30.04.2013 Views

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong><strong>Time</strong>d</strong> <strong>CTL</strong> <strong>Model</strong> <strong>Check<strong>in</strong>g</strong> <strong>in</strong> <strong>Real</strong>-<strong>Time</strong> Maude 9<br />

For a timed Kripke structure T K = (S, T<br />

−→, L), a state t ∈ S and paths<br />

π, π ′ ∈ tfPathsT K(t) we say that π ′ is a simple time ref<strong>in</strong>ement of π if either<br />

π = π ′ or π ′ can be obta<strong>in</strong>ed from π by replac<strong>in</strong>g a transition tk<br />

rk<br />

−→ tk+1,<br />

r ′<br />

k k<br />

rk > 0, by a sequence tk −→ t r′′<br />

−→ tk+1 of transitions for some t ∈ S and time<br />

values r ′ k , r′′<br />

k > 0 with r′ k + r′′<br />

k = rk. A path π ′ is a time ref<strong>in</strong>ement of another<br />

path π if π ′ can be obta<strong>in</strong>ed from π by apply<strong>in</strong>g a (possibly <strong>in</strong>f<strong>in</strong>ite) number of<br />

time ref<strong>in</strong>ements. We also say that π is a time abstraction of π ′ .<br />

Def<strong>in</strong>ition 4. The cont<strong>in</strong>uous-time satisfaction relation T K, t |=c ϕ is def<strong>in</strong>ed<br />

<strong>in</strong>ductively as follows:<br />

T K, t |=c true always.<br />

T K, t |=c p iff p ∈ L(t).<br />

T K, t |=c ¬ϕ1 iff T K, t |=c ϕ1.<br />

T K, t |=c ϕ1 ∧ ϕ2 iff T K, t |=c ϕ1 and T K, t |=c ϕ2.<br />

T K, t |=c E ϕ1 UI ϕ2 iff there is a path π ∈ tfPathsT K(t) such that for each<br />

time ref<strong>in</strong>ement π ′ ∈ tfPathsT K(t) of π there is an<br />

<strong>in</strong>dex k s.t. d π′<br />

k<br />

∈ I, T K, tπ′<br />

k |=c ϕ2, and<br />

T K, t π′<br />

l |=c ϕ1 for all 0 ≤ l < k.<br />

T K, t |=c A ϕ1 UI ϕ2 iff for each path π ∈ tfPaths T K(t) there is a time<br />

ref<strong>in</strong>ement π ′ ∈ tfPaths T K(t) of π and an <strong>in</strong>dex k<br />

s.t. d π′<br />

k<br />

∈ I, T K, tπ′<br />

k |=c ϕ2, and<br />

T K, t π′<br />

l |=c ϕ1 for all 0 ≤ l < k.<br />

3.3 Associat<strong>in</strong>g <strong><strong>Time</strong>d</strong> Kripke Structures to <strong>Real</strong>-<strong>Time</strong> Rewrite<br />

Theories<br />

To each real-time rewrite theory we associate a timed Kripke structure as follows:<br />

Def<strong>in</strong>ition 5. Given a real-time rewrite theory R = (Σ, E, R, φ, τ), a set of<br />

atomic propositions Π and a protect<strong>in</strong>g extension (Σ ∪ Π, E ∪ D) ⊇ (Σ, E), we<br />

def<strong>in</strong>e the associated timed Kripke structure<br />

T K(R)Π = (T Σ/E,GlobalSystem, ( T<br />

−→R) • , LΠ),<br />

where ( T<br />

−→R) • ⊆ TΣ/E,GlobalSystem × TΣ/E,φ(<strong>Time</strong>) × TΣ/E,GlobalSystem conta<strong>in</strong>s<br />

r<br />

all transitions of the k<strong>in</strong>d t −→ t ′ which are also one-step rewrites <strong>in</strong> R and<br />

0<br />

all transitions of the k<strong>in</strong>d t −→ t for all those states t that cannot be further<br />

rewritten <strong>in</strong> R, and for LΠ : TΣ/E,GlobalSystem → P(Π) we have that p ∈ LΠ(t)<br />

if and only if E ∪ D ⊢ (t |= p) = true.<br />

We use this transformation to def<strong>in</strong>e R, LΠ, t0 |=c ϕ as T K(R)Π, t0 |=c<br />

ϕ, and similarly for the po<strong>in</strong>twise semantics. The model check<strong>in</strong>g problems<br />

T K(R)Π, t0 |=p ϕ and T K(R)Π, t0 |=c ϕ are decidable if<br />

– the equational specification <strong>in</strong> R is Church-Rosser and term<strong>in</strong>at<strong>in</strong>g,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!