29.04.2013 Views

Mixed-Signal-Electronics - Lehrstuhl für Technische Elektronik - TUM

Mixed-Signal-Electronics - Lehrstuhl für Technische Elektronik - TUM

Mixed-Signal-Electronics - Lehrstuhl für Technische Elektronik - TUM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong><br />

PD Dr.-Ing. Henzler<br />

Prof. Dr. Schmitt-Landsiedel<br />

<strong>Lehrstuhl</strong> <strong>für</strong> <strong>Technische</strong> <strong>Elektronik</strong><br />

<strong>Technische</strong> Universität München<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

1


<strong>Mixed</strong>-<strong>Signal</strong>-Team<br />

Prof. Dr. Schmitt-Landsiedel<br />

dsl@tum.de<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

PD Dr. Henzler<br />

henzler@tum.de<br />

2


Stephan‟s ambition for this course …<br />

Simplicity is the Ultimate Sophistication<br />

Leonardo Da Vinci<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

But don‟t misunderstand,<br />

this does not mean that you<br />

don‟t have to exercise!<br />

3


Course and Online Material<br />

Lecture notes<br />

available in the Fachschaft EI (<strong>TUM</strong>), handout (GIST <strong>TUM</strong> Asia)<br />

Online material comprising<br />

– annotated slides<br />

– video stream of past lectures (GIST <strong>TUM</strong> Asia)<br />

www.lte.ei.tum.de/homes/henzler<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

4


Student Discussion Forum<br />

Ask questions online … other students can benefit, too<br />

Try to answer other questions … improves your<br />

understanding<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

5


Administratives<br />

Lecture: Stephan Henzler<br />

henzler@tum.de<br />

office hours: online consultation<br />

Tutorial: Nasim Pour Aryan<br />

n.aryan@tum.de<br />

office hours online & by arrangement<br />

Exam: in written form,<br />

preliminary date February, 14th 2012, 14:00 (<strong>TUM</strong>)<br />

Credits: 4.5 ECTS credits (<strong>TUM</strong>)<br />

Language: english<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

6


“Today everything is digital –<br />

Why do we need <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong>?”<br />

Digital System, e.g.<br />

- digital communication<br />

(DSL, GSM, …, LTE)<br />

- computer equipment<br />

- multimedia<br />

(DVD, mp3, camera… )<br />

- control application<br />

(e.g. automotive)<br />

discrete sequence of<br />

numbers from a discrete set<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

7


The Macroscopic World is Purely Analog<br />

motion/acceleration<br />

mechanical force<br />

sound waves<br />

light<br />

electromagnetic<br />

field<br />

Digital System, e.g.<br />

- digital communication<br />

(DSL, GSM, …, LTE)<br />

- computer equipment<br />

- multimedia<br />

(DVD, mp3, camera… )<br />

- control application<br />

(e.g. automotive)<br />

discrete sequence of<br />

numbers from a discrete set<br />

The mixed-signal shell is a bridge between<br />

temperature sense organs<br />

– the analog environment and the digital signal processing<br />

– the physical representation (voltage/current) and a mathematical abstraction<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

sensors/<br />

actuators<br />

time<br />

even „digital‟<br />

signals on a<br />

transmission<br />

channel<br />

8


The Macroscopic World is Purely Analog<br />

motion/acceleration<br />

mechanical force<br />

sound waves<br />

light<br />

electromagnetic<br />

field<br />

ADC<br />

DAC<br />

Digital System, e.g.<br />

- digital communication<br />

(DSL, GSM, …, LTE)<br />

- computer equipment<br />

- multimedia<br />

(DVD, mp3, camera… )<br />

- control application<br />

(e.g. automotive)<br />

discrete sequence of<br />

numbers from a discrete set<br />

The mixed-signal shell is a bridge between<br />

temperature sense organs<br />

– the analog environment and the digital signal processing<br />

– the physical representation (voltage/current) and a mathematical abstraction<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

sensors/<br />

actuators<br />

time<br />

even „digital‟<br />

signals on a<br />

transmission<br />

channel<br />

9


Generic <strong>Mixed</strong> <strong>Signal</strong> System<br />

What means mixed-signal?<br />

<strong>Mixed</strong>-signal refers to a system which processes both analog<br />

and digital signals and which contains converter blocks that<br />

enable interaction between the two domains.<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

