ENTANGLEMENT OF GAUSSIAN STATES Gerardo Adesso

ENTANGLEMENT OF GAUSSIAN STATES Gerardo Adesso ENTANGLEMENT OF GAUSSIAN STATES Gerardo Adesso

maths.nottingham.ac.uk
from maths.nottingham.ac.uk More from this publisher
30.04.2013 Views

46 2. Gaussian states: structural properties Standard form.— Let σβN be the CM of a fully symmetric N-mode Gaussian state. The 2×2 blocks β and ζ of σβN , defined by Eq. (2.60), can be brought by means of local, single-mode symplectic operations S ∈ Sp ⊕N (2,) into the form β = diag (b, b) and ζ = diag (z1, z2). In other words, the standard form of fully symmetric N-mode states is such that any reduced two-mode state is symmetric and in standard form, see Eq. (2.54). Symplectic degeneracy.— The symplectic spectrum of σβN is (N − 1)-times degenerate. The two symplectic eigenvalues of σβN , ν − β and ν+ βN , read where ν − β ν − β = (b − z1)(b − z2) , ν + β N = (b + (N − 1)z1)(b + (N − 1)z2) , is the (N − 1)-times degenerate eigenvalue. (2.61) Obviously, analogous results hold for the M-mode CM σ α M of Eq. (2.60), whose 2 × 2 submatrices can be brought to the form α = diag (a, a) and ε = diag (e1, e2) and whose (M − 1)-times degenerate symplectic spectrum reads ν − α = (a − e1)(a − e2) , ν + α M = (a + (M − 1)e1)(a + (M − 1)e2) . (2.62) 2.4.3.2. Bisymmetric M × N Gaussian states. Let us now generalize this analysis to the (M + N)-mode Gaussian states, whose CM σ result from a correlated combi- nation of the fully symmetric blocks σ α M and σ β N , σαM Γ σ = Γ T σ β N , (2.63) where Γ is a 2M × 2N real matrix formed by identical 2 × 2 blocks γ. Clearly, Γ is responsible of the correlations existing between the M-mode and the N-mode parties. Once again, the identity of the submatrices γ is a consequence of the local invariance under mode exchange, internal to the M-mode and N-mode parties. States of the form of Eq. (2.63) will be henceforth referred to as “bisymmetric” [GA4, GA5]. A significant insight into bisymmetric multimode Gaussian states can be gained by studying the symplectic spectrum of σ and comparing it to the ones of σ α M and σ β N . Symplectic degeneracy.— The symplectic spectrum of the CM σ Eq. (2.63) of a bisymmetric (M + N)-mode Gaussian state includes two degenerate eigenvalues, with multiplicities M − 1 and N − 1. Such eigenvalues coincide, respectively, with the degenerate eigenvalue ν − α of the reduced CM σ α M , and with the degenerate eigenvalue ν − β of the reduced CM σ β N . Equipped with these results, we are now in a position to show the following central result [GA5], which applies to all (generally mixed) bisymmetric Gaussian states, and is somehow analogous to — but independent of — the phase-space Schmidt decomposition of pure Gaussian states (and of mixed states with fully degenerate symplectic spectrum). Unitary localization of bisymmetric states.— The bisymmetric (M +N)-mode Gaussian state with CM σ, Eq. (2.63) can be brought, by means of a local unitary (symplectic) operation with respect to the M × N bipartition with reduced CMs σ α M and σ β N , to a tensor product of M + N − 2 single-mode uncorrelated states, and of

2.4. Standard forms of Gaussian covariance matrices 47 a single two-mode Gaussian state comprised of one mode from the M-mode block and one mode from the N-mode block. For ease of the reader and sake of pictorial clarity, we can demonstrate the mechanism of unitary reduction by explicitly writing down the different forms of the CM σ at each step. The CM σ of a bisymmetric (M +N)-mode Gaussian state reads, from Eq. (2.63), ⎛ α ε . . . ε γ · · · · · · γ ⎜ . ⎜ ε .. . . . ε . . .. . . ⎜ . . ⎜ . ε .. . . ε . .. . . ⎜ ε · · · ε α γ · · · · · · γ σ = ⎜ γ ⎜ ⎝ T · · · · · · γT β ζ . . . ζ . . . .. . . . ζ .. . ζ . . . .. . . . ζ .. ζ γT · · · · · · γT ⎞ ⎟ . (2.64) ⎟ ⎠ ζ · · · ζ β According to the previous results, by symplectically reducing the block σβN to its Williamson normal form, the global CM σ is brought to the form σ ′ ⎛ α ε · · · ε γ ⎜ = ⎜ ⎝ ′ ⋄ · · · ⋄ ε . ε . .. ε · · · ε . .. ε . ε α . . γ . . . .. . .. . . ′ γ ⋄ · · · ⋄ ′T · · · · · · γ ′T + ν βN ⋄ · · · · · · ⋄ ⋄ ⋄ ν · · · ⋄ − ⎞ . . .. . .. . . β ⋄ ⋄ . .. . . ⋄ ⎟ , ⎟ ⎠ ⋄ · · · · · · ⋄ ⋄ · · · ⋄ ν − β where the 2 × 2 blocks ν + βN = ν + βn2 and ν − β = ν− β 2 are the Williamson normal blocks associated to the two symplectic eigenvalues of σ β N . The identity of the submatrices γ ′ is due to the invariance under permutation of the first M modes, which are left unaffected. The subsequent symplectic diagonalization of σ α M puts the global CM σ in the following form (notice that the first, (M + 1)-mode reduced CM is again a matrix of the same form of σ, with N = 1), ⎛ σ ′′ ⎜ = ⎜ ⎝ ν − α ⋄ · · · ⋄ ⋄ ⋄ · · · ⋄ ⋄ . .. ⋄ . . . . . . ⋄ ν− α ⋄ ⋄ . . . . . .. . .. . . . . ⋄ · · · ⋄ ν + α M γ ′′ ⋄ · · · ⋄ ⋄ · · · ⋄ γ ′′T ν + β N ⋄ · · · ⋄ ⋄ · · · · · · ⋄ ⋄ ν − β . . . .. . .. . . . . ⋄ ⋄ . . .. ⋄ ⋄ · · · · · · ⋄ ⋄ · · · ⋄ ν − β ⎞ ⎟ , (2.65) ⎟ ⎠

