25.04.2013 Views

Generic relationships and dating of lineages in ... - CNCFlora

Generic relationships and dating of lineages in ... - CNCFlora

Generic relationships and dating of lineages in ... - CNCFlora

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Generic</strong> <strong>relationships</strong> <strong>and</strong> <strong>dat<strong>in</strong>g</strong> <strong>of</strong> <strong>l<strong>in</strong>eages</strong> <strong>in</strong> W<strong>in</strong>teraceae based on nuclear<br />

(ITS) <strong>and</strong> plastid (rpS16 <strong>and</strong> psbA-trnH) sequence data<br />

Xavier Marquínez a, *, Lúcia G. Lohmann b , Maria L. Faria Salat<strong>in</strong>o b , Antonio Salat<strong>in</strong>o b , Favio González a<br />

a Universidad Nacional de Colombia, Apartado Aéreo 7495, Bogotá D.C., Colombia<br />

b Universidade de São Paulo, Departamento de Botânica, Instituto de Biociências, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil<br />

article <strong>in</strong>fo<br />

Article history:<br />

Received 26 November 2008<br />

Revised 30 June 2009<br />

Accepted 1 July 2009<br />

Available onl<strong>in</strong>e 4 July 2009<br />

Keywords:<br />

Canellales<br />

Divergence time estimates<br />

Drimys<br />

Gondwana biogeography<br />

Pseudow<strong>in</strong>tera<br />

Takhtajania<br />

Tasmannia<br />

W<strong>in</strong>teraceae<br />

Zygogynum<br />

1. Introduction<br />

abstract<br />

W<strong>in</strong>teraceae was first described as a family by L<strong>in</strong>dley (1836).<br />

Its current circumscription comprises five genera ( Drimys,<br />

Pseudow<strong>in</strong>tera, Takhtajania, Tasmannia, <strong>and</strong> Zygogynum s.l.) <strong>and</strong><br />

approximately 79 species distributed <strong>in</strong> Australia, Tasmania, Borneo,<br />

Celebes, Moluccas, New Caledonia, New Gu<strong>in</strong>ea, New Zeal<strong>and</strong>,<br />

Philipp<strong>in</strong>es, Madagascar, <strong>and</strong> Central- <strong>and</strong> South America (V<strong>in</strong>k,<br />

1993a, 2003). The family belongs to the order Canellales, along with<br />

Canellaceae (APGII, 2003; Cai et al., 2006). The monophyly <strong>of</strong> the order<br />

is supported by molecular <strong>and</strong> morphological data (e.g., Chase<br />

et al., 1993; Qiu et al., 1993, 1999; N<strong>and</strong>i et al., 1998; Doyle <strong>and</strong><br />

Endress, 2000; Soltis et al., 2000, 2005; Zanis et al., 2002).<br />

The W<strong>in</strong>teraceae possess vesselless xylem <strong>and</strong> plicate carpels,<br />

two conditions long considered ancestral <strong>in</strong> the angiosperms<br />

(van Tieghem, 1900; Bailey <strong>and</strong> Thompson, 1918; Bailey <strong>and</strong><br />

Swamy, 1951; Takhtajan, 1980; Cronquist, 1981). However, those<br />

conditions have recently been re<strong>in</strong>terpreted as secondarily derived<br />

(Young, 1981; Soltis et al., 2005). The physiological implications <strong>of</strong><br />

vesselless xylem <strong>and</strong> the presence <strong>of</strong> stomatal plugs have been<br />

suggested as a result <strong>of</strong> the relictual condition <strong>of</strong> the family by<br />

Bailey <strong>and</strong> Nast (1944) <strong>and</strong> Baranova (1972). A re<strong>in</strong>terpretion <strong>of</strong><br />

* Correspond<strong>in</strong>g author. Fax: +57 1 3165310.<br />

E-mail address: xmarqu<strong>in</strong>ezc@unal.edu.co (X. Marquínez).<br />

1055-7903/$ - see front matter Ó 2009 Elsevier Inc. All rights reserved.<br />

doi:10.1016/j.ympev.2009.07.001<br />

Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449<br />

Contents lists available at ScienceDirect<br />

Molecular Phylogenetics <strong>and</strong> Evolution<br />

journal homepage: www.elsevier.com/locate/ympev<br />

Phylogenetic analyses <strong>of</strong> representative species from the five genera <strong>of</strong> W<strong>in</strong>teraceae (Drimys, Pseudow<strong>in</strong>tera,<br />

Takhtajania, Tasmannia, <strong>and</strong> Zygogynum s.l.) were performed us<strong>in</strong>g ITS nuclear sequences <strong>and</strong> a comb<strong>in</strong>ed<br />

data-set <strong>of</strong> ITS + psbA-trnH+rpS16 sequences (sampl<strong>in</strong>g <strong>of</strong> 30 <strong>and</strong> 15 species, respectively). Indel <strong>in</strong>formativity<br />

us<strong>in</strong>g simple gap cod<strong>in</strong>g or gaps as a fifth character was exam<strong>in</strong>ed <strong>in</strong> both data-sets. Parsimony<br />

<strong>and</strong> Bayesian analyses support the monophyly <strong>of</strong> Drimys, Tasmannia, <strong>and</strong> Zygogynum s.l., but do not support<br />

the monophyly <strong>of</strong> Belliolum, Zygogynum s.s., <strong>and</strong> Bubbia. With<strong>in</strong> Drimys, the comb<strong>in</strong>ed data-set recovers two<br />

subclades. Divergence time estimates suggest that the splitt<strong>in</strong>g between Drimys <strong>and</strong> its sister clade (Pseudow<strong>in</strong>tera<br />

+ Zygogynum s.l.) occurred around the end <strong>of</strong> the Cretaceous; <strong>in</strong> contrast, the divergence between<br />

the two subclades with<strong>in</strong> Drimys is more recent (15.5–18.5 MY) <strong>and</strong> co<strong>in</strong>cides <strong>in</strong> time with the Andean<br />

uplift. Estimates suggest that the earliest divergences with<strong>in</strong> W<strong>in</strong>teraceae could have predated the first<br />

events <strong>of</strong> Gondwana fragmentation.<br />

Ó 2009 Elsevier Inc. All rights reserved.<br />

these characters based on a phylogenetic framework <strong>in</strong>dicates that<br />

they might actually represent adaptations to changes from tropical<br />

to temperate (stational) habitats s<strong>in</strong>ce the early Cretaceous (Feild<br />

et al., 1998, 2000, 2002; Feild <strong>and</strong> Holbrook, 2000).<br />

The current available phylogenetic analyses for W<strong>in</strong>teraceae are<br />

not conclusive <strong>in</strong> terms <strong>of</strong> generic <strong>relationships</strong>. V<strong>in</strong>k (1988), based<br />

on morphological data obta<strong>in</strong>ed two alternative topologies:<br />

(Takhtajania (Drimys + Tasmannia)(Zygogynum s.l. + Pseudow<strong>in</strong>tera));<br />

<strong>and</strong> (Tasmannia (Drimys (Takhtajania (Zygogynum + Pseudow<strong>in</strong>tera)))).<br />

On the other h<strong>and</strong>, Endress et al. (2000), primarily based ma<strong>in</strong>ly on<br />

floral morphology, arrived at two topologies depend<strong>in</strong>g on the outgroup<br />

chosen: (Canella (Tahktajania + Pseudow<strong>in</strong>tera + Zygogynum)<br />

(Drimys + Tasmannia)); <strong>and</strong> (Degeneria (Zygogynum p.p.<br />

(Z. thieghemii (Takhtajania + Pseudow<strong>in</strong>tera))) (Drimys w<strong>in</strong>teri<br />

(Drimys p.p. + Tasmannia piperita) (Tasmannia p.p.)). The analysis<br />

based on Degeneria as the outgroup casts doubts on the monophyly<br />

<strong>of</strong> Drimys, Tasmannia <strong>and</strong> Zygogynum. F<strong>in</strong>ally, three separate analyses<br />

based on molecular data (Suh et al., 1993; Karol et al., 2000;<br />

<strong>and</strong> Doust <strong>and</strong> Dr<strong>in</strong>nan, 2004), co<strong>in</strong>cide <strong>in</strong> the generic relationship<br />

(Takhtajania (Tasmannia (Drimys (Pseudow<strong>in</strong>tera + Zygogynum<br />

s.l.)))). The controversial close relationship between Drimys <strong>and</strong><br />

Tasmannia, proposed by Smith (1943b, cf. also V<strong>in</strong>k, 1970, 1993a)<br />

is supported by all <strong>of</strong> the morphological analyses (except by one<br />

<strong>of</strong> V<strong>in</strong>k’s analysis <strong>and</strong> by the flower developmental data provided<br />

by Doust <strong>and</strong> Dr<strong>in</strong>nan, 2004).


436 X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449<br />

The taxonomy <strong>of</strong> the family has been reviewed by Smith<br />

(1943a, 1943b) <strong>and</strong> V<strong>in</strong>k (1970, 1977, 1983, 1985, 1988, 1993a).<br />

With<strong>in</strong> the family, two genera are particularly problematic, Drimys<br />

<strong>and</strong> Zygogynum. The current circumscription <strong>of</strong> Drimys (follow<strong>in</strong>g<br />

Smith, 1943b; Ehrendorfer et al., 1979; Rodríguez <strong>and</strong> Quezada,<br />

1991, 2001) <strong>in</strong>cludes seven species distributed from southern Mexico<br />

to Tierra del Fuego (Table 1). However, the genus has been<br />

poorly sampled <strong>in</strong> phylogenetic analyses (three species by Endress<br />

et al., 2000, <strong>and</strong> two species by Doust <strong>and</strong> Dr<strong>in</strong>nan, 2004), br<strong>in</strong>g<strong>in</strong>g<br />

to question its monophyly. Zygogynum has traditionally been splitted<br />

<strong>in</strong>to four <strong>in</strong>dependent genera, Belliolum, Bubbia, Exospermum<br />

<strong>and</strong> Zygogynum s.s. (van Tieghem, 1900; Smith, 1943a). Alternatively,<br />

V<strong>in</strong>k (1985, 1988, 1993a, 1993b) treats all these genera as<br />

Zygogynum s.l. Molecular analysis (Suh et al., 1993) supports the<br />

topology (Bubbia comptonii (Exospermum stipitatum, Zygogynum<br />

acsmithii (Z. pomiferum (Belliolum pancheri, Z. bicolor)))), <strong>in</strong> which<br />

Zygogynum s.s. is not monophyletic.<br />

Three compet<strong>in</strong>g hypotheses have been proposed to expla<strong>in</strong> the<br />

biogeographic history <strong>of</strong> the W<strong>in</strong>teraceae: (1) a South American<br />

orig<strong>in</strong> followed by dispersal to Africa <strong>and</strong> Madagascar on one side,<br />

<strong>and</strong> dispersal to Australasia via Antarctica on the other side (cf.<br />

Fig. 2A <strong>in</strong>Feild et al., 2000); (2) an African orig<strong>in</strong> followed by dispersal<br />

<strong>in</strong>to Madagascar <strong>and</strong> Antarctica, followed by subsequent<br />

dispersal <strong>in</strong>to America <strong>and</strong> Australasia (cf. Fig. 2B <strong>in</strong>Feild et al.,<br />

2000); <strong>and</strong> (3) a northern Gondwanic tropical orig<strong>in</strong> followed by<br />

dispersal <strong>in</strong>to southern temperate Gondwana <strong>and</strong> subsequent<br />

migration from America to Antarctica <strong>and</strong> to Australasia, or from<br />

Africa to Madagascar, India, <strong>and</strong> f<strong>in</strong>ally Australasia, after the fragmentation<br />

<strong>of</strong> Gondwana <strong>in</strong>to Africa <strong>and</strong> America (cf. Fig. 3 <strong>in</strong> Doyle,<br />

2000).<br />

The aims <strong>of</strong> the present study are to reconstruct the phylogenetic<br />

<strong>relationships</strong> between Drimys <strong>and</strong> the other genera <strong>of</strong> W<strong>in</strong>teraceae,<br />

to test the monophyly <strong>of</strong> Drimys, to explore the<br />

phylogenetic <strong>relationships</strong> <strong>in</strong>side Drimys <strong>and</strong> Zygogynum s.l., <strong>and</strong><br />

Table 1<br />

Taxonomic history <strong>and</strong> current geographic distribution <strong>of</strong> Drimys species.<br />

Forster <strong>and</strong><br />

Forster, 1776<br />

L<strong>in</strong>naeus f.,<br />

1781<br />

de C<strong>and</strong>olle,<br />

1817, 1824<br />

Sa<strong>in</strong>t-Hilaire,<br />

1824<br />

Philippi,<br />

1856<br />

to estimate divergence times <strong>in</strong> order to evaluate alternative biogeographic<br />

hypotheses for Drimys <strong>and</strong> the entire W<strong>in</strong>teraceae.<br />

2. Materials <strong>and</strong> methods<br />

2.1. Sampl<strong>in</strong>g<br />

Table 2 summarizes the voucher specimens <strong>and</strong> Genbank<br />

accession numbers for the taxa <strong>in</strong>cluded <strong>in</strong> the present study.<br />

Two data-sets were prepared for the various analyses: (1) A<br />

data-set <strong>in</strong>clud<strong>in</strong>g 52 sequences <strong>of</strong> ITS, represent<strong>in</strong>g 30 species <strong>of</strong><br />

W<strong>in</strong>teraceae <strong>and</strong> six species <strong>of</strong> Canellaceae; <strong>and</strong> (2) a comb<strong>in</strong>ed<br />

data-set <strong>in</strong>clud<strong>in</strong>g 23 sequences <strong>of</strong> ITS, 21 sequences <strong>of</strong> psbA-trnH<br />

<strong>and</strong> 20 sequences <strong>of</strong> rpS16 sequences represent<strong>in</strong>g 14 species <strong>of</strong><br />

W<strong>in</strong>teraceae, plus Capsicodendron denissi <strong>and</strong> Cynnamosma madagascarensis<br />

(Canellaceae) as the outgroup. In this data-set, sequences<br />

<strong>of</strong> Drimys roraimensis <strong>and</strong> Tasmannia lanceolata were<br />

miss<strong>in</strong>g for rpS16 <strong>and</strong> psbA-trnH, <strong>and</strong> sequences <strong>of</strong> Drimys confertifolia<br />

were miss<strong>in</strong>g for rpS16.<br />

2.2. DNA extraction, amplification <strong>and</strong> sequenc<strong>in</strong>g<br />

DNA was extracted from silica-gel dried leaves, air-dried leaves<br />

<strong>and</strong> herbarium specimens (Table 2). For DNA extraction, PCR<br />

amplification <strong>and</strong> sequenc<strong>in</strong>g, we followed the procedures described<br />

by Ferreira <strong>and</strong> Grattapaglia (1996). For PCR <strong>of</strong> ITS1-<br />

5.8S–ITS2 we used Primers Leu1 (Malcomber, 2002; Doust <strong>and</strong><br />

Dr<strong>in</strong>nan, 2004) <strong>and</strong> ITS4 (White et al., 1990; Suh et al., 1993).<br />

Amplification reactions conta<strong>in</strong>ed 3 ll MgCl2 (1.5 M), 5 ll <strong>of</strong><br />

amplification buffer 10 (160 mM (NH 4)SO 4, 670 mM Tris–HCl<br />

(ph 8.8), 0.1% Tween-20), 1 ll <strong>of</strong> bov<strong>in</strong>e serum album<strong>in</strong>e (BSA;<br />

5 lg/ll), 2.5 ll <strong>of</strong> DMSO, 0.5 ll <strong>of</strong> each primer (10 lM), 3 ll <strong>of</strong><br />

dNTPs (2 mM), 0,25 ll Taq DNA Polimerase, 2 ll <strong>of</strong> DNA <strong>and</strong><br />

32.75 ll <strong>of</strong>H2O. The follow<strong>in</strong>g PCR conditions were used: 80° for<br />

