Spatial Characterization Of Two-Photon States - GAP-Optique

Spatial Characterization Of Two-Photon States - GAP-Optique Spatial Characterization Of Two-Photon States - GAP-Optique

gap.optique.unige.ch
from gap.optique.unige.ch More from this publisher
24.04.2013 Views

A. The matrix form of the mode function Each of the terms of the matrix is defined by comparing the product of the polynomial f with the argument of the exponential in equation 1.34. The elements of matrix A are a =w 2 p + 2w 2 s + γ 2 L 2 tan ρ 2 0 cos α 2 b =w 2 p cos ϕs 2 + 2w 2 s + γ 2 L 2 sin ϕs 2 − 2γ 2 L 2 sin ϕs cos ϕs sin α tan ρ0 + γ 2 L 2 cos ϕs 2 tan ρ0 2 sin α 2 c =w 2 p + 2w 2 i + γ 2 L 2 tan ρ 2 0 cos α 2 d =w 2 p cos ϕi 2 + 2w 2 i + γ 2 L 2 sin ϕi 2 + 2γ 2 L 2 sin ϕi cos ϕi tan ρ0 sin α + γ 2 L 2 cos ϕi 2 tan ρ0 2 sin α 2 f =2B −2 s + T 2 0 + γ 2 L 2 N 2 p + γ 2 L 2 N 2 s cos ϕs 2 + w 2 pN 2 s sin ϕs 2 − 2γ 2 L 2 NpNs cos ϕs − 2γ 2 L 2 NpNs sin ϕs tan ρ0 sin α + 2γ 2 L 2 N 2 s cos ϕs sin ϕs sin α tan ρ0 + γ 2 L 2 N 2 s sin ϕs 2 tan ρ0 2 sin α 2 g =2B −2 i + T 2 0 + γ 2 L 2 N 2 p + γ 2 L 2 N 2 i cos ϕi 2 + w 2 pN 2 i sin ϕi 2 − 2γ 2 L 2 NpNi cos ϕi + 2γ 2 L 2 NpNi sin ϕi tan ρ0 sin α − 2γ 2 L 2 N 2 i cos ϕi sin ϕi tan ρ0 sin α + γ 2 L 2 N 2 i sin ϕi 2 tan ρ0 2 sin α 2 h = − γ 2 L 2 sin ϕs tan ρ0 cos α + γ 2 L 2 cos ϕs tan ρ0 2 sin α cos α 2 i =w 2 p + γ 2 L 2 tan ρ0 2 cos α j =γ 2 L 2 sin ϕi tan ρ0 cos α + γ 2 L 2 cos ϕi tan ρ0 2 sin α cos α k =γ 2 L 2 Np tan ρ0 cos α − γ 2 L 2 Ns cos ϕs tan ρ0 cos α − γ 2 L 2 Ns sin ϕs tan ρ0 2 sin α cos α l =γ 2 L 2 Np tan ρ0 cos α − γ 2 L 2 Ni cos ϕi tan ρ0 cos α + γ 2 L 2 Ni sin ϕi tan ρ0 2 sin α cos α m = − γ 2 L 2 sin ϕs tan ρ0 cos α + γ 2 L 2 cos ϕs tan ρ0 2 sin α cos α n = − γ 2 L 2 sin ϕs sin ϕi + w 2 p cos ϕs cos ϕi + γ 2 L 2 cos ϕs sin ϕi sin α tan ρ0 − γ 2 L 2 sin ϕs cos ϕi sin α tan ρ0 + γ 2 L 2 cos ϕs cos ϕi tan ρ0 2 sin α 2 p = − γ 2 L 2 Np sin ϕs + γ 2 L 2 Ns cos ϕs sin ϕs − w 2 pNs cos ϕs sin ϕs + γ 2 L 2 Np cos ϕs tan ρ0 sin α − γ 2 L 2 Ns cos ϕs 2 tan ρ0 sin α + γ 2 L 2 Ns sin ϕs 2 tan ρ0 sin α − γ 2 L 2 Ns sin ϕs cos ϕs tan ρ0 2 sin α 2 r = − γ 2 L 2 Np sin ϕs + γ 2 L 2 Ni sin ϕs cos ϕi + w 2 pNi cos ϕs sin ϕi + γ 2 L 2 Np cos ϕs tan ρ0 sin α − γ 2 L 2 Ni cos ϕs cos ϕi tan ρ0 sin α − γ 2 L 2 Ni sin ϕs sin ϕi tan ρ0 sin α + γ 2 L 2 Ni cos ϕs sin ϕi tan ρ0 2 sin α 2 s =γ 2 L 2 sin ϕi tan ρ0 cos α + γ 2 L 2 cos ϕi tan ρ0 2 sin α cos α t =γ 2 L 2 Np tan ρ0 cos α − γ 2 L 2 Ns cos ϕs tan ρ0 cos α − γ 2 L 2 Ns sin ϕs tan ρ0 2 sin α cos α u =γ 2 L 2 Np tan ρ0 cos α − γ 2 L 2 Ni cos ϕi tan ρ0 cos α + γ 2 L 2 Ni sin ϕi tan ρ0 2 sin α cos α 64

