29.04.2013 Views

Here - TUM

Here - TUM

Here - TUM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Mixed-Signal-Electronics<br />

PD Dr.-Ing. Stephan Henzler<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

1


henzler@tum.de<br />

Lecturer CV<br />

Stephan Henzler received the Dipl.-Ing. degree in<br />

electrical engineering in 2002, the Dr.-Ing. degree in 2006,<br />

and the habilitation 1 degree in 2010 from the Technische<br />

Universität München (<strong>TUM</strong>), Germany. From 2002 to<br />

2005, he was with the Institute for Technical Electronics,<br />

Technische Universität München, where he worked on<br />

low-power digital integrated circuit design and leakage<br />

reduction techniques. For his dissertation on power<br />

management and leakage reduction techniques he<br />

received the Rhode-und-Schwarz outstanding thesis<br />

award 2007. In 2005, he joined the Advanced Systems<br />

and Circuits Department of Infineon Technologies AG,<br />

Munich, where he worked on high-speed/highperformance<br />

digital integrated circuits, variability in deepsubmicron<br />

CMOS technologies, and mixed-signal circuit<br />

design in nanometer CMOS technologies, especially timeto-digital<br />

converters. In 2010 he joined the wireless mixedsignal<br />

department of Infineon where he works on mixedsignal<br />

system and circuit design. Since February 2011 he<br />

carries on the same responsibilities within Intel.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

2


Stephan’s ambition for this course …<br />

Simplicity is the Ultimate Sophistication<br />

Leonardo Da Vinci<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

But don’t misunderstand,<br />

this does not mean that you<br />

don’t have to exercise!<br />

3


Course and Online Material<br />

Lecture notes<br />

available in the Fachschaft EI (<strong>TUM</strong>), handout (GIST <strong>TUM</strong> Asia)<br />

Online material comprising<br />

– annotated slides<br />

– video stream of last years lectures (GIST <strong>TUM</strong> Asia)<br />

www.lte.ei.tum.de/homes/henzler<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

4


Administratives<br />

Lecture: Stephan Henzler<br />

henzler@tum.de<br />

office hours: during lecture time<br />

Tutorial: Nasim Pour Aryan<br />

n.aryan@tum.de<br />

office hours: during tutorial time<br />

Exam: in written form,<br />

Credits: 4.5 ECTS credits (<strong>TUM</strong>)<br />

Language: english<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

5


The Macroscopic World is Purely Analog<br />

motion/acceleration<br />

mechanical force<br />

sound waves<br />

light<br />

electromagnetic<br />

field<br />

temperature<br />

Digital System, e.g.<br />

- digital communication<br />

(DSL, GSM, …, LTE)<br />

- computer equipment<br />

- multimedia<br />

(DVD, mp3, camera… )<br />

- control application<br />

(e.g. automotive)<br />

discrete sequence of<br />

numbers from a discrete set<br />

continuous time<br />

Our environment is always analog … and values<br />

You just have to investigate the system in-depth!<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

sense organs<br />

sensors/<br />

actuators<br />

time<br />

even ‘digital’<br />

signals on a<br />

transmission<br />

channel<br />

6


The Macroscopic World is Purely Analog<br />

motion/acceleration<br />

mechanical force<br />

sound waves<br />

light<br />

electromagnetic<br />

field<br />

ADC<br />

DAC<br />

Digital System, e.g.<br />

- digital communication<br />

(DSL, GSM, …, LTE)<br />

- computer equipment<br />

- multimedia<br />

(DVD, mp3, camera… )<br />

- control application<br />

(e.g. automotive)<br />

discrete sequence of<br />

numbers from a discrete set<br />

The mixed-signal shell is a bridge between<br />

temperature sense organs<br />

– the analog environment and the digital signal processing<br />

– the physical representation (voltage/current) and a mathematical abstraction<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

sensors/<br />

actuators<br />

time<br />

even ‘digital’<br />

signals on a<br />

transmission<br />

channel<br />

7


Generic Mixed Signal System<br />

What means mixed-signal?<br />

Mixed-signal refers to a system which processes both analog<br />

and digital signals and which contains converter blocks that<br />

enable interaction between the two domains.<br />

Often related to SOC (System-on-Chip)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

8


Topics of MSE Course<br />

Structure of mixed signal systems and mathematical<br />

representation of discrete time signals.<br />

ADC<br />

discrete time<br />

discrete states<br />

discrete time (step function)<br />

continuous states<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

digital discrete time (step function)<br />

discrete values (states)<br />

9


Sample & hold circuits<br />

Topics of MSE Course<br />

Switched-capacitor circuits<br />

Data converter fundamentals (ADC, DAC)<br />

converter parameters and characteristics<br />

Nyquist rate D/A Converters<br />

Nyquist rate A/D Converters<br />

Oversampling Converters: Sigma Delta Converters<br />

Outlook: More mixed signal building blocks<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

10


Recommended Literature<br />

Analog Integrated Circuit Design.<br />

David A. Johns<br />

Ken Martin<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Relevant chapters:<br />

Chapter 7:<br />

Comparators.<br />

Chapter 8:<br />

Sample-and-Holds<br />

Chapter 9:<br />

Discrete Time Signals<br />

Chapter 10:<br />

Switched Capacitor Circuits<br />

Chapter 11:<br />

Data Converter Fundamentals<br />

Chapter 12:<br />

Nyquist-Rate D/A Converters<br />

Chapter 13:<br />

Nyquist-Rate A/D Converters<br />

Chapter 14:<br />

Oversampling Converters<br />

11


Additional Literature & References<br />

Razavi. Principles of Data Conversion System Design.<br />

Wiley, 1994.<br />

Allen, Holberg. CMOS Analog Circuit Design. Oxford, 2010.<br />

Baker, Li, Boyce. CMOS Circuit Desig, Layout, Simulation.<br />

Wiley, 1997.<br />

Gregorian, Temes. Analog MOS Integrated Circuits for<br />

Signal Processing. Wiley 1986.<br />

Oppenheim. Time Discrete Signal Processing. Oldenbourg<br />

Norsworthy, Schreier, Temes. Delta-Sigma Data<br />

Converters. IEEE Press, 1997.<br />

Schreier, Temes. Understanding Delta Sigma Data<br />

Converters. IEEE Press 2005.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

12


Constraints of Mixed Signal Circuits in SoC<br />

PROS CONS<br />

• Cheap implementation of complex<br />

signal processing tasks<br />

• System-on-chip (SOC)<br />

Small pcb footprint<br />

• Fast time reference/clock<br />

• Digitally assisted analog<br />

• All advantages of digital<br />

systems, e.g. robustness, noise<br />

immunity, data storage,<br />

reconfigurability, efficient highly<br />

automated design and test<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

• Need to build analog circuits in<br />

digital process, i.e.<br />

• Devices optimized for high<br />

switching speed not for analog,<br />

(e.g. small gm/gds)<br />

• Transistors with high field<br />

and short channel effects<br />

µ(V G), V th(W,L,V DS,V BS), I gate, I DB<br />

• Signal contamination due to digital<br />

switching noise, e.g. cross talk,<br />

supply noise substrate coupling<br />

• several 100mA digital currents<br />

• V analog signals<br />

13


Chapter 1<br />

Basics of Mixed-Signal Electronics<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

14


Generic Structure of Mixed-Signal Systems<br />

System Perspective<br />

Circuit Perspective<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

15


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

xs(t) = xc(t) X<br />

= X<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

n<br />

n<br />

±(t ¡ nT )<br />

x(nT )±(t ¡ nT )<br />

= X<br />

x[n]±(t ¡ nT )<br />

n<br />

16


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

Fourier Transformation<br />

X(!) =<br />

generalization<br />

s = j<br />

+1<br />

Z<br />

¡1<br />

x(t) = 1<br />

2¼<br />

x(t)e ¡j!t dt<br />

+1<br />

Z<br />

¡1<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

X(!)e j!t d!<br />

X(s) =<br />

+1<br />

Z<br />

¡1<br />

x(t)e ¡st dt<br />

Laplace Transformation<br />

17


Spectral Transformation of Discrete Time Signal<br />

Insertion of sampled signal in Fourier formula:<br />

X(!) =<br />

+1 Z<br />

X<br />

¡1<br />

= X<br />

Normalization of frequency to sampling frequency:<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

n<br />

n<br />

x(nT )<br />

x(nT )±(t ¡ nT )e ¡j!t dt<br />

+1<br />

Z<br />

¡1<br />

= X<br />

x(nT )e ¡j!nT<br />

n<br />

e ¡j!t ±(t ¡ nT )dt<br />

X(­) = X<br />

x[n]e ¡j­n X(z) = X<br />

x[n]z ¡n<br />

n<br />

FT of discrete sequence<br />

generalization<br />

z = e j­ = e j!T<br />

FT of sampled signal<br />

­ = !T = 2¼f<br />

n<br />

z-Transformation<br />

fs<br />

18


Inverse Z-Transformation<br />

Methods for computation of inverse z-transformation<br />

– Tabular method<br />

– Decomposition in partial fractions and tabular method<br />

– Power series method<br />

(coefficients correspond to time sequence)<br />

Formal inversion:<br />

x[n] = 1<br />

2¼<br />

I<br />

c X(z)zn¡1 dz<br />

= X residues of X(z)z n¡1 at poles within C<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