2.4. Standard forms of Gaussian covariance matrices 47<br />

a single two-mode Gaussian state comprised of one mode from the M-mode block<br />

and one mode from the N-mode block.<br />

For ease of the reader and sake of pictorial clarity, we can demonstrate the<br />

mechanism of unitary reduction by explicitly writing down the different forms of<br />

the CM σ at each step. The CM σ of a bisymmetric (M +N)-mode Gaussian state<br />

reads, from Eq. (2.63),<br />

⎛<br />

α ε . . . ε γ · · · · · · γ<br />

⎜<br />

.<br />

⎜ ε ..<br />

. . .<br />

ε . . ..<br />

.<br />

.<br />

⎜<br />

. .<br />

⎜ . ε ..<br />

. .<br />

ε . ..<br />

.<br />

.<br />

⎜ ε · · · ε α γ · · · · · · γ<br />

σ = ⎜<br />

γ<br />

⎜<br />

⎝<br />

T · · · · · · γT β ζ . . . ζ<br />

. .<br />

. ..<br />

. .<br />

. ζ ..<br />

.<br />

ζ .<br />

.<br />

. ..<br />

.<br />

. . ζ .. ζ<br />

γT · · · · · · γT ⎞<br />

⎟ . (2.64)<br />

⎟<br />

⎠<br />

ζ · · · ζ β<br />

According to the previous results, by symplectically reducing the block σβN to its<br />

Williamson normal form, the global CM σ is brought to the form<br />

σ ′ ⎛<br />

α ε · · · ε γ<br />

⎜<br />

= ⎜<br />

⎝<br />

′ ⋄ · · · ⋄<br />

ε<br />

.<br />

ε<br />

. ..<br />

ε<br />

· · ·<br />

ε<br />

. ..<br />

ε<br />

.<br />

ε<br />

α<br />

.<br />

.<br />

γ<br />

.<br />

.<br />

. ..<br />

. ..<br />

.<br />

.<br />

′ γ<br />

⋄ · · · ⋄<br />

′T<br />

· · · · · · γ ′T +<br />

ν βN ⋄ · · · · · · ⋄ ⋄<br />

⋄<br />

ν<br />

· · · ⋄<br />

−<br />

⎞<br />

.<br />

. .. . .. .<br />

.<br />

β<br />

⋄<br />

⋄<br />

. ..<br />

.<br />

.<br />

⋄<br />

⎟ ,<br />

⎟<br />

⎠<br />

⋄ · · · · · · ⋄ ⋄ · · · ⋄ ν −<br />

β<br />

where the 2 × 2 blocks ν +<br />

βN = ν +<br />

βn2 and ν −<br />

β<br />

= ν−<br />

β 2 are the Williamson normal<br />

blocks associated to the two symplectic eigenvalues of σ β N . The identity of the<br />

submatrices γ ′ is due to the invariance under permutation of the first M modes,<br />

which are left unaffected. The subsequent symplectic diagonalization of σ α M puts<br />

the global CM σ in the following form (notice that the first, (M + 1)-mode reduced<br />

CM is again a matrix of the same form of σ, with N = 1),<br />

⎛<br />

σ ′′ ⎜<br />

= ⎜<br />

⎝<br />

ν − α ⋄ · · · ⋄ ⋄ ⋄ · · · ⋄<br />

⋄<br />

. .. ⋄<br />

.<br />

.<br />

.<br />

.<br />

.<br />

. ⋄ ν− α ⋄ ⋄<br />

.<br />

.<br />

.<br />

.<br />

. ..<br />

. ..<br />

.<br />

.<br />

.<br />

.<br />

⋄ · · · ⋄ ν +<br />

α M γ ′′ ⋄ · · · ⋄<br />

⋄ · · · ⋄ γ ′′T ν +<br />

β N ⋄ · · · ⋄<br />

⋄ · · · · · · ⋄ ⋄ ν −<br />

β<br />

. .<br />

. .. . ..<br />

. .<br />

. . ⋄<br />

⋄<br />

.<br />

. .. ⋄<br />

⋄ · · · · · · ⋄ ⋄ · · · ⋄ ν −<br />

β<br />

⎞<br />

⎟ , (2.65)<br />

⎟<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!