28.04.2013 Views

Synthesis of ternary varieties of ε-Fe N: Experiment and theory. Joint ...

Synthesis of ternary varieties of ε-Fe N: Experiment and theory. Joint ...

Synthesis of ternary varieties of ε-Fe N: Experiment and theory. Joint ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

www.iac.uni-stuttgart.de<br />

03-10<br />

<strong>Synthesis</strong> <strong>of</strong> <strong>ternary</strong> <strong>varieties</strong> <strong>of</strong> -<strong>Fe</strong> 3N:<br />

<strong>Experiment</strong> <strong>and</strong> <strong>theory</strong>.<br />

<strong>Joint</strong> Project:<br />

Rainer Niewa, Dieter Rau, Univ. Stuttgart<br />

Ulrich Schwarz, Carola Müller, MPI CPfS<br />

Richard Dronskowski, Michael Wessel, RWTH Aachen<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

Rh<strong>Fe</strong> 3N<br />

A. Houben, P. Mueller, J. von Appen, H. Lueken,<br />

R. Niewa, R. Dronskowski, Angew. Chem. Int. ed.<br />

(2005), 44, 7212-7215.


www.iac.uni-stuttgart.de<br />

03-10<br />

Theoretical Method & Strategy<br />

Used Programs:<br />

• DFT calculations using the program VASP<br />

- generalized gradient approximation (GGA) <strong>of</strong> PBE-type<br />

- projector-augmented wave (PAW) potentials<br />

- Energy cut-<strong>of</strong>f: 500 eV<br />

• Thermochemical properties using the program FROPHO<br />

Procedure:<br />

- Investigating the influence <strong>of</strong> pressure<br />

- Investigating the influence <strong>of</strong> temperature<br />

→ Finding the synthesis conditions<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

→ no high-pressure synthesis<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

→ no high-temperature synthesis<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

→ no high-pressure synthesis<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

→ high-temperature synthesis possible<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Phase Diagram <strong>Fe</strong>–N<br />

K. H. Jack, Proc. Roy. Soc. A 208 (1951) 200.<br />

H. A. Wriedt, N. A. Gokcen, R. H. Nafziger, Bull. Alloy Phase Diagrams 8 (1987) 355.<br />

P<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

-<strong>Fe</strong> 3N 1+x<br />

(P6 322)


www.iac.uni-stuttgart.de<br />

03-10<br />

<strong>Experiment</strong>al Techniques<br />

Multi Anvil Module with Uniaxial Press<br />

• Walker-type module<br />

• MgO/Cr 2O 3 octahedra, h-BN crucibles<br />

• Resistance heating by graphite tubes surrounding the<br />

sample crucible<br />

• Pressure <strong>and</strong> temperature calibration via electrical<br />

resistivity <strong>of</strong> Bi <strong>and</strong> thermocouples<br />

• Max. P = 15(2) GPa <strong>and</strong> T = 1600(200) K<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Treatment: Result:<br />

<strong>Fe</strong>/Co in N 2, NH 3<br />

T 1100 °C, P = 0.1 MPa -<strong>Fe</strong> 3N + <strong>Fe</strong> 1–xCo x<br />

High pressure<br />

High Temperature<br />

Formation <strong>of</strong><br />

-phases<br />

Intensity<br />

CoK<br />

30 40 50 60 70 80 90 100<br />

Diffraction Angle 2/ Degree<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

Co + <strong>Fe</strong> 4 N, 15 GPa, 1200°C<br />

Co + <strong>Fe</strong> 3 N, 15 GPa, 1200°C<br />

-<strong>Fe</strong> 3 N Educt<br />

<strong>Fe</strong> 4 N Educt


www.iac.uni-stuttgart.de<br />

03-10<br />

<strong>Synthesis</strong> <strong>Experiment</strong>s<br />

Treatment: Result:<br />

<strong>Fe</strong>/Co in N 2, NH 3<br />

T 1100 °C, P = 0.1 MPa -<strong>Fe</strong> 3N + <strong>Fe</strong> 1–xCo x<br />

Hp ht synthesis<br />

<strong>of</strong> -phases<br />

Intensity<br />

CoK<br />

20 30 40 50 60 70 80 90 100<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

