30.04.2013 Views

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

16 D. Lepri, E. Ábrahám, and P. Cs. Ölveczky<br />

(i) Assume first that d π′′<br />

i<br />

k ∈ I1 = [ml¯r, ml¯r + d2 + d3). We observe that<br />

π ′′<br />

i conta<strong>in</strong>s the state t∗∗ at time po<strong>in</strong>t ml¯r + d2 (we added this sample<br />

po<strong>in</strong>t when ref<strong>in</strong><strong>in</strong>g πi to π ′ i ), thus t∗∗ appears <strong>in</strong> π ′ at time po<strong>in</strong>t (n +<br />

ml)¯r + d1 + d2. Furthermore, we assumed that d π′′<br />

i<br />

k<br />

d π′′<br />

i<br />

k < ml¯r + d2 + d3, imply<strong>in</strong>g that t π′′<br />

i<br />

∈ I1, i.e., ml¯r ≤<br />

k appears <strong>in</strong> π′ at a time po<strong>in</strong>t <strong>in</strong><br />

[(n + ml)¯r + d1, (n + ml + 1)¯r). Thus both t∗∗ and t π′′ i<br />

k appear <strong>in</strong> π′ <strong>in</strong><br />

the <strong>in</strong>terval ((n + ml)¯r, (n + ml + 1)¯r), and from T K, t π′′ i<br />

k |=c ϕ2 we get<br />

by <strong>in</strong>duction that T K, t∗∗ |=c ϕ2.<br />

Note that t∗∗ also appears <strong>in</strong> π ′ j . We want to show that the <strong>in</strong>dex of t∗∗ <strong>in</strong><br />

π ′ j satisfies the conditions for the satisfaction of the until formula by π′ j .<br />

We already have shown that T K, t∗∗ |=c ϕ2. Additionally, t∗∗ appears <strong>in</strong><br />

at time po<strong>in</strong>t ml¯r,<br />

π ′′<br />

i at time po<strong>in</strong>t ml¯r + d2, therefore it appears <strong>in</strong> π ′ j<br />

which is the left end po<strong>in</strong>t of the <strong>in</strong>terval I.<br />

In case ml = 0 we are done, because tπ j satisfies ϕ2 and there are no<br />

states prior to tπ j <strong>in</strong> π′ j . Otherwise, if ml > 0, it rema<strong>in</strong>s to show that all<br />

states prior to t∗∗ <strong>in</strong> π ′ j satisfy ϕ1. There are two cases.<br />

∗ We know that all states t π′′<br />

i<br />

l<br />

with l < k (especially all states at time<br />

po<strong>in</strong>ts less than ml¯r) satisfy ϕ1. We conclude that the states <strong>in</strong> π ′ j at<br />

time po<strong>in</strong>ts less than ml¯r − d2, build<strong>in</strong>g a subset of the above states,<br />

all satisfy ϕ1.<br />

∗ It rema<strong>in</strong>s to show that all states at time po<strong>in</strong>ts from [ml¯r −d2, ml¯r)<br />

<strong>in</strong> π ′ j also satisfy ϕ1. Notice that π ′ i conta<strong>in</strong>s the state t∗ at time<br />

po<strong>in</strong>t ml¯r − d1/2. S<strong>in</strong>ce this time po<strong>in</strong>t is below the lower bound of<br />

I we have T K, t ∗ |=c ϕ1.<br />

This state t ∗ appears <strong>in</strong> π ′ at time po<strong>in</strong>t<br />

(n¯r + d1) + (ml¯r − d1/2) = (n + ml)¯r + d1/2 .<br />

By <strong>in</strong>duction we get that all states appear<strong>in</strong>g <strong>in</strong> π ′ at time po<strong>in</strong>ts<br />

from the <strong>in</strong>terval ((n + ml)¯r, (n + ml + 1)¯r) satisfy ϕ1. I.e., all states<br />

<strong>in</strong> π ′ j at time po<strong>in</strong>ts from<br />

((n + ml)¯r − (n¯r + d1 + d2), (n + ml + 1)¯r − (n¯r + d1 + d2))<br />

= (ml¯r − d1 − d2, (ml + 1)¯r − d1 − d2)<br />

⊇ [ml¯r − d2, ml¯r)<br />

satisfy ϕ1.<br />

(ii) For the case d π′′ i<br />

k ∈ I2 = I\I1 let v be the number of states <strong>in</strong> π pre′<br />

i . We<br />

show that k − v is a proper <strong>in</strong>dex for the satisfaction of the bounded<br />

until along π ′ j .<br />

We observe that t π′<br />

j<br />

l<br />

T K, t π′<br />

j<br />

i = tπ′′<br />

l+v<br />

i<br />

for all l. Therefore, T K, tπ′′<br />

k |=c ϕ2 implies<br />

k−v |=c ϕ2. S<strong>in</strong>ce d π′′ i<br />

k ∈ I2 we have d π′′ i<br />

k ≥ ml¯r + d2 + d3 and<br />

thus d π′<br />

j<br />

i<br />

k−v = dπ′′<br />

k − d2 ≥ ml¯r + d3, i.e., the duration of π ′ j until the<br />

(k − v)-th state is above the lower bound of I. It is easy to see that this

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!