28.04.2013 Views

Structural transformations in complex Structural transformations in ...

Structural transformations in complex Structural transformations in ...

Structural transformations in complex Structural transformations in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Fachbereich Geowissenschaften, Universität Hamburg<br />

<strong>Structural</strong> <strong>transformations</strong> <strong>in</strong> <strong>complex</strong><br />

advanced ferroelectrics at high<br />

pressures and temperatures<br />

DFG Project MI 1127/2‐2<br />

N. Waeselmann, B. Maier, R. Angel, M.<br />

Gospod<strong>in</strong>ov, U. Bismayer, B. Mihailova


Introduction<br />

Outl<strong>in</strong>e<br />

High‐pressure h experiments<br />

<strong>Structural</strong> changes g <strong>in</strong>:<br />

Relaxors at room temperature p up p to 30 GPa<br />

Relaxors at high temperatures & pressures<br />

09PZN01PTat 0.9PZN‐0.1PT at different temperatures<br />

temperat res<br />

0.9PZN‐0.1PT under high‐pressure<br />

Conclusions<br />

2


Perovskite CaTiO 3<br />

Perovskite structure type<br />

orthorhombic, Pnma cubic, Pm3m<br />

www.fabrem<strong>in</strong>erals.com<br />

t R A R O<br />

√2R B R O<br />

0.78 < t < 1.05<br />

bit = 0<br />

Perovskite structure<br />

cubic, Pm3m<br />

bit = 1<br />

3


Relaxors vs. normal Ferroelectrics<br />

NNormal lF Ferroelectric l i<br />

Relaxors<br />

After Hirota et al. J. Phys. Soc. Jap. 2006<br />

4


Model compounds & A‐site dop<strong>in</strong>g<br />

Pb(Sc 0.5Ta 0.5)O 3 (PST) Pb(Sc 0.5Nb 0.5)O 3 (PSN)<br />

Pm3m<br />

Fm3m<br />

lone pair electrons<br />

5


chemically B‐site<br />

disordered matrix<br />

+<br />

paraelectric<br />

matrix<br />

B‐site substitution disorder<br />

chemically B‐site<br />

ordered nanoregions<br />

polar nanoregions<br />

AFM ttopography h i<strong>in</strong>‐plane l PFM<br />

PZN‐0.1PT average doma<strong>in</strong> width: ~120 nm<br />

Scholz et al. J. Appl. Phys. 2009<br />

(1‐x)Pb(Zn 2+ 1/3Nb 5+ 2/3)O 3 – xPbTiO 3<br />

6


Experimental setup<br />

150 µm<br />

7


Fm3m<br />

Pressure medium and <strong>in</strong>dicator<br />

Alkali alkali halide halite salt salts<br />

no Raman modes<br />

ruby<br />

Al 2O 3:Cr 3+<br />

100 K 790 K<br />

SrB O :Sm2+ SrB4O7:Sm negligible li ibl<br />

100 K to 790 K<br />

temperature<br />

shift<br />

8


p C2<br />

PST up to 30 GPa<br />

ure<br />

pressu<br />

pC1 pC2 = 5.5 GPa<br />

p p2* 2 ~3.0 GPa<br />

pC1 = 1.9 GPa<br />

p1* = 1.2 GPa<br />

1.2 GPa<br />

3.0 GPa<br />

F 2u<br />

Pb‐O bond stretch<strong>in</strong>g<br />

9


hk2<br />

PST up to 30 GPa<br />

ssure<br />

pres<br />

10


PbZn 1/3Nb 2/3O 3‐PbTiO 3 –temperature<br />

tempeeraturee<br />

11


PZN‐PT –temperature<br />

12


PbB 2+ 1/3B 5+ 2/3O 3<br />

Three possible permutations<br />

(B2+ B5+ (B )<br />

2+ 2/3B5+ 1/3)<br />

PZN‐PT –temperature<br />

Pb(B 2+ 2/3B 5+ 1/3) 0.5B 5+ 0.5O 3<br />

13


Scholz et al. JAP 2009<br />

PZN‐PT ‐ pressure<br />

S<strong>in</strong>gle l crystal l X‐ray dff diffraction Raman scatter<strong>in</strong>g<br />

p F-R p C1<br />

p F-R<br />

p C1<br />

p F-R p C1<br />

p F-R<br />

p C1<br />

14


Submitted/<strong>in</strong> preparation<br />

In‐situ high‐temperature high‐pressure Raman<br />

measurements t on PbS PbSc1/2 Nb Nb1/2 O O3 and d<br />

PbSc1/2Ta1/2O3 .<br />

High‐pressure Brillou<strong>in</strong> scatter<strong>in</strong>g of s<strong>in</strong>gle‐<br />

