwalled carbon nanotube composite. J Phys Chem B<br />

2003;107:6056–62.


866 N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867<br />

[309] Kymakis E, Amaratunga GAJ. Optical properties of polymernanotube<br />

composites. Synt Metal 2004;142:161–7.<br />

[310] Mulazzi E, Perego R, Aarab H, Mihut L, Faulques E, Lefrant S, et al.<br />

Optical properties of carbon nanotube-PPV composites: <strong>in</strong>fluence<br />

of the PPV conversion temperature and nanotube concentration.<br />

Synth Met 2005;154:221–4.<br />

[311] Peng H. Aligned carbon nanotube/polymer composite films with<br />

robust flexibility, high transparency, and excellent conductivity. J<br />

Am Chem Soc 2008;130:42–3.<br />

[312] Kymakis E, Amaratunga GAJ. S<strong>in</strong>gle-wall carbon nanotube/<br />

conjugated polymer photovoltaic devices. Appl Phys Lett<br />

2002;80:112–4.<br />

[313] Fournet P, Coleman JN, Lahr B, Drury A, Blau WJ, O’Brien DF, et<br />

al. Enhanced brightness <strong>in</strong> organic light-emitt<strong>in</strong>g diodes us<strong>in</strong>g a<br />

carbon nanotube composite as an electron-transport layer. J Appl<br />

Phys 2001;90:969–75.<br />

[314] Frackowiak E, Khomenko V, Jurewicz K, Lota K, Bégu<strong>in</strong> F. Supercapacitors<br />

based on conduct<strong>in</strong>g polymers/nanotubes composites. J<br />

Power Source 2006;153:413–8.<br />

[315] Zhou CF, Kumar S, Doyle CD, Tour JM. Functionalized s<strong>in</strong>gle<br />

wall carbon nanotubes treated with pyrrole for electrochemical<br />

supercapacitor membranes. Chem Mater 2005;17:<br />

1997–2002.<br />

[316] Dong B, He BL, Xu CL, Li HL. Preparation and electrochemical<br />

characterization of polyanil<strong>in</strong>e/multi-walled carbon nanotubes<br />

composites for supercapacitor. Mater Sci Eng B 2007;143:7–13.<br />

[317] Xiao Q, Zhou X. The study of multiwalled carbon nanotube<br />

deposited with conduct<strong>in</strong>g polymer for supercapacitor. Electrochim<br />

Acta 2003;48:575–80.<br />

[318] Landi BJ, Raffaelle RP, Heben MJ, Alleman JL, VanDerveer W, Gennett<br />

T. S<strong>in</strong>gle wall carbon nanotube-Nafion composite actuators. Nano<br />

Lett 2002;2:1329–32.<br />

[319] Koerner H, Price G, Pearce NA, Alexander M, Vaia RA. Remotely<br />

actuated polymer nanocomposites—stress-recovery of carbonnanotube-filled<br />

thermoplastic elastomers. Nature Mater<br />

2004;3:115–20.<br />

[320] Mottaghitalab V, Xi B, Sp<strong>in</strong>ks GM, Wallace GG. Polyanil<strong>in</strong>e fibres<br />

conta<strong>in</strong><strong>in</strong>g s<strong>in</strong>gle walled carbon nanotubes: enhanced performance<br />

artificial muscles. Synth Met 2006;156:796–803.<br />

[321] Chen HW, Wu RJ, Chan KH, Sun YL, Su PG. The application of<br />

CNT/Nafion composite material to low humidity sens<strong>in</strong>g measurement.<br />

Sensor Actuat B-Chem 2005;104:80–4.<br />

[322] Cai H, Cao X, Jiang Y, He P, Fang Y. Carbon nanotube-enhanced electrochemical<br />

DNA biosensor for DNA hybridization detection. Anal<br />

Bioanal Chem 2003;375:287–93.<br />

[323] Ferrer-Anglada N, Kaempgen M, Roth S. Transparent and flexible<br />

carbon nanotube/polypyrrole and carbon nanotube/polyanil<strong>in</strong>e pH<br />

sensors. Phys Stat Sol B 2006;243:3519–23.<br />

[324] Cheng G, Zhao J, Tu Y, He P, Fang Y. A sensitive DNA electrochemical<br />

biosensor based on magnetite with a glassy carbon electrode modified<br />

by muti-walled carbon nanotubes <strong>in</strong> polypyrrole. Anal Chim<br />

Acta 2005;533:11–6.<br />

[325] Cai H, Xu Y, He PG, Fang YZ. Indicator free DNA hybridization<br />

detection by impedance measurement based on the DNA-doped<br />

conduct<strong>in</strong>g polymer film formed on the carbon nanotube modified<br />