v =γ 2 L 2 Np sin ϕi − γ 2 L 2 Ns cos ϕs sin ϕi − w 2 pNs sin ϕs cos ϕi + γ 2 L 2 Np cos ϕi tan ρ0 sin α − γ 2 L 2 Ns cos ϕs cos ϕi tan ρ0 sin α − γ 2 L 2 Ns sin ϕs sin ϕi tan ρ0 sin α − γ 2 L 2 Ns cos ϕi sin ϕs tan ρ0 2 sin α 2 w =γ 2 L 2 Np sin ϕi − γ 2 L 2 Ni sin ϕi cos ϕi + w 2 pNi sin ϕi cos ϕi + γ 2 L 2 Np cos ϕi tan ρ0 sin α − γ 2 L 2 Ni cos ϕi 2 tan ρ0 sin α + γ 2 L 2 Ni sin ϕi 2 tan ρ0 sin α + γ 2 L 2 Ni sin ϕi cos ϕi tan ρ0 2 sin α 2 z =γ 2 L 2 N 2 p − γ 2 L 2 NpNi cos ϕi − γ 2 L 2 NpNs cos ϕs + γ 2 L 2 NsNi cos ϕs cos ϕi + T 2 0 − w 2 pNsNi sin ϕs sin ϕi − γ 2 L 2 NsNi cos ϕs sin ϕi tan ρ0 sin α − γ 2 L 2 NpNs sin ϕs tan ρ0 sin α + γ 2 L 2 NsNi cos ϕi sin ϕs tan ρ0 sin α − γ 2 L 2 NsNi sin ϕs sin ϕi tan ρ0 2 sin α 2 + γ 2 L 2 NpNi sin ϕi tan ρ0 sin α. (A.5) This set of expressions is far more useful than compact. The matrix terms become simpler in some particular spdc configurations that are treated in chapters 2 and 4. For instance, when the pump polarization is parallel to the x axis, the matrix terms become a =w 2 p + 2w 2 s + γ 2 L 2 tan ρ 2 0 b =w 2 p cos ϕs 2 + 2w 2 s + γ 2 L 2 sin ϕs 2 c =w 2 p + 2w 2 i + γ 2 L 2 tan ρ 2 0 d =w 2 p cos ϕi 2 + 2w 2 i + γ 2 L 2 sin ϕi 2 f = 2 B2 s g = 2 B2 i + T 2 0 + γ 2 L 2 (Np − Ns cos ϕs) 2 + w 2 pN 2 s sin ϕs 2 + T 2 0 + γ 2 L 2 (Np − Ni cos ϕi) 2 + w 2 pN 2 i sin ϕi 2 h =m = −γ 2 L 2 sin ϕs tan ρ0 i =w 2 p + γ 2 L 2 tan ρ0 2 j =s = γ 2 L 2 sin ϕi tan ρ0 k =t = γ 2 L 2 tan ρ0(Np − Ns cos ϕs) l =u = γ 2 L 2 tan ρ0(Np − Ni cos ϕi) n = − γ 2 L 2 sin ϕs sin ϕi + w 2 p cos ϕs cos ϕi p = − γ 2 L 2 sin ϕs(Np − Ns cos ϕs) − w 2 pNs cos ϕs sin ϕs r = − γ 2 L 2 sin ϕs(Np − Ni cos ϕi) + w 2 pNi cos ϕs sin ϕi v =γ 2 L 2 sin ϕi(Np − Ns cos ϕs) − w 2 pNs cos ϕi sin ϕs w =γ 2 L 2 sin ϕi(Np − Ni cos ϕi) + w 2 pNi cos ϕi sin ϕi z =γ 2 L 2 N 2 p − γ 2 L 2 Np(Ni cos ϕi + Ns cos ϕs) + γ 2 L 2 NsNi cos ϕs cos ϕi + T 2 0 − w 2 pNsNi sin ϕs sin ϕi. (A.6) The matrix notation extends to functions of the mode function. For instance, the purity of the spatial part of the two-photon state, given by equation 2.11, 65