crystal PbSc05 0.5Ta05 0.5O 3<br />

Doped high‐pressure Raman and XRD up to 30<br />

GPa<br />

A‐site dop<strong>in</strong>g<br />

Local elastic field Smaller t Local electric field<br />

15


presssure<br />

Conclusions: High pressure at RT<br />

non‐polar rhombohedral non‐polar monocl<strong>in</strong>ic / tricl<strong>in</strong>ic<br />

a − a − a − a − b − b − , no Pb LRO<br />

a − a − a − a + b − b − + anti‐polar Pb LRO<br />

unequal BO 6 tilts around the cubic {100} axes on the local scale<br />

relaxor‐cubic non‐polar rhombohedral state (a − a − a − )<br />

decoupl<strong>in</strong>g of off‐centered Pb and B‐cations <strong>in</strong> PNRs<br />

development of local anti‐polar order of Pb cations<br />

development of quasi‐dynamical a ‐ a ‐ a ‐<br />

16


doubled<br />

perovskite<br />

structure<br />

Conclusions: PZN‐PT<br />

PbB 2+ 1/3B 5+ 2/3O 3‐PbTiO 3<br />

giant giant piezoelectric piezoelectric effect effect<br />

<strong>complex</strong> local structure multiphase doma<strong>in</strong> state<br />

17


Relaxors – frustrated ferrielectrics?<br />

Anti‐ferroelectric Pb displacement<br />

Off‐centered Pb atoms<br />

polar displacement of B‐cation<br />

Polar displacement of Pb‐BO 3<br />

+ =<br />

+ =<br />

FE AFE<br />

18


Publications (project MI 1127/2 1127/2‐2) 2)<br />

B. Maier et al. (2010): A‐site dop<strong>in</strong>g <strong>in</strong>duced renormalization phenomena <strong>in</strong> PbSc 0.5 Nb 0.5 O 3 under high pressure. Phys. Rev. B, 81,<br />

174116/1‐8.<br />

B. Maier et al (2010): Octahedral tilt<strong>in</strong>g <strong>in</strong> Pb‐based relaxor ferroelectrics at high pressure. Acta Cryst. B, 66, 280‐291.<br />

B. Maier et al, High‐pressure powder neutron diffraction study on lead scandium niobate. J. Phys.: Condens. Matter, 23,<br />

035902/1‐5.<br />

A.‐M. Welsch et al. (2011): Transformation processes <strong>in</strong> relaxor ferroelectric PbSc 0.5 Ta 0.5 O 3 heavily doped with Nb and Sn.<br />

Zeitschrift fuer Kristallographie, 226, 126‐137.<br />

B. Maier et al. (2011): Effect of La dop<strong>in</strong>g on the ferroic order <strong>in</strong> Pb‐based relaxor ferroelectrics. Phys. Rev. B, 83, 134106/1‐12.<br />

N. Waeselmann et al. (2011): Local structural phenomena <strong>in</strong> pure and Ru‐doped 0.9PbZn 1/3 Nb 2/3 O 3 ‐0.1PbTiO 3 near the<br />

morphotropic phase boundary as revealed by Raman spectroscopy, Phys. Rev. B 83, 214104/1‐13.<br />

B. Mihailova et al. (2011): The structural state of lead‐based relaxor ferroelectrics under pressure. IEEE Transactions on<br />

Ultrasonics, Ferroelectrics and Frequency Control, 58, 1905 ‐ 1913. (<strong>in</strong>vited contribution)<br />

B. Maier, N. Waeselmann et al. (2011): The structural state of relaxor ferroelectrics PbSc 0.5 Ta 0.5 O 3 and PbSc 0.5 Nb 0.5 O 3 at high<br />

pressures up to 30 GPa, Phys. Rev. B, 84, 174104/1‐11.<br />

N. Waeselmann et al. (2012): Pressure <strong>in</strong>duced structural <strong>transformations</strong> <strong>in</strong> pure and Ru‐doped 0.9PbZn 1/3 Nb 2/3 O 3 ‐0.1PbTiO 3<br />

near the morphotropic phase boundary, Phys. Rev B, 85, 014106/1‐10.<br />

submitted / <strong>in</strong> preparation:<br />

N. Waeselmann et all. In‐situ high‐temperature high‐pressure Raman spectroscopy on lead‐based relaxor ferroelectrics<br />

PbSc1/2Nb1/2O3 and PbSc1/2Ta1/2O3 .<br />

M. Wehber, N. Waeselmann et al. High‐pressure Brillou<strong>in</strong> sctatter<strong>in</strong>g of s<strong>in</strong>gle‐crystal PbSc0.5Ta0.5O3 relaxor ferroelectric.<br />

B. Mihailova, N. Waeselmann et al. Chemically‐<strong>in</strong>duced renormalization phenomena <strong>in</strong> Pb‐based relaxors under high pressure.<br />

19


F<strong>in</strong>ancial support by DFG MI1127/2‐2 20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!