19


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

Meaning of frequency: oscillations per second.<br />

What is meaning of normalized frequency Ω?<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Ω = angular change from sample to sample<br />

20


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

Spectrum of a sampled signal:<br />

s(t) = X<br />

±(t ¡ nT ) $ S(!) = 2¼<br />

T<br />

n<br />

xs(t) = xc(t) ¢ s(t) $<br />

Sampling means multiplication<br />

of continuous time signal with<br />

pulse train<br />

X<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

k<br />

±(! ¡ k!s) !s = 2¼<br />

T<br />

Xs(!) = 1<br />

2¼ Xc(!) ¤ S(!)<br />

= 1<br />

T Xc(!) ¤ X<br />

= 1<br />

T<br />

X<br />

k<br />

In frequency domain this translates<br />

into convolution of signal spectrum<br />

with spectrum of pulse train.<br />

This is simply a copy and shift of<br />

the spectrum to multiples of the<br />

sampling frequency<br />

k<br />

Xc(! ¡ k!s)<br />

±(! ¡ k!s)<br />

21


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Aliasing occurs if mirror spectra overlap<br />

22


low-pass<br />

low-pass<br />

low-pass<br />

Aliasing in the Frequency Domain<br />

low-pass filtering<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

t<br />

t<br />

t<br />

theoretical case as brick wall<br />

filter would be required<br />

t<br />

t<br />

t<br />

23


amplitude fsampling = 1 f signal,1 = 0.22<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Sampling and Aliasing 1<br />

0 5 10 15<br />

samples<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

24


amplitude fsampling = 1 f signal,2 = 0.22 + fsampling<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Sampling and Aliasing 2<br />

0 5 10 15<br />

samples<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

25


amplitude<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Sampling and Aliasing 3<br />

Only with the Nyquist criterion it is assured that the samples<br />

represent the signal unambiguously<br />

0 5 10 15<br />

samples<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

26


Anti Aliasing Filter<br />

No brick wall filter with infinitely steep transition band<br />

Real filters have a transition band<br />

– Nyquist rate is a theoretical limit but not feasible<br />

– Tradeoff between sample rate and filter order<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

27


Practical Sampling: Sample & Hold<br />

Remember: All realizable signals have<br />

– finite slope (dx/dt)<br />

– finite pulse width, i.e. finite bandwidth<br />

– finite value<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

t<br />

t<br />

t<br />

ideal sampling<br />

step function<br />

alternative solution<br />

28


Practical Sampling: Sample & Hold<br />

Remember: All realizable signals have<br />

– finite slope<br />

– finite pulse width<br />

– finite bandwidth<br />

– finite value<br />

Hence sampling means always SAMPLE & HOLD<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

29


Sampling with Finite Pulse Width<br />

x sh(t) = xs(t) ¤ h(t)<br />

=<br />

x sh(!) = 1<br />

¿<br />

= 1<br />

¿<br />

1X<br />

n=¡1<br />

+1<br />

Z<br />

¡1<br />

1X<br />

= ¡ 1<br />

j!¿<br />

xc[n] 1<br />

¿ [¾(t ¡ nT ) ¡ ¾(t ¡ nT ¡ ¿)]<br />

1X<br />

n=¡1<br />

n=¡1<br />

1X<br />

xc[n]<br />

n=¡1<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

xc[n] [¾(t ¡ nT ) ¡ ¾(t ¡ nT ¡ ¿)] e ¡j!t dt<br />

nT +¿<br />

Z<br />

nT<br />

e ¡j!t dt<br />

xc[n] h<br />

e ¡j!ti nT +¿<br />

nT<br />

(t)<br />

t<br />

30


Xsh(!) = ¡ 1<br />

j!¿<br />

Sampling with Finite Pulse Width<br />

=<br />

1X<br />

n=¡1<br />

Distortion of base band and damping of mirror spectra<br />

– visible in DAC<br />

– not visible in ADC<br />

1X<br />

n=¡1<br />

xc[n]e ¡j!nT<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

xc[n] ³<br />

e ¡j!nT e ¡j!¿ ´<br />

¡ e<br />

¡j!nT<br />

1<br />

j!¿<br />

= Xs(!)e ¡1 2j!¿ ej 1 2 !¿ ¡ e ¡j 1 2 !¿<br />

2j 1 2 !¿<br />

= Xs(!)e ¡j 1 2 !¿ sin ³ 1<br />

2 !¿ ´<br />

³<br />

´<br />

1 ¡ e<br />

¡j!¿<br />

ideal sampling X S() impact of hold<br />

1<br />

2 !¿<br />

31


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

32


generalization<br />

X(s) =<br />

Relation Between s- and z-Plain<br />

Fourier Transformation:<br />

+1 Z<br />

X(!) =<br />

¡1<br />

x(t)e ¡j!t dt<br />

LaPlace Transformation: z-Transformation:<br />

+1 Z<br />

1X<br />

j<br />

¡1<br />

x(t)e ¡st dt X(z) =<br />

s<br />

<br />

z = e j!T<br />

discrete<br />

signals<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Im(z)<br />

1X<br />

n=¡1<br />

x(nT )e ¡j!nT<br />

normalization<br />

&<br />

generalization<br />

n=¡1<br />

z<br />

x[n]z ¡n<br />

Re(z)<br />

33


Downsampling<br />

Intuitive view:<br />

If the analog signal was sampled directly with the low rate we<br />

would get every 1 out of L samples<br />

remove all other samples, keep only 1 out of L<br />

Additional information: If there is noise between the repeated signal spectra, or if the Nyquist criterion cannot be guaranteed for the<br />

down-sampled signal an additional filtering is required (low pass). However, it is sufficient to compute one out of L samples.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

34


Downsampling II<br />

Mathematically downsampling comprises two steps:<br />

– digital sampling, i.e. multiplication with a periodic<br />

1,0,0, …, 0, 1, 0, … sequence<br />

– dropping of all zero weighted samples and scaling of<br />

frequency axis<br />

In spectrum this means a copy and shift of the already<br />

periodic signal<br />

risk of aliasing<br />

eventually AAF prior to downsampling (decimation filter)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Spectrum of sampling fcunction:<br />

35


decimation filter<br />

Downsampling III<br />

Down-sampling requires, that there is no signal energy in<br />

between baseband and mirror spectra (e.g. noise)<br />

In general this is not the case, so down-sampling may cause<br />

aliasing<br />

To avoid aliasing a low pass filter is required in front of downsampling<br />

block Decimation Filter (Decimator)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

36


Upsampling<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

imaging<br />

Additional information: Fractional sample rate conversion is up-sampling combined with down-sampling. Low-pass filters<br />

may be shared. Compute only what is necessary!<br />

37


Upsampling II<br />

Zero padding results in higher sampling rate<br />

However, this does not mean that mirror spectra occur only<br />

at multiples of the sampling frequency<br />

Imaging, i.e. replica in between 0..2<br />

Low pass filter removes images<br />

– Result in frequency domain: Replica only at k x f s<br />

– Result in time domain: Zeros move on real signal curve<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

38


Fractional Sample Rate Conversion<br />

Purpose: Change sample rate by a non-integer factor L/M<br />

Two possibilities:<br />

– Up-sampling by L, down-sampling by M<br />

– Down-sampling by M, than up-sampling by L<br />

The order of up- and down-sampling may be exchanged<br />

without any change in the input/output behavior if the<br />

decimation factor M and the interpolation factor L are<br />

relatively prime.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

39


Components of a Mixed Signal System<br />

Structure of mixed signal systems and mathematical<br />

representation of discrete time signals.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

40


Example for Simple Anti Aliasing Filter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

41


Supply Voltages of Mixed Signal Circuits<br />

General case: use of bipolar signals<br />

VDD<br />

AGND<br />

VSS<br />

most positive potential<br />

positive signals<br />

analog ground / reference voltage<br />

(reference point for analog signals)<br />

negative signals<br />

most negative potential<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

+2V<br />

Even more complex supply concepts in use check for available voltages and definitions before starting with design<br />

0V<br />

-2V<br />

4V<br />

2V<br />

0V<br />

42


Transistor Description (for hand calculations)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

43


Condutance G<br />

V SS<br />

MOS Transistor as Switch<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

V DD<br />

44


Chapter 2<br />

Sample and Hold Circuits<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

45


Practical Sampling: Sample & Hold<br />

Remember: All realizable signals have<br />

– finite slope<br />

– finite pulse width<br />

– finite value<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

t<br />

t<br />

t<br />

46


Sample & Hold Circuit<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

47


Sample & Hold Circuit (cont)<br />

1. Finite rise-time / finite bandwidth due to RC constant<br />

2. Amplifier dynamics<br />

(finite settling time, overshoot, ringing)<br />

Driving amplifier sees a varying load impedance<br />

(RC input isolation can reduce effect)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