Co + <strong>Fe</strong> 4 N, 7 GPa, 1100 °C<br />

Co + <strong>Fe</strong> 3 N, 9 GPa, 700 °C<br />

-<strong>Fe</strong> 3 N 0.75<br />

hp-<strong>Fe</strong> 4 N<br />

-<strong>Fe</strong> 3 N<br />

Diffraction Angle 2 / Degree


www.iac.uni-stuttgart.de<br />

03-10<br />

Intensity<br />

CoK<br />

<br />

<br />

<br />

<br />

7 GPa, 1100°C<br />

30 40 50 60 70 80 90 100<br />

Diffraction Angle 2/ Degree<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

Co + <strong>Fe</strong> 4 N<br />

15 GPa, 1200°C


www.iac.uni-stuttgart.de<br />

03-10<br />

Intensity<br />

CoK<br />

<br />

<br />

<br />

30 40 50 60 70 80 90 100<br />

Diffraction Angle 2 / Degree<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

Co + <strong>Fe</strong> 3 N<br />

15 GPa, 1200°C<br />

<br />

7 GPa, 1100°C


www.iac.uni-stuttgart.de<br />

03-10<br />

EDX<br />

Co + <strong>Fe</strong> 3N<br />

9 GPa, 1100 °C<br />

Main Phase 1-3<br />

<strong>Fe</strong> : Co<br />

66(4):34(4)<br />

Contamination<br />

<strong>Fe</strong> : Co<br />

50 : 50 4,5<br />

90 : 10 6, 7, 10<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Treatment: Result:<br />

<strong>Fe</strong>/Co in N 2, NH 3<br />

T 1100 °C, P = 0.1 MPa -<strong>Fe</strong> 3N + <strong>Fe</strong> 1–xCo x<br />

-<strong>Fe</strong> 3N/Co -(<strong>Fe</strong>,Co) 3N + <strong>Fe</strong> 1–xCo x<br />

<strong>Fe</strong> 4N/Co<br />

P = 7 GPa<br />

T 1100 °C<br />

-<strong>Fe</strong> 3N/Co -(<strong>Fe</strong>,Co) 3N + -<strong>Fe</strong>(Co)<br />

<strong>Fe</strong> 4N/Co<br />

P = 15 GPa<br />

T = 1200 °C<br />

a = 4.6828 – 4.8016 Å<br />

c = 4.3705 – 4.4269 Å<br />

<strong>Fe</strong>3N0.75 – <strong>Fe</strong>3N1.5 a = 4.5771 Å<br />

c = 4.3136 Å<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Composition Determination<br />

-(<strong>Fe</strong>,Co) 3N<br />

930 °C, p > 7 GPa<br />

Literature:<br />

a = 4.5771 Å<br />

c = 4.3136 Å<br />

n(<strong>Fe</strong>) : n(Co) = 0.66 : 0.34<br />

<strong>Fe</strong> 2Co 1N x<br />

-<strong>Fe</strong> a = 4.283/3 Å (2.473 Å)<br />

c = 3.962 Å<br />

-<strong>Fe</strong> 3–xCo xN 0 x 0.8 nanoparticles<br />

(multi-phase products)<br />

unit cell parameters do not change with x<br />

Mössbauer spectroscopy<br />

-<strong>Fe</strong> 2.4Co 0.6N a = 4.774/3 Å (2.756 Å)<br />

c = 4.403 Å<br />

Mao Hokwang et al., J Appl. Phys. 1967.<br />

N. S. Gajbhiye et al., Hyper. Interact. 2004, 2005; Mater. Res. Bull. in press.<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

<strong>Synthesis</strong> <strong>Experiment</strong>s<br />

Treatment: Result:<br />

<strong>Fe</strong>/Ir in N 2, NH 3<br />

T 1100 °C, P = 0.1 MPa -<strong>Fe</strong> 3N + Ir<br />

High pressure<br />

High temp.<br />

Intensity<br />

Co-K1<br />

10 20 30 40 50 60 70 80 90 100<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

