30.04.2013 Views

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong><strong>Time</strong>d</strong> <strong>CTL</strong> <strong>Model</strong> <strong>Check<strong>in</strong>g</strong> <strong>in</strong> <strong>Real</strong>-<strong>Time</strong> Maude 21<br />

π ′ i of πi and an <strong>in</strong>dex k s.t. d π′<br />

i<br />

i<br />

k ∈ I, T K, tπ′<br />

k |=c ϕ2, and T K, t π′ i<br />

l |=c ϕ1 for<br />

all 0 ≤ l < k. Let π ′ i be such a path and k such an <strong>in</strong>dex.<br />

Note that π ′ i conta<strong>in</strong>s the state tπj at time po<strong>in</strong>t d2. Let π pre′<br />

i and π ′′<br />

j be<br />

the prefix resp. suffix of π ′ i end<strong>in</strong>g resp. start<strong>in</strong>g at that state. Let v be the<br />

number of states <strong>in</strong> π pre′<br />

i and let π ′ be the concatenation of πpre and π ′ i . We<br />

show that the bounded until is satisfied along π ′′<br />

j , be<strong>in</strong>g a time ref<strong>in</strong>ement<br />

of πj.<br />

Remember that ml¯r is the lower bound of I. We dist<strong>in</strong>guish between (i)<br />

d π′<br />

i<br />

k ∈ I1 = [ml¯r, ml¯r + d2 + d3) and (ii) d π′<br />

i<br />

k ∈ I2 = I\I1.<br />

(i) Assume first that d π′ i<br />

k ∈ I1 = [ml¯r, ml¯r + d2 + d3). We observe that π ′ i<br />

conta<strong>in</strong>s the state t∗∗ at time po<strong>in</strong>t ml¯r + d2 (we added this sample<br />

po<strong>in</strong>t when ref<strong>in</strong><strong>in</strong>g πj to π ′ j ), thus t∗∗ appears <strong>in</strong> π ′ at time po<strong>in</strong>t (n +<br />

ml)¯r + d1 + d2. Furthermore, we assumed that d π′<br />

i<br />

k ∈ I1, i.e., ml¯r ≤<br />

d π′<br />

i<br />

k < ml¯r + d2 + d3, imply<strong>in</strong>g that t π′ i<br />

[(n + ml)¯r + d1, (n + ml + 1)¯r). Thus both t∗∗ and t π′ i<br />

k appear <strong>in</strong> π′ <strong>in</strong><br />

the <strong>in</strong>terval ((n + ml)¯r, (n + ml + 1)¯r), and from T K, t π′<br />

i<br />

k |=c ϕ2 we get<br />

by <strong>in</strong>duction that T K, t∗∗ |=c ϕ2.<br />

k appears <strong>in</strong> π′ at a time po<strong>in</strong>t <strong>in</strong><br />

Note that t ∗∗ also appears <strong>in</strong> π ′′<br />

j . We want to show that the <strong>in</strong>dex of t∗∗ <strong>in</strong><br />

π ′′<br />

j<br />

satisfies the conditions for the satisfaction of the until formula by π′′<br />

j .<br />

We already have shown that T K, t ∗∗ |=c ϕ2. Additionally, t ∗∗ appears <strong>in</strong><br />

π ′′<br />

j at time po<strong>in</strong>t ml¯r, which is the left end po<strong>in</strong>t of the <strong>in</strong>terval I.<br />

In case ml = 0 we are done, because there are no states prior to t∗∗ <strong>in</strong><br />

π ′′<br />

j . Otherwise, if ml > 0, it rema<strong>in</strong>s to show that all states prior to t∗∗ <strong>in</strong> π ′′<br />

j satisfy ϕ1. There are two cases.<br />

∗ We know that all states t π′<br />

i<br />

l<br />

with l < k (especially all states at time<br />

po<strong>in</strong>ts less than ml¯r) satisfy ϕ1. We conclude that the states <strong>in</strong> π ′′<br />

j at<br />

time po<strong>in</strong>ts less than ml¯r − d2, build<strong>in</strong>g a subset of the above states,<br />

all satisfy ϕ1.<br />

∗ It rema<strong>in</strong>s to show that all states at time po<strong>in</strong>ts from [ml¯r −d2, ml¯r)<br />

<strong>in</strong> π ′′<br />

j also satisfy ϕ1. Notice that π ′ i conta<strong>in</strong>s the state t∗ at time<br />

po<strong>in</strong>t ml¯r − d1/2. S<strong>in</strong>ce this time po<strong>in</strong>t is below the lower bound of<br />

I we have T K, t ∗ |=c ϕ1.<br />

This state t ∗ appears <strong>in</strong> π ′ is at time po<strong>in</strong>t<br />

(n¯r + d1) + (ml¯r − d1/2) = (n + ml)¯r + d1/2 .<br />

By <strong>in</strong>duction we get that all states appear<strong>in</strong>g <strong>in</strong> π ′ at time po<strong>in</strong>ts<br />

from the <strong>in</strong>terval ((n + ml)¯r, (n + ml + 1)¯r) satisfy ϕ1. I.e., all states<br />

<strong>in</strong> π ′′<br />

j at time po<strong>in</strong>ts from<br />

((n + ml)¯r − (n¯r + d1 + d2), (n + ml + 1)¯r − (n¯r + d1 + d2))<br />

= (ml¯r − d1 − d2, (ml + 1)¯r − d1 − d2)<br />

⊇ [ml¯r − d2, ml¯r)<br />

satisfy ϕ1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!