48


Sample & Hold: Clock Feed-Through<br />

3. Clock feed-through due to capacitive coupling.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

49


Sample & Hold: Charge Injection<br />

4. Charge Injection: mobile carriers are removed<br />

1:1 distribution is a approximation for fast switching<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

50


5.<br />

6. Clock jitter<br />

Sample & Hold Circuit (cont)<br />

7. Droop in hold mode: leakage currents discharge hold cap<br />

8. Linearity<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

51


S&H Output Signal<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

52


Impact of Jitter on S&H Performance<br />

Consider a sinusoidal signal<br />

Signal power<br />

Rate of change<br />

Jitter = random variation of sampling instance<br />

Sampling error:<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

53


Impact of Jitter on S&H Performance<br />

Noise power resulting from sampling error<br />

Signal-to-Noise Ratio<br />

maximum achievable SNR for given jitter<br />

frequency dependent, i.e. the larger the bandwidth the higher<br />

the clock requirements<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

54


Noise due to jitter:<br />

Jitter Effect Analysis<br />

A noise floor which scales with signal frequency and<br />

amplitude is an indication for dominant aperture and jitter<br />

effects.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

55


Impact of Offset-Voltage<br />

Offset voltage of opamp is modeled as voltage source in<br />

series to input terminal<br />

V o<br />

Offset voltage is directly visible at output terminal<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

56


S&H with Correlated Double Sampling<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

57


Noise in Discrete Time Systems<br />

Noise is a random process statistical description is required<br />

time domain: noise signal a(t)<br />

frequency domain: power spectral density<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

58


Noise of Sampled Signals: kT/C-Noise<br />

White noise with power spectral density is<br />

low-pass filtered:<br />

Noise power:<br />

independent on R<br />

Remarks:<br />

• Sampling makes this a little bit more complicated as noise is a wide band signal so there is aliasing of replica<br />

spectra. However, the noise power in the baseband is still kT/C<br />

• This is only a lower bound of noise power, buffers contribute also to overall noise power<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

59


Assumption:<br />

–<br />

–<br />

Noise Reduction Techniques<br />

Average over 4 samples<br />

Generally:<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

60


Closed Loop Track & Hold Circuit 1<br />

Basic sampling circuit is embedded in feedback loop<br />

– Very high input impedance<br />

– Reduction of non-idealities (e.g. buffer offset) by loop gain<br />

– Loop must be designed stable speed degradation<br />

– Feedback is broken during hold mode<br />

• Input opamp saturates<br />

offset not canceled<br />

• Long slewing time when circuit returns to track mode<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

not critical wrt. offset errors<br />

61


Closed Loop Track & Hold Circuit 2<br />

Hold mode:<br />

Input opamp is configured as voltage follower<br />

fast settling when circuit returns to track mode<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

62


Closed Loop Track & Hold Circuit 3<br />

Storage capacitor is shifted to feedback loop of output<br />

amplifier (integrator)<br />

Swing across switch is always near to AGND<br />

Error injection becomes nearly signal independent (pedestal error)<br />

No appertur jitter<br />

Input opamp is grounded during hold phase<br />

fast settling when switched to track mode<br />

signal feedthrough is minimized<br />

Reduced speed due to stability requirements<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

63


Closed Loop Track & Hold Circuit 4<br />

Additional error replica to avoid the pedestal error<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

64


Summary Sample & Hold Circuits<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

65


Chapter 3<br />

Switched Capacitor Circuits<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

66


Resistor Realizations in MOS Technologies: Poly-Resistor<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Sheet resistance:<br />

200-400Ω□<br />

(metal


Resistor Realizations in MOS Technologies: Diffusion Resistor<br />

Sheet resistance: 50-150Ω□<br />

Highly variable resistance (up to +/- 20%)<br />

Parasitic diode<br />

High parasitic capacitances<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

68


Resistor Realizations in MOS Technologies<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

L<br />

R <br />

R[]<br />

Wd<br />

Sheet resistance:<br />

Poly: 200-400Ω□<br />

Diffusion: 50 -150Ω□<br />

Metal:


Effect of Resistor between two Nodes<br />

continuous time point-of-view discrete time point-of-view<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

70


Switched Capacitor Resistor Emulation 1<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

71


Switched Capacitor Resistor Emulation 2<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

72


Resistor Equivalents<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

73


Non-Overlapping Multiphase Clocking<br />

both clocks active at the same time<br />

would cause short circuit currents<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

74


Parameter Variations in SC Circuits 1<br />

What is the variation of a RC time constant?<br />

i.e. the relative error of the time constant is equal to the sum of<br />

the relative error of the resistance and the capacitance<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

75


Parameter Variations in SC Circuits 2<br />

What happens for the switched-capacitor equivalent?<br />

i.e. the relative error of the time constant is equal to the relative<br />

error of a capacitance ratio<br />

very small if matching is considered in layout<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

76


Implementation of Integrated Capacitors<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

77


Alternative Capacitor Implementation<br />

Junction capacitance<br />

– Parasitic diode leakage<br />

– Voltage and temperature dependent<br />

MOS capacitance<br />

– MOS transistor in accumulation or inversion<br />

– Alternatively: gate over diffusion<br />

– Strongly non-linear<br />

– Very high capacitance/area<br />

– God for decoupling<br />

Vertical parallel plate capacitor<br />

– Matrix of wires exploiting vertical and lateral capacitance<br />

– Ref. next slide<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

78


Vertical Parallel Plate Capacitor<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Kim, VLSI Symposium 2003<br />

79


Limitations of SC-Equivalence<br />

Continuous Time RC-Low-Pass<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

80


Limitations of SC-Equivalence<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

S 1 and S 2 are<br />

closed alternately<br />

81


Limitations of SC-Equivalence<br />

Switched Capacitor Low-Pass<br />

z-Transformation:<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

82


Limitations of SC-Equivalence<br />

Switched Capacitor Equivalence<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

83


Switched Capacitor Integrators<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

84


Switched Capacitor Integrators<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

85


Analysis of Switched-Capacitor Circuits<br />

– SC-Cookbook –<br />

Mark polarity of all capacitors (arbitrarily)<br />

Do not change this polarity during the analysis<br />

Draw equivalent circuit for each clock phase<br />

Charge balance analysis for full cycle<br />

– assume steady state conditions for each time step<br />

– compute ∆Q that occurs during phase transitions<br />

z-transformation<br />

Calculate transfer function<br />

Evaluate transfer function on unit circle of z-plane<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

86


z-Transformation<br />

Approximation on unit circle<br />

Spectral Analysis<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

87


Spectral Analysis (cont.)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

88


Analysis of Switched-Capacitor Circuits<br />

– SC-Cookbook –<br />

Mark polarity of all capacitors (arbitrarily)<br />

Do not change this polarity during the analysis<br />

Draw equivalent circuit for each clock phase<br />

Charge balance analysis for full cycle<br />

– assume steady state conditions for each time step<br />

– compute ∆Q that occurs during phase transitions<br />

z-transformation<br />

Calculate transfer function<br />

Evaluate transfer function on unit circle of z-plane<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

89


Time Domain Behavior<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

90


Impact of Parasitic Capacitances<br />

C p1||C 1 direct impact on transfer behavior <br />

C p2 shorted no impact <br />

C p3 shorted between GND and VGND <br />

C p4 at opamp output negligible impact <br />

H<br />

C<br />

1 p1<br />

z <br />

1<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

C<br />

C<br />

2<br />

z<br />

1<br />

z<br />

1<br />

91


Alternative Integrator Architectures<br />

Sign of transfer function can be changed by switching the<br />

control signal of the switches.<br />

Less sensitive to parasitic capacitances<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

92


Switched Capacitor Amplifier<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

93


Switched Capacitor Amplifier: Impact of Offset<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

94


SC Amplifier: Output Signal<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

opamp offset<br />

95


Switched Capacitor Amplifier<br />

(without output reset)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

96


Superposition Theorem in SC Circuits<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

97


Chapter 4<br />

Data Converter Fundamentals<br />

"He who loves practice without theory is like the<br />

sailor who boards ship without a rudder and<br />

compass and never knows where he may cast“<br />

Leonardo Davinci<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

98


Ideal Digital-to-Analog Conversion<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

99


DAC Offset Error<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

100


DAC Gain Error<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

101


Digital-to-Analog Converter Model<br />

ideal model 1 st order model<br />

Gain of ideal converter depends on interpretation of DAC<br />

input bits. <strong>Here</strong>, a fractional interpretation is used.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

102


Ideal Analog-to-Digital Conversion<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

103


Analog-to-Digital Converter Model I<br />

Depending on implementation quantization block can be<br />

– round function<br />

– floor function<br />

– ceil function<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

104


Quantization in A/D-Converters<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

105


Quantization in A/D-Converters<br />

Consider one saw tooth, e.g.<br />

Mean quantization error:<br />

Power of quantization error:<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

106


Quantization in A/D-Converters<br />

Signal-to-(Quantization)-Noise Ratio S(Q)NR:<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

107


ADC Offset Error<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

108


ADC Gain Error<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

109


Analog-to-Digital Converter Model II<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

