29.04.2013 Views

slides - Lehrstuhl für Technische Elektronik - TUM

slides - Lehrstuhl für Technische Elektronik - TUM

slides - Lehrstuhl für Technische Elektronik - TUM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Mixed-Signal-Electronics<br />

Dr.-Ing. Henzler<br />

Dipl.-Ing. Cenk Yilmaz<br />

Prof. Dr. Schmitt-Landsiedel<br />

<strong>Lehrstuhl</strong> <strong>für</strong> <strong>Technische</strong> <strong>Elektronik</strong><br />

<strong>Technische</strong> Universität München<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

1


Prof. Dr. Schmitt-Landsiedel<br />

dsl@tum.de<br />

Mixed-Signal-Team<br />

PD Dr. Henzler<br />

henzler@tum.de<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

Dipl.-Ing. Yilmaz<br />

yilmaz@tum.de<br />

2


Course and Online Material<br />

Lecture notes<br />

available in the Fachschaft EI (<strong>TUM</strong>), handout (GIST <strong>TUM</strong> Asia)<br />

Online material comprising<br />

– annotated <strong>slides</strong><br />

– video stream of past lectures<br />

www.lte.ei.tum.de/homes/henzler<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

3


Administratives<br />

Lecture: Stephan Henzler<br />

henzler@tum.de<br />

office hours: online consultation<br />

Tutorial: Cenk Yilmaz<br />

yilmaz@tum.de<br />

office hours online & by arrangement<br />

Exam: in written form,<br />

preliminary date February, 15th 2011, 14:00 (<strong>TUM</strong>)<br />

Credits: 4.5 ECTS credits (<strong>TUM</strong>)<br />

Language: english<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

4


The Macroscopic World is Purely Analog<br />

motion/acceleration<br />

mechanical force<br />

sound waves<br />

light<br />

electromagnetic<br />

field<br />

temperature<br />

Digital System, e.g.<br />

- digital communication<br />

(DSL, GSM, …, LTE)<br />

- computer equipment<br />

- multimedia<br />

(DVD, mp3, camera… )<br />

- control application<br />

(e.g. automotive)<br />

discrete sequence of<br />

numbers from a discrete set<br />

continuous time<br />

Our environment is always analog … and values<br />

You just have to investigate the system in-depth!<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

sense organs<br />

sensors/<br />

actuators<br />

time<br />

even ‘digital’<br />

signals on a<br />

transmission<br />

channel<br />

5


The Macroscopic World is Purely Analog<br />

motion/acceleration<br />

mechanical force<br />

sound waves<br />

light<br />

electromagnetic<br />

field<br />

ADC<br />

DAC<br />

Digital System, e.g.<br />

- digital communication<br />

(DSL, GSM, …, LTE)<br />

- computer equipment<br />

- multimedia<br />

(DVD, mp3, camera… )<br />

- control application<br />

(e.g. automotive)<br />

discrete sequence of<br />

numbers from a discrete set<br />

The mixed-signal shell is a bridge between<br />

temperature sense organs<br />

– the analog environment and the digital signal processing<br />

– the physical representation (voltage/current) and a mathematical abstraction<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

sensors/<br />

actuators<br />

time<br />

even ‘digital’<br />

signals on a<br />

transmission<br />

channel<br />

6


Generic Mixed Signal System<br />

What means mixed-signal?<br />

Mixed-signal refers to a system which processes both analog<br />

and digital signals and which contains converter blocks that<br />

enable interaction between the two domains.<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

7


Topics of MSE Course<br />

Structure of mixed signal systems and mathematical<br />

representation of discrete time signals.<br />

ADC<br />

discrete time<br />

discrete states<br />

discrete time (step function)<br />

continuous states<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

digital discrete time (step function)<br />

discrete values (states)<br />

8


Sample & hold circuits<br />

Topics of MSE Course<br />

Switched-capacitor circuits<br />

Data converter fundamentals (ADC, DAC)<br />

converter parameters and characteristics<br />

Nyquist rate D/A Converters<br />

Nyquist rate A/D Converters<br />

Oversampling Converters<br />

Outlook: More mixed signal building blocks<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

9


Recommended Literature<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

Relevant chapters:<br />

Chapter 7:<br />

Comparators.<br />

Chapter 8:<br />

Sample-and-Holds<br />

Chapter 9:<br />

Discrete Time Signals<br />

Chapter 10:<br />

Switched Capacitor Circuits<br />

Chapter 11:<br />

Data Converter Fundamentals<br />

Chapter 12:<br />

Nyquist-Rate D/A Converters<br />

Chapter 13:<br />

Nyquist-Rate A/D Converters<br />

Chapter 14:<br />

Oversampling Converters<br />

10


Additional Literature & References<br />

Razavi. Principles of Data Conversion System Design.<br />

Wiley, 1994.<br />

Allen, Holberg. CMOS Analog Circuit Design. Oxford, 2010.<br />

Baker, Li, Boyce. CMOS Circuit Desig, Layout, Simulation.<br />

Wiley, 1997.<br />

Gregorian, Temes. Analog MOS Integrated Circuits for<br />

Signal Processing. Wiley 1986.<br />

Oppenheim. Zeitdiskrete Signalverarbeitung. Oldenbourg<br />

1999.<br />

Norsworthy, Schreier, Temes. Delta-Sigma Data<br />

Converters. IEEE Press, 1997.<br />

Schreier, Temes. Understanding Delta Sigma Data<br />

Converters. IEEE Press 2005.<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