Miers, 1858 Reiche, 1898 Smith, 1943a Ehrendorfer et al.,<br />

1979<br />

D. brasiliensis<br />

var. roraimensis<br />

D. angustifolia D. brasiliensis<br />

var. angustifolia<br />

D. granadensis D. retorta D. brasiliensis<br />

D. montana<br />

vars. retorta<br />

D. brasiliensis<br />

& campestris<br />

D. granadensis D. granadensis D. granadensis D. granadensis D. granadensis a<br />

D. mexicana<br />

High mounta<strong>in</strong>s<br />

<strong>in</strong> Mexico <strong>and</strong><br />

Central America,<br />

Northern Andes<br />

<strong>of</strong> South America<br />

D. w<strong>in</strong>teri D. w<strong>in</strong>teri D. w<strong>in</strong>teri D. w<strong>in</strong>teri D. w<strong>in</strong>teri vars.<br />

D. chilensis D. chilensis<br />

w<strong>in</strong>teri & chilensis<br />

a Drimys species recognized <strong>in</strong> this paper.<br />

D. w<strong>in</strong>teri<br />

var. <strong>and</strong><strong>in</strong>a<br />

D. w<strong>in</strong>teri<br />

var. <strong>and</strong><strong>in</strong>a<br />

D. roraimensis a<br />

(Venezuelan<br />

tepuyes,<br />

Roraima)<br />

D. angustifolia a<br />

(South <strong>of</strong> Brazil)<br />

D. brasiliensis a<br />

(Brazil)<br />

Rodríguez <strong>and</strong><br />

Quezada,<br />

1991, 2001<br />

D. w<strong>in</strong>teri a<br />

Southern Andes<br />

<strong>of</strong> Chile <strong>and</strong><br />

Argent<strong>in</strong>a,<br />

Patagonia <strong>and</strong><br />

Tierra del Fuego<br />

D. <strong>and</strong><strong>in</strong>a a<br />

Nahuelbuta<br />

mounta<strong>in</strong>s <strong>and</strong><br />

Andes <strong>of</strong> Chile<br />

<strong>and</strong> Argent<strong>in</strong>e<br />

D. confertifolia D. fern<strong>and</strong>ezianus D. confertifolia D. confertifolia a<br />

Juan Fern<strong>and</strong>ez<br />

Isl<strong>and</strong>s (Chile)


5 m<strong>in</strong>; 35 cycles <strong>of</strong> 94° for 30 s; 48° for 1 m<strong>in</strong>.; 72° for 90 s; <strong>and</strong>,<br />

72° for 7 m<strong>in</strong>. ITS clon<strong>in</strong>g was not performed <strong>in</strong> Drimys because<br />

previous studies (Karol et al., 2000; Doust <strong>and</strong> Dr<strong>in</strong>nan, 2004)<br />

found only one copy after clon<strong>in</strong>g. Amplifications <strong>of</strong> psbA-trnH<br />

<strong>and</strong> rpS16 used primers <strong>and</strong> PCR conditions as described by Shaw<br />

et al. (2005). PCR products were cleaned us<strong>in</strong>g the GFX kit<br />

(Amersham Bioscience, Piscataway, NJ). Purified products were sequenced<br />

us<strong>in</strong>g amplification primers <strong>and</strong> the ABI Prism Big Dye<br />

Term<strong>in</strong>ator Cycle Sequenc<strong>in</strong>g Ready Reaction Kit (Applied Biosystems,<br />

Foster City, CA) on an ABI 3700 Ò Automated Sequencer.<br />

2.3. Phylogenetic analyses<br />

Forward <strong>and</strong> reverse sequences were compiled <strong>in</strong>to consensus<br />

sequences us<strong>in</strong>g MacClade 4.06 (Maddison <strong>and</strong> Maddison, 2003).<br />

Consensus sequences were aligned with Clustal X (Thompson<br />

et al., 1997), <strong>and</strong> subsequently adjusted manually. For psbA-trnH<br />

<strong>and</strong> rpS16, manual adjustments followed Borsch et al. (2003) <strong>and</strong><br />

Kelchner (2000); for ITS, adjustments followed Karol et al.<br />

X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449 437<br />

Fig. 1. Strict consensus tree result<strong>in</strong>g from parsimony analysis <strong>of</strong> the ITS data-set, with bootstrap values presented above branches, numbers before scientific names<br />

corresponds to different accessions <strong>of</strong> the same species; Zygogynum pomiferum spp. balansae V<strong>in</strong>k. (A) Consider<strong>in</strong>g gaps as miss<strong>in</strong>g, the arrowhead <strong>and</strong> the arrow <strong>in</strong>dicate<br />

the correspond<strong>in</strong>g clades derived from clones 1 <strong>and</strong> 2 sequences from Suh et al. (1993). (B) Us<strong>in</strong>g the simple gap cod<strong>in</strong>g option; numbers <strong>in</strong> parenthesis below branches<br />

correspond to gaps that support clades; circle <strong>and</strong> letters <strong>in</strong>dicate synapomorphies <strong>and</strong>/or homoplasies (see Table 3).<br />

(2000). Non-aligned regions between Canellaceae <strong>and</strong> W<strong>in</strong>teraceae<br />

were treated as non-overlapp<strong>in</strong>g <strong>in</strong>dels to m<strong>in</strong>imize <strong>in</strong>correct<br />

homology assessments.<br />

In order to test congruence among data-sets, we implemented<br />

two tests <strong>in</strong> PAUP version 4.0b10 (Sw<strong>of</strong>ford, 2002): (1) the ILD<br />

Test (Farris et al., 1994) us<strong>in</strong>g comb<strong>in</strong>ed ITS + rpS16 + psbA-trnH<br />

partitioned nexus matrix, 1000 replicates <strong>of</strong> r<strong>and</strong>om addition sequences<br />

<strong>and</strong> a maximum <strong>of</strong> 10 trees reta<strong>in</strong>ed per replicate; start<strong>in</strong>g<br />

trees were obta<strong>in</strong>ed via r<strong>and</strong>om stepwise addition with TBR branch<br />

swapp<strong>in</strong>g <strong>and</strong> (2) the SH test (Shimodaira <strong>and</strong> Hasegawa, 1999),<br />

us<strong>in</strong>g GTR + I + G model <strong>of</strong> DNA substitutions to compare the likelihood<br />

calculated for strict consensus trees <strong>of</strong> ITS, rpS16 <strong>and</strong><br />

psbA-trnH data-sets under parsimony (cf. Fig. 4); <strong>and</strong> also for<br />

majority rule consensus trees <strong>of</strong> these data-sets obta<strong>in</strong>ed under<br />

Bayesian analyses.<br />

Two <strong>in</strong>dependent analyses <strong>of</strong> the ITS <strong>and</strong> comb<strong>in</strong>ed data-sets<br />

were performed <strong>in</strong> PAUP version 4.0b10 (Sw<strong>of</strong>ford, 2002), us<strong>in</strong>g<br />

parsimony. These analyses were conducted us<strong>in</strong>g a heuristic search<br />

with 1000 replicates <strong>of</strong> r<strong>and</strong>om addition sequences <strong>and</strong> a


438 X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449<br />

Fig. 2. (A) Strict consensus tree result<strong>in</strong>g from a parsimony analysis <strong>of</strong> the ITS data-set treat<strong>in</strong>g gaps as a fifth character, bootstrap values are presented below branches (B)<br />

Majority rule consensus tree result<strong>in</strong>g from Bayesian analysis <strong>of</strong> the ITS data-set us<strong>in</strong>g GTR + I + G DNA substitution model; PP values are <strong>in</strong>dicated above branches. Numbers<br />

<strong>in</strong> parenthesis below branches <strong>in</strong>dicate nodes used for divergence time estimates, followed by the range <strong>of</strong> ages <strong>in</strong> million years accord<strong>in</strong>g to Table 4.<br />

maximum <strong>of</strong> 10 trees reta<strong>in</strong>ed per replicate, with collapsed<br />

branches <strong>of</strong> zero length. Start<strong>in</strong>g trees were obta<strong>in</strong>ed via r<strong>and</strong>om<br />

stepwise addition with TBR branch swapp<strong>in</strong>g. Branch support<br />

was calculated us<strong>in</strong>g bootstrap <strong>and</strong> 1000 replicates <strong>in</strong> a heuristic<br />

search, 100 replicates for r<strong>and</strong>om sequence addition.<br />

In order to compare the impact <strong>of</strong> alternative gap cod<strong>in</strong>g<br />

schemes <strong>in</strong> both analyses, gaps were treated <strong>in</strong> three ways: (1)<br />

as miss<strong>in</strong>g data (GM); (2) at the end <strong>of</strong> the matrix as presence-absence<br />

characters us<strong>in</strong>g the simple gap cod<strong>in</strong>g (SGC) scheme <strong>of</strong> Simmons<br />

<strong>and</strong> Ochoterena (2000); <strong>and</strong> (3) us<strong>in</strong>g ‘‘gaps as a fifth<br />

character” (GFC) as implemented <strong>in</strong> PAUP version 4.0b10 (Sw<strong>of</strong>ford,<br />

2002). Informative gaps, used <strong>in</strong> the SGC option analyses were<br />

treated as <strong>in</strong>sertions (<strong>in</strong>s), deletions (del), duplications <strong>of</strong> motifs<br />

(dup) <strong>and</strong> short (2–4 bp; SHR) or long (7–17 bp; LHR) homonucleotides<br />

repeats. Table 3 <strong>in</strong>cludes <strong>in</strong>formation on the gap cod<strong>in</strong>g<br />

treatments used <strong>in</strong> the various analyses (cf. Figs. 1B <strong>and</strong> 5A).<br />

In addition, a Bayesian analysis was performed for each data-set<br />

us<strong>in</strong>g MrBayes 3.1.1. (Huelsenbeck <strong>and</strong> Ronquist, 2001).<br />

GTR + I + G was selected as the best model <strong>of</strong> DNA substitution<br />

for each <strong>of</strong> the data-sets us<strong>in</strong>g the LRT implemented <strong>in</strong> MrModel<br />

Test 3.7 (Nyl<strong>and</strong>er, 2004). Analyses us<strong>in</strong>g MCMCMC were run for<br />

3,000,000 generations, <strong>in</strong>itiat<strong>in</strong>g with a r<strong>and</strong>om start<strong>in</strong>g tree <strong>and</strong><br />

default sett<strong>in</strong>gs (i.e., four cha<strong>in</strong>s, temperature <strong>of</strong> the heated cha<strong>in</strong><br />

set to 0.2). Each cha<strong>in</strong> was sampled every 1000 generations for a<br />

total <strong>of</strong> 3000 trees sampled. Sample po<strong>in</strong>ts collected prior to stationary<br />

were elim<strong>in</strong>ated (i.e., burn-<strong>in</strong>;


was processed us<strong>in</strong>g r8s which summarizes the distribution <strong>of</strong><br />

divergence times for each node. Canellaceae were excluded from<br />

these analyses <strong>in</strong> order to avoid artifactual branch<strong>in</strong>g po<strong>in</strong>t ages<br />

due to the high differences <strong>of</strong> substitution rates with respect to<br />

the W<strong>in</strong>teraceae. Three alternative calibration po<strong>in</strong>ts were explored<br />

<strong>in</strong> four scenarios that correspond to comb<strong>in</strong>ations <strong>of</strong> fixed<br />

or m<strong>in</strong>imum ages for specific nodes <strong>in</strong> the Bayesian trees obta<strong>in</strong>ed<br />

from the ITS or the comb<strong>in</strong>ed analyses (Table 4).<br />

Node 1 <strong>in</strong> the ITS <strong>and</strong> comb<strong>in</strong>ed topologies was fixed us<strong>in</strong>g two<br />

different ages: (1) 120 MY based on the early Cretaceous pollen<br />

Walkeripollis from Africa (Doyle, 2000) <strong>and</strong> the age <strong>of</strong> the split between<br />

Madagascar <strong>and</strong> Africa by the Somali bas<strong>in</strong> (121 MY;<br />

Sanmart<strong>in</strong> <strong>and</strong> Ronquist, 2004) <strong>and</strong> (2) 135 MY, tak<strong>in</strong>g <strong>in</strong>to account<br />

the first Gondwanic fragmentation event by the southern South<br />

Atlantic ocean that separated Africa from the rest <strong>of</strong> southern<br />

Gondwana (Sanmart<strong>in</strong> <strong>and</strong> Ronquist, 2004).<br />

W<strong>in</strong>teroid pollen fossil from the Campanian <strong>of</strong> SE Australia (c.<br />

77 MY; Dettmann <strong>and</strong> Jarzen, 1990; Doyle, 2000; Feild et al.,<br />

2002), assigned to Tasmannia (node 2; Table 4); f<strong>in</strong>ally, pollen fossil<br />

X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449 439<br />

Fig. 3. Distribution map <strong>of</strong> Drimys species (W<strong>in</strong>teraceae), <strong>and</strong> location <strong>of</strong> W<strong>in</strong>teroid fossils.<br />

from the Late Cretaceous <strong>of</strong> New Zeal<strong>and</strong> (c. 69 MY; <strong>in</strong>itially reported<br />

as Zygogynum by Mildenhall, 1980, but later assigned to<br />

Pseudow<strong>in</strong>tera by Feild et al., 2002) were used to constrict the m<strong>in</strong>imum<br />

age for nodes 3 or 4 (Table 4).<br />

F<strong>in</strong>ally, data from scenario 4 (Table 4) were used to calculate<br />

the follow<strong>in</strong>g variables: (1) speciation rates for each genus <strong>of</strong> W<strong>in</strong>teraceae,<br />

assum<strong>in</strong>g an equal rate <strong>of</strong> r<strong>and</strong>om speciation Yule model<br />

(Hughes <strong>and</strong> Eastwood, 2006); (2) nucleotide substitution rates<br />

(NSR); <strong>and</strong> (3) time for speciation (von Hagen <strong>and</strong> Kadereit,<br />

2001; Table 5).<br />

3. Results<br />

Twenty eight new sequences <strong>of</strong> ITS, 21 <strong>of</strong> psbA-trnH <strong>and</strong> 20 <strong>of</strong><br />

rpS16 were obta<strong>in</strong>ed for the present study; two sequences <strong>of</strong><br />

psbA-trnH <strong>and</strong> rpS16 correspond to Canellaceae <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g<br />

sequences correspond to W<strong>in</strong>teraceae (Table 2). Sequences <strong>of</strong> ITS1<br />

ranged from 235 to 252 bp <strong>in</strong> W<strong>in</strong>teraceae <strong>and</strong> from 244 to 275 bp<br />

<strong>in</strong> Canellaceae; the size <strong>of</strong> 5.8S cod<strong>in</strong>g region was 164 bp long for


440 X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449<br />

Table 2<br />

Taxa <strong>in</strong>cluded <strong>in</strong> this study with localities, voucher <strong>in</strong>formation <strong>and</strong> Genbank accession.<br />

Taxa Country Voucher Sequences<br />

orig<strong>in</strong> a<br />

Genbank accession number<br />

ITS psbAtrnH<br />

rpS16<br />

Canellaceae<br />

Canella w<strong>in</strong>terana (L.) Gaernt. South America LBT 124, NO 1 LO3844<br />

Capsicodendron d<strong>in</strong>issii (Schwacke) Occhioni South America Butzkee et al. 12521 (US) 2 AY004132<br />

Capsicodendron d<strong>in</strong>issii<br />

(Schwacke) Occhioni<br />

Brazil (Parana) Lohmann et al. 727 (COL, SPF) 4 FJ539215 FJ554663<br />

C<strong>in</strong>namodendron ekmanni<br />

Sleumer<br />

Dom<strong>in</strong>ican Republic García <strong>and</strong> Veloz 6866 (SD) 2 AY004143<br />

C<strong>in</strong>namosma madagascariensis<br />

Danguy<br />

Madagascar Lowry 4991 (MO) 2 FJ53<br />

C<strong>in</strong>namosma madagascariensis<br />

Danguy<br />

Madagascar Rabevohitra 4510 (MO) 4 FJ539214 FJ554659<br />

Pleodendron macranthum (Baill.) Tiegh. Puerto Rico Axelrod 10783 (MO) 2 AY004134<br />