110


Non-Linearity in Data Converters<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

111


Example of Non-Linear Transfer Characteristic<br />

x<br />

non-linear<br />

system<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

y<br />

112


Nonlinearity in Data-Converters<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Accuracy:<br />

The absolute inaccuracy is<br />

defined as the maximum<br />

deviation of the actual analog<br />

value from the ideal one. It<br />

includes offset, gain and<br />

linearity errors and may be<br />

different for every individual<br />

quantization value.<br />

The relative inaccuracy is<br />

defined as the deviation that<br />

remains after offset and gain<br />

error have been removed.<br />

113


DAC Nonlinearity: Integral Nonlinearity<br />

Integral Nonlinearity (INL) Error:<br />

The INL error is defined as the deviation of each analog value from a straight<br />

line. If the straight line through the endpoints of the converter’s transfer curve<br />

is chosen (left) as reference, the INL equals the relative inaccuracy.<br />

Alternatively a regression line can be used as reference (right). It depends on<br />

the application which definition should be applied.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

114


DAC Nonlinearity: Differential Nonlinearity<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Differential Nonlinearity (DNL):<br />

Deviation of the analog step size<br />

from 1VLSB (after removal of gain<br />

and offset error). Like the INL the<br />

DNL value is defined individually<br />

for each digital word<br />

Monotonicity:<br />

The output signal of a monotonic<br />

D/A converter increases or<br />

remains at least unchanged as<br />

the input signal increases.<br />

115


ADC Nonlinearity: Inaccuracy<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Accuracy:<br />

The absolute inaccuracy is<br />

defined as the maximum<br />

deviation of the actual analog<br />

value from the ideal one. It<br />

includes offset, gain and<br />

linearity errors and may be<br />

different for every individual<br />

quantization value.<br />

The relative inaccuracy is<br />

defined as the deviation that<br />

remains after offset and gain<br />

error have been removed.<br />

116


ADC Nonlinearity: Integral Nonlinearity<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Integral Nonlinearity (INL):<br />

The INL error is defined as the<br />

deviation of each analog value<br />

from a straight line (after<br />

removal of gain and offset error).<br />

If the straight line through the<br />

endpoints of the converter’s<br />

transfer curve is chosen as<br />

reference, the INL equals the<br />

relative inaccuracy. Alternatively<br />

a regression line can be used as<br />

reference. It depends on the<br />

application which definition<br />

should be applied.<br />

117


ADC Nonlinearity: Differential Nonlinearity<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Differential Nonlinearity (DNL):<br />

Deviation of the analog step size<br />

from 1VLSB (after removal of gain<br />

and offset error). Like the INL the<br />

DNL value is defined individually<br />

for each digital word<br />

Missing Codes:<br />

If one step vanishes completely<br />

the ADC is said to have a missing<br />

code. In practice the criterion for a<br />

missing code is a step width<br />

smaller than 0.1 x VLSB<br />

118


Dynamic ADC Measurement<br />

ADC converter characteristics<br />

describe static measurements<br />

In dynamic measurements a input<br />

voltage waveform (usually a sine signal)<br />

is converted continuously and<br />

analyzed in the frequency domain.<br />

(much more realistic, noise, crosstalk, etc.)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

119


[FS]<br />

Interpretation of the Output spectrum<br />

noise floor<br />

test signal<br />

A sin(wt)<br />

harmonics<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Robertson, ISSCC, 2002<br />

0.5 x<br />

sampling<br />

frequency<br />

120


Harmonic Distortion Caused by Nonlinearity<br />

Nonlinearity causes harmonic distortion<br />

Spectrum allows computation of<br />

– signal power<br />

– power of harmonic components<br />

– noise power<br />

Signal-to-Noise Ratio:<br />

<br />

SNR 10<br />

log<br />

<br />

10<br />

<br />

Signal-to-Noise-and-Distortion Ratio<br />

<br />

SNDR 10<br />

log<br />

<br />

10<br />

<br />

signal<br />

noise<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

P<br />

noise<br />

P<br />

P<br />

P<br />

<br />

signal<br />

P<br />

<br />

<br />

<br />

<br />

harmonics<br />

<br />

<br />

<br />

<br />

121


Harmonic Distortion Caused by Nonlinearity<br />

Total Harmonic Distortion (THD)<br />

THD<br />

<br />

20<br />

log10<br />

Second Harmonic Distortion (SHD)<br />

SHD<br />

V<br />

2<br />

V<br />

2<br />

V<br />

2<br />

<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

<br />

<br />

<br />

<br />

20<br />

2<br />

log10<br />

<br />

<br />

<br />

<br />

3<br />

V<br />

V<br />

V<br />

1<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

4<br />

<br />

<br />

<br />

<br />

<br />

122


Effective Number of Bits<br />

An ideal ADC suffers only from quantization noise<br />

SNR <br />

SQNR 6. 02dB<br />

N 1.<br />

76dB<br />

Actual ADCs have lots of impairments (noise, nonlinearity)<br />

that limit the effective resolution.<br />

Effective number of Bits:<br />

ENOB<br />

SNDR<br />

6.<br />

02<br />

1.<br />

76<br />

dB<br />

Note: The number of bits coming out of an ADC doesn‘t say<br />

anything about the actual resolution<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

<br />

dB<br />

123


Signal-to-Noise Ratio over Input Signal<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

124


Other Useful Figures in Mixed-Signal<br />

Crest Factor = Peak-to-Average Ratio<br />

Measure for dynamics of a signal defined by the quotient of<br />

the peak amplitude and the RMS value<br />

C <br />

max<br />

x(<br />

t)<br />

<br />

2<br />

x ( t)<br />

ADC Figure-of-Merit:<br />

Measure for the efficiency of an ADC<br />

FOM<br />

power<br />

frequency 2<br />

ENOB<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

<br />

125


Why is Linearity so Important?<br />

Let‘s consider a basic example of third order non-linearity<br />

The following equalities are useful<br />

Harmonic Distortion:<br />

A single tone transforms into a dc offset and multiple tones at<br />

multiples of the original input frequency<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

x<br />

non-linear<br />

system<br />

y<br />

126


Non-Linearity Gain Compression<br />

Consider only the fundamental (i.e. for low amplitude)<br />

For small amplitude A the gain of the system is a 1<br />

With increasing amplitude A, the high order term becomes<br />

noticeable, i.e. the gain becomes<br />

For a compressive system<br />

(a 3


Superposition of two Frequencies<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

128


Superposition of Two Frequencies<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

129


Non-Linearity Desensitization<br />

Consider superposition of weak signal and a strong interferer<br />

Strong signal causes large excitation around operating point<br />

effective gain reduction<br />

Small signal gain may become even zero<br />

blocking<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

130


Non-Linearity Cross Modulation<br />

Consider again superposition of weak signal and a strong<br />

interferer, but now with modulation of interferer<br />

Amplitude variation m 2 may be either noise or modulation<br />

Signal in band around 1<br />

Modulation/noise of the carrier 2 is transferred 1<br />

Effect occurs if multiple channels are processed by same<br />

non-linear system, e.g. non-linear amplifier in wireless base<br />

station<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

131


Non-Linearity Intermodulation<br />

Harmonics can be used to quantify the non-linearity of mixedsignal<br />

system.<br />

If the system is frequency selective, e.g. a low-pass filter<br />

some or even all harmonics are damped<br />

system seems to be less non-linear than it actually is.<br />

Measure non-linearity in band of interest, i.e. without<br />

damping effects Intermodulation Experiment<br />

Two-Tone Test:<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

132


Non-Linearity Intermodulation<br />

Two tones passing a non-linear system result in<br />

– Harmonics of first frequency<br />

– Harmonics of second frequency<br />

– Intermodulation products (caused by mixing signals)<br />

If the frequency difference is small, i.e. 2 - 1


Non-Linearity Intermodulation<br />

Intermodulation distortion = 3 rd IM product / fundamental<br />

(Amplitude must be known for interpretation)<br />

Assume small amplitudes, i.e. the amplitude of the<br />

fundamental can be expressed by a 1A and the IM3 is 3/4a 3A 3<br />

Third order intercept point describes the amplitude where the<br />

IM3 equals the fundamental<br />

(Hypothetical as for high amplitudes higher order non-linearity becomes noticeable, i.e. meas. is done for small amplitudes followed by extrapolation)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