electrode. Electroanalysis 2003;15:1864–70.<br />

[326] White AA, Best SM, K<strong>in</strong>loch LA. Hydroxyapatite–carbon nanotube<br />

composites for biomedical applications: a review. Int J Appl Ceram<br />

Technol 2007;4:1–13.<br />

[327] Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications<br />

of functionalised carbon nanotubes. Chem Commun<br />

2005:571–7.<br />

[328] Pastor<strong>in</strong> G, Kostarelos K, Prato M, Bianco A. Functionalized carbon<br />

nanotubes: towards the delivery of therapeutic molecules. J Biomed<br />

Nanotech 2005;1:133–42.<br />

[329] Shi Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular<br />

transporters: <strong>in</strong>ternalization of carbon nanotube-prote<strong>in</strong><br />

conjugates <strong>in</strong>to mammalian cells. J Am Chem Soc 2004;126:<br />

6850–1.<br />

[330] Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, et<br />

al. Synthesis, structural characterization, and immunological properties<br />

of carbon nanotubes functionalized with peptides. J Am Chem<br />

Soc 2003;125:6160–4.<br />

[331] Kireitseu M, Hui D, Toml<strong>in</strong>son G. Advanced shock-resistant and<br />

vibration damp<strong>in</strong>g of nanoparticle-re<strong>in</strong>forced composite material.<br />

Compos Part B 2008;39:128–38.<br />

[332] Das D, Das PK. Superior activity of structurally deprived enzymecarbon<br />

nanotube hybrids <strong>in</strong> cationic reverse micelles. Langmuir<br />

2009;25:4421–3.<br />

[333] Sh<strong>in</strong> JY, Premkumar T, Geckeler KE. Dispersion of s<strong>in</strong>gle-walled carbon<br />

nanotubes by us<strong>in</strong>g surfactants: are the type and concentration<br />

important? Chem Eur J 2008;14:6044–8.<br />

[334] Doe C, Choi SM, Kl<strong>in</strong>e SR, Jang HS, Kim TH. Charged rod-like<br />

nanoparticles assist<strong>in</strong>g s<strong>in</strong>gle-walled carbon nanotube dispersion<br />

<strong>in</strong> water. Adv Funct Mater 2008;18:2685–91.<br />

[335] Park I, Park M, Kim J, Lee H, Lee MS. Multiwalled carbon nanotubes<br />

functionalized with PS via emulsion polymerization. Macromol Res<br />

2007;15:498–505.<br />

[336] Park I, Lee W, Kim J, Park M, Lee H. Selective sequester<strong>in</strong>g of<br />

multi-walled carbon nanotubes <strong>in</strong> self-assembled block copolymer.<br />

Sensor Actuat B-Chem 2007;126:301–5.<br />

[337] Kim HS, Park WI, Kang M, J<strong>in</strong> HJ. Multiple light scatter<strong>in</strong>g measurement<br />

and stability analysis of aqueous carbon nanotube<br />

dispersions. J Phys Chem Solid 2008;69:1209–12.<br />

[338] Wang H, Zhou W, Ho DL, W<strong>in</strong>ey KI, Fischer JE, Gl<strong>in</strong>ka CJ, et al. Dispers<strong>in</strong>g<br />

s<strong>in</strong>gle-walled carbon nanotubes with surfactants: a small<br />

angle neutron scatter<strong>in</strong>g study. Nano Lett 2004;4:1789–93.<br />

[339] Lisunova MO, Lebovka NI, Melezhyk OV, Boiko YP. Stability of the<br />

aqueous suspensions of nanotubes <strong>in</strong> the presence of nonionic surfactant.<br />

J Coll Interf Sci 2006;299:740–6.<br />

[340] Barone PW, Strano MS. Reversible control of carbon nanotube<br />

aggregation for a glucose aff<strong>in</strong>ity sensor. Angew Chem Int Ed<br />