Warburgia salutaris (G. Bertol.) Chiov. South Africa Goldblatt 11314 (MO) 2 AY004130<br />

W<strong>in</strong>teraceae<br />

Drimys <strong>and</strong><strong>in</strong>a (Reiche) Rodr. & Quez. (1) Chile, X region 19961186 RBGE 4 FJ539242 FJ539211 FJ554657<br />

Drimys <strong>and</strong><strong>in</strong>a (2) Argent<strong>in</strong>a, Neuquén Beenken 992 (M) 4 FJ539241 FJ539212 FJ554662<br />

Drimys <strong>and</strong><strong>in</strong>a (Reiche) Rodr. & Quez. (3) Chile, IX region 19961048 RBGE 4 FJ539243<br />

Drimys angustifolia Miers Brazil, Rio gr<strong>and</strong>e do sur Wasum et al. 10779 (US) 4 FJ539232 FJ539203 FJ554651<br />

Drimys brasiliensis Miers. (1) Brazil, Paraná Lohmann et al. 728, (COL, SPF) 4 FJ539226 FJ539204 FJ554652<br />

Drimys brasiliensis (2) Brazil, Paraná Lohmann et al. 729 (COL, SPF) 4 FJ539227 FJ539205 FJ554653<br />

Drimys brasiliensis (3) Brazil, Cunha N.P. Cordeiro 2917 (SP) 4 FJ539228 FJ539206 FJ554654<br />

Drimys brasiliensis (4) Brazil, Campos do Jordao Lohmann et al. 738 (COL, SPF) 4 FJ539229 FJ539207 FJ554660<br />

Drimys brasiliensis (St. Hil.) Miers (5) Brazil, Paraná Cordeiro 553 (US) 4 FJ539230<br />

Drimys brasiliensis (6) Brazil, Paraná Hatschbach 17330 (COL, MBM) 4 FJ539231<br />

Drimys confertifolia Philippi Chile, Juan Fern<strong>and</strong>ez Bernardello <strong>and</strong> Anderson 3005 4 FJ539236 FJ539208<br />

Isl<strong>and</strong>s<br />

(UCA)<br />

Drimys granadensis L.f. (1) Colombia, Cund<strong>in</strong>amarca Marquínez 004 (SPF, COL) 4 FJ539233 FJ539201 FJ554649<br />

Drimys granadensis(2) Colombia, Sant<strong>and</strong>er Morales 1765 (COL) 4 FJ539234 FJ539202 FJ554650<br />

Drimys granadensis (3) Costa Rica Salazar 2630 (BH, COL) 4 FJ539235<br />

Drimys roraimensis (A.C. Smith) Ehrend. &<br />

Gottsb.<br />

Venezuela, Bolivar Holst 3689 (NY) 4 FJ539225<br />

Drimys w<strong>in</strong>teri Forst. <strong>and</strong> Forst. (1) Chile, Valparais Simon 142 (UCA) 4 FJ539237 FJ539209 FJ554655<br />

Drimys w<strong>in</strong>teri (2) Chile, IX Region 19880691<br />

RBGE<br />

4 FJ539238 FJ539216 FJ554656<br />

Drimys w<strong>in</strong>teri (3) Chile XII Region 19670643<br />

RBGE<br />

4 FJ539239 FJ539210 FJ554661<br />

Drimys w<strong>in</strong>teri (4) Argent<strong>in</strong>a, Patagonia Donat 398 (F, M) 4 FJ539240<br />

Pseudow<strong>in</strong>tera axillaris (Forst. & Forst.) D<strong>and</strong>y New Zeal<strong>and</strong> LBT 300 (NO) 1 AY004124<br />

Pseudow<strong>in</strong>tera colorata (Raoult) D<strong>and</strong>y New Zeal<strong>and</strong> LBT 301 (NO) 1 AY004125<br />

Pseudow<strong>in</strong>tera colorata New Zeal<strong>and</strong> 19981039 RBGE 4 FJ539196 FJ554644<br />

Takhtajania perrieri (Capuron) Baranova & J.F.<br />

Leroy<br />

Madagascar Rakotomalaza et al. 1342 (MO) 2 AY004129<br />

Takhtajania perrieri Madagascar Rabenanto<strong>and</strong>ro J 219 (MO) 4 FJ539213 FJ554658<br />

Tasmannia glaucifolia J.B. Williams Australia, NSW (NSW) 198433 (LCR) 863140 3 AY526315<br />

Tasmannia <strong>in</strong>sipida R.Br. ex DC Australia, Queensl<strong>and</strong> LBT 108 (NO) 1 AY004127<br />

Tasmannia lanceolata (Poir.) A.C. Smith Australia Berkeley B.G. 60.0052 (NO) 1 AY004128<br />

Tasmannia piperita (Hook.f.) Miers Irian Jaya (New Gu<strong>in</strong>ea) Lowry 5287 (MO) 4 FJ539244<br />

Tasmannia purpurascens (Vickery) A.C. Smith Australia, NSW (NSW) 209939<br />

(LCR) 875858<br />

3 AY526309<br />

Tasmannia stipitata (Vickery) A.C. Smith Australia, NSW (NSW) 209908<br />

(LCR) 875857<br />

3 AY526316<br />

Tasmannia xerophila (Parment.) M. Gray Australia, NSW (NSW) 215000<br />

(LCR) 850099<br />

3 AY526312<br />

Zygogynum acsmithii V<strong>in</strong>k. b<br />

New Caledonia LBT 201 (NO) 1 (clone 2) AY004122<br />

Zygogynum amplexicaule (Vieill. ex Parment.)<br />

V<strong>in</strong>k<br />

= Bubbia amplexicaulis (Viell. Ex Parment.)<br />

D<strong>and</strong>y<br />

New Caledonia Mc Pherson 19089 (MO) 4 FJ539222<br />

Zygogynum bicolor Tiegh. b<br />

New Caledonia LBT 200 (NO) 1 (clone 1) AY004111<br />

Zygogynum bicolor Tiegh. b<br />

New Caledonia LBT 200 (NO) 1 (clone 2) AY004118<br />

Zygogynum baillonii Tiegh. b<br />

New Caledonia Mc Pherson 19206 (MO) 4 FJ539219 FJ539197 FJ554645<br />

Zygogynum crassifolium (Baill.) V<strong>in</strong>k<br />

= Belliolum crassifolium Tiegh.<br />

= Bubbia crassifolium Burtt<br />

New Caledonia Lowry 6451 (MO) 4 FJ539221<br />

Zygogynum comptonii (Baker f.) V<strong>in</strong>k<br />

= Bubbia comptonii (Baker f.) D<strong>and</strong>y<br />

New Caledonia LBT 204 (NO) 1 (clone 2) AY004123<br />

b<br />

Zygogynum comptonii (Baker f.) V<strong>in</strong>k New Caledonia Mc Pherson 18061 (MO) 4 FJ539199 FJ554647<br />

Zygogynum fraterculum V<strong>in</strong>k c<br />

New Caledonia Mc Pherson 19092 (MO) 4 FJ539224<br />

Zygogynum pauciflorum (Baker f.) V<strong>in</strong>k c<br />

= Bubbia pauciflora (Baker f.) D<strong>and</strong>y<br />

New Caledonia Mc Pherson 19119 (MO) 4 FJ539223<br />

Zygogynum pancheri ssp. Arrhantum<br />

= Belliolum pancheri (Baillon) Tiegh.<br />

New Caledonia LBT 205 (NO) 1 (clone 2) AY004120


X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449 441<br />

Table 2 (cont<strong>in</strong>ued)<br />

Taxa Country Voucher Sequences<br />

orig<strong>in</strong> a<br />

Genbank accession number<br />

ITS psbAtrnH<br />

rpS16<br />

Zygogynum pomiferum spp. balansae<br />

(Tiegh) V<strong>in</strong>k<br />

= Zygogynum balansae Tiegh<br />

New Caledonia LBT 203 (NO) 1 (clone 1) AY004112<br />

b<br />

Zygogynum pomiferum spp. balansae<br />

(Tiegh) V<strong>in</strong>k<br />

New Caledonia LBT 203 (NO) 1 (clone 2) AY004120<br />

Zygogynum pomiferum spp. balansae<br />

(Tiegh) V<strong>in</strong>k<br />

New Caledonia Mc Pherson 19231 (MO) 4 FJ539217<br />

Zygogynum stipitatum Baill.<br />

= Exospermum stipitatum Tiegh.<br />

New Caledonia Mc Pherson 19231 (MO) 1 (clone 1) AY004113<br />

b<br />

Zygogynum stipitatum Baill.<br />

Exospermum stipitatum Tiegh.<br />

New Caledonia LBT 202, (NO) 1 (clone 2) AY004121<br />

b<br />

Zygogynum tanyostigma V<strong>in</strong>k c<br />

New Caledonia Mc Pherson 18986 (MO) 4 FJ539220 FJ539200 FJ554648<br />

Zygogynum v<strong>in</strong>kii Sampson New Caledonia Mc Pherson 19141 (MO) 4 FJ539218 FJ539198 FJ554646<br />

Numbers before scientific names correspond to different accessions <strong>of</strong> the same species.<br />

a<br />

Sequences orig<strong>in</strong>: 1, Suh et al. (1993); 2,Karol et al. (2000); 3,Doust <strong>and</strong> Dr<strong>in</strong>nan (2004); 4, this research.<br />

b<br />

Traditional denom<strong>in</strong>ation <strong>of</strong> species followed by Suh et al. (1993) <strong>and</strong> Karol et al. (2000).<br />

c<br />

This species were described by V<strong>in</strong>k recently, He <strong>in</strong>dicates that the position <strong>of</strong> Z. fraterculum <strong>and</strong> Z. pauciflorum is ‘‘<strong>in</strong>termediate between the Bubbia <strong>and</strong> the Zygogynum s.s.<br />

types” (V<strong>in</strong>k, 2003).<br />

Fig. 4. Strict consensus trees result<strong>in</strong>g from parsimony analyses <strong>of</strong> the follow<strong>in</strong>g data-sets: (A) rpS16, (B) psbA-trnH, <strong>and</strong> (C) ITS. Numbers next to the branches correspond to<br />

bootstrap values.


442 X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449<br />

Table 3<br />

Summary <strong>of</strong> <strong>in</strong>dels <strong>in</strong> the ITS, psbA-trnH <strong>and</strong> rpS16 sequences <strong>of</strong> Canellales.<br />

ITS (52 OTUS) Comb<strong>in</strong>ed analyses (24 OTUS)<br />

ITS psbA-trnH rpS16<br />

(A) Informative <strong>in</strong>dels (codified us<strong>in</strong>g SGC)<br />

Total # <strong>of</strong> <strong>in</strong>formative <strong>in</strong>dels 44 38 5 7<br />

# <strong>of</strong> <strong>in</strong>formative <strong>in</strong>dels across families a<br />

19 29 3 5<br />

# <strong>of</strong> <strong>in</strong>formative <strong>in</strong>dels <strong>in</strong> Canellaceae 7 – – –<br />

Tasmannia (GC)dup (GT)dup – – –<br />

((Pseudow<strong>in</strong>tera + Zygogynum) Drimys) SHR SHR – –<br />

Drimys 2 (GC)<strong>in</strong>s 2 (GC)<strong>in</strong>s – (CTTT)dup<br />

2 SHR 2 SHR<br />

Drimys SW clade – – (GTCAATC) dup –<br />

Pseudow<strong>in</strong>tera (TG)dup<br />

(GT)dup<br />

– – –<br />

Zygogynum (Clone 1) (CT)dup<br />

SHR<br />

– – –<br />

Zygogynum (Clone 2) (AG)dup (AG)dup – –<br />

Zygogynum (GTG)dup (GTG)dup – (TC)Del<br />

SHR SHR<br />

Indel A SHR – – –<br />

Indel B (A)del (A)del – –<br />

Indel C (ATC)dup – –<br />

Indel D SHR – – –<br />

Indel E – – (GTAAAT) dup –<br />

Indel F (GT)dup – – –<br />

Indel G SHR – – –<br />

(B) Number <strong>of</strong> un<strong>in</strong>formative <strong>in</strong>dels (autapomorphies)<br />

Duplication <strong>of</strong> motifs 3 5 2 2<br />

Insertion 1 1 0 –<br />

Deletion 5 5 3 2<br />

SHRs 6 6 1 –<br />

LHRs 1 1 1 3<br />

Del, deletion; dup, duplication; Ins, <strong>in</strong>sertion; LHR, long homonucleotide str<strong>in</strong>g (>5 bp); SHR, short homonucleotide repeats (2–4 bp).<br />

a Across families = Indels present <strong>in</strong> all the species <strong>of</strong> W<strong>in</strong>teraceae or Canellaceae but not both. Sequences <strong>in</strong> 5 0 –3 0 sense. (Indels A–G are plotted <strong>in</strong> Fig. 2B <strong>and</strong>/or 5B).<br />

Fig. 5. Strict consensus tree result<strong>in</strong>g from analyses <strong>of</strong> the comb<strong>in</strong>ed ITS + psbA-trnH + rpS16 data-set parsimony analyses. (A) Consider<strong>in</strong>g gaps as miss<strong>in</strong>g (MG) or simple<br />

gap cod<strong>in</strong>g options (SGC). (Topologies are identical, see Table 6), first bootstrap values shown above branches correspond to GM analysis; second bootstrap values (shown <strong>in</strong><br />

parenthesis) correspond to the SGC analysis. Numbers <strong>in</strong> parenthesis below branches <strong>in</strong>dicates numbers <strong>of</strong> gaps support<strong>in</strong>g clades <strong>in</strong> the SGC analysis; circles <strong>and</strong> letters<br />

<strong>in</strong>dicate homoplasies (see Table 3); <strong>and</strong>, (B) Majority rule consensus tree result<strong>in</strong>g from a Bayesian analysis us<strong>in</strong>g GTR + I + G DNA substitution model; PP values are presented<br />

above branches; numbers <strong>in</strong> parenthesis below branches represented nodes used for divergence time estimates, followed by the range <strong>of</strong> ages <strong>in</strong> million years accord<strong>in</strong>g to<br />

Table 4.<br />

all species <strong>of</strong> Canellales; ITS2 sequences ranged from 213 to 226 bp<br />

<strong>in</strong> W<strong>in</strong>teraceae <strong>and</strong> 187–233 bp <strong>in</strong> Canellaceae.<br />

3.1. Phylogenetic analyses based on ITS sequences<br />

The parsimony analysis consider<strong>in</strong>g gaps as miss<strong>in</strong>g (GM) resulted<br />

<strong>in</strong> three trees <strong>of</strong> 591 steps, with CI = 0.743 <strong>and</strong> RI = 0.901<br />

(Table 6). The monospecific Takhtajania is sister to the rest <strong>of</strong> the<br />

family. The four non-monospecific genera <strong>of</strong> W<strong>in</strong>teraceae appear<br />

as monophyletic <strong>and</strong> are supported with bootstrap values > 80%<br />

(Fig. 1A). With<strong>in</strong> Tasmannia, T. lanceolata is sister to the rest <strong>of</strong><br />

the genus; <strong>in</strong> turn, T. <strong>in</strong>sipida is sister to an unresolved clade<br />

formed by T. piperita (T. xerophila + T. glaucifolia) <strong>and</strong> (T. stipitata<br />

+ T. purpurascens). With<strong>in</strong> Drimys, only one clade (D. <strong>and</strong><strong>in</strong>a + D.