134


Non-Linearity: Further Reading<br />

Recommended Literature:<br />

– Razavi. RF Microelectronics. Prentice Hall.<br />

– Robertson. Specification and Figures of Merit for<br />

Mixed-Signal Circuits. ISSCC Tutorial 2002.<br />

– Razavi. Principles of Data Conversion System Design.<br />

Wiley, 1994.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

135


Binary Number Representation<br />

# #<br />

normalized<br />

Sign<br />

magnitude<br />

1‘s<br />

complement<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

2‘s<br />

complement<br />

Offset<br />

binary<br />

+7 +7/8 0111 0111 0111 1111<br />

+6 +6/8 0110 0110 0110 1110<br />

+5 +5/8 0101 0101 0101 1101<br />

+4 +4/8 0100 0100 0100 1100<br />

+3 +3/8 0011 0011 0011 1011<br />

+2 +2/8 0010 0010 0010 1010<br />

+1 +1/8 0001 0001 0001 1001<br />

+0 0 0000 0000 0000 1000<br />

-0 0 1000 1111<br />

-1 -1/8 1001 1110 1111 0111<br />

-2 -2/8 1010 1101 1110 0110<br />

-3 -3/8 1011 1100 1101 0101<br />

-4 -4/8 1100 1011 1100 0100<br />

-5 -5/8 1101 1010 1011 0011<br />

-6 -6/8 1110 1001 1010 0010<br />

-7 -7/8 1111 1000 1001 0001<br />

-8 -8/8 1000 0000<br />

136


Chapter 5<br />

Nyquist Rate<br />

Digital-to-Analog Converters<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

137


Nyquist Rate Digital-to-Analog Converters<br />

V<br />

out<br />

Basic Idea:<br />

• Generate all possible voltages which are possible<br />

according to eq. 1<br />

• Use switches to connect the voltage selected by B in to<br />

the output<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

ref<br />

in<br />

ref<br />

1<br />

2<br />

N<br />

b 2 b<br />

2 <br />

b <br />

V B V<br />

2<br />

1<br />

2<br />

N<br />

138


max value<br />

bus<br />

voltage follower<br />

strictly monotonic<br />

3-Bit Resistor String Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Generate all possible voltages with<br />

resistive voltage divider<br />

Switches = NMOS transistors<br />

Transmission gates enable<br />

– higher voltage range<br />

– but higher parasitic cap, area<br />

(layout more complicated)<br />

Buffer experiences high input<br />

voltage variation<br />

Slow due to buffer and analog mux<br />

How fast does the DAC settle<br />

139


Prerequisites:<br />

– one input only<br />

Elmore Delay<br />

– caps between network node and ground only<br />

– no resistive loops<br />

W. C. Elmore, The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers, Journal of Applied Physics, 1948.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

140


Elmore Delay (cont.): Path Resistance<br />

There is exactly one resistive path from a network node i to<br />

the input s.<br />

The sum of all resistances along this path is the path<br />

resistance R ii, e.g. R 44 = R 4 + R 3 + R 1<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

141


Elmore Delay: Shared Path Resistance<br />

The shared path resistance R ik is the sum of all resistances<br />

along the joint sub-path of the two paths s i and s k.<br />

Example: R i4 = R 1 + R 3<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

142


Elmore Delay (cont): Delay Approximation<br />

Elmore delay:<br />

First order approximation of the delay after which a voltage<br />

step at the input s can be observed at the output i.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

SS 2008<br />

143


Elmore Delay (cont): Delay Approximation<br />

Elmore delay:<br />

Useful for<br />

– Estimation of wire delay<br />

– Estimation of DAC settling time<br />

– …<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

SS 2008<br />

144


Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Resistor String Converter<br />

145


Resistor String Converter<br />

(with pass-gate decoder)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13 146


Normalized Delay<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Delay Comparison<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

Number of Bits<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

string<br />

tree<br />

147


Folded Resistor String Converter<br />

Combine the advantages of both converters:<br />

(low effort for decoder, small load cap.)<br />

Access scheme as in memories:<br />

MSBs select row<br />

LSBs select column<br />

2<br />

N<br />

2<br />

transistors at output bus<br />

all bitlines are charged<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

148


Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Multi-Stage<br />

Resistor String Converter<br />

Subdivde voltage range in<br />

coarse sub-intervals first<br />

Copy the respective voltage<br />

interval<br />

Fine interpolation of the<br />

copied interval<br />

• if opamps match the converter is monotonic<br />

• less resistors<br />

• reduced area and power<br />

149


Binary Weighted Current Mode Converters<br />

Until now: All possible voltages are generated,<br />

1 out of 2 N voltages is copied to the output<br />

1 1 1<br />

IF b1I<br />

b2I<br />

b3I<br />

b4I<br />

max 1<br />

2<br />

min<br />

Now:<br />

• Current mode, i.e. currents are generated, superposed<br />

and then converted into the output voltage<br />

• Input word is already binary generated binary weighted<br />

currents and superpose them into a current that corresponds<br />

to the input word.<br />

<br />

N I<br />

I<br />

scale switches<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

2<br />

4<br />

8<br />

150


Monotonicity in Binary Weighted DACs<br />

Binary weighted converters are not necessarily monotonic<br />

Example:<br />

1<br />

0<br />

1<br />

2<br />

1<br />

1<br />

4<br />

1<br />

1<br />

8<br />

1<br />

1 0 0 0 1<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

7<br />

8<br />

6<br />

8<br />

0<br />

1<br />

2<br />

1<br />

1<br />

4<br />

1<br />

1<br />

8<br />

1<br />

7<br />

8<br />

1 0 0 0<br />

6<br />

8<br />

151


Glitches in Binary Weighted DACs<br />

Different delays in the control logic of the switches causes<br />

voltage spikes, i.e. glitches<br />

0 1 1 1 1 0 0 0<br />

0 1 1 1 1 1 1 1<br />

0 1 1 1 0 0 0 0<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

1<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

152


Implementation of Binary Weighted DAC<br />

How can we generate binary weighted currents easily?<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

153


Implementation of Binary Weighted DAC<br />

For b i = 0 the same current flows, not to VGND but to AGND<br />

30 unit resistors (in binary weighted array)<br />

Not necessarily monotonic<br />

Glitches, if switches do not switch simultaneously<br />

<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

154


High number of bits<br />

– large area<br />

High Resolution DAC II<br />

– matching difficult if MSB/LSB ratio is large (currents, resistors)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

155


High number of bits<br />

– large area<br />

High Resolution DAC<br />

– matching difficult if MSB/LSB ratio is large (currents, resistors)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

156


Implementation of Binary Weighted DAC<br />

(with improved resistor ratio)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

157


Implementation of Binary Weighted DAC<br />

(with improved resistor ratio)<br />

(reduced)<br />

<br />

19 unit resistors<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

158<br />

158


R-2R-Ladder Network<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

159


Implementation of Binary Weighted DAC<br />

(with R-2R-Ladder)<br />

Take R-2R ladder and replace AGND by a virtual ground in<br />

order to collect binary weighted currents<br />

Insert switches (such that node potential is not changed)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

160


Implementation of Binary Weighted DAC<br />

(with R-2R-current divider)<br />

R-2R ladder as current divider<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

161


Switched Capacitor Amplifier<br />

(without output reset)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

162<br />

162


SC-Amplifier with Controllable Capacitors<br />

Various variants possible<br />

Gain is altered according to binary input<br />

multiplying DAC (M-DAC)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

163


Thermometer Code Converters<br />

(method to force monotonicity)<br />

# binary thermometer code<br />

b 1 b 2 b 3 d 1 d 2 d 3 d 4 d 5 d 6 d 7<br />

0 0 0 0 0 0 0 0 0 0 0<br />

1 0 0 1 0 0 0 0 0 0 1<br />

2 0 1 0 0 0 0 0 0 1 1<br />

3 0 1 1 0 0 0 0 1 1 1<br />

4 1 0 0 0 0 0 1 1 1 1<br />

5 1 0 1 0 0 1 1 1 1 1<br />

6 1 1 0 0 1 1 1 1 1 1<br />

7 1 1 1 1 1 1 1 1 1 1<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

164


Thermometer Code Converters<br />

(method to force monotonicity)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

165


Thermometer Code Converters<br />

(method to force monotonicity)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

166


Hybrid Converter Architectures<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

167


Differential Current Steering DAC<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

b1 b2 b3 I+ I- Vo<br />

0 0 0 0 I 7/4 I -7/8 RI<br />

0 0 1 1/4 I 6/4 I -5/8 RI<br />

0 1 0 2/4 I 5/4 I -3/8 RI<br />

0 1 1 3/4 I 4/4 I -1/8 RI<br />

1 0 0 4/4 I 3/4 I 1/8 RI<br />

1 0 1 5/4 I 2/4 I 3/8 RI<br />

1 1 0 6/4 I 1/4 I 5/8 RI<br />

1 1 1 7/4 I 0 I 7/8 RI<br />

168


Charge Scaling DAC<br />

Compatibel with switched capacitor circuits<br />

Principle: Divide charge binarily<br />

All caps discharged during 1 (reset phase, no valid output)<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

169


Chapter 6<br />

Nyquist Rate<br />

Analog-to-Digital Converters<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

170


Analog-to-Digital Converter Families<br />

Architecture Variant Speed Precision<br />

Counting Operation single/dual slope integration low high<br />

Weighted Operation successive approximation<br />

algorithmic converter<br />

w/wo redundancy, callibration<br />

Flash Operation • direct flash<br />

• multi-stage flash<br />

• interpolating flash<br />

• folding flash<br />

Oversampling -modulation, i.e. noise shaping<br />

• discrete time<br />

• continuous time<br />

Sampling frequency can be further increased by<br />

– pipelining<br />

– time interleaving, i.e. parallelization<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

medium medium<br />

high low to medium<br />

low to medium high<br />

Time based emerging tbd. tbd.<br />

171


General ADC Model<br />

Linear model<br />

often very useful<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

limitations as quantization<br />

noise is de-correlated from<br />

signal<br />

Input signal must change<br />

– sufficiently fast<br />

– sufficiently strong<br />

172


Dual-Slope Analog-to-Digital Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

