30.04.2013 Views

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

Timed CTL Model Checking in Real-Time Maude⋆ - IfI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

14 D. Lepri, E. Ábrahám, and P. Cs. Ölveczky<br />

– ϕ ′ = true: R, t |=c true for all t by the def<strong>in</strong>ition of |=c.<br />

– ϕ ′ = p: S<strong>in</strong>ce all steps between tπ i and tπj are tick steps, the property follows<br />

from the tick-<strong>in</strong>variance of p.<br />

Assume now that the lemma holds for the subformulae ϕ1 and ϕ2.<br />

– ϕ ′ = ¬ϕ1:<br />

– ϕ ′ = ϕ1 ∧ ϕ2:<br />

– ϕ ′ = E ϕ1 UI ϕ2:<br />

R, t π i |=c ¬ϕ1 ⇐⇒ not (R, t π i |=c ϕ1)<br />

<strong>in</strong>duction<br />

⇐⇒ not (R, t π j |=c ϕ1)<br />

⇐⇒ R, t π j |=c ¬ϕ1 .<br />

R, t π i |=c ϕ1 ∧ ϕ2 ⇐⇒ R, t π i |=c ϕ1 and R, t π i |=c ϕ2<br />

<strong>in</strong>duction<br />

⇐⇒ R, t π j |=c ϕ1 and R, t π j |=c ϕ2<br />

⇐⇒ R, t π j |=c ϕ1 ∧ ϕ2 .<br />

We def<strong>in</strong>e d1 = dπ i −n¯r, d2 = dπ j −dπi and d3 = (n+1)¯r−d π j . Let furthermore<br />

πpre denote the prefix of π end<strong>in</strong>g at tπ i and let πpre i denote the tick sequence<br />

tπ ri<br />

i −→ . . . rj−1<br />

−→ tπ j . Let ml¯r be the lower bound of I. The upper bound of I<br />

is either INF or a f<strong>in</strong>ite bound mu¯r.<br />

“⇒”: The proof structure is illustrated on Figure 1.<br />

Assume that R, t π i |=c E ϕ1 UI ϕ2 holds. Then by def<strong>in</strong>ition there is a path<br />

πi ∈ tfPaths T K(t π i ) such that for each time ref<strong>in</strong>ement π′ i ∈ tfPaths T K(t π i )<br />

of πi there is an <strong>in</strong>dex k s.t. d π′ i<br />

i<br />

k ∈ I, T K, tπ′<br />

k |=c ϕ2, and T K, t π′ i<br />

l |=c ϕ1 for<br />

all 0 ≤ l < k.<br />

Let πi be such a path. Due to time robustness, πi has a time ref<strong>in</strong>ement<br />

π ′ i ∈ tfPathsT K(tπ i ) which conta<strong>in</strong>s the state tπj at time po<strong>in</strong>t d2, a state t∗ at time po<strong>in</strong>t7 ml¯r − d1/2 <strong>in</strong> case ml > 0, and a state t∗∗ at time po<strong>in</strong>t<br />

ml¯r + d2 (which is tπ j <strong>in</strong> case ml = 0). Note that time robustness assures<br />

that the state <strong>in</strong> π ′ i at time po<strong>in</strong>t d2 is tπ j .<br />

Let π ′ i be such a path. Let πpre′ i and πj be the prefix resp. suffix of π ′ i<br />

end<strong>in</strong>g resp. start<strong>in</strong>g at tπ j at the time po<strong>in</strong>t d2. We show that πj satisfies<br />

the conditions for R, tπ j |=c E ϕ1 UI ϕ2.<br />

Let π ′ j be a time ref<strong>in</strong>ement of πj. Then the concatenation π ′′<br />

i<br />

of πpre′<br />

i<br />

π ′ j is a time ref<strong>in</strong>ement of πi. By assumption there is an <strong>in</strong>dex k s.t. d π′′<br />

i<br />

k<br />

and<br />

∈ I,<br />

T K, t π′′<br />

i<br />

k |=c ϕ2, and T K, t π′′<br />

i<br />

l |=c ϕ1 for all 0 ≤ l < k.<br />

Let k be such an <strong>in</strong>dex and let π ′ be the concatenation of πpre and π ′′<br />

i .<br />

Remember that ml¯r is the lower bound of I. We dist<strong>in</strong>guish between (i)<br />

d π′′<br />

i<br />

k ∈ I1 = [ml¯r, ml¯r + d2 + d3) and (ii) d π′′<br />

i<br />

k ∈ I2 = I\I1.<br />

7 For <strong>in</strong>tuition we sample the middle po<strong>in</strong>t between ml¯r − d1 and ml¯r. However, any<br />

time po<strong>in</strong>t <strong>in</strong> the <strong>in</strong>terval (ml¯r − d1, ml¯r) would fit for our purpose.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!