11


Constraints of Mixed Signal Circuits in SoC<br />

PROS CONS<br />

• Cheap implementation of complex<br />

signal processing tasks<br />

• System-on-chip (SOC)<br />

Small pcb footprint<br />

• Fast time reference/clock<br />

• Digitally assisted analog<br />

• All advantages of digital<br />

systems, e.g. robustness, noise<br />

immunity, data storage,<br />

reconfigurability, efficient highly<br />

automated design and test<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

• Need to build analog circuits in<br />

digital process, i.e.<br />

• Devices optimized for high<br />

switching speed not for analog,<br />

(e.g. small gm/gds)<br />

• Transistors with high field<br />

and short channel effects<br />

µ(V G), V th(W,L,V DS,V BS), I gate, I DB<br />

• Signal contamination due to digital<br />

switching noise, e.g. cross talk,<br />

supply noise substrate coupling<br />

• several 100mA digital currents<br />

• V analog signals<br />

12


Generic Structure of Mixed-Signal Systems<br />

System Perspective<br />

Circuit Perspective<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

13


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

xs(t) = xc(t) X<br />

= X<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

n<br />

n<br />

±(t ¡ nT )<br />

x(nT )±(t ¡ nT )<br />

= X<br />

x[n]±(t ¡ nT )<br />

n<br />

14


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

Fourier Transformation<br />

X(!) =<br />

generalization<br />

s = j<br />

+1<br />

Z<br />

¡1<br />

x(t) = 1<br />

2¼<br />

x(t)e ¡j!t dt<br />

+1<br />

Z<br />

¡1<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

X(!)e j!t d!<br />

X(s) =<br />

+1<br />

Z<br />

¡1<br />

x(t)e ¡st dt<br />

Laplace Transformation<br />

15


Spectral Transformation of Discrete Time Signal<br />

Insertion of sampled signal in Fourier formula:<br />

X(!) =<br />

+1 Z<br />

X<br />

¡1<br />

= X<br />

Normalization of frequency to sampling frequency:<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

n<br />

n<br />

x(nT )<br />

x(nT )±(t ¡ nT )e ¡j!t dt<br />

+1<br />

Z<br />

¡1<br />

= X<br />

x(nT )e ¡j!nT<br />

n<br />

e ¡j!t ±(t ¡ nT )dt<br />

X(­) = X<br />

x[n]e ¡j­n X(z) = X<br />

x[n]z ¡n<br />

n<br />

FT of discrete sequence<br />

generalization<br />

z = e j­ = e j!T<br />

FT of sampled signal<br />

­ = !T = 2¼f<br />

n<br />

z-Transformation<br />

fs<br />

16


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

Meaning of frequency: oscillations per second.<br />

What is meaning of normalized frequency Ω?<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

Ω = angular change from sample to sample<br />

17


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

Spectrum of a sampled signal:<br />

s(t) = X<br />

±(t ¡ nT ) $ S(!) = 2¼<br />

T<br />

n<br />

xs(t) = xc(t) ¢ s(t) $<br />

Sampling means multiplication<br />

of continuous time signal with<br />

pulse train<br />

X<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

k<br />

±(! ¡ k!s) !s = 2¼<br />

T<br />

Xs(!) = 1<br />

2¼ Xc(!) ¤ S(!)<br />

= 1<br />

T Xc(!) ¤ X<br />

= 1<br />

T<br />

X<br />

k<br />

In frequency domain this translates<br />

into convolution of signal spectrum<br />

with spectrum of pulse train.<br />

This is simply a copy and shift of<br />

the spectrum to multiples of the<br />

sampling frequency<br />

k<br />

Xc(! ¡ k!s)<br />

±(! ¡ k!s)<br />

18


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

Aliasing occurs if mirror spectra overlap<br />

19


amplitude fsampling = 1 f signal,1 = 0.22<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Sampling and Aliasing 1<br />

0 5 10 15<br />

samples<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

20


amplitude fsampling = 1 f signal,2 = 0.22 + fsampling<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Sampling and Aliasing 2<br />

0 5 10 15<br />

samples<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

21


amplitude<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Sampling and Aliasing 3<br />

