25.04.2013 Views

the coking properties of coal at elevated pressures. - Argonne ...

the coking properties of coal at elevated pressures. - Argonne ...

the coking properties of coal at elevated pressures. - Argonne ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

!<br />

Table 2 Proxim<strong>at</strong>e and ultim<strong>at</strong>e analyses <strong>of</strong> carbonaceous m<strong>at</strong>erials used<br />

Char I *1<br />

Char 11 *2<br />

Char 111 *3<br />

Coal *4<br />

Coke I *5<br />

Coke I1 *5<br />

Coke 11' *5<br />

Coke I11 *5<br />

Carbon *6<br />

Char I *1<br />

Char I1 *2<br />

Char I11 *3<br />

Coal *4<br />

Coke I *5<br />

Coke I1 *5<br />

Coke 11' *5<br />

Coke I11 *5<br />

Carbon *6<br />

Proxim<strong>at</strong>e analysis [wt%l<br />

Vol<strong>at</strong>ile Fixed- Ash<br />

m<strong>at</strong>ter carbon<br />

3.83 54.09 19.8<br />

2.74 66.00 24.47<br />

10.89 65.04 19.84<br />

43.3 39.1 12.7<br />

1.4 96.0 1.4<br />

3.7 92.5 0.2<br />

5.3 90.9 0.4<br />

10.9 85.7 1.7<br />

5.2 94.7 0.1<br />

Ultim<strong>at</strong>e analysis [dry%]<br />

C H N S<br />

96.21<br />

71.66<br />

70.99<br />

66.9<br />

94.0<br />

89.2<br />

91.7<br />

87.1<br />

97.2<br />

0.59<br />

1.03<br />

2.77<br />

5.4<br />

1.3<br />

2.1<br />

2.6<br />

4.0<br />

1.4<br />

0.54<br />

0.61<br />

1.27<br />

1.4<br />

0.7<br />

1.5<br />

2.4<br />

2.5<br />

0.1<br />

0.27<br />

0.01<br />

0.02<br />

0.1<br />

2.7<br />

2.9<br />

2.1<br />

1.4<br />

0.1<br />

*1 Char I: produced from Liddell <strong>coal</strong>/Australia<br />

*2 Char 11: produced from Taiheiyo <strong>coal</strong>, pyrolysis<br />

temper<strong>at</strong>ure: 800°C<br />

*3 Char 111: produced from Taiheiyo <strong>coal</strong>, pyrolysis<br />

tempar<strong>at</strong>ure: 6OO0C<br />

*4 Coal: Taiheiyo <strong>coal</strong><br />

*5 Coke: origin<strong>at</strong>ed from petroleum residue<br />

*6 Carbon: activ<strong>at</strong>ed carbon from petroleum residue<br />

0<br />

3.91<br />

0.34<br />

4.21<br />

13.2<br />

-<br />

4.1<br />

0.7<br />

3.2<br />

1.1<br />

Moisture<br />

22.28<br />

6.69<br />

4.32<br />

4.9<br />

1.2<br />

3.6<br />

3.4<br />

1.7<br />

(3.2)<br />

Ash<br />

25.48<br />

26.35<br />

20.74<br />

13.0<br />

1.3<br />

0.2<br />

0.5<br />

1.8<br />

0.1<br />

"NO" emission from char or coke, both <strong>of</strong> which contained less vol<strong>at</strong>iles<br />

than <strong>coal</strong> is radically reduced as <strong>the</strong> stoichiometric r<strong>at</strong>io is<br />

reduced. This fact toge<strong>the</strong>r with <strong>the</strong> reduced ammonia emission suggests<br />

th<strong>at</strong> staged air firing may provide advantageous combustion modific<strong>at</strong>ion<br />

for <strong>the</strong> control <strong>of</strong> "NOx" emission. This is discussed in <strong>the</strong> forth<br />

coming sections.<br />

Figurel(b) demonstr<strong>at</strong>es <strong>the</strong> conversion r<strong>at</strong>io <strong>of</strong> fuel nitrogen to<br />

fuel NO <strong>of</strong> various carbonaceous m<strong>at</strong>erials.<br />

In this experiment <strong>the</strong><br />

effect <strong>of</strong> <strong>the</strong>rmal-NO was elim<strong>at</strong>ed by using AR/02 mixture instead <strong>of</strong> air.<br />

The level <strong>of</strong> NO emission under an excess air condition seemed to be<br />

considerably dependent on <strong>the</strong> vol<strong>at</strong>ile contents <strong>of</strong> fuel.<br />

The fraction <strong>of</strong> fuel bond nitrogen which formed fuel-NO <strong>at</strong> A = 1.3<br />

is illustr<strong>at</strong>ed in Fig.2 where vol<strong>at</strong>ile contents were calcul<strong>at</strong>ed on<br />

265

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!