Table 4<br />

Average ages (MY) <strong>and</strong> confidence <strong>in</strong>tervals (a = 0.05) for the Bayesian consensus tree nodes <strong>of</strong> ITS (Fig. 3B) <strong>and</strong> comb<strong>in</strong>ed analyses (Fig. 5B) estimated us<strong>in</strong>g r8s under six<br />

different scenarios. For exact node locations see Figs. 3 <strong>and</strong> 5.<br />

w<strong>in</strong>teri) was recovered; the relationship among the other five species<br />

rema<strong>in</strong>ed unresolved.<br />

The ITS data shows that sequences from Zygogynum s.l. conform<br />

two ma<strong>in</strong> clades: (1) ‘Clone 1’ sequences (Suh et al., 1993) <strong>of</strong><br />

(Zygogynum stipitatum (Z. pomiferum 1+Z. bicolor)); (2) ‘Clone 2’<br />

sequences (Suh et al., 1993) <strong>of</strong>(Z. comptonii (Z. acsmithii, Z. stipitatum<br />

(Z. pomiferum 1 (Z. pancheri + Z. bicolor)))), as sister to (Z.<br />

amplexicaule (Z. crassifolium (Z. fraterculum + Z. pauciflorum) <strong>and</strong><br />

(Z. tanyostigma (Z. v<strong>in</strong>kii (Z. pomiferum 1+Z. baillonii))))). Clade 1<br />

is supported by two <strong>in</strong>dels (cf. Fig. 1B <strong>and</strong> Table 3), five substitutions<br />

<strong>in</strong> ITS1, one substitution <strong>in</strong> 5.8S <strong>and</strong> six substitutions <strong>in</strong><br />

ITS2; Clade 2 is supported by one <strong>in</strong>del (cf. Fig. 1B <strong>and</strong> Table 3),<br />

<strong>and</strong> two substitutions <strong>in</strong> each ITS1 <strong>and</strong> ITS2.<br />

The parsimony analysis us<strong>in</strong>g the SGC option produced three<br />

trees <strong>of</strong> 646 steps, CI = 0.751 <strong>and</strong> RI = 0.912 (Fig. 1B). The strict consensus<br />

tree result<strong>in</strong>g from this analysis is similar to that obta<strong>in</strong>ed<br />

from the analysis that considered gaps as miss<strong>in</strong>g, but with higher<br />

bootstrap values <strong>in</strong> some clades. The ma<strong>in</strong> difference <strong>in</strong> topology<br />

occurs with<strong>in</strong> Zygogynum, asZ. amplexicaule plus Z. crassifolium<br />

X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449 443<br />

Scenario 1 Scenario 2 Scenario 3 Scenario 4<br />

Fixed age (MY) node 1 135 135 120 120<br />

M<strong>in</strong>imum age = 77 MY Node 2 Node 2 Node 2 Node 2<br />

M<strong>in</strong>imum age = 69 MY Node 3 Node 4 Node 3 Node 4<br />

(A) ITS analysis<br />

Node 1 135 ± 0 135 ± 0 120 ± 0 120 ± 0<br />

Node 2 85.44 ± 2.40 92.38 ± 1.90 77 ± 0 87.01 ± 1.42<br />

Node 3 76.60 ± 1.93 84.64 ± 1.50 69 ± 0 80.95 ± 1.09<br />

Node 4 58.03 ± 2.16 69 ± 0 52.24 ± 2.02 69 ± 0<br />

Node 5 41.97 ± 1.54 48.63 ± 1.47 37.82 ± 1.41 47.81 ± 1.61<br />

Node 6 11.30 ± 0.84 12.79 ± 0.74 10.29 ± 0.82 12.40 ± 0.76<br />

Node 7 4.62 ± 0.41 5.18 ± 0.42 4.17 ± 0.41 5.00 ± 0.43<br />

Node 8 5.93 ± 0.62 6.59 ± 0.54 5.34 ± 0.44 6.29 ± 0.43<br />

Node 9 10.94 ± 0.88 12.04 ± 1.17 9.85 ± 0.93 11.59 ± 1.04<br />

Node 10 13.83 ± 0.84 15.70 ± 1.22 12.37 ± 0.71 15.11 ± 1.24<br />

Node 11 6.91 ± 0.32 7.45 ± 0.29 6.21 ± 0.28 7.01 ± 0.29<br />

Node 12 4.29 ± 0.31 4.62 ± 0.28 3.86 ± 0.22 4.34 ± 0.22<br />

Node 13 37.22 ± 1.67 39.94 ± 1.59 33.36 ± 1.48 37.33 ± 1.47<br />

Node 14 23.71 ± 1.17 25.36 ± 1.16 21.23 ± 0.81 23.66 ± 0.94<br />

Node 15 17.31 ± 0.92 18.48 ± 0.80 15.49 ± 0.55 17.23 ± 0.69<br />

Node 16 9.06 ± 0.67 9.66 ± 0.82 6.11 ± 0.64 9.01 ± 0.70<br />

Node 17 6.91 ± 0.41 7.37 ± 0.57 6.18 ± 0.49 6.87 ± 0.56<br />

(B) Comb<strong>in</strong>ed analysis<br />

Node 1 135 ± 0 135 ± 0 120 ± 0 120 ± 0<br />

Node 2 83.19 ± 1.22 93.48 ± 1.48 79.88 ± 1.01 87.89 ± 1.14<br />

Node 3 69 ± 0 82.02 ± 0.86 69 ± 0 79.05 ± 0.69<br />

Node 4 48.05 ± 1.22 69 ± 0 47.29 ± 1.05 69 ± 0<br />

Node 5 25.64 ± 0.75 34.12 ± 1.04 24.95 ± 0.75 33.38 ± 1.02<br />

Node 11 13.95 ± 0.58 16.09 ± 0.63 13.41 ± 0.51 15.19 ± 0.61<br />

Node 18 9.42 ± 0.37 10.81 ± 0.45 8.99 ± 0.41 10.16 ± 0.41<br />

Node 19 7.52 ± 0.39 8.61 ± 0.46 7.17 ± 0.35 8.09 ± 0.41<br />

Node 20 5.34 ± 0.29 6.09 ± 0.37 5.08 ± 0.33 5.72 ± 0.32<br />

Table 5<br />

Number <strong>of</strong> species <strong>and</strong> estimated nucleotide substitution rate (NSR), speciation rate (SR), <strong>and</strong> time for speciation (TFS) for genera <strong>of</strong> W<strong>in</strong>teraceae, based on ITS <strong>and</strong> comb<strong>in</strong>ed<br />

analyses under scenario 4 (see Table 4).<br />

Takhtajania Tasmannia Drimys Pseudow<strong>in</strong>tera Zygogynum<br />

Number <strong>of</strong> species 1 8 7 4 59<br />

NSR <strong>of</strong> ITS (# <strong>of</strong> substitutions per site/yr 10 10 ) 6.65 7.69 ± 1.84 8.67 ± 4.37 4.96 ± 1.17 10.75 ± 7.73<br />

NSR <strong>of</strong> ITS + psbA-trnH+rpS16<br />

(# <strong>of</strong> substitutions per site/yr 10 10 3.64 3.26 3.87 ± 1.91 1.45 3.14 ± 0.56<br />

)<br />

SR <strong>of</strong> ITS (sp/MY) 0 0.056 0.278 0.0917 0.085<br />

SR <strong>of</strong> ITS + psbA-trnH+rpS16 (sp/MY) 0 – 0.128 – 0.117<br />

TFSln ITS (MY/sp) – 12.44 2.50 7.55 8.13<br />

TFSln ITS + psbA+rpS16 (MY/sp) – – 5.41 – 5.88<br />

resulted sister to Z. pauciflorum plus Z. fraterculum; <strong>in</strong> turn, these<br />

four species are sister to Z. pomiferum 2 plus Z. v<strong>in</strong>kii. The<br />

clade formed by these six species is sister to Z. tanyostigma plus<br />

Z. baillonii (Fig. 1A).<br />

The parsimony analysis us<strong>in</strong>g the GFC option resulted <strong>in</strong> 105<br />

trees <strong>of</strong> 922 steps, CI = 0.793 <strong>and</strong> RI = 0.927; the strict consensus<br />

tree recovers the same generic <strong>relationships</strong> that <strong>in</strong> the analyses<br />

that used GM <strong>and</strong> SGS options (Fig. 2A). Resolution with<strong>in</strong> Drimys<br />

<strong>and</strong> Zygogynum s.l. is lower than that obta<strong>in</strong>ed with the GM <strong>and</strong><br />

SGS options.<br />

<strong>Generic</strong> <strong>relationships</strong> emerg<strong>in</strong>g from the Bayesian analysis<br />

(Fig. 2B) are completely congruent to those obta<strong>in</strong>ed us<strong>in</strong>g parsimony.<br />

With<strong>in</strong> Drimys the topology is similar to that recovered from<br />

GM or SGC options. With<strong>in</strong> Zygogynum, ‘clade 1’ sequences recovers<br />

the same topology obta<strong>in</strong>ed <strong>in</strong> all the analyses; however, <strong>in</strong> ‘clade 2’,<br />

Z. comptonni resulted sister to an unresolved clade conformed by Z.<br />

stipitatum, Z. acsmithii, Z. pomiferum 2, <strong>and</strong> two subclades: (Z. v<strong>in</strong>kii<br />

(Z. tanyostigma, (Z. crassifolium, Z. amplexicaule (Z. pauciflorum + Z.<br />

fraterculum)))) <strong>and</strong> (Z. pomiferum 1(Z. pancheri + Z. bicolor)).


444 X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449<br />

Table 6<br />

Tree statistics for the different gap cod<strong>in</strong>g schemes applied for ITS <strong>and</strong> comb<strong>in</strong>ed analyses.<br />

Data-sets (number<br />

<strong>of</strong> sequences)<br />

psbA-trnH (21) rpS16 (20) ITS (23) ITS (52) Comb<strong>in</strong>ed ITS + psbA-trnH+rpS16 (23)<br />

Gap cod<strong>in</strong>g option Miss<strong>in</strong>g Miss<strong>in</strong>g Miss<strong>in</strong>g Miss<strong>in</strong>g Simple gap Fifth Miss<strong>in</strong>g Simple gap cod<strong>in</strong>g Fifth character<br />

cod<strong>in</strong>g character<br />

Total number <strong>of</strong> characters 503 810 752 804 850 804 2065 2115 2065<br />

Number <strong>of</strong> non-variable<br />

characters<br />

367 695 512 465 465 292 1574 1574 1076<br />

Number <strong>of</strong> variable un<strong>in</strong>formative<br />

characters<br />

87 65 93 104 104 114 245 245 509<br />

Number <strong>of</strong> <strong>in</strong>formative<br />

characters<br />

49 50 147 235 281 398 246 296 480<br />

Informativity (%) a<br />

10.3 6.2 19.5 29.1 33.1 49.5 11.9 14 23.2<br />

L 157 126 326 591 646 922 614 667 1303<br />

Number <strong>of</strong> most<br />

parsimonious trees<br />

8 4 1 3 3 105 32 32 20<br />

CI 0.962 0.960 0.850 0.743 0.751 0.793 0.894 0.898 0.911<br />

RI 0.942 0.946 0.863 0.901 0.912 0.927 0.882 0.895 0.887<br />

RC 0.906 0.908 0.733 0.670 0.685 0.735 0.789 0.804 0.808<br />

Total number <strong>of</strong><br />

resolved clades<br />

5 9 12 32 32 28 12 12 14<br />

Polytomies <strong>in</strong> the strict<br />

consensus tree<br />

4 5 4 5 5 4 2 2 3<br />

Figures 4B 4A 4C 1A 1B 2A 5A 5A Not shown<br />

a Informativity (%) = (number <strong>of</strong> <strong>in</strong>formative characters/number <strong>of</strong> total characters) 100.<br />

3.2. Phylogenetic analyses based on psbA-trnH, rpS16 <strong>and</strong> ITS<br />

Three parsimony analyses consider<strong>in</strong>g gaps as miss<strong>in</strong>g were<br />

performed <strong>in</strong>dividually with the psbA-trnH, rpS16 <strong>and</strong> ITS datasets.<br />

The analysis based on psbA-trnH produced eight trees <strong>of</strong><br />

157 steps, CI = 0.962 <strong>and</strong> RI = 0.942 (Table 6); the strict consensus<br />

tree recovered Drimys (bootstrap = 79) <strong>and</strong> a clade with<strong>in</strong> Drimys<br />

formed by the three Chilean <strong>and</strong> Argent<strong>in</strong>ian species, D. <strong>and</strong><strong>in</strong>a,<br />

D. confertifolia, <strong>and</strong> D. w<strong>in</strong>teri (hereafter called the Southwestern<br />

or SW clade; bootstrap = 88; Fig. 3). Pseudow<strong>in</strong>tera colorata <strong>and</strong><br />

the four species <strong>of</strong> Zygogynum s.l. were recovered as a well supported<br />

clade but without <strong>in</strong>ternal resolution (bootstrap = 99;<br />

Fig. 4B). The analysis based on rpS16 produced four trees <strong>of</strong> 126<br />

steps, CI = 0.960 <strong>and</strong> RI = 0.946 (Table 6). The strict consensus tree<br />

recovered the genera Drimys <strong>and</strong> Zygogynum s.l. as a well supported<br />

clades (bootstraps = 87 <strong>and</strong> 95, respectively; Fig. 4A) conform<strong>in</strong>g<br />

a trichotomy with Pseudow<strong>in</strong>tera colorata. Drimys<br />

conta<strong>in</strong>s two clades with<strong>in</strong>: the SW clade (bootstrap = 62) <strong>and</strong> a<br />

clade formed by the NE South America species D. angustifolia, D.<br />

brasiliensis, D. granadensis, <strong>and</strong> D. roraimensis (hereafter called the<br />

Northeastern or NE clade; bootstrap = 64; Fig. 3). The analysis<br />

based on ITS produced a s<strong>in</strong>gle tree <strong>of</strong> 326 steps (CI = 0.850 <strong>and</strong><br />

RI = 0.863; Table 4; Fig. 4C), essentially similar <strong>in</strong> topology <strong>and</strong><br />

support to the analysis us<strong>in</strong>g 47 taxa (Fig. 1A).<br />

3.3. Congruence tests<br />

The ILD test <strong>in</strong>dicates comb<strong>in</strong>ability <strong>of</strong> the psbA-trnH, rpS16 <strong>and</strong><br />

ITS data-sets (P = 0.235). The SH test <strong>in</strong>dicates, on one h<strong>and</strong>, topological<br />

congruence between rpS16 <strong>and</strong> psbA-trnH (P = 0.74 or 0.82,<br />

depend<strong>in</strong>g <strong>of</strong> the use <strong>of</strong> consensus trees under parsimony or<br />

Bayesian analyses); <strong>and</strong> on the other h<strong>and</strong>, topological <strong>in</strong>congruence<br />

between rpS16 <strong>and</strong> ITS data-sets (P = 0.00 <strong>in</strong> both cases).<br />

The topologies <strong>of</strong> strict consensus trees (Fig. 4) presented only<br />

two <strong>in</strong>congruences: (1) <strong>in</strong> the rps16 tree Zygogynum v<strong>in</strong>kii is sister<br />

to Z. comptonii whereas <strong>in</strong> the ITS tree Z. v<strong>in</strong>kii resulted sister to Z.<br />

baillonii, <strong>and</strong> Z. comptonii resulted sister to Z. tanyostigma <strong>and</strong> (2)<br />

<strong>in</strong> the rps16 analysis Drimys brasiliensis 1 resulted sister to<br />

D. angustifolia <strong>and</strong> D granadensis, whereas <strong>in</strong> the ITS analysis D. brasiliensis<br />

1 resulted sister to D. brasiliensis 2 <strong>and</strong> D. roraimensis.<br />

Because the SH test has been considered too conservative, as<br />

hypotheses are too <strong>in</strong>frequently rejected (cf. Susko, 2003), we<br />

f<strong>in</strong>ally decided to follow the results <strong>of</strong> the ILD analysis <strong>and</strong> to comb<strong>in</strong>e<br />

the three data-sets (Fig. 5).<br />

3.4. Phylogenetic analyses based on the comb<strong>in</strong>ed molecular data-set<br />

Parsimony analysis <strong>of</strong> the ITS + psbA-trnH+rpS16 data-set, consider<strong>in</strong>g<br />

gaps as miss<strong>in</strong>g resulted <strong>in</strong> 32 trees <strong>of</strong> L = 614 steps,<br />