2006;45:8138–41.<br />

[341] Numata M, Sugikawa K, Kaneko K, Sh<strong>in</strong>kai S. Creation of hierarchical<br />

carbon nanotube assemblies through alternative pack<strong>in</strong>g<br />

of complementary semi-artificial ˇ-1,3-glucan/carbon nanotube<br />

composites. Chem Eur J 2008;14:2398–404.<br />

[342] Yan LY, Poon YF, Chan-Park MB, Chen Y, Zhang Q. Individually<br />

dispers<strong>in</strong>g s<strong>in</strong>gle-walled carbon nanotubes with novel<br />

neutral pH water-soluble chitosan derivatives. J Phys Chem C<br />

2008;112:7579–87.<br />

[343] Rouse JH. <strong>Polymer</strong>-assisted dispersion of s<strong>in</strong>gle-walled carbon nanotubes<br />

<strong>in</strong> alcohols and applicability toward carbon nanotube/solgel<br />

composite formation. Langmuir 2005;21:1055–61.<br />

[344] Yuan WZ, Sun JZ, Dong Y, Haussler M, Yang F, Xu HP, et al. Wrapp<strong>in</strong>g<br />

carbon nanotubes <strong>in</strong> pyrene-conta<strong>in</strong><strong>in</strong>g poly(phenylacetylene)<br />

cha<strong>in</strong>s: solubility, stability, light emission, and surface photovoltaic<br />

properties. Macromolecules 2006;39:8011–20.<br />

[345] Jana RN, Cho JW. Thermal stability, crystallization behavior<br />

and phase morphology of poly(-caprolactone)-diol-grafted<br />

multi walled carbon nanotubes. J Appl Polym Sci 2008;110:<br />

1550–8.<br />

[346] Georgakilas V, Bourl<strong>in</strong>os A, Gournis D, Tsoufis T, Trapalis C,<br />

Mateo-Alonso A, et al. Multipurpose organically modified carbon<br />

nanotubes from functionalization to nanotube composites. J Am<br />

Chem Soc 2008;130:8733–40.<br />

[347] Xu G, Zhu B, Han Y, Bo Z. Covalent functionalization of multi-walled<br />

carbon nanotube surfaces by conjugated polyfluorenes. <strong>Polymer</strong><br />

2007;48:7510–5.<br />

[348] Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP,<br />

Prato M. Am<strong>in</strong>o acid functionalisation of water soluble carbon nanotubes.<br />

Chem Commun 2002:3050–1.<br />

[349] Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes<br />

<strong>in</strong> drug delivery. Curr Op<strong>in</strong> Chem Biol 2005;9:674–9.<br />

[350] Hayden H, Gun’ko YK, Perova TS. Chemical modification of multiwalled<br />

carbon nanotubes us<strong>in</strong>g a tetraz<strong>in</strong>e derivative. Chem Phys<br />

Lett 2007;435:84–9.<br />

[351] Menard-Moyon C, Gross M, Bernard M, Turek P, Doris E, Mioskowski<br />

C. Unexpected outcome <strong>in</strong> the reaction of triazol<strong>in</strong>edione with carbon<br />

nanotubes. Eur J Org Chem 2007:4817–9.<br />

[352] Menard-Moyon C, Dumas FO, Doris E, Mioskowski C. Functionalization<br />

of s<strong>in</strong>gle-wall carbon nanotubes by tandem highpressure/Cr(CO)6<br />

activation of diels-alder cycloaddition. J Am Chem<br />

Soc 2006;128:14764–5.<br />

[353] Cho E, Kim H, Kim C, Han S. Ab <strong>in</strong>itio study on the carbon nanotube<br />

with various degrees of functionalization. Chem Phys Lett<br />

2006;419:134–8.<br />

[354] Holz<strong>in</strong>ger M, Ste<strong>in</strong>metz J, Samaille D, Glerup M, Paillet M, Bernier<br />

P, et al. [2+1] Cycloaddition for cross-l<strong>in</strong>k<strong>in</strong>g SWCNTs. Carbon<br />

2004;42:941–7.<br />

[355] Liu Y, Yao Z, Adronov A. Functionalization of s<strong>in</strong>gle-walled carbon<br />

nanotubes with well-def<strong>in</strong>ed polymers by radical coupl<strong>in</strong>g. Macromolecules<br />