173


Dual-Slope Analog-to-Digital Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

174


Iterative Analog-to-Digital Converters<br />

Tracking ADC<br />

Successive Approximation ADC<br />

Algorithmic ADC<br />

Pipeline ADC<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

175


Tracking ADCs<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

176


Converter with Successive Approximation<br />

What would you ask if you had N questions to find out the<br />

approximate value of the input voltage?<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

1. Is it positive or<br />

negative?<br />

NEGATIVE<br />

2. Is it in the upper or<br />

lower negative region?<br />

3. …<br />

UPPER<br />

177


Converter with Successive Approximation<br />

This is a binary search technique:<br />

Partition the interval where the input voltage is located in two sub-intervals and<br />

check whether the voltage lies in the upper or lower part<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

178


Converter with Successive Approximation<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

offset coded<br />

179


Converter with Successive Approximation (cont)<br />

f s<br />

residue, quantization error<br />

ADC is mainly a DAC and a comparator<br />

(These are the critical building blocks)<br />

Conversion principle:<br />

Make DAC voltage equal to input voltage, minimize error<br />

Depending on the voltage comparison the bits in the SAR<br />

register are iteratively set or reset<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Nf s<br />

180


Modified SAR Algorithm<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Also based on binary search<br />

technique<br />

Comparison against zero<br />

More suited for<br />

implementation,<br />

e.g. charge redistribution<br />

181


Modified SAR Algorithm<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

182


Charge Redistribution SAR Converter<br />

Phase I: Input Tracking<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

183


Charge Redistribution SAR Converter<br />

Phase II: Hold<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

184


Charge Redistribution SAR Converter<br />

Phase III: SAR Evaluation<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

185


Charge Redistribution SAR Converter<br />

Phase III: SAR Evaluation<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

186


Hybrid SAR Converters<br />

Search can be done with different<br />

references<br />

Same idea as for DACs<br />

– monotonous resistor string for MSBs<br />

– binary weighted cap array for LSBs<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

1. Charge caps to -vin<br />

2. Binary search in resistive<br />

network: vx = -vin + vres<br />

3. Interpolate in between two<br />

subsequent taps of resistor<br />

string by charge redistribution<br />

187


More Details on SAR and Algorithmic ADC<br />

Architectural Considerations on SAR<br />

Pipelined SAR<br />

Redundant SAR<br />

Remember:<br />

The goal is to make this<br />

error voltage<br />

equal to zero<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

188


Detailed SAR Architecture<br />

Let’s look at the DAC in detail …<br />

Thermometer Coding<br />

Each DAC has same error contribution<br />

Remainder:<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

Aaron Buchwald, Pipelined A/D Converters: The Basics, ISSCC 2008<br />

189


Binary Weighted SAR<br />

Binary weighting is desirable to reduce number of sub-DACs<br />

Remainder:<br />

Error contribution due to DAC mismatch scales with binary<br />

weigting of reference<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

190


Binary Weighted SAR<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

191


Weighted SAR with Distributed Gain<br />

Binary weighting can be achieved also by using equal DACs<br />

with a single reference voltage but with gain / scaling<br />

elements<br />

Due to scaling MSB DAC is most critical<br />

Linear transformation enables distributed gain<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

192


Algorithmic Analog-to-Digital Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Comparator threshold constant<br />

Voltage increment/decrement<br />

constant<br />

remainder is doubled in each<br />

iteration step<br />

accurate x2 circuit required<br />

193


Algorithmic Analog-to-Digital Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

194


Algorithmic Analog-to-Digital Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

195


Robertson Diagram<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

196


Illustration in Robertson Diagram<br />

2. 3. 4.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

1.<br />

5.<br />

197


Algorithmic Analog-to-Digital Converter<br />

Long conversion time<br />

N cycles per inout sample<br />

ADC<br />

DAC<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

198


Algorithmic Analog-to-Digital Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

199


Voltage Doubling in Algorithmic Converter<br />

V 1<br />

Sample remainder V err together with opamp offset voltage<br />

Amplifier configured as voltage follower<br />

C2 charged to amplifier offset voltage<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

V 2<br />

200


Voltage Doubling in Algorithmic Converter<br />

V 1<br />

Disconnect input, discharge C 1<br />

Transfer charge of C 1 to C 2<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

V 2<br />

201


Voltage Doubling in Algorithmic Converter<br />

Disconnect C2, charge Q2 unchanged<br />

Sample input again<br />

V 1<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

V 2<br />

202


Voltage Doubling in Algorithmic Converter<br />

V 1<br />

Combine charge on C1, offset compensated,<br />

Four clock cycles required!<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

V 2<br />

203


Weighted SAR with Distributed Gain<br />

Algorithmic converter in folded implementation<br />

Long conversion time<br />

N x TADC + N x TDAC<br />

Speed-up by insertion of ADC and S&H in each stage<br />

pipelining: high throughput at the price of latency<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

204


Pipelined ADC 1<br />

Going for pipelined-ADC means<br />

– cut the feed-back loop<br />

– add a sample-and hold at the output of each stage to store<br />

the remainder, i.e. the stage quantization error<br />

– add a comparator, i.e. coarse ADC at input of each stage<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

205


Pipelined ADC 2<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

206


High-Speed ADC: Pipeline Processing<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

207


Robertson Diagram with Threshold Error<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

208


Impact of Comparator Offset on<br />

ADC Performance<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

As soon as the residue leaves<br />

the convergence region the<br />

result suffers from major errors<br />

209


Impact of Comparator Offset on<br />

ADC Performance<br />

Comparator offset reflects in<br />

non-linearity of ADC characteristic<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

210


Impairments in SAR Algorithms<br />

Finding:<br />

Each error in the amplifier gain or quantizer threshold causes<br />

divergence of the convergence algorithms and thus major<br />

conversion error<br />

How can we make SAR algorithms more robust<br />

Redundancy<br />

Redundant SAR algorithms<br />

Architecture implications<br />

Subranging ADC Pipeline ADC<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

211


How can we Strengthen the Algorithm?<br />

Gain and offset errors shift the algorithm out of the<br />

convergence window.<br />

Does an additional threshold help?<br />

No, not necessarily. Important is that the residue is not<br />

scaled back fully.<br />

Stephan Henzler Advanced Integrated Circuit Design 2011/12<br />

212


Redundant SAR Algorithms<br />

Stage quantizer with B bit<br />

(here B=2)<br />

Gain factor = 2 B<br />

Sensitive to thresh. var.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Stage quantizer with B bit<br />

(here B=2)<br />

Gain factor < 2 B<br />

redundant SAR<br />

not sensitive to thres. var.<br />

213


Redundant Pipeline ADC Algorithm<br />

Redundant algorithm<br />

– Two thresholds<br />

– Gain ( = 2 ) does not scale<br />

residue back to full scale<br />

Stage resolution 1 bit<br />

Information contained<br />

in b i is 1.5 bit<br />

Redundancy<br />

Residue stays in<br />

convergence box even<br />

with strong gain and<br />

offset variations<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

214


Subranging Principle<br />

quantization error<br />

Principle: Coarse quantization in frontend ADC and fine<br />

quantization of residue in backend ADC<br />

Pipelining possible (s&h between frontend and backend<br />

Generalization to multi-stage ADC ( pipeline ADC)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

215


Model of Frontend ADC<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

216


Linear Model of Subranging ADC<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

217


What is the “Digital Result Combiner“?<br />

Output of forward and backward ADC from last slide:<br />

Multiply result of backend ADC by 1/a and add to B out,1<br />

Overall quantization error only depends on quantization error<br />

of backend ADC<br />

Quantization error of backend ADC is scaled by 1/a<br />

Resolution:<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

218


Linear Model of Subranging ADC<br />

Effective resolution of frontend ADC is ld(a)<br />

not necessarily the same as the number of bits of B out,1<br />

Analog and digital gain must match, otherwise leakage of<br />

quantization error of frontend ADC<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

219


Reconstruction of Signal<br />

Error free reconstruction requires matching between analog<br />

gain a and digital gain a d<br />

In the context of variations this requires calibration<br />

matching<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

220


General Pipeline SAR ADC<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

221


General Pipeline SAR ADC II<br />

As long as analog and digitals gains match all intermediate<br />

terms vanish<br />

Resolution R:<br />

Gain elements determine resolution, not the stage quantizers<br />

Effective stage resolution:<br />

Last stage must not saturate under all circumstances!<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

222


Background Calibration for Stage Gain<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Digital gain is<br />

continuously<br />

adjusted, i.e. even<br />

slow transient<br />

variations are<br />

corrected<br />

Li et al., Background Calibration Techniques for Multistage Pipelined ADCs With Digital Redundancy, TCAS II, 9/2003.<br />