CI = 0.894 <strong>and</strong> RI = 0.882. The four genera <strong>of</strong> W<strong>in</strong>teraceae are<br />

recovered as monophyletic <strong>in</strong> the strict consensus tree, <strong>and</strong> are<br />

supported by bootstrap values <strong>of</strong> 95% or higher (Fig. 5A; Table 4).<br />

With<strong>in</strong> Zygogynum s.l. only a clade (Z. baillonii + Z. v<strong>in</strong>kii) is recovered.<br />

The SW <strong>and</strong> the NE clades <strong>of</strong> Drimys were obta<strong>in</strong>ed with bootstrap<br />

values <strong>of</strong> 82 <strong>and</strong> 58%, respectively.<br />

The parsimony analysis us<strong>in</strong>g the SGC option generated 32 trees<br />

<strong>of</strong> L = 667 steps, CI = 0.898 <strong>and</strong> RI = 0.895; the strict consensus tree<br />

recovers an identical topology to that obta<strong>in</strong>ed consider<strong>in</strong>g gaps as<br />

miss<strong>in</strong>g (Fig. 5A); however the bootstrap value for the SW clade is<br />

higher (90%).<br />

The analysis us<strong>in</strong>g GFC resulted <strong>in</strong> 20 trees <strong>of</strong> 1303 steps,<br />

CI = 0.911 <strong>and</strong> RI = 0.887. The strict consensus tree (not shown)<br />

only differs from those obta<strong>in</strong>ed <strong>in</strong> the two previous analyses with<br />

respect to the <strong>relationships</strong> with<strong>in</strong> Zygogynum s.l., <strong>in</strong> which the follow<strong>in</strong>g<br />

<strong>relationships</strong> are encountered (((Z. v<strong>in</strong>kii + Z. tanyostigma) Z.<br />

comptonii) Z. baillonii). These <strong>relationships</strong> are not recovered <strong>in</strong> any<br />

other analyses. With<strong>in</strong> Drimys, both the NE <strong>and</strong> the SW clades were<br />

recovered aga<strong>in</strong>, the latter be<strong>in</strong>g well supported (bootstrap = 92%).<br />

However, Drimys w<strong>in</strong>teri appears as paraphyletic with respect to D.<br />

<strong>and</strong><strong>in</strong>a. Relationships emerg<strong>in</strong>g from the Bayesian analysis are congruent<br />

to those obta<strong>in</strong>ed us<strong>in</strong>g parsimony (Fig. 5B).<br />

3.5. Molecular clock <strong>and</strong> divergence time estimates<br />

The likelihood-ratio test (LRT) <strong>in</strong>dicates a significant rate <strong>of</strong> heterogeneity<br />

among clades for both data-sets. Estimation <strong>of</strong> divergence<br />

times us<strong>in</strong>g the Penalized likelihood method <strong>and</strong> TN<br />

algorithm implemented <strong>in</strong> r8s, <strong>and</strong> explor<strong>in</strong>g four alternative calibration<br />

scenarios are presented <strong>in</strong> Table 4.<br />

3.6. Gap <strong>in</strong>formativity<br />

In W<strong>in</strong>teraceae, some <strong>in</strong>formative gaps correspond to short<br />

duplicate motifs <strong>of</strong> 2–3 bp <strong>in</strong> the ITS data-set, 6–7 bp <strong>in</strong> the


psbA-trnH data-set <strong>and</strong> 4 bp <strong>in</strong> the rpS16 data-set. The longest<br />

duplicate motif (TATTTCATATTGTATA) was identified <strong>in</strong> the psbAtrnH<br />

sequence <strong>of</strong> Cynamosma madagascariensis (Canellaceae) as<br />

an autopomorphy. An additional proportion <strong>of</strong> <strong>in</strong>formative gaps<br />

(33%) corresponds to changes <strong>in</strong> the length <strong>of</strong> homonucleotide repeats<br />

<strong>in</strong> the ITS data-set, most <strong>of</strong> them between 1–4 bp; however,<br />

<strong>in</strong> the psbA-trnH data-set there is one long complex homonucleotide<br />

repeat (12–13 bp) that corresponds to a polyA/T region that<br />

<strong>in</strong>cludes a synapomorphic duplication (GTCAATC) for the SW clade<br />

<strong>of</strong> Drimys. InrpS16 there are three PolyA/T with lengths <strong>of</strong> 8–13,<br />

11–12, <strong>and</strong> 15–17 bp. ITS has one poliA/T that varies <strong>in</strong> length between<br />

5–8 bp. The psbA-trnH data-set presents the longest <strong>in</strong>dels,<br />

especially across the whole order (up to 23 nucleotide) or, with<strong>in</strong><br />

Canellaceae, an <strong>in</strong>del <strong>of</strong> 35 nucleotide <strong>in</strong> Capsicodendron d<strong>in</strong>issi.<br />

The simple gap cod<strong>in</strong>g (SGC) <strong>and</strong> gaps as a fifth character (GFC)<br />

options led to an <strong>in</strong>crease <strong>in</strong> the number <strong>of</strong> <strong>in</strong>formative characters<br />

(%), length, CI <strong>and</strong> RI <strong>of</strong> most parsimonious trees (MPT) <strong>in</strong> both ITS<br />

<strong>and</strong> comb<strong>in</strong>ed analyses (Table 6). ITS analysis us<strong>in</strong>g SGC option resulted<br />

<strong>in</strong> a consensus tree (Fig. 2A) similar to that obta<strong>in</strong>ed from<br />

the analysis us<strong>in</strong>g gaps as miss<strong>in</strong>g (GM; Fig. 1A), with differences<br />

<strong>in</strong> the Zygogynum topology, <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g branch support <strong>in</strong> some<br />

clades. The analysis <strong>of</strong> the ITS data-set us<strong>in</strong>g GFC option resulted <strong>in</strong><br />

a less resolved topology with<strong>in</strong> Drimys <strong>and</strong> Zygogynum s.l. with respect<br />

to that obta<strong>in</strong>ed us<strong>in</strong>g SGC option (Figs. 1A <strong>and</strong> 2A, respectively).<br />

As for Drimys, the specific <strong>relationships</strong> were less<br />

resolved <strong>in</strong> both the ITS <strong>and</strong> the comb<strong>in</strong>ed analyses us<strong>in</strong>g GFC; <strong>in</strong><br />

addition, the three accessions <strong>of</strong> D. w<strong>in</strong>teri resulted paraphyletic<br />

with respect to the two accessions <strong>of</strong> D. <strong>and</strong><strong>in</strong>a <strong>in</strong> the comb<strong>in</strong>ed<br />

analysis us<strong>in</strong>g GFC option (data not shown).<br />

4. Discussion<br />

All analyses corroborate monophyly <strong>of</strong> Drimys, Pseudow<strong>in</strong>tera,<br />

Tasmannia, Zygogynum s.l. <strong>and</strong> recover the same <strong>in</strong>tergeneric<br />

<strong>relationships</strong> (Takhtajania (Tasmannia (Drimys (Pseudow<strong>in</strong>tera<br />

+ Zygogynum s.l.)))). Furthermore, the use <strong>of</strong> the comb<strong>in</strong>ed<br />

data-set recovered the NW <strong>and</strong> SW clades with<strong>in</strong> Drimys. Cod<strong>in</strong>g<br />

<strong>in</strong>dels us<strong>in</strong>g the SGC option results <strong>in</strong> produced a similar resolution<br />

with respect to that obta<strong>in</strong>ed with GM options, but <strong>in</strong>crease branch<br />

support.<br />

4.1. Orthology vs. paralogy <strong>in</strong> the ITS sequences<br />

The ribosomal rDNA that <strong>in</strong>cludes the ITS region is known to<br />

conta<strong>in</strong> multiple copies. Intragenomic rDNA diversity is generally<br />

thought to be low as a result <strong>of</strong> concerted evolution <strong>of</strong> these copies<br />

(Buckler et al., 1997). In some cases, however, concerted evolution<br />

is lower than speciation lead<strong>in</strong>g to divergent paralogues with<strong>in</strong> a<br />

s<strong>in</strong>gle genome (Bradford, 2002). Suh et al. (1993) obta<strong>in</strong>ed cloned<br />

ITS sequences <strong>and</strong> found two divergent ITS copies <strong>in</strong> Zygogynum s.l.,<br />

(named here ‘clone 1’ <strong>and</strong> ‘clone 2’). Additionally, Buckler et al.<br />

(1997) found that ‘clone 1’ <strong>of</strong> Zygogynum corresponds to a pseudogene<br />

<strong>and</strong> that ‘clone 2’ copies represents the functional gene.<br />

Buckler et al. (1997) considered that amplifications that use<br />

denatur<strong>in</strong>g conditions (DMSO or high extension temperatures)<br />

could favor the amplification <strong>of</strong> ‘clone 2’ sequences, which are<br />

structurally more stable <strong>and</strong> are present <strong>in</strong> higher numbers.<br />

Baldw<strong>in</strong> <strong>and</strong> Donoghue (unpublished data cited by Baldw<strong>in</strong> et al.,<br />

1995) performed pooled PCR (without clon<strong>in</strong>g) us<strong>in</strong>g samples <strong>of</strong><br />

Zygogynum bicolor <strong>and</strong> Z. comptonii <strong>and</strong> obta<strong>in</strong>ed only copies that<br />

correspond to ‘clone 2’. Follow<strong>in</strong>g Baldw<strong>in</strong> <strong>and</strong> Donoghue (unpubl.<br />

data), we used DMSO <strong>and</strong> BSA <strong>in</strong> the PCR reactions, <strong>and</strong> different<br />

PCR conditions <strong>and</strong> primers than those used by Suh et al. (1993)<br />

<strong>in</strong> order to rule out that the ITS sequences obta<strong>in</strong>ed here could<br />

correspond to ‘clone 1’ copies. In addition, our analyses support<br />

a clade conformed by all the sequences newly obta<strong>in</strong>ed<br />

X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449 445<br />

(Z. amplexicaule, Z. baillonii, Z. crassifolium, Z. fraterculum, Z. pauciflorum,<br />

Z. pomiferum 2 <strong>and</strong> Z. v<strong>in</strong>kii) together with the ‘clone 2’ sequences<br />

<strong>of</strong> previous studies (Figs. 1 <strong>and</strong> 2). All these facts strongly<br />

suggest that, although we did not perform ITS clon<strong>in</strong>g, our newly<br />

obta<strong>in</strong>ed sequences are orthologous functional genes.<br />

4.2. Systematics<br />

The generic <strong>relationships</strong> recovered here are <strong>in</strong> agreement<br />

with the topologies obta<strong>in</strong>ed by Karol et al. (2000) <strong>and</strong> Doust<br />

<strong>and</strong> Dr<strong>in</strong>nan (2004). That is: (Takhtajania (Tasmannia (Drimys<br />

(Pseudow<strong>in</strong>tera, Zygogynum s.l.)))). Our <strong>in</strong>creased sampl<strong>in</strong>g <strong>of</strong> Drimys<br />

(7 spp.), Tasmannia (7 spp.), <strong>and</strong> Zygogynum s.l. (13 spp.) provided<br />

additional evidence for the monophyly <strong>of</strong> these genera. A<br />

phylogenetic analysis <strong>in</strong>clud<strong>in</strong>g molecular <strong>and</strong> morphological data<br />

is currently underway. However, resolution with<strong>in</strong> genera deserves<br />

further research due to the low nucleotide substitution rates<br />

encountered <strong>in</strong> sequences <strong>of</strong> ITS, psbA-trnH <strong>and</strong> rpS16 (Table 5).<br />

4.2.1. Drimys<br />

Two subclades were recovered <strong>in</strong> the W<strong>in</strong>teraceae comb<strong>in</strong>ed<br />

analysis: the NE clade (D. angustifolia, D. brasiliensis, D. granadensis,<br />

D. roraimensis), <strong>and</strong> the SW clade (D. <strong>and</strong><strong>in</strong>a, D. confertifolia,<br />

D. w<strong>in</strong>teri). These clades essentially correspond to the two ma<strong>in</strong><br />

species groups keyed out by Smith (1943b). The Andean species<br />

<strong>of</strong> Drimys (D. w<strong>in</strong>teri, D. <strong>and</strong><strong>in</strong>a, <strong>and</strong> D. granadensis) do not conform<br />

a clade by themselves (Fig. 5). With<strong>in</strong> the SW clade, the topology<br />

recovered by the comb<strong>in</strong>ed analysis ((D. confertifolia) (D. w<strong>in</strong>teri,<br />

D. <strong>and</strong><strong>in</strong>a)) essentially corresponds to the species group<strong>in</strong>g proposed<br />

by Smith (1943b). D. confertifolia is closely related to D. w<strong>in</strong>teri,<br />

although this author considered D. <strong>and</strong><strong>in</strong>a as a subspecies <strong>of</strong> D.<br />

w<strong>in</strong>teri. On the other h<strong>and</strong>, Ehrendorfer et al. (1979) grouped species<br />

<strong>of</strong> Drimys as follows: (1) the southern group (equivalent to our<br />

SW clade); (2) D. granadensis; <strong>and</strong> (3) the eastern group <strong>in</strong>clud<strong>in</strong>g<br />

D. angustifolia, D. brasiliensis, <strong>and</strong> D. roraimensis. Our analyses support<br />

the monophyly <strong>of</strong> group 1, but is still <strong>in</strong>conclusive regard<strong>in</strong>g<br />

the recognition <strong>of</strong> group 3. The lack <strong>of</strong> resolution with<strong>in</strong> the NE<br />

clade <strong>of</strong> Drimys further prevents an <strong>in</strong>frageneric classification;<br />

the problematic circumscription <strong>of</strong> this clade has long been recognized<br />

<strong>in</strong> previous morphological studies (Sa<strong>in</strong>t-Hilaire, 1824;<br />

Miers, 1858; Smith, 1943a; Ehrendorfer et al., 1979; see Table 1).<br />

Therefore, the use <strong>of</strong> additional fast-evolv<strong>in</strong>g markers, <strong>and</strong> a phylogeographic<br />

approach is urgently needed <strong>in</strong> order to improve resolution<br />

<strong>in</strong>side the genus.<br />

4.2.2. Tasmannia<br />

Species circumscription with<strong>in</strong> Tasmannia has long been controversial,<br />

especially <strong>in</strong> reference to the circumscription <strong>of</strong> T. piperita.<br />

Smith (1943b) recognized six Australian <strong>and</strong> 30 extra-Australian<br />

species. V<strong>in</strong>k (1970) proposed three <strong>in</strong>formal sections: (1) T.<br />

lanceolata, (2) T. <strong>in</strong>sipida plus T. purpurascens plus T. stipitata, <strong>and</strong><br />

(3) Tasmannia piperita sensu lato, which <strong>in</strong>cludes Smith’s 30 extra-<br />

Australian species plus the Australian T. glaucifolia,<br />

T. membranea <strong>and</strong> T. xerophila. Our results suggest that T. glaucifolia<br />

is sister to T. xerophila. However, the relationship between these<br />

two species <strong>and</strong> T. piperita (based on an Irian Jaya specimen) rema<strong>in</strong>s<br />

unresolved (Figs. 1 <strong>and</strong> 2). Accord<strong>in</strong>g to our results, V<strong>in</strong>k’s second<br />

section appears as paraphyletic <strong>in</strong> the analyses (Figs. 1 <strong>and</strong> 2). An exp<strong>and</strong>ed<br />

sampl<strong>in</strong>g <strong>in</strong> future phylogenetic analysis (<strong>in</strong>clud<strong>in</strong>g members<br />

<strong>of</strong> Borneo <strong>and</strong> The Philip<strong>in</strong>es) is urgently needed <strong>in</strong> order to<br />

further clarify the phylogenetic <strong>relationships</strong> with<strong>in</strong> the genus.<br />

4.2.3. Zygogynum s.l.<br />

This genus comprises approximately 59 species distributed <strong>in</strong><br />

Australia, New Gu<strong>in</strong>ea, Moluccas, <strong>and</strong> New Caledonia (V<strong>in</strong>k,<br />