-<strong>Fe</strong> 3 N 0.75<br />

hp-<strong>Fe</strong> 4 N<br />

Diffraction Angle 2 Degree<br />

Ir + <strong>Fe</strong> 3 N<br />

9 GPa, 1600 °C<br />

9 GPa, 1450 °C


www.iac.uni-stuttgart.de<br />

03-10<br />

Treatment: Result:<br />

<strong>Fe</strong>/Ir in N 2, NH 3<br />

T 1100 °C, P = 0.1 MPa -<strong>Fe</strong> 3N + Ir<br />

-<strong>Fe</strong>3N/Ir -(<strong>Fe</strong>,Ir) 3N + ?<br />

T > 1200 °C, P > 9 GPa<br />

a = 4.794 Å<br />

c = 4.419 Å<br />

<strong>Fe</strong> 3N 0.75 – <strong>Fe</strong> 3N 1.5<br />

a = 4.6828 – 4.8016 Å<br />

c = 4.3705 – 4.4269 Å<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

DH (kJ/mol) DV (cm 3 /mol)<br />

-<strong>Fe</strong> 3N + Co – <strong>Fe</strong> 0.0 0.00<br />

2 <strong>Fe</strong> + N + Co 28.7 7.03<br />

-<strong>Fe</strong> 2CoN 14.8 0.03<br />

→ reaction not driven by pressure<br />

- 8 structures (ordered <strong>and</strong> statist. distributed)<br />

- a = 4.625 Å, c = 4.341 Å<br />

- c/a ratio in all structures approx. 1.07<br />

- Difference in energy less than 3 kJ/mol<br />

→ statistical distribution <strong>of</strong> <strong>Fe</strong> <strong>and</strong> Co atoms<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

DH (kJ/mol) DV (cm 3 /mol)<br />

-<strong>Fe</strong> 3N + Ir – <strong>Fe</strong> 0.0 0.00<br />

2 <strong>Fe</strong> + N + Ir 28.7 7.03<br />

-<strong>Fe</strong> 2IrN 95.3 0.69<br />

→ reaction not driven by pressure<br />

- 8 structures (ordered <strong>and</strong> statist.distributed)<br />

- a = 4.820 Å, c = 4.476 Å<br />

- c/a ratio in all structures approx. 1.08<br />

- statistical distribution <strong>of</strong> <strong>Fe</strong> <strong>and</strong> Co atoms is lower<br />

in energy by approx. 10 kJ/mol<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

-<strong>Fe</strong> 3N (COHP)<br />

No antibonding states → stable<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

-Co<strong>Fe</strong> 2N (COHP)<br />

antibonding states → reduced stability compared to - <strong>Fe</strong> 3N<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

-Ir<strong>Fe</strong> 2N (COHP)<br />

antibonding states → reduced stability compared to - <strong>Fe</strong> 3N<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Conclusion<br />

Predicted VON was not (yet) obtained at elevated temperatures<br />

<strong>and</strong> pressures:<br />

V 2O 5 decomposes into V 2O 3, VN does not react<br />

From iron nitrides <strong>and</strong> Co at elevated temperatures <strong>and</strong><br />

pressures above 7 GPa a hexagonal phase (-type) with unit<br />

cell parameters between -<strong>Fe</strong> <strong>and</strong> -<strong>Fe</strong> 3N 1–x is obtained.<br />

According to EDX analysis the phase contains <strong>Fe</strong> <strong>and</strong> Co <strong>and</strong><br />

represents probably a new phase -<strong>Fe</strong> 2CoN 1–x<br />

Similarly, from iron nitrides <strong>and</strong> Ir at elevated pressures <strong>and</strong><br />

temperatures -(<strong>Fe</strong>,Ir) 3N 1–x was obtained<br />

The formation <strong>of</strong> -<strong>Fe</strong> 2CoN <strong>and</strong> -<strong>Fe</strong> 2IrN seems to be driven by<br />

temperature; pressure needed to keep nitrogen in the reaction<br />

(Co, Ir)-N <strong>and</strong> (Co, Ir)-<strong>Fe</strong> antibonding states result in the<br />

reduced stability <strong>of</strong> -<strong>Fe</strong> 2(Co, Ir)N compared to -<strong>Fe</strong> 3N<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!