10


Topics of MSE Course<br />

Structure of mixed signal systems and mathematical<br />

representation of discrete time signals.<br />

ADC<br />

discrete time<br />

discrete states<br />

discrete time (step function)<br />

continuous states<br />

Lecturer Page Version<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

digital discrete time (step function)<br />

discrete values (states)<br />

11


Sample & hold circuits<br />

Topics of MSE Course<br />

Switched-capacitor circuits<br />

Data converter fundamentals (ADC, DAC)<br />

converter parameters and characteristics<br />

Nyquist rate D/A Converters<br />

Nyquist rate A/D Converters<br />

Oversampling Converters<br />

Outlook: More mixed signal building blocks<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

12


Recommended Literature<br />

David A. Jones<br />

Ken Martin<br />

Analog Integrated Circuit Design<br />

(no picture for copyright reasons)<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

Relevant chapters:<br />

Chapter 7:<br />

Comparators.<br />

Chapter 8:<br />

Sample-and-Holds<br />

Chapter 9:<br />

Discrete Time <strong>Signal</strong>s<br />

Chapter 10:<br />

Switched Capacitor Circuits<br />

Chapter 11:<br />

Data Converter Fundamentals<br />

Chapter 12:<br />

Nyquist-Rate D/A Converters<br />

Chapter 13:<br />

Nyquist-Rate A/D Converters<br />

Chapter 14:<br />

Oversampling Converters<br />

13


Additional Literature & References<br />

Razavi. Principles of Data Conversion System Design.<br />

Wiley, 1994.<br />

Allen, Holberg. CMOS Analog Circuit Design. Oxford, 2010.<br />

Baker, Li, Boyce. CMOS Circuit Desig, Layout, Simulation.<br />

Wiley, 1997.<br />

Gregorian, Temes. Analog MOS Integrated Circuits for<br />

<strong>Signal</strong> Processing. Wiley 1986.<br />

Oppenheim. Zeitdiskrete <strong>Signal</strong>verarbeitung. Oldenbourg<br />

1999.<br />

Norsworthy, Schreier, Temes. Delta-Sigma Data<br />

Converters. IEEE Press, 1997.<br />

Schreier, Temes. Understanding Delta Sigma Data<br />

Converters. IEEE Press 2005.<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

14


Constraints of <strong>Mixed</strong> <strong>Signal</strong> Circuits in SoC<br />

PROS CONS<br />

• Cheap implementation of complex<br />

signal processing tasks<br />

• System-on-chip (SOC)<br />

Small pcb footprint<br />

• Fast time reference/clock<br />

• Digitally assisted analog<br />

• All advantages of digital<br />

systems, e.g. robustness, noise<br />

immunity, data storage,<br />

reconfigurability, efficient highly<br />

automated design and test<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

• Need to build analog circuits in<br />

digital process, i.e.<br />

• Devices optimized for high<br />

switching speed not for analog,<br />

(e.g. small gm/gds)<br />

• Transistors with high field<br />

and short channel effects<br />

µ(V G), V th(W,L,V DS,V BS), I gate, I DB<br />

• <strong>Signal</strong> contamination due to digital<br />

switching noise, e.g. cross talk,<br />

supply noise substrate coupling<br />

• several 100mA digital currents<br />

• V analog signals<br />

15


Generic Structure of <strong>Mixed</strong>-<strong>Signal</strong> Systems<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