1993a, 1993b). However, only New Caledonian species have been


446 X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449<br />

<strong>in</strong>cluded <strong>in</strong> phylogenetic analyses <strong>of</strong> the W<strong>in</strong>teraceae, which casts<br />

doubts on the monophyly <strong>of</strong> the genus. The presence <strong>of</strong> Zygogynum<br />

s.l. <strong>in</strong> New Zeal<strong>and</strong> has been discussed by V<strong>in</strong>k (1988: 697), who<br />

stated that the New Zeal<strong>and</strong> Harrisipollenites fossil pollen could<br />

correspond to Zygogynum, <strong>and</strong> that ‘‘this type was elim<strong>in</strong>ated dur<strong>in</strong>g<br />

the Pleistocene, whereas its hardier <strong>of</strong>fspr<strong>in</strong>g Pseudow<strong>in</strong>tera<br />

survived <strong>and</strong> is now represented by three species”. This assumption<br />

suggests the possibility <strong>of</strong> a paraphyletic Zygogynum s.l. with<br />

respect to Pseudow<strong>in</strong>tera.<br />

Our results do not support the monophyly <strong>of</strong> the generic segregates<br />

Belliolum, Bubbia <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g Zygogynum s.s. (Figs. 1<br />

<strong>and</strong> 2, Table 2). A phylogenetic analysis based on comb<strong>in</strong>ed data<br />

(morphology + molecular) is currently underway to further clarify<br />

species-level <strong>relationships</strong> with<strong>in</strong> the Belliolum + Bubbia +<br />

Exospermum + Zygogynum complex sensu van Tieghem (1900).<br />

4.3. Nucleotide substitution <strong>and</strong> speciation rates<br />

Our nucleotide substitution rates (NSR) for ITS <strong>in</strong> Pseudow<strong>in</strong>tera<br />

<strong>and</strong> Zygogynum fluctuated around 4.96 10 10 <strong>and</strong> 10.75 10 10<br />

substitutions/year, respectively (Table 5). Previously, Suh et al.<br />

(1993) estimated that NSR for Pseudow<strong>in</strong>tera <strong>and</strong> Zygogynum fall<br />

<strong>in</strong>to the 3.2–5.2 10 10 substitutions/year <strong>and</strong> 3.6–5.7 10 10<br />

substitutions/year <strong>in</strong>tervals, respectively. Differences between<br />

our higher estimates <strong>of</strong> NSR for Zygogynum <strong>in</strong> relation with the values<br />

reported by Suh et al. (1993), could be related with the model<br />

<strong>of</strong> DNA substitutions, sequences sampl<strong>in</strong>g, <strong>and</strong>/or estimation <strong>of</strong><br />

ages <strong>of</strong> the splitt<strong>in</strong>g between Pseudow<strong>in</strong>tera <strong>and</strong> Zygogynum. Suh<br />

et al. (1993) used the Kimura model <strong>of</strong> DNA substitutions <strong>and</strong> five<br />

sequences <strong>of</strong> Zygogynum s.l., whereas we used GTR + I + G model <strong>of</strong><br />

DNA substitutions <strong>and</strong> 17 sequences <strong>of</strong> Zygogynum s.l.; additionally,<br />

Suh et al. (1993) assumed that the splitt<strong>in</strong>g between<br />

Pseudow<strong>in</strong>tera <strong>and</strong> Zygogynum s.l. occurred at least 50–80 MY by<br />

the separation <strong>of</strong> New Zeal<strong>and</strong> from Australia accord<strong>in</strong>g to Raven<br />

<strong>and</strong> Axelrod (1974), the splitt<strong>in</strong>g between these two areas is based<br />

on the presence <strong>of</strong> Zygogynum s.l. <strong>in</strong> Australia (species not sampled<br />

by Suh et al., 1993); whereas our estimated ages <strong>of</strong> Pseudow<strong>in</strong>tera –<br />

Zygogynum s.l. splitt<strong>in</strong>g ranged from 52.24 to 69 MY (Table 4, node<br />

4; cf. Fig. 2B); these estimates are based on the NSRs <strong>and</strong> <strong>in</strong> the fossil<br />

record, rather than the geographical events considered by Suh<br />

et al. (1993).<br />

As expected, speciation rates <strong>in</strong> W<strong>in</strong>teraceae (between 0.056<br />

<strong>and</strong> 0.278 sp/MY; Table 5) <strong>and</strong> Drimys (0.128–0.278 sp/MY) are extremely<br />

low when compared to other high Andean taxa, such as<br />

Gentianella (1.71–3.2 sp/MY; von Hagen <strong>and</strong> Kadereit, 2001),<br />

Lup<strong>in</strong>us (1.73–2.78 sp/MY; Hughes <strong>and</strong> Eastwood, 2006), or Valeriana<br />

(0.8–1.34 sp/MY; Bell <strong>and</strong> Donoghue, 2005). In addition, the<br />

time for speciation (TFS) <strong>in</strong> Drimys (2.50–5.41 MY/sp; Table 5) is<br />

high when compared to those <strong>in</strong> Gentianella (0.22–0.40 MY/sp;<br />

von Hagen <strong>and</strong> Kadereit, 2001) orDendrosenecio (0.24–0.29 MY/<br />

sp; Knox <strong>and</strong> Palmer, 1995).<br />

Suh et al. (1993) suggested that the long generation time, the<br />

frequent vegetative propagation by runners <strong>in</strong> Pseudow<strong>in</strong>tera <strong>and</strong><br />

Tasmannia, <strong>and</strong> a low numbers <strong>of</strong> poll<strong>in</strong>ators <strong>of</strong> Pseudow<strong>in</strong>tera<br />

(associated with self-<strong>in</strong>compatibility) could be related to the extremely<br />

low rates <strong>of</strong> molecular evolution <strong>and</strong> speciation <strong>in</strong> these genera.<br />

Furthermore, Suh et al. (1993: 1054) stated that ‘‘possibly the<br />

slow rate <strong>of</strong> molecular evolution may be correlated with a similar<br />

slow rate <strong>of</strong> morphological changes <strong>in</strong> the family [...] even though it<br />

is <strong>of</strong>ten claimed that molecules do not march to the same rhythm<br />

as morphological traits”.<br />

In Zygogynum s.l. nucleotide substitution rates are similar or<br />

slightly higher than those found <strong>in</strong> Drimys (Table 5). However,<br />

diversification rates are higher <strong>in</strong> Drimys, which contrasts to the<br />

time for speciation, which is higher <strong>in</strong> Zygogynum s.l. The relatively<br />

higher morphological diversification <strong>of</strong> Zygogynum s.l. (at least <strong>in</strong><br />

New Caledonia; cf. V<strong>in</strong>k, 1993b) with respect to that <strong>of</strong> Drimys<br />

(cf. Smith, 1943b) is consistent to the differences <strong>in</strong> the <strong>in</strong>ferred<br />

time from the branch<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> the extant species <strong>in</strong> both genera<br />

(37.8–48.6 MY vs. 6.9–7.5 MY based on the ITS data-set; 48–69 MY<br />

vs. 13.4–16.1 based on the comb<strong>in</strong>ed data-set Figs. 2B <strong>and</strong> 5B;<br />

Table 4). The capacity <strong>of</strong> the species <strong>of</strong> Zygogynum s.l. to live <strong>in</strong><br />

tropical lowl<strong>and</strong>s could also be related to the higher diversification<br />

<strong>of</strong> this genus (Feild et al., 2002).<br />

4.4. Biogeography<br />

The current distribution <strong>of</strong> the W<strong>in</strong>teraceae has been used <strong>in</strong> order<br />

to arrive at area cladograms. In the study by Crisci et al. (1991),<br />

based on 17 species-level area cladograms, the W<strong>in</strong>teraceae (represented<br />

by species <strong>of</strong> Drimys, Tasmannia <strong>and</strong> possibly Pseudow<strong>in</strong>tera),<br />

contributed to the area cladogram (SSA(AUS(NG(NC)))); (for acronyms<br />

see Fig. 6). As a result, two general area cladograms were obta<strong>in</strong>ed<br />

by ‘biogeographic parsimony’ (Fig. 6A <strong>and</strong> B) <strong>and</strong> two by a<br />

quantification <strong>of</strong> a component analysis (Fig. 6C <strong>and</strong> D).<br />

On the other h<strong>and</strong>, L<strong>in</strong>der <strong>and</strong> Crisp (1995) used 13 species-level<br />

area cladograms. The W<strong>in</strong>teraceae, contributed to the area<br />

cladogram (MAD(AUS,SSA)(NZ(AUS,NC,NG)))), to f<strong>in</strong>ally obta<strong>in</strong><br />

the general area cladogram shown <strong>in</strong> Fig. 6E.<br />

More recently, Sanmart<strong>in</strong> <strong>and</strong> Ronquist (2004) used 73 area<br />

cladograms. Two area cladograms were derived from the W<strong>in</strong>teraceae<br />

(), as follows: (MAD(AUS(SSA(NZ(NC,NG))))) <strong>and</strong> (NG(MA-<br />

D(AUS(SSA(NZ,NC))))). However, although the authors cited Karol<br />

et al. (2000) as the phylogenetic framework for these two area<br />

cladograms, the latter does not correspond to any <strong>of</strong> the phylogenies<br />

obta<strong>in</strong>ed by Karol et al. (2000). The two optimal areas<br />

cladograms obta<strong>in</strong>ed by Sanmart<strong>in</strong> <strong>and</strong> Ronquist (2004) are summarized<br />

<strong>in</strong> Fig. 6F.<br />

The area cladogram that summarizes the topology <strong>of</strong> W<strong>in</strong>teraceae<br />

distribution obta<strong>in</strong>ed from our research can be summarized<br />

as follows: (((((NZ)(NC,AUS,NG))(SWSA,NESA))(AUS,TAS,SEA,NG))<br />

(MAD)). In this area cladogram, South America has been splitted<br />

<strong>in</strong>to two different areas, Southwest South America (SWSA) <strong>and</strong><br />

North-east South America (NESA; us<strong>in</strong>g the 30° south latitude proposed<br />

as a limit by Humphries <strong>and</strong> Parenti, 1999; Fig. 3), <strong>in</strong> order to<br />

show the geographic distribution <strong>of</strong> our SW <strong>and</strong> NE clades <strong>of</strong><br />

Drimys. Thus, our phylogenetic analysis do not exactly reflect the<br />

geological reconstructions <strong>of</strong> Gondwanic fragmentation events<br />

presented by L<strong>in</strong>der <strong>and</strong> Crisp (1995), or by Sanmart<strong>in</strong> <strong>and</strong><br />

Ronquist (2004; see Fig. 6G).<br />

In our area cladogram two ‘‘biogeographic” politomies rema<strong>in</strong><br />

unresolved: The first (SEA, NG, AUS, TAS) is due to the distribution<br />

<strong>of</strong> Tasmannia, a genus primarily distributed <strong>in</strong> Tasmania <strong>and</strong> Australia<br />

(except T. piperita, widespread <strong>in</strong> Australia, New Gu<strong>in</strong>ea<br />

<strong>and</strong> SE Asia), <strong>in</strong>clud<strong>in</strong>g the Philipp<strong>in</strong>es <strong>and</strong> Borneo. The second<br />

polytomy (NC, AUS, NG) is due to the presence <strong>of</strong> Zygogynum s.l.<br />

<strong>in</strong> Australia, New Caledonia <strong>and</strong> New Gu<strong>in</strong>ea (cf. V<strong>in</strong>k, 1983,<br />

1985, 1988, 1993b, 2003). The <strong>in</strong>clusion <strong>of</strong> species <strong>of</strong> Zygogynum<br />

from Australia <strong>and</strong> New Gu<strong>in</strong>ea <strong>in</strong> further phylogenetic analysis<br />

will help to clarify such polytomy.<br />

4.5. Divergence time estimates<br />

The assumption <strong>of</strong> a more widespread geographical distribution<br />

<strong>of</strong> W<strong>in</strong>teraceae dur<strong>in</strong>g the Cretaceous <strong>in</strong> Gondwana is consistent<br />

with the presence <strong>of</strong> fossils <strong>of</strong> Walkeripollis <strong>in</strong> Israel <strong>and</strong> Gabon<br />

(c. 120 MY; Doyle, 2000) <strong>and</strong> <strong>in</strong> Patagonia (Argent<strong>in</strong>a, c. 100 MY;<br />

Barreda <strong>and</strong> Archangelsky, 2006; Fig. 3), <strong>and</strong> the vesselless fossil<br />

wood <strong>of</strong> W<strong>in</strong>teroxylon jamesrossi <strong>in</strong> West Antarctica at approximately<br />

85 MY (Fig. 3; Doyle, 2000).<br />

The estimates <strong>of</strong> the branch<strong>in</strong>g po<strong>in</strong>t between Tasmannia <strong>and</strong><br />

the rest <strong>of</strong> the family (Drimys + Pseudow<strong>in</strong>tera + Zygogynum s.l) is


77–92.38 MY (node 2 <strong>in</strong> Figs. 2B <strong>and</strong> 5B; Table 4); if so, it could<br />

have occurred before the separation <strong>of</strong> South America plus Australia<br />

from New Caledonia plus New Zeal<strong>and</strong> by the Tasman Sea,<br />

which has been dated around 80 MY (Fig. 6; cf. Sanmart<strong>in</strong> <strong>and</strong> Ronquist,<br />

2004).<br />

The age <strong>of</strong> the branch<strong>in</strong>g po<strong>in</strong>t between the New Zeal<strong>and</strong> species<br />

<strong>of</strong> Pseudow<strong>in</strong>tera <strong>and</strong> the species <strong>of</strong> the New Caledonian Zygogynum<br />

s.l. <strong>in</strong>cluded <strong>in</strong> our study (52.24–79 MY; node 4 <strong>in</strong> Fig. 2B <strong>and</strong> Table<br />

4) corresponds to estimate <strong>of</strong> c. 70–60 MY (Fig. 6G) given by Sanmart<strong>in</strong><br />

<strong>and</strong> Ronquist (2004) <strong>and</strong> by Swenson et al. (2001). The biogeographic<br />

implications <strong>of</strong> the Pseudow<strong>in</strong>tera + Zygogynum s.l. clade<br />

require further <strong>in</strong>vestigation <strong>and</strong> an <strong>in</strong>crease <strong>in</strong> the samples especially<br />

<strong>of</strong> the members <strong>of</strong> the complex Zygogynum.<br />

Our results (Figs. 1 <strong>and</strong> 2) show that the early divergent species<br />

<strong>of</strong> Tasmannia are <strong>in</strong> Australia plus Tasmania. The splitt<strong>in</strong>g between<br />

T. piperita from New Gu<strong>in</strong>ea <strong>and</strong> its sister Australian relatives is between<br />

15.5 <strong>and</strong> 18.5 MY (node 15 <strong>in</strong> Fig. 2B <strong>and</strong> Table 4). These<br />

ages are more recent than the New Gu<strong>in</strong>ea–Australia splitt<strong>in</strong>g by<br />

the Coral Sea Bas<strong>in</strong>, which occurred at approximately 30 MY<br />

X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449 447<br />

Fig. 6. (A–D) General area cladogram from Crisci et al. (1991); (E) General area cladogram from L<strong>in</strong>der <strong>and</strong> Crisp (1995); (F) One <strong>of</strong> the two possible optimal area cladograms<br />

for the plant data-set from Sanmart<strong>in</strong> <strong>and</strong> Ronquist (2004); (G) Geological area cladogram represent<strong>in</strong>g the <strong>relationships</strong> between the southern hemisphere l<strong>and</strong> masses,<br />

based on paleogeographic evidence. Time <strong>of</strong> vicariance is assumed as the primary fragmentation event. ( ) dated as 70–60 MY <strong>in</strong> alternative reconstructions (Sanmart<strong>in</strong> <strong>and</strong><br />

Ronquist, 2004). AFR, Africa; AUS, Australia; ESA, East South America; HOL, Holartic; IND, India; NA, North America; NC, New Caledonia; NG, New Gu<strong>in</strong>ea; NSA, Northern<br />

South America; MAD, Madagascar; SEA, South East Pacific; SSA, Southern South America; SWP, South West Pacific; TAS, Tasmania, <strong>and</strong> WANT, West Antarctica.<br />