Only with the Nyquist criterion it is assured that the samples<br />

represent the signal unambiguously<br />

0 5 10 15<br />

samples<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

22


low-pass<br />

low-pass<br />

low-pass<br />

Aliasing in the Frequency Domain<br />

low-pass filtering<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

t<br />

t<br />

t<br />

t<br />

t<br />

t<br />

23


Practical Sampling: Sample & Hold<br />

Remember: All realizable signals have<br />

– finite slope (dx/dt)<br />

– finite pulse width, i.e. finite bandwidth<br />

– finite value<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

t<br />

t<br />

t<br />

ideal sampling<br />

step function<br />

alternative solution<br />

24


Practical Sampling: Sample & Hold<br />

Remember: All realizable signals have<br />

– finite slope<br />

– finite pulse width<br />

– finite bandwidth<br />

– finite value<br />

Hence sampling means always SAMPLE & HOLD<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

25


Sampling with Finite Pulse Width<br />

x sh(t) = xs(t) ¤ h(t)<br />

=<br />

x sh(!) =<br />

=<br />

1X<br />

n=¡1<br />

+1<br />

Z<br />

¡1<br />

1X<br />

n=¡1<br />

= ¡ 1<br />

j!<br />

xc[n] [¾(t ¡ nT ) ¡ ¾(t ¡ nT ¡ ¿)]<br />

1X<br />

n=¡1<br />

xc[n]<br />

1X<br />

n=¡1<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

xc[n] [¾(t ¡ nT ) ¡ ¾(t ¡ nT ¡ ¿)] e ¡j!t dt<br />

nT +¿<br />

Z<br />

nT<br />

e ¡j!t dt<br />

xc[n] h<br />

e ¡j!ti nT +¿<br />

nT<br />

(t)<br />

t<br />

26


Sampling with Finite Pulse Width<br />

Xsh(!) = ¡ 1<br />

j!<br />

=<br />

1X<br />

n=¡1<br />

Distortion of base band and damping of mirror spectra<br />

– visible in DAC<br />

– not visible in ADC<br />

1X<br />

n=¡1<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

xc[n] ³<br />

e ¡j!nT e ¡j!¿ ´<br />

¡ e<br />

j!nT<br />

xc[n]e ¡j!nT<br />

1<br />

j!<br />

= Xs(!)e ¡1 2j!¿ ¿ ej 1 2 !¿ ¡ e ¡j 1 2 !¿<br />

2j 1 2 !¿<br />

= Xs(!)¿e ¡j 1 2 !¿ sin ³ 1<br />

2 !¿ ´<br />

³<br />

´<br />

1 ¡ e<br />

¡j!¿<br />

ideal sampling X S() impact of hold<br />

1<br />

2 !¿<br />

27


Representation of Discrete Time Signals and<br />

Spectral Transformation<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

28


generalization<br />

X(s) =<br />

Relation Between s- and z-Plain<br />

Fourier Transformation:<br />

+1 Z<br />

X(!) =<br />

¡1<br />

x(t)e ¡j!t dt<br />

LaPlace Transformation: z-Transformation:<br />

+1 Z<br />

1X<br />

j<br />

¡1<br />

x(t)e ¡st dt X(z) =<br />

s<br />

<br />

z = e j!T<br />

discrete<br />

signals<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

Im(z)<br />

1X<br />

n=¡1<br />

x(nT )e ¡j!nT<br />

normalization<br />

&<br />

generalization<br />

n=¡1<br />

z<br />

x[n]z ¡n<br />

Re(z)<br />

29


Downsampling<br />

Additional information: If there is noise beween the repeated signal spectra, an additional filtering is required (low pass).<br />

However, it is sufficient to compute one out of L samples.<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

30


Downsampling II<br />

Down-sampling requires, that there is no signal energy in<br />

between baseband and mirror spectra (e.g. noise)<br />

In general this is not the case, so down-sampling may cause<br />

aliasing<br />

To avoid aliasing a low pass filter is required in front of downsampling<br />

block Decimation Filter (Decimator)<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

31


Upsampling<br />

Additional information: Fractional sample rate conversion is up-sampling followed by subsequent down-sampling. Low-pass filters<br />

may be shared. Compute only what is necessary!<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

32


Upsampling II<br />

Zero padding results in higher sampling rate<br />

However, this does not mean that mirror spectra occur only<br />

at multiples of the sampling frequency<br />

Imaging, i.e. replica in between 0..2<br />

Low pass filter removes images: Interpolation filter<br />

– Result in frequency domain: Replica only at k x f s<br />

– Result in time domain: Zeros move on real signal curve<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

33


Fractional Sample Rate Conversion<br />

Purpose: Change sample rate by a non-integer factor L/M<br />

Two possibilities:<br />

– Up-sampling by L, downsampling by M<br />

– Down-sampling by M, than up-sampling by L<br />

The order of up- and down-sampling may be exchanged<br />

without any change in the input/output behavior if the<br />

decimation factor M and the interpolation factor L are<br />

relatively prime.<br />

Henzler, Schmitt-Landsiedel Mixed-Signal-Electronics 2010/11<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!