16


Representation of Discrete Time <strong>Signal</strong>s and<br />

Spectral Transformation<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

17


Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12 18


Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12 19


Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

20


Representation of Discrete Time <strong>Signal</strong>s and<br />

Spectral Transformation<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

21


Representation of Discrete Time <strong>Signal</strong>s and<br />

Spectral Transformation<br />

Spectrum of a sampled signal:<br />

s(t) = X<br />

±(t ¡ nT ) $ S(!) = 2¼<br />

T<br />

n<br />

xs(t) = xc(t) ¢ s(t) $<br />

Sampling means multiplication<br />

of continuous time signal with<br />

pulse train<br />

X<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

k<br />

±(! ¡ k!s) !s = 2¼<br />

T<br />

Xs(!) = 1<br />

2¼ Xc(!) ¤ S(!)<br />

= 1<br />

T Xc(!) ¤ X<br />

= 1<br />

T<br />

X<br />

k<br />

In frequency domain this translates<br />

into convolution of signal spectrum<br />

with spectrum of pulse train.<br />

This is simply a copy and shift of<br />

the spectrum to multiples of the<br />

sampling frequency<br />

k<br />

Xc(! ¡ k!s)<br />

±(! ¡ k!s)<br />

22


Representation of Discrete Time <strong>Signal</strong>s and<br />

Spectral Transformation<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

23


Aliasing in the Frequency Domain<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

t<br />

t<br />

t<br />

t<br />

t<br />

t<br />

24


amplitude fsampling = 1 f signal,1 = 0.22<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Sampling and Aliasing 1<br />

0 5 10 15<br />

samples<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

25


amplitude fsampling = 1 f signal,2 = 0.22 + fsampling<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Sampling and Aliasing 2<br />

0 5 10 15<br />

samples<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

26


amplitude<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Sampling and Aliasing 3<br />

Only with the Nyquist criterion it is assured that the samples<br />

represent the signal unambiguously<br />

0 5 10 15<br />

samples<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

27


Remember: All realizable signals have<br />

–<br />

–<br />

–<br />

Practical Sampling: Sample & Hold<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

t<br />

t<br />

t<br />

28


Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

29


Practical Sampling: Sample & Hold<br />

Remember: All realizable signals have<br />

– finite slope<br />

– finite pulse width<br />

– finite bandwidth<br />

– finite value<br />

Hence sampling means always SAMPLE & HOLD<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

30


Sampling with Finite Pulse Width<br />

x sh(t) = xs(t) ¤ h(t)<br />

=<br />

x sh(!) = 1<br />

¿<br />

= 1<br />

¿<br />

1X<br />

n=¡1<br />

+1<br />

Z<br />

¡1<br />

1X<br />

= ¡ 1<br />

j!¿<br />

xc[n] 1<br />

¿ [¾(t ¡ nT ) ¡ ¾(t ¡ nT ¡ ¿)]<br />

1X<br />

n=¡1<br />

n=¡1<br />

1X<br />

xc[n]<br />

n=¡1<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

xc[n] [¾(t ¡ nT ) ¡ ¾(t ¡ nT ¡ ¿)] e ¡j!t dt<br />

nT +¿<br />

Z<br />

nT<br />

e ¡j!t dt<br />

xc[n] h<br />

e ¡j!ti nT +¿<br />

nT<br />

(t)<br />

t<br />

31


Xsh(!) = ¡ 1<br />

j!¿<br />

Sampling with Finite Pulse Width<br />

=<br />

1X<br />

n=¡1<br />

Distortion of base band and damping of mirror spectra<br />

– visible in DAC<br />

– not visible in ADC<br />

1X<br />

n=¡1<br />

xc[n]e ¡j!nT<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

xc[n] ³<br />

e ¡j!nT e ¡j!¿ ´<br />

¡ e<br />

j!nT<br />

1<br />

j!¿<br />

= Xs(!)e ¡1 2j!¿ ej 1 2 !¿ ¡ e ¡j 1 2 !¿<br />

2j 1 2 !¿<br />

= Xs(!)e ¡j 1 2 !¿ sin ³ 1<br />

2 !¿ ´<br />

³<br />

´<br />

1 ¡ e<br />

¡j!¿<br />

ideal sampling X S() impact of hold<br />

1<br />

2 !¿<br />

32


Representation of Discrete Time <strong>Signal</strong>s and<br />

Spectral Transformation<br />

Henzler, Schmitt-Landsiedel <strong>Mixed</strong>-<strong>Signal</strong>-<strong>Electronics</strong> 2011/12<br />

33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!