(Fig. 6G; Sanmart<strong>in</strong> <strong>and</strong> Ronquist, 2004). However, accord<strong>in</strong>g to<br />

Swenson et al. (2001), two alternative estimates exists for New<br />

Gu<strong>in</strong>ea–Australia splitt<strong>in</strong>g: (1) 25 MY, based on the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong><br />

the uplift <strong>of</strong> New Gu<strong>in</strong>ea; (2) 15–10 MY, based on the expansion<br />

<strong>of</strong> arid conditions <strong>in</strong> Australia, <strong>and</strong> the fragmentation <strong>of</strong> mesic<br />

environments; these estimates predates <strong>and</strong> postdates, respectively<br />

the age <strong>of</strong> the splitt<strong>in</strong>g between T. piperita <strong>and</strong> its sister relatives<br />

(18.5–15.5 MY).<br />

Speciation <strong>of</strong> Pseudow<strong>in</strong>tera is estimated to have started by mid-<br />

Miocene (11.3–17.3 MY; node 10 <strong>in</strong> Fig 2B <strong>and</strong> Table 4), after the<br />

‘‘Oligocene bottleneck” <strong>in</strong> the New Zeal<strong>and</strong> biota (W<strong>in</strong>kworth<br />

et al., 2002). At that time, New Zeal<strong>and</strong> was reduced to a scattered<br />

archipelago, formed by isl<strong>and</strong>s <strong>of</strong> low elevation. The presence <strong>of</strong><br />

pollen likely assigned to Zygogynum s.l. from the Oligocene to the<br />

Pleistocene <strong>of</strong> New Zeal<strong>and</strong> <strong>in</strong>dicates that the genus was more<br />

widespread <strong>in</strong> the past (V<strong>in</strong>k, 1988).<br />

The branch<strong>in</strong>g po<strong>in</strong>t between Drimys <strong>and</strong> its sister group (69–<br />

84.6 MY; node 3, Fig. 2B <strong>and</strong> Table 4) could have predated the<br />

formation <strong>of</strong> the Tasman Sea (80 MY, Fig 6G) <strong>and</strong> the separation


448 X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449<br />

<strong>of</strong> South America <strong>and</strong> Australia (52–35 MY, Fig. 6G). The oldest fossil<br />

assignable to Drimys is pollen <strong>of</strong> approximately 58.5 MY (Fig. 3;<br />

Doyle, 2000). However, the speciation <strong>of</strong> Drimys appears to have<br />

occurred much later (around 13.4–16.1 MY (node 11, Fig. 5B <strong>and</strong><br />

Table 4; us<strong>in</strong>g the comb<strong>in</strong>ed data-set), which co<strong>in</strong>cides <strong>in</strong> time<br />

with the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the Central Andean uplift (30 <strong>and</strong> 25% <strong>of</strong><br />

their modern elevation between 14 <strong>and</strong> 20 MY, respectively;<br />

Wodzicki, 2000). Ehrendorfer et al. (1979:78) stated that the precursors<br />

<strong>of</strong> Drimys ‘‘reached the ancient fragments <strong>of</strong> Gondwana<br />

l<strong>and</strong> masses which are now part <strong>of</strong> S. America (Guyana, Brazilian<br />

shield, etc.) after their separation from African fragment but before<br />

their fusion by the Andean Cordilleras emerg<strong>in</strong>g dur<strong>in</strong>g the Tertiary.<br />

D. roraimensis <strong>and</strong> D. brasiliensis could represent relicts from<br />

that time”. This assumption is not supported by the estimates <strong>of</strong><br />

age <strong>of</strong> splitt<strong>in</strong>g between SW <strong>and</strong> NE clades <strong>of</strong> Drimys (13.4–<br />

16.1 MY; node 11, Fig. 5B).Further age estimations with<strong>in</strong> Drimys<br />

is prevented by the lack <strong>of</strong> resolution <strong>in</strong> our phylogenetic analyses,<br />

except for the splitt<strong>in</strong>g between the Juan Fern<strong>and</strong>ez endemic<br />

D. confertifolia <strong>and</strong> its sister clade (D. <strong>and</strong><strong>in</strong>a + D. w<strong>in</strong>teri), dated<br />

<strong>in</strong> 9–10.8 MY (node 18, Fig. 5B <strong>and</strong> Table 4) predates the formation<br />

<strong>of</strong> the Juan Fern<strong>and</strong>ez Archipelago, dated on 4 MY (Anderson et al.,<br />

2001).<br />

5. Conclusions<br />

Our <strong>in</strong>creased sampl<strong>in</strong>g <strong>of</strong> Drimys, Tasmannia <strong>and</strong> Zygogynum s.l.<br />

supports the monophyly <strong>of</strong> these genera, but does not support the<br />

monophyly <strong>of</strong> Bubbia, Belliolum, <strong>and</strong> Zygogynum s.s. With<strong>in</strong> Drimys,<br />

we propose two clades, the SW <strong>and</strong> the NE clades. Divergence time<br />

estimates <strong>in</strong>dicate that the earliest cladogenetic events that gave<br />

rise to the genera <strong>of</strong> W<strong>in</strong>teraceae could have predate the<br />

Gondwanic fragmentation. The splitt<strong>in</strong>g between Drimys <strong>and</strong> its<br />

sister group (Pseudow<strong>in</strong>tera + Zygogynum s.l.) could have occurred<br />

by late Cretaceous, but speciation <strong>of</strong> Drimys seems to have started<br />

much later, dur<strong>in</strong>g late Miocene. The area cladogram derived from<br />

our phylogenetic analyses does not correspond to any <strong>of</strong> the previous<br />

area cladograms based on the W<strong>in</strong>teraceae.<br />

The use <strong>of</strong> gaps as characters, follow<strong>in</strong>g alignment criteria proposed<br />

by Kelchner (2000) <strong>and</strong> Borsch et al. (2003) <strong>and</strong> the SGC option<br />

proposed by Simmons <strong>and</strong> Ochoterena (2000) <strong>in</strong>creases<br />

resolution <strong>and</strong> branch support values. In contrast, the treatment<br />

<strong>of</strong> gaps as a fifth character decreases resolution <strong>and</strong> could cause<br />

artifactual topologies.<br />

Acknowledgments<br />

X.M. is <strong>in</strong>debted to the Instituto para el Desarrollo de la Ciencias<br />

y la Tecnología ‘‘Francisco José de Caldas”. (COLCIENCIAS) for a fellowship<br />

received from the ‘‘Programa de apoyo a doctorados nacionales<br />

2004”, <strong>and</strong> to the Botany Department <strong>of</strong> the University <strong>of</strong><br />

São Paulo (Brazil) for academic support dur<strong>in</strong>g lab work. A.S. <strong>and</strong><br />

M.L.F.S. are fellow researchers <strong>of</strong> CNPq (Conselho Nacional do<br />

Desenvolvimento Científico e Tecnológico, Brazil). We thank G.J.<br />

Anderson (University <strong>of</strong> Connecticut, USA), I. Cordeiro (Instituto<br />

de Botânica do Estado de São Paulo, Brazil), J. Salazar (Cornell University,<br />

USA), A. Townsmith (DNA Bank Manager, Missouri<br />

Botanical Garden, USA), <strong>and</strong> the Director <strong>of</strong> Horticulture <strong>of</strong> the Royal<br />

Botanic Garden Ed<strong>in</strong>burgh (UK), for provide silica-gel dried samples.<br />

We also thank Dr. Frederico Arzolla (Campos de Jordão) for<br />

support<strong>in</strong>g field work, L. F. Garcia (Universidad Nacional de Colombia)<br />

for help<strong>in</strong>g with Bayesian analysis. We acknowledge IBAMA<br />

for collect<strong>in</strong>g permits, <strong>and</strong> the curators <strong>of</strong> the herbaria M, NY, UC,<br />

<strong>and</strong> US, for the loans received at COL. Reviews <strong>of</strong> an early manuscript<br />

by J. Salazar, J. Lynch (Universidad Nacional de Colombia),<br />

<strong>and</strong> R. Callejas (Universidad de Antioquia, Colombia) improved<br />

the manuscript. We thank two anonymous reviewers for critical<br />

read<strong>in</strong>g <strong>of</strong> the manuscript.<br />

References<br />

Anderson, G.J., Bernardello, G., Stuessy, T.F., Crawford, D.J., 2001. Breed<strong>in</strong>g system<br />

<strong>and</strong> poll<strong>in</strong>ation <strong>of</strong> selected plants endemic to Juan Fern<strong>and</strong>ez Isl<strong>and</strong>s. Am. J. Bot.<br />

88, 220–233.<br />

APGII, 2003. An update <strong>of</strong> the Angiosperm Phylogeny Group classification for the<br />

orders <strong>and</strong> families <strong>of</strong> flower<strong>in</strong>g plants: APGII. Bot. J. L<strong>in</strong>n. Soc. 141, 399–436.<br />

Bailey, I.W., Nast, C.G., 1944. Foliar epidermis <strong>and</strong> sclerenchyma. J. Arnold Arbor. 25,<br />

215–221.<br />

Bailey, I.W., Swamy, G.L., 1951. The conduplicate carpel <strong>of</strong> the dicotyledons <strong>and</strong> its<br />

trends <strong>of</strong> specialization. Am. J. Bot. 38, 373–379.<br />

Bailey, I.W., Thompson, W.P., 1918. Additional notes upon the angiosperms<br />

Tetracentron, Trochodendron, <strong>and</strong> Drimys, <strong>in</strong> which vessels are absent from<br />

wood. Ann. Bot. 32, 503–512.<br />

Baldw<strong>in</strong>, B.G., S<strong>and</strong>erson, M.J., Porter, J.M., Wojciechowski, M.F., Campbell, C.S.,<br />

Donoghue, M.J., 1995. The ITS region <strong>of</strong> nuclear ribosomal DNA: a valuable<br />

source <strong>of</strong> evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82, 247–<br />

277.<br />

Baranova, M., 1972. Systematic anatomy <strong>of</strong> the leaf epidermis <strong>in</strong> Magnoliaceae <strong>and</strong><br />

some related families. Taxon 21, 447–469.<br />

Barreda, V., Archangelsky, S., 2006. The southernmost record <strong>of</strong> tropical pollen<br />

gra<strong>in</strong>s <strong>in</strong> the mid-cretaceous <strong>of</strong> Patagonia, Argent<strong>in</strong>a. Cretaceous Res. 27, 778–<br />

787.<br />

Bell, C.D., Donoghue, M.J., 2005. Phylogeny <strong>and</strong> biogeography <strong>of</strong> Valerianaceae<br />

(Dipsacales) with special reference to the South American valerians. Org. Divers.<br />

Evol. 5, 147–159.<br />

Borsch, T., Hilu, K.W., Qu<strong>and</strong>t, D., Wilde, V., Ne<strong>in</strong>huis, C., Barthlott, W., 2003. Noncod<strong>in</strong>g<br />

plastid trnT-trnF sequences reveal a highly supported phylogeny <strong>of</strong> basal<br />

angiosperms. J. Evol. Biol. 16, 558–576.<br />

Bradford, J.C., 2002. Molecular phylogenetics <strong>and</strong> morphological evolution <strong>in</strong><br />

Cunonieae (Cunoniaceae). Ann. Missouri Bot. Gard. 89, 491–503.<br />

Buckler-IV, E.S., Ippolito, A., Holtsford, T.P., 1997. The evolution <strong>of</strong> ribosomal DNA:<br />

divergent paralogues <strong>and</strong> phylogenetic implications. Genetics 145, 821–832.<br />

Cai, Z., Penaflor, C., Kuehl, J.V., Leebens-Mack, J., Carlson, J.E., de-Pamphilis, C.W.,<br />

Boore, J.L., Jansen, R.K., 2006. Complete plastid genome <strong>of</strong> Drimys, Liriodendron<br />

<strong>and</strong> Piper: implications for the phylogenetic <strong>relationships</strong> <strong>of</strong> magnoliids. BMC<br />

Evol. Biol. 6, 77.<br />

Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall,<br />

M.R., Price, R.A., Hills, H.G., Qiu, Y.L., Kron, K.A., Rettig, J.H., Conti, E., Palmer, J.D.,<br />

Manhart, J.R., Sytsma, K.J., Michaels, H.J., Kress, W.J., Karol, K.G., Clark, W.D.,<br />

Hedren, M., Gaut, B.S., Jansen, R.K., Kim, K.J., Wimpee, C.F., Smith, J.F., Furnier,<br />

G.R., Straus, S.H., Xiang, Q.Y., Plunkett, G.M., Soltis, P.S., Swensen, S., Williams,<br />

S.E., Gadek, P.A., Qu<strong>in</strong>n, C.J., Equiarte, L.E., Golenberg, E., Learn, G.H., Graham,<br />

S.W., Barrett, S.C.H., Dayan<strong>and</strong>an, S., Albert, V.A., 1993. Phylogenetics <strong>of</strong> seed<br />

plants: an analysis <strong>of</strong> nucleotide sequences from plastid gene rbcL. Ann.<br />

Missouri Bot. Gard. 80, 528–580.<br />

Crisci, J.V., Cigliano, M.M., Morrone, J.J., Roij-Juñent, S., 1991. Historical<br />

biogeography <strong>of</strong> southern South America. Syst. Zool. 40, 152–171.<br />

Cronquist, A., 1981. An Integrated System <strong>of</strong> Classification <strong>of</strong> Flower<strong>in</strong>g Plants.<br />

Columbia University Press, New York, USA.<br />

de C<strong>and</strong>olle, A.P., 1817. Regni vegetabilis systema naturale, vol. 1. Treuttel et Würtz,<br />

Parisii, France. p. 444.<br />

de C<strong>and</strong>olle, A.P., 1824. Prodromus systematis naturalis regni vegetabilis, vol. 1.<br />

Treuttel et Würtz, Argentorati et Lond<strong>in</strong>i, UK. pp. 77–82.<br />

Dettmann, M.E., Jarzen, D.M., 1990. The Antarctic/Australian rift valley: Late<br />

Cretaceous cradle <strong>of</strong> northeastern Australasian relicts? Rev. Paleobot. Palynol.<br />

65, 131–144.<br />

Doust, A.N., Dr<strong>in</strong>nan, A.N., 2004. Floral development <strong>and</strong> molecular phylogeny<br />

support the generic status <strong>of</strong> Tasmannia (W<strong>in</strong>teraceae). Am. J. Bot. 91, 321–331.<br />

Doyle, J.A., 2000. Paleobotany, <strong>relationships</strong>, <strong>and</strong> geographic history <strong>of</strong> W<strong>in</strong>teraceae.<br />

Ann. Missouri Bot. Gard. 87, 303–316.<br />

Doyle, J.A., Endress, P.K., 2000. Morphological phylogenetic analysis <strong>of</strong> basal<br />

angiosperms: comparison <strong>and</strong> comb<strong>in</strong>ation with molecular data. Int. J. Plant<br />

Sci. 161, S121–S153.<br />

Ehrendorfer, F., Gottsberger, I.S., Gottsberger, G., 1979. Variation on the population,<br />

racial, <strong>and</strong> species level <strong>in</strong> the primitive relic angiosperm genus Drimys<br />

(W<strong>in</strong>teraceae) <strong>in</strong> South America. Pl. Syst. Evol. 132, 53–83.<br />

Endress, P.K., Igersheim, A., Sampson, F.B., Schatz, G.E., 2000. Floral structure <strong>of</strong><br />

Takhtajania <strong>and</strong> its systematic position <strong>in</strong> W<strong>in</strong>teraceae. Ann. Missouri Bot. Gard.<br />

87, 347–365.<br />

Farris, J.D., Kallersjö, M., Kluge, A.G., Bult, C., 1994. Test<strong>in</strong>g significance <strong>of</strong><br />

<strong>in</strong>congruence. Cladistics 10, 315–319.<br />

Feild, T.S., Holbrook, N.M., 2000. Xylem sap flow <strong>and</strong> stem hydraulics <strong>of</strong> the<br />

vesselless angiosperm Drimys granadensis (W<strong>in</strong>teraceae) <strong>in</strong> a Costa Rican elf<strong>in</strong><br />

forest. Plant Cell Environ. 23, 1067–1077.<br />

Feild, T.S., Zwieniecki, M.A., Donoghue, M.J., Holbrook, N.M., 1998. Stomatal plugs <strong>of</strong><br />

Drimys w<strong>in</strong>teri (W<strong>in</strong>teraceae) protect leaves from mist but not drought. Proc.<br />

Natl. Acad. Sci. USA 95, 14256–14259.<br />

Feild, T.S., Zwieniecki, M.A., Holbrook, N.M., 2000. W<strong>in</strong>teraceae evolution: an<br />

ecophysiological perspective. Ann. Missouri Bot. Gard. 87, 323–334.<br />

Feild, T.S., Brodribb, T., Holbrook, N.M., 2002. Hardly a relict: freez<strong>in</strong>g <strong>and</strong> the<br />

evolution <strong>of</strong> vesselless wood <strong>in</strong> W<strong>in</strong>teraceae. Evolution 56, 464–478.