v =γ 2 L 2 Np sin ϕi − γ 2 L 2 Ns cos ϕs sin ϕi − w 2 pNs sin ϕs cos ϕi<br />

+ γ 2 L 2 Np cos ϕi tan ρ0 sin α − γ 2 L 2 Ns cos ϕs cos ϕi tan ρ0 sin α<br />

− γ 2 L 2 Ns sin ϕs sin ϕi tan ρ0 sin α − γ 2 L 2 Ns cos ϕi sin ϕs tan ρ0 2 sin α 2<br />

w =γ 2 L 2 Np sin ϕi − γ 2 L 2 Ni sin ϕi cos ϕi + w 2 pNi sin ϕi cos ϕi<br />

+ γ 2 L 2 Np cos ϕi tan ρ0 sin α − γ 2 L 2 Ni cos ϕi 2 tan ρ0 sin α<br />

+ γ 2 L 2 Ni sin ϕi 2 tan ρ0 sin α + γ 2 L 2 Ni sin ϕi cos ϕi tan ρ0 2 sin α 2<br />

z =γ 2 L 2 N 2 p − γ 2 L 2 NpNi cos ϕi − γ 2 L 2 NpNs cos ϕs + γ 2 L 2 NsNi cos ϕs cos ϕi<br />

+ T 2 0 − w 2 pNsNi sin ϕs sin ϕi − γ 2 L 2 NsNi cos ϕs sin ϕi tan ρ0 sin α<br />

− γ 2 L 2 NpNs sin ϕs tan ρ0 sin α + γ 2 L 2 NsNi cos ϕi sin ϕs tan ρ0 sin α<br />

− γ 2 L 2 NsNi sin ϕs sin ϕi tan ρ0 2 sin α 2 + γ 2 L 2 NpNi sin ϕi tan ρ0 sin α.<br />

(A.5)<br />

This set of expressions is far more useful than compact. The matrix terms<br />

become simpler in some particular spdc configurations that are treated in<br />

chapters 2 and 4. For instance, when the pump polarization is parallel to the<br />

x axis, the matrix terms become<br />

a =w 2 p + 2w 2 s + γ 2 L 2 tan ρ 2 0<br />

b =w 2 p cos ϕs 2 + 2w 2 s + γ 2 L 2 sin ϕs 2<br />

c =w 2 p + 2w 2 i + γ 2 L 2 tan ρ 2 0<br />

d =w 2 p cos ϕi 2 + 2w 2 i + γ 2 L 2 sin ϕi 2<br />

f = 2<br />

B2 s<br />

g = 2<br />

B2 i<br />

+ T 2 0 + γ 2 L 2 (Np − Ns cos ϕs) 2 + w 2 pN 2 s sin ϕs 2<br />

+ T 2 0 + γ 2 L 2 (Np − Ni cos ϕi) 2 + w 2 pN 2 i sin ϕi 2<br />

h =m = −γ 2 L 2 sin ϕs tan ρ0<br />

i =w 2 p + γ 2 L 2 tan ρ0 2<br />

j =s = γ 2 L 2 sin ϕi tan ρ0<br />

k =t = γ 2 L 2 tan ρ0(Np − Ns cos ϕs)<br />

l =u = γ 2 L 2 tan ρ0(Np − Ni cos ϕi)<br />

n = − γ 2 L 2 sin ϕs sin ϕi + w 2 p cos ϕs cos ϕi<br />

p = − γ 2 L 2 sin ϕs(Np − Ns cos ϕs) − w 2 pNs cos ϕs sin ϕs<br />

r = − γ 2 L 2 sin ϕs(Np − Ni cos ϕi) + w 2 pNi cos ϕs sin ϕi<br />

v =γ 2 L 2 sin ϕi(Np − Ns cos ϕs) − w 2 pNs cos ϕi sin ϕs<br />

w =γ 2 L 2 sin ϕi(Np − Ni cos ϕi) + w 2 pNi cos ϕi sin ϕi<br />

z =γ 2 L 2 N 2 p − γ 2 L 2 Np(Ni cos ϕi + Ns cos ϕs) + γ 2 L 2 NsNi cos ϕs cos ϕi<br />

+ T 2 0 − w 2 pNsNi sin ϕs sin ϕi.<br />

(A.6)<br />

The matrix notation extends to functions of the mode function. For instance,<br />

the purity of the spatial part of the two-photon state, given by equation 2.11,<br />

65

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!