2005;38:1172–9.<br />

[356] Liu J, Zubiri MR, Vigolo B, Dossot M, Fort Y, Ehrhardt JJ, et al. Efficient<br />

microwave-assisted radical functionalization of s<strong>in</strong>gle-wall carbon<br />

nanotubes. Carbon 2007;45:885–91.<br />

[357] Buffa F, Abraham GA, Grady BP, Resasco D. Effect of nanotube<br />

functionalization on the properties of s<strong>in</strong>gle-walled carbon nan-


otube/polyurethane composites. J Polym Sci Part B Polym Phys<br />

2007;45:490–501.<br />

[358] Kwon J, Kim H. Comparison of the properties of waterbone<br />

polyurethane/multiwalled carbon nanotube and acid-treated<br />

multiwalled carbon nanotube composites prepared by <strong>in</strong> situ polymerization.<br />

J Polym Sci Part A Polym Chem 2005;43:3973–85.<br />

[359] Guo SZ, Zhang C, Wang WZ, Liu TX, Tjiu WC, He CB, et al. Preparation<br />

and characterization of polyurethane/multiwalled carbon<br />

nanotube composites. Polym Polym Compos 2008;16:501–7.<br />

[360] Grunlan JC, Mehrabi AR, Bannon MV, Bahr JL. Water-based s<strong>in</strong>glewalled-nanotube-filled<br />

polymer composite with an exceptionally<br />

low percolation threshold. Adv Mater 2004;16:150–3.<br />

[361] Yu C, Kim YS, Kim D, Grunlan JC. Thermoelectric behavior<br />

of segregated-network polymer nanocomposites. Nano Lett<br />

2008;8:4428–32.<br />

[362] Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, et al. Electrical<br />

conductivity and electromagnetic <strong>in</strong>terference shield<strong>in</strong>g of multiwalled<br />

carbon nanotube composites conta<strong>in</strong><strong>in</strong>g Fe catalyst. Appl<br />

Phys Lett 2004;84:589.<br />

[363] Skakalova V, Dettlaff-Weglikowska U, Roth S. Electrical and<br />

mechanical properties of nanocomposites of s<strong>in</strong>gle wall carbon<br />

nanotubes with PMMA. Synth Met 2005;152:349–52.<br />

[364] Frackowiak E, Jurewicz K, Delpeux S, Begu<strong>in</strong> F. Nanotublar materials<br />

for supercapacitors. J Power Source 2001;97–98:822–5.<br />

[365] An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Lee YH. Highcapacitance<br />

supercapacitor us<strong>in</strong>g a nanocomposite electrode of<br />

N.G. Sahoo et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 837–867 867<br />

s<strong>in</strong>gle-walled carbon nanotube and polypyrrole. J Electrochem Soc<br />

2002;149:A1058–62.<br />

[366] Dai CA, Hsiao CC, Weng SC, Kao AC, Liu CP, Tsai WB, et al. A membrane<br />

actuator based on an ionic polymer network and carbon<br />

nanotubes: the synergy of ionic transport and mechanical properties.<br />

Smart Mater Struct 2009;18, 85016/1–13.<br />

[367] Thomass<strong>in</strong> JM, Kollar J, Caldarella G, Germa<strong>in</strong> A, Jerome R, Detrembleur<br />

C. Beneficial effect of carbon nanotubes on the performances<br />

of Nafion membranes <strong>in</strong> fuel cell applications. J Membr Sci<br />

2007;303:252–7.<br />

[368] Joo SH, Park CP, Kim EA, Lee YH, Chang H, Seung D, et al.<br />

Functionalized carbon nanotube-poly(arylene sulfone) composite<br />

membranes for direct methanol fuel cells with enhanced performance.<br />

J Power Sources 2008;180:63–70.<br />

[369] Cosnier S, Ionescu RE, Holz<strong>in</strong>ger M. Aqueous dispersions of SWCNTs<br />

us<strong>in</strong>g pyrrolic surfactants for the electro-generation of homogeneous<br />

nanotube composites. Application to the design of an<br />

amperometric biosensor. J Mater Chem 2008;18:5129–33.<br />

[370] Rege K, Raravikar NR, Kim DY, Schadler LS, Ajayan PM,<br />

Dordick JS. Enzyme-polymer-s<strong>in</strong>gle walled carbon nanotube<br />

composites as biocatalytic films. Nano Lett 2003;3:<br />

829–32.<br />

[371] S<strong>in</strong>g R, Pantarotto D, McCarthy D, Chalo<strong>in</strong> O, Hoebeke J, Partidos<br />

CD, et al. B<strong>in</strong>d<strong>in</strong>g and condensation of plasmid DNA onto functionalized<br />

carbon nanotubes: toward the construction of nanotube-based<br />

gene delivery vectors. J Am Chem Soc 2005;127:4388–96.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!