Felsenste<strong>in</strong>, J., 1993. PHYLIP: Phylogeny Inference Package. Seattle, WA, USA.<br />

Ferreira, M.E., Grattapaglia, D., 1996. Introdução ao uso de marcadores moleculares<br />

em análise genética (Documento 20), second ed. EMBRAPA, Centro de Recursos<br />

Genéticos e Biotecnologia, Brasilia, Brazil.<br />

Forster, J.R., Forster, G., 1776. Characteres generum plantarum. In: White, B., Cadell,<br />

T., Elmsly, P. (Eds.). London, UK.<br />

Hagen, K.B., von Kadereit, J.W., 2001. The phylogeny <strong>of</strong> Gentianella (Gentianaceae)<br />

<strong>and</strong> its colonization <strong>of</strong> the southern hemisphere as revealed by nuclear <strong>and</strong><br />

chloroplast DNA sequence variation. Org. Divers. Evol. 1, 61–79.<br />

Huelsenbeck, J.P., Cr<strong>and</strong>all, K.A., 1997. Phylogeny estimation <strong>and</strong> hypothesis test<strong>in</strong>g<br />

us<strong>in</strong>g maximum likelihood. Ann. Rev. Ecol. Syst. 28, 437–466.<br />

Huelsenbeck, J.P., Ronquist, P., 2001. MRBAYES: Bayesian <strong>in</strong>ference <strong>of</strong> phylogeny.<br />

Bio<strong>in</strong>formatics 17, 754–755.<br />

Hughes, C., Eastwood, R., 2006. Isl<strong>and</strong> radiation on a cont<strong>in</strong>ental scale: exceptional<br />

rates <strong>of</strong> plant diversification after uplift <strong>of</strong> the Andes. Proc. Natl. Acad. Sci. USA<br />

103, 10334–10339.<br />

Humphries, C.J., Parenti, L.R., 1999. Cladistic Biogeography: Interpret<strong>in</strong>g Pattern <strong>of</strong><br />

Plant <strong>and</strong> Animal Distributions, second ed. Oxford University Press, Oxford, UK.<br />

Karol, K.G., Suh, Y., Schatz, G.E., Zimmer, E.A., 2000. Molecular evidence for the<br />

phylogenetic position <strong>of</strong> Takhtajania <strong>in</strong> W<strong>in</strong>teraceae: <strong>in</strong>ference from nuclear<br />

ribosomal <strong>and</strong> chloroplast gene space sequences. Ann. Missouri Bot. Gard. 87,<br />

414–432.<br />

Kelchner, S.A., 2000. The evolution <strong>of</strong> non-cod<strong>in</strong>g chloroplast DNA <strong>and</strong> its<br />

implication <strong>in</strong> plant systematics. Ann. Missouri Bot. Gard. 87, 482–498.<br />

Knox, E.B., Palmer, J.D., 1995. Chloroplast DNA variation <strong>and</strong> the recent radiation <strong>of</strong><br />

the giant senecios (Asteraceae) on the tall mounta<strong>in</strong>s <strong>of</strong> eastern Africa. Proc.<br />

Natl. Acad. Sci. USA 92, 10349–10353.<br />

L<strong>in</strong>der, H.P., Crisp, M.D., 1995. Noth<strong>of</strong>agus <strong>and</strong> Pacific biogeography. Cladistics 11, 5–32.<br />

L<strong>in</strong>dley, J., 1836. Natural System <strong>of</strong> Botany, second ed. Longmann, Rees, Orme,<br />

Brown, Green <strong>and</strong> Longman, Paternoster Row, London, UK.<br />

L<strong>in</strong>naeus f., C., 1781. Supplementum plantarum systematis vegetabilium editionis<br />

decimae tertiae, Generum plantarum editionis sextae, et Specierum plantarum<br />

editionis secunda. Impenfis Orphanotrophei, Brunsvigae, Germany.<br />

Maddison, D.R., Maddison, W.P., 2003. MacClade 4.06. S<strong>in</strong>auer Associates, Inc. Pub.<br />

Sunderl<strong>and</strong>, Massachusetts, USA.<br />

Malcomber, S.T., 2002. Phylogeny <strong>of</strong> Gaertnera Lam. (Rubiaceae) based on multiple<br />

DNA markers: evidence <strong>of</strong> a rapid radiation <strong>in</strong> a widespread, morphologically<br />

diverse genus. Evolution 56, 42–57.<br />

Miers, J., 1858. On the W<strong>in</strong>teraceae. Ann. Mag. Nat. Hist. (Third Series) 2, 33–48 <strong>and</strong><br />

109–115.<br />

Mildenhall, D.C., 1980. New Zeal<strong>and</strong> Late Cretaceous <strong>and</strong> Cenozoic plant<br />

biogeography: a contribution. Palaeogeogr. Palaeoclimatol. 31, 197–233.<br />

N<strong>and</strong>i, O.I., Chase, M.W., Endress, P.K., 1998. A comb<strong>in</strong>ed cladistic analysis <strong>of</strong><br />

angiosperms us<strong>in</strong>g rbcL <strong>and</strong> nonmolecular data-sets. Ann. Missouri Bot. Gard.<br />

85, 137–212.<br />

Nyl<strong>and</strong>er, J.A., 2004. MrModeltest v. 3.7. Program distributed by the autor.<br />

Evolutionary Biology Center, Uppsala University, Sweden.<br />

Philippi, R., 1856. Observaciones sobre la flora de Juan Fernández. Ann. Univ. Chile<br />

13, 157–169.<br />

Qiu, Y.l., Chase, M.W., Les, D.H., Parks, C.R., 1993. Molecular phylogenetics <strong>of</strong> the<br />

Magnoliidae: cladistic analyses <strong>of</strong> nucleotide sequences <strong>of</strong> the plastid gene rbcL.<br />

Ann. Missouri Bot. Gard. 80, 587–606.<br />

Qiu, Y.L., Lee, J.Y., Berbasconi-Quadroni, F., Soltis, D.E., Soltis, P.S., Zanis, M., Zimmer,<br />

E.A., Chen, Z., Savola<strong>in</strong>en, V., Chase, M.W., 1999. The earliest angiosperms:<br />

evidence from mitochondrial, plastid <strong>and</strong> nuclear genomes. Nature 402, 404–<br />

407.<br />

Raven, P.H., Axelrod, D.I., 1974. Angiosperm biogeography <strong>and</strong> post cont<strong>in</strong>ental<br />

movements. Ann. Missouri Bot. Gard. 61, 539–673.<br />

Reiche, C., 1898. Estudios críticos sobre la Flora de Chile. Ann. Univ. Chile 100, 531–<br />

540.<br />

Rodríguez, R.A., Quezada, M., 1991. New comb<strong>in</strong>ation <strong>in</strong> Drimys J.R. et G. Forster<br />

(W<strong>in</strong>teraceae) <strong>of</strong> Chile. Gayana Bot. 48, 111–114.<br />

Rodríguez, R.A., Quezada, M., 2001. W<strong>in</strong>teraceae. In: Marticorena, C., Rodríguez R.A.<br />

(Eds.). Flora de Chile, vol. 2. Fasc. 1. (W<strong>in</strong>teraceae-Ranunculaceae) Ed. Univ.<br />

Concepción, Concepción, Chile. pp. 2–7.<br />

X. Marquínez et al. / Molecular Phylogenetics <strong>and</strong> Evolution 53 (2009) 435–449 449<br />

Sa<strong>in</strong>t-Hilaire, A., 1824. Plantes usualles des Brasiliens. Grimbert, Paris, France.<br />

S<strong>and</strong>erson, M.J., 2004. r8s 1.70. University <strong>of</strong> California-Davis, CA, USA.<br />

Sanmart<strong>in</strong>, I., Ronquist, F., 2004. Southern hemisphere biogeography <strong>in</strong>ferred by<br />

event-based models: plant versus animal patterns. Syst. Biol. 53, 216–243.<br />

Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., W<strong>in</strong>der,<br />

Ch.T., Schill<strong>in</strong>g, E.E., Small, R.L., 2005. The tortoise <strong>and</strong> the hare II: relative utility<br />

<strong>of</strong> 21 noncod<strong>in</strong>g chloroplast DNA sequences for phylogenetic analysis. Am. J.<br />

Bot. 92, 142–166.<br />

Shimodaira, H., Hasegawa, M., 1999. Multiple comparisons <strong>of</strong> Log-likelihoods with<br />

applications to phylogenetic <strong>in</strong>ference. Mol. Biol. Evol. 16, 1114–1116.<br />

Simmons, M.P., Ochoterena, H., 2000. Gaps as characters <strong>in</strong> sequence-based<br />

phylogenetic analyses. Syst. Biol. 49, 369–381.<br />

Smith, A.C., 1943a. Taxonomic notes on the old world species <strong>of</strong> W<strong>in</strong>teraceae. J.<br />

Arnold Arbor. 24, 119–164.<br />

Smith, A.C., 1943b. The American species <strong>of</strong> Drimys. J. Arnold Arbor. 24, 1–33.<br />

Soltis, D.E., Soltis, P.S., Chase, M.W., Mort, M.E., Albach, D.C., Zanis, M., Savola<strong>in</strong>en,<br />

V., Hanh, W.H., Hoop, S.B., Fay, M.F., Axtell, M., Swensen, S.M., Pr<strong>in</strong>ce, L.M.,<br />

Kress, W.J., Nixon, K.C., Farris, J.S., 2000. Angiosperm phylogeny <strong>in</strong>ferred from a<br />

comb<strong>in</strong>ed data-set <strong>of</strong> 18S rDNA, rbcL <strong>and</strong> atpB sequences. Bot. J. L<strong>in</strong>n. Soc. 133,<br />

381–461.<br />

Soltis, D.E., Soltis, P.S., Endress, P.K., Chase, M.W., 2005. Phylogeny <strong>and</strong> Evolution <strong>of</strong><br />

Angiosperms. S<strong>in</strong>auer Associates, Inc. Pub., Sunderl<strong>and</strong>, Massachusetts, USA.<br />

Suh, Y., Thien, L.B., Reeve, H.E., Zimmer, E.A., 1993. Molecular evolution <strong>and</strong><br />

phylogenetic implications <strong>of</strong> <strong>in</strong>ternal transcribed spacer sequences <strong>of</strong> ribosomal<br />

DNA <strong>in</strong> W<strong>in</strong>teraceae. Am. J. Bot. 80, 1042–1055.<br />

Susko, E., 2003. Confidence regions <strong>and</strong> hypothesis tests for topologies us<strong>in</strong>g<br />

generalized least squares. Mol. Biol. Evol. 20, 862–868.<br />

Swenson, U., Hill, R.S., McLoughl<strong>in</strong>, S., 2001. Biogeography <strong>of</strong> Noth<strong>of</strong>agus supports<br />

the sequence <strong>of</strong> Godwana break-up. Taxon 50, 1–17.<br />

Sw<strong>of</strong>ford, D.I., 2002. PAUP . Phylogenetic Analysis Us<strong>in</strong>g Parsimony ( <strong>and</strong> Other<br />

Methods) Version 4. S<strong>in</strong>auer Associates, Sunderl<strong>and</strong>, Massachusetts, USA.<br />

Takhtajan, A.L., 1980. Outl<strong>in</strong>e <strong>of</strong> the classification <strong>of</strong> flower<strong>in</strong>g plants<br />

(Magnoliophyta). Bot. Rev. 46, 277–299.<br />

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmoug<strong>in</strong>, F., Higg<strong>in</strong>s, D.J., 1997. The<br />

Clustal w<strong>in</strong>dows <strong>in</strong>terface: flexible strategies for multiple sequence alignment<br />

aided by quality analysis tools. Nucl. Acid Res. 25, 4876–4882.<br />

van Tieghem, P., 1900. Sur les dycotylédones du groupe des homoxylées. J. Bot.<br />

(Morot) 14, 259–297 <strong>and</strong> 330–361.<br />

V<strong>in</strong>k, W., 1970. The W<strong>in</strong>teraceae <strong>of</strong> the Old World I. Pseudow<strong>in</strong>tera <strong>and</strong> Drimys –<br />

morphology <strong>and</strong> taxonomy. Blumea 18, 225–354.<br />

V<strong>in</strong>k, W., 1977. The W<strong>in</strong>teraceae <strong>of</strong> the Old World II. Zygogynum – morphology <strong>and</strong><br />

taxonomy. Blumea 31, 39–55.<br />

V<strong>in</strong>k, W., 1983. The W<strong>in</strong>teraceae <strong>of</strong> the Old World IV. The Australian species <strong>of</strong><br />

Bubbia. Blumea 28, 311–328.<br />

V<strong>in</strong>k, W., 1985. The W<strong>in</strong>teraceae <strong>of</strong> the Old World V. Exospermum l<strong>in</strong>ks Bubbia to<br />

Zygogynum. Blumea 31, 39–55.<br />

V<strong>in</strong>k, W., 1988. Taxonomy <strong>in</strong> W<strong>in</strong>teraceae. Taxon 37, 691–698.<br />

V<strong>in</strong>k, W., 1993a. W<strong>in</strong>teraceae. In: Kubitzki, K., Rohwer, J.G., Bittich, V. (Eds.), The<br />

Families <strong>and</strong> Genera <strong>of</strong> Vascular Plants. Flower<strong>in</strong>g Plants – Dicotyledons, vol. II.<br />

Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, Germany, pp. 630–638.<br />

V<strong>in</strong>k, W., 1993b. W<strong>in</strong>teraceae. Flore de la Nouvellee-Calédonie et dépendances.<br />

Mus. Hist. Nat. Paris. 19, 90–111.<br />

V<strong>in</strong>k, W., 2003. A new species <strong>of</strong> Zygogynum (W<strong>in</strong>teraceae) from New Caledonia.<br />

Blumea 48, 183–186.<br />

White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification <strong>and</strong> direct sequenc<strong>in</strong>g <strong>of</strong><br />

fungal ribosomal RNA genes for phylogenetics. In: Innis, M., Gelfant, D., Sn<strong>in</strong>shy,<br />

D., White, T. (Eds.), PCR Protocols: A Guide to Methods <strong>and</strong> Applications.<br />

Academic Press, San Diego, USA., pp. 315–322.<br />

W<strong>in</strong>kworth, R.C., Wagstaff, S.J., Glenny, D., Lockhart, P., 2002. Plant dispersal NEWS<br />

from New Zeal<strong>and</strong>. Trends Ecol. Evol. 17, 514–520.<br />

Wodzicki, K.M.G., 2000. Uplift <strong>of</strong> the Central <strong>and</strong> Northern Andes: a review. GSA<br />

Bull. 112, 1091–1105.<br />

Young, D., 1981. Are the angiosperms primitively veselless? Taxon 6, 313–330.<br />

Zanis, M., Soltis, D.E., Soltis, P.S., Mathews, S., Donoghue, M.J., 2002. The root <strong>of</strong> the<br />

angiosperms revisited. Proc. Natl. Acad. Sci. USA 99, 6848–6853.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!