30.04.2013 Views

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong><strong>Time</strong>d</strong> <strong>CTL</strong> <strong>Model</strong> <strong>Check<strong>in</strong>g</strong> <strong>in</strong> <strong>Real</strong>-<strong>Time</strong> Maude 19<br />

Assume that d π′′<br />

j<br />

k ∈ I2 and let π ′ be the concatenation π pre and π ′ i .<br />

The state t π′′<br />

j<br />

k<br />

appears <strong>in</strong> π′′<br />

j<br />

by assumption at a time po<strong>in</strong>t <strong>in</strong> (mu¯r−<br />

d2, mu¯r], and therefore also <strong>in</strong> π ′ i at a time po<strong>in</strong>t <strong>in</strong> (mu¯r, mu¯r + d2]<br />

and <strong>in</strong> π ′ at a time po<strong>in</strong>t <strong>in</strong> ((n + mu)¯r + d1, (n + mu)¯r + d1 + d2].<br />

By construction π ′ j conta<strong>in</strong>s the state t∗∗ at time po<strong>in</strong>t mu¯r − d2.<br />

Aga<strong>in</strong> by construction, also π ′ i conta<strong>in</strong>s t∗∗ at time po<strong>in</strong>t mu¯r − d2 +<br />

d2 = mu¯r. Therefore, the state t ∗∗ appears also <strong>in</strong> π ′ at time po<strong>in</strong>t<br />

(n + mu)¯r + d1.<br />

We conclude that both t π′′ j<br />

k and t∗∗ appear <strong>in</strong> π ′ with<strong>in</strong> the time<br />

<strong>in</strong>terval ((n + mu)¯r, (n + mu + 1)¯r). From T K, t π′′ j<br />

k |=c ϕ2 we get<br />

therefore by <strong>in</strong>duction T K, t∗∗ |=c ϕ2.<br />

S<strong>in</strong>ce t∗∗ appears <strong>in</strong> π ′ i at time po<strong>in</strong>t mu¯r be<strong>in</strong>g the upper bound of<br />

I, also the time bound of the until is satisfied for t∗∗ on π ′ i .<br />

F<strong>in</strong>ally, we have already shown that all states up to <strong>in</strong>dex v <strong>in</strong> π ′ i<br />

satisfy ϕ1. This holds also for all rema<strong>in</strong><strong>in</strong>g states preceed<strong>in</strong>g t∗∗ <strong>in</strong><br />

, s<strong>in</strong>ce they also appear <strong>in</strong> π′′ before the <strong>in</strong>dex k. Thus the <strong>in</strong>dex<br />

π ′ i j<br />

of t∗∗ <strong>in</strong> π ′ i satisfies the condition of the bounded until on π′ i .<br />

(iii) For the case d π′′<br />

j<br />

k ∈ I1 = I\I2 we observe that t π′ i<br />

l<br />

j<br />

= tπ′′<br />

l−v for all l ≥ v.<br />

Therefore, T K, t π′′ j<br />

k |=c ϕ2 implies T K, t π′<br />

i<br />

k+v |=c ϕ2. S<strong>in</strong>ce d π′′ j<br />

k<br />

∈ I2<br />

we have d π′′<br />

j<br />

k ≤ mu¯r − d2 and thus d π′ i<br />

j<br />

k+v = dπ′′<br />

k + d2 ≤ mu¯r, i.e., the<br />

duration of π ′ i until the (k + v)-th state is below the upper bound of<br />

I. It is easy to see that this duration is also above the lower bound<br />

(d π′′<br />

j<br />

k is above the lower bound and d π′<br />

i<br />

j<br />

k+v = dπ′′<br />

k + d2 > d π′′<br />

j<br />

k ).<br />

We have already shown above that the states with <strong>in</strong>dices up to v<br />

satisfy ϕ1. Furthermore, T K, t π′′<br />

j<br />

l<br />

|=c ϕ1 implies T K, t π′<br />

i<br />

l+v |=c ϕ1 for<br />

all l < k Therefore, the <strong>in</strong>dex (k + v) is appropriate to show that the<br />

path π ′ i satisfies the bounded until property.<br />

– ϕ = A ϕ1 UI ϕ2,<br />

“⇒”: This proof case it quite analogous to the “⇒” direction of the existentially<br />

quantified bounded until case. The proof structure is illustrated <strong>in</strong><br />

Figure 3.<br />

Assume that R, tπ i |=c A ϕ1 UI ϕ2 holds. Then by def<strong>in</strong>ition each path<br />

πi ∈ tfPathsT K(tπ i ) has a time ref<strong>in</strong>ement π′ i ∈ tfPathsT K(tπ i ) such that for<br />

some <strong>in</strong>dex k with d π′<br />

i<br />

0 ≤ l < k.<br />

k<br />

i<br />

∈ I we have T K, tπ′<br />

k |=c ϕ2, and T K, t π′<br />

i<br />

l |=c ϕ1 for all<br />

We show that R, tπ j |=c A ϕ1 UI ϕ2 holds. Let πj ∈ tfPathsT K(tπ j ) be a path.<br />

Due to time robustness, πj has a time ref<strong>in</strong>ement π ′ j ∈ tfPathsT K(tπ j ) which<br />

conta<strong>in</strong>s a state t∗∗ at time po<strong>in</strong>t ml¯r (which is tπ j <strong>in</strong> case ml = 0) and a<br />

state t∗ at time po<strong>in</strong>t ml¯r − d2 − d1/2 <strong>in</strong> case ml > 0.<br />

Let π ′ j be such a time ref<strong>in</strong>ement and let πi be the concatenation of π pre<br />

i<br />

and<br />

π ′ j . From R, tπi |=c A ϕ1 UI ϕ2 we conclude that there is a time ref<strong>in</strong>ement

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!