Fu et al., A Digital Background Calibration Technique for Time-Interleaved Analog-to-Digital Converters, JSSC, 12/1998<br />

Liu et al., A 15b 40MS/s CMOS Pipelined ADC with Digital Background Calibration, JSSC, 5/2005<br />

many more …<br />

223


Classification of Callibration Techniques<br />

Calibration comprises two phases<br />

– Error estimation<br />

– Error correction<br />

Analog approach additional analog components, noise,<br />

power, distortion, etc.<br />

Digital approach: Works on reults only, i.e. does not interfere<br />

with analog signal processing<br />

Calibration<br />

Foreground Background<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Virtual True<br />

Ginés et al., A Survey on Digital Background Calibration of ADCs, ECCTD, 2009.<br />

224


Summary Pipeline ADC<br />

Stage errors can be tolerated if the residue stays inside the<br />

convergence region<br />

– Minimum requirement is that the residue is back in the convergence region<br />

before the final quantizer)<br />

– Take care for nonlinearity which is not revealed by the linear model<br />

Trade-off sampling frequency – resolution – latency<br />

Number of stages, i.e. number of elements grows linearly<br />

with resolution (not exponentially, ref flash ADC)<br />

Accurate sample-and-hold elements required<br />

(That’s the reason why pipelined time-to-digital converters do not exist)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

225


Nyquist Rate Analog-to-Digital Converters<br />

– Flash Converter –<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

226


implemented<br />

as parallel<br />

connection<br />

of 2 unit resistors<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Flash Converter<br />

Generate all switching thresholds in parallel<br />

and compare them to input voltage in parallel<br />

very fast, but high effort in terms of<br />

power, area, noise generation, clock<br />

distribution, input buffering<br />

high speed applications with moderate<br />

resolution<br />

227


Advantages<br />

Properties of Flash ADC<br />

– parallel processing very fast<br />

– no analog post-processing<br />

Disadvantages:<br />

– Huge hardware effort and power consumption (2 N )<br />

– high input capacitance<br />

– synchronous routing of clock signal<br />

Good for high-speed converters with low # of bits<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

228


thermometer code<br />

one-hot code<br />

transition detector<br />

Flash Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Thermometer-to-binary<br />

decoder often<br />

implemented in 2 steps<br />

– thermo one-hot<br />

– one-hot binary<br />

Allows for insertion of<br />

bubble correction in<br />

between decoders<br />

229


Bubble Correction in Flash Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

230


Bubble Correction in Flash Converter<br />

Bubbles in flash converters:<br />

Source of bubbles:<br />

– noise<br />

– meta-stability<br />

– x-talk<br />

– mismatch<br />

– …<br />

0 0 0 0 0 0 1 1 1 1 1 1<br />

0 0 0 1 0 0 1 1 1 0 1 1<br />

Basic bubble correction with 3-input NAND gate: transition<br />

only detected if more than one high signal occurs.<br />

More complex encoders require to eliminate long distance<br />

errors<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

231


Interpolating Flash Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Preamp. with moderate<br />

gain to provide smooth<br />

transition region<br />

Latch for sign detection<br />

Resistive interpolation<br />

to create additional<br />

transition curves in<br />

between 2 regular ones<br />

232


Interpolating Flash Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Interpolation does not work at<br />

boarders<br />

Overrange amplifiers required<br />

233


Interpolating Flash Converter (cont)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

additional series resistors to balance<br />

delays in high-speed interpolating<br />

flash converters<br />

234


Kickback Effect<br />

Especially in flash converters<br />

Clocked comparators produce lots of<br />

noise at their inputs when toggling<br />

from track to latch mode.<br />

Different impedance seen from both<br />

comp inputs<br />

(input drive vs. resistor ladder)<br />

Differential error that may corrupt<br />

next conversion<br />

Decay of error sets max sample rate<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

235


Folding ADC<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Similar to flash ADC:<br />

Reuse comparators by<br />

folding voltage back to<br />

reference range<br />

Reduced number of<br />

latches, i.e. suitable for<br />

high-speed ADCs with<br />

med. resolution<br />

Folding blocks cause<br />

nonlinearity<br />

Increased frequency<br />

236


Folding ADC: Operation Principle<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Folding Blocks can be<br />

built by using several<br />

diffpairs connected to the<br />

same load resistors<br />

current is summed up<br />

and converted to the<br />

output voltage<br />

Frequency increases<br />

tough bandwidth<br />

requirements<br />

237


Folding ADC: Basic Schematic<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

238


High-Speed ADC: Parallel Processing II<br />

Idea:<br />

Use N (slow) converters in<br />

parallel in a time multiplexed<br />

mode to achieve high-speed<br />

data conversion<br />

Effort:<br />

• N parallel converters<br />

• Sampler and mux at full-speed<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

239


High-Speed ADC: Parallel Processing I<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

240


Chapter 7<br />

Comparators<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

241


Ideal Comparator<br />

Compare input signal to reference and provide binary output<br />

signal<br />

Often same symbol as for opamp<br />

(reasonable as open loop opamp behaves like a comparator)<br />

Comparator is essentially an amplifier with saturation,<br />

ideal comparator means infinite gain in VCVS not realistic<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

242


Static Characteristics of Comparator<br />

Comparator gain<br />

Maximum voltage for negative saturation V DL<br />

Minimum voltage for positive saturation V DH<br />

Comparator resolution: (min. voltage increment, determines comparator gain)<br />

Offset voltage: Horizontal shift of characteristic<br />

Input common mode range<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

243


Dynamic Characteristics of Comparator<br />

Note:<br />

Comparators work in large signal mode of operation<br />

– basic circuit theory to reveal trade-offs and mechanisms<br />

– simulation to determine actual performance figures<br />

Main dynamic performance figure: propagation delay td<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

244


Operational Amplifier as Comparator<br />

Opamp in open-loop configuration is comparator<br />

– asynchronous<br />

– relatively slow due to high gain and stability requirement<br />

– offset error (may be compensated by correlated double sampling,<br />

but this also means synchronous operation)<br />

– Consider DC operating point at input for a reference voltage ≠ 0<br />

– Compensation cap may be disconnected during latching<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

245


OpAmp Comparator Dynamics<br />

Gain-Bandwidth trade-off<br />

– gain determined by desired resolution<br />

– bandwidth determined by desired propagation delay<br />

Amplifier model<br />

Step response<br />

Propagation Delay<br />

(for min step, larger step is faster)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

output signal [norm]<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

-2.0 -0.1<br />

-0.5<br />

Response of Stable 1st Order Linear System<br />

-1.0<br />

-1.0<br />

-0.5<br />

-2.0<br />

-0.1<br />

0<br />

0 2 4 6 8 10<br />

time [AU]<br />

246


Comparator Propagation Delay<br />

Linear mode of operation<br />

Propagation delay for small input signals is determined by<br />

linear small signal dynamics of amplifier<br />

Slew rate limited mode of operation<br />

Propagation delay for large input signals is dominated by<br />

slew rate of opamp output stage<br />

Propagation delay for slew rate limited operation<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

247


Discrete Time Comparators<br />

In some applications comparator function only desired<br />

– during certain intervals<br />

– at certain discrete time instances<br />

Allows for offset compensation via auto-zeroing<br />

and other switched capacitor benefits<br />

Allows for amplifiers in positive feedback configuration<br />

– full level always reached<br />

– gain boosting (reuse one amplifier by cyclic amplification<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

248


Track & Latch Circuit I<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

249


Track & Latch Circuit II<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

250


Principle of Track-and-Latch Stage<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

251


Linear Dynamic of Latch<br />

Linear small signal analysis (ref. Schaltungstechnik 2)<br />

Node voltages<br />

Differential voltage<br />

Propagation delay<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

output signal [norm]<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Response of Instable 1st Order Linear System (Latch)<br />

0.4<br />

0.1<br />

0.01<br />

0<br />

0 0.5 1 1.5 2<br />

time [AU]<br />

2.5 3 3.5 4<br />

252


Latched Comparators I<br />

Standard architecture for high-speed comparators<br />

Latch offset voltage limits resolution of latch-only comparator<br />

scaled down by gain of pre-amplifier<br />

Two step approach:<br />

– analog pre-amplifier stage(s)<br />

– regenerative track and latch stage<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

253


Pre-amplifier:<br />

– 1-3 amplifier stages<br />

Latched Comparators II<br />

– low gain, high-speed<br />

– delay along amplifier chain<br />

– separation of input from latch to reduce loading and avoid<br />

kickback effect<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

254


Track & latch circuit:<br />

Latched Comparators III<br />

– amplifies signal in track mode<br />

– restores (regenerates) signal to full rail in regenerative<br />

latch mode (positive feedback)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

255


Input Referred Offset of Latch<br />

Input referred offset error of latch stage is reduced by gain A<br />

of pre-amplifier<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

256


Current Mode (CML) Latch<br />

Combines amplifier and<br />

latch functionality<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

257


Memory and Hysteresis in Comparators<br />

Hysteresis:<br />

Switching threshold is different when switching from low to<br />

high and from high to low, respectively.<br />

Useful to avoid bouncing outputs for small (noisy) signals<br />

near comparator threshold<br />

Memory effect:<br />

Kind of hysteresis that causes the comparator decision to be<br />

dependent on previous decisions.<br />

Has to be strongly avoided in Nyquist rate ADCs such as<br />

flash converters.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

258


Elimination of Memory Effect<br />

Precharge and equalize circuit elements eliminate all<br />

information from previous cycles and decisions<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

259


Switched Capacitor Comparator<br />

Offset compensated<br />

Threshold determined by capacitynce ratio<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

260


Chapter 8<br />

Oversampled Converters<br />

Sigma-Delta Modulator<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

261


Quantization Noise in A/D-Converters<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

262


Linear Model of Quantization Noise<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

263


Quantization Noise and Oversampling<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

264


Quantization Noise and Oversampling<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

265


Quantization Noise and Oversampling<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

266


Feasibility of Oversampling<br />

Goal: Implement ADC (12bit, 44kHz BW) by 1 bit quantizer<br />

with oversampling<br />

12 bit <br />

Same SNR with 1 bit quantizer:<br />

Sampling frequency:<br />

Conclusion: Even medium resolution and low bandwidth<br />

leads to unacceptably high OSR<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

267


Oversampling with Noise Shaping<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

268


First Order Noise Shaping<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

269


First Order Noise Shaping<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

270


First Order Noise Shaping<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

271


Calculation of Signal-to-Noise Ratio<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

272


Calculation of Signal-to-Noise Ratio<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

273


Calculation of Signal-to-Noise Ratio<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

274


SC Implementation of 1. Order<br />

ΣΔ Modulator<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

275


DAC Accuracy<br />

Linearity error of DAC looks like input signal<br />

DAC needs full accuracy even if quantizer resolution is low<br />

Dynamic element matching<br />

randomizes DAC linearity errors suppressed by OSR<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

276


Comparison Nyquist Rate vs. SD AD<br />

Nyquist Rate ADCs Sigma Delta ADCs<br />

High voltage domain resolution Low voltage domain resolution<br />

in extreme case only 1 bit<br />

Low time domain resolution<br />

f s f Nyquist ( x 2-10)<br />

Low to medium resolution<br />

..(high)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

High time domain resolution<br />

f s >> f Nyquist ( x 64-512)<br />

Very high resolution<br />

up to 20 bit<br />

Result can be directly used Large decimation filter required<br />

One output symbol = one sample One sample distributed over many<br />

output symbols<br />

Medium speed requirements for all<br />

circuit block<br />

Very high speed requirements for<br />

OpAmps, DAC, etc.<br />

277


2. Order Noise Shaping<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

278


Calculation of Transfer Functions<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

279


Noisespectrum<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

280


Simulation with Matlab/Simulink<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

281


Simulation for OSR=32<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

282


Output Spectrum of ΣΔ-Modulator for<br />

Sinusoidal Input Signal<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

283


Output Spectrum of ΣΔ-Modulator for<br />

Sinusoidal Input Signal<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

284


Input Level Dependent SNR<br />

2. Order<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

1. Order<br />

285


OSR Dependent Peak-SNR<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

286


Tones<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

287


power spectral density<br />

0<br />

-50<br />

-100<br />

Tones in Frequency Domain<br />

-150<br />

0 0.1 0.2 0.3 0.4 0.5<br />

frequency/sampling frequency<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

288


Dithering<br />

Reduce the risk of tones by randomizing (artificially) the<br />

comparator input signal: Dithering<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

pseudo random signal<br />

affected by noise shaping, i.e.<br />

noise power mainly shifted to high frequencies<br />

SNR only slightly reduced<br />

289


power spectral density<br />

power spectral density<br />

0<br />

-50<br />

-100<br />

-150<br />

0 0.1 0.2 0.3 0.4 0.5<br />

frequency/sampling frequency<br />

0<br />

-50<br />

-100<br />

-150<br />

0 0.1 0.2 0.3 0.4 0.5<br />

frequency/sampling frequency<br />

-100<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

power spectral density<br />

power spectral density<br />

0<br />

-50<br />

-150<br />

0 0.1 0.2 0.3 0.4 0.5<br />

frequency/sampling frequency<br />

0<br />

-50<br />

-100<br />

-150<br />

0 0.1 0.2 0.3 0.4 0.5<br />

frequency/sampling frequency<br />

290


maximum noise peak<br />

Tones<br />

input DC level<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

291


3. Order Single-Loop ΣΔ-Modulator<br />

(not cascaded)<br />

Deviation from „ideal“ transfer functions due to stability<br />

requirements<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

J. Sauerbrey<br />

292


STF of 3. Order ΣΔ-Modulator<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

293


Noiseshaping of Various ΣΔ-Modulators<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

294


Cascaded ΣΔ-Modulator (Multi stAge noise Shaping)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

295


Noiseshaping of Various ΣΔ-Modulators<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

296


3. Order MASH Structure<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

297


Scaling of ΣΔ-Modulator<br />

1. If inputs of integrators become too large for a significant time<br />

the integrators saturate<br />

non-linearity clipping strong non-linear distortion<br />

(Comparator should be only non-linear component)<br />

2. Exploit full dynamic range for good SNR<br />

Modulator Scaling:<br />

Linear transformation so that<br />

saturation of integrators is avoided<br />

dynamic range is exploited<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

298


hist(S1)<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5<br />

S1<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

hist(S2)<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

-4 -3 -2 -1 0 1 2 3 4<br />

S2<br />

299


hist(S1)<br />

x 10<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5<br />

S1<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

hist(S2)<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

x 10<br />

2<br />

0<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

S2<br />

300


hist(S1)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

S1<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

hist(S2)<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-1.5 -1 -0.5 0 0.5 1 1.5<br />

S2<br />

301


Application of ΣΔ-Modulator<br />

in Data Converters (ADC)<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

302


ΣΔ-Analog-to-Digital Conversion<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

303


Decimation Filtering<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

304


Sinc-Filter<br />

Basic low-pass filter averages N subsequent samples:<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13 305


Sinc Filter Transfer Functions<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

306


Sinc Filter Transfer Functions<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

307


Sinc Filter Implementation<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

308


Implementation of Sinc-Filter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

309


ΣΔ-Digital-to-Analog Conversion<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

310


ΣΔ-Digital-to-Analog Conversion<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

311


Multi-Bit Sigma Delta Converter<br />

Replace single-bit quantizer by multi-bit quantizer<br />

Quantizer: Comparator Flash ADC<br />

Feedback DAC: implicit real DAC<br />

Comparator and DAC nonlinearity become critical<br />

Countermeasures: Dynamic element matching, mismatch<br />

shaping, trimming, (digital) correction<br />

Benefit: Reduced OSR and/or better resolution<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

312


Continuous Time Sigma-Delta Converter<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

313


Comparison of Discrete- and Continuous<br />

Time Sigma-Delta Converters<br />

Anti-Aliasing Filter Explicit anti-aliasing filter<br />

(AAF) required<br />

Sampling Sampling at input<br />

low jitter & full linearity<br />

required for sampler<br />

Max. frequency and<br />

bandwidth of opamps<br />

Discrete-Time Continuous-Time<br />

All transients must settle<br />

within half of clock cycle,<br />

quickly changing pulses<br />

everywhere in circuit<br />

high bandwidth<br />

requirements limit max.<br />

frequency<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Implicit filtering<br />

AAF may be obsolete for<br />

some applications<br />

Sampling at comparator, i.e.<br />

within ∑∆-loop<br />

sampling error subject to<br />

noise shaping<br />

Continuous time waveforms<br />

5-10x relaxed bandwidth<br />

requirements<br />

higher clock frequency<br />

possible<br />

314


Comparison of Discrete- and Continuous<br />

Time Sigma-Delta Converters<br />

Jitter Only critical for sampler but<br />

not for rest of sigma delta<br />

modulator<br />

Discrete-Time Continuous-Time<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Very sensitive to timing<br />

variations of clock<br />

Loopdelay Not an issue Very sensitive to loop delay<br />

Switches Signal dependant on<br />

resistance<br />

Signal dependant<br />

comparator delay<br />

No switches<br />

Not an issue Very sensitive causes<br />

harmonic distortion<br />

315


Comparison of Discrete- and Continuous<br />

Time Sigma-Delta Converters<br />

Feedback-DAC Low sensitivity to waveform<br />

settling not critical<br />

Process variations Filter transfer function<br />

based on capacitor ratios<br />

very robust<br />

Discrete-Time Continuous-Time<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

Very sensitive to waveform<br />

and settling, limits linearity<br />

of modulator<br />

Filter transfer function<br />

depends on RC constants,<br />

i.e. very sensitive to<br />

variations<br />

Noise generation Switching generates noise Reduced supply and ground<br />

noise<br />

316


Web References<br />

Murmann. VLSI Data Conversion Circuits. Stanford University.<br />

Henzler. High-Speed Digital CMOS Circuits. TU Munich.<br />

Stephan Henzler Mixed-Signal-Electronics 2012/13<br />

317

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!