24.04.2013 Views

Spatial Characterization Of Two-Photon States - GAP-Optique

Spatial Characterization Of Two-Photon States - GAP-Optique

Spatial Characterization Of Two-Photon States - GAP-Optique

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A. The matrix form of the mode function<br />

writes<br />

T r[ρ 2 <br />

q] =<br />

dqsdΩsdqidΩidq ′ sdΩ ′ sdq ′ idΩ ′ i<br />

× Φ(qs, Ωs, qi, Ωi)Φ ∗ (q ′ s, Ωs, q ′ i, Ωi)<br />

× Φ(q ′ s, Ω ′ s, q ′ i, Ω ′ i)Φ ∗ (qs, Ω ′ s, qi, Ω ′ i). (A.7)<br />

where the dimension increases as new primed variables appear. Using the<br />

matrix notation the integrand becomes<br />

Φ(qs, Ωs, qi, Ωi)Φ ∗ (q ′ s, Ωs, q ′ i, Ωi)Φ(q ′ s, Ω ′ s, q ′ i, Ω ′ i)Φ ∗ (qs, Ω ′ s, qi, Ω ′ i)<br />

= N 4 <br />

exp − 1<br />

2 Xt <br />

BX , (A.8)<br />

where the vector X is the result of concatenation of x and x ′ , such that<br />

⎛<br />

⎜<br />

X = ⎜<br />

⎝<br />

↑<br />

x<br />

↓<br />

↑<br />

x ′<br />

↓<br />

⎞<br />

⎟ ,<br />

⎟<br />

⎠<br />

(A.9)<br />

and the new matrix B is given by<br />

B = 1<br />

⎛<br />

⎜<br />

2 ⎜<br />

⎝<br />

2a<br />

2h<br />

2i<br />

2j<br />

k<br />

l<br />

0<br />

0<br />

0<br />

0<br />

k<br />

2h<br />

2b<br />

2m<br />

2n<br />

p<br />

r<br />

0<br />

0<br />

0<br />

0<br />

p<br />

2i<br />

2m<br />

2c<br />

2s<br />

t<br />

u<br />

0<br />

0<br />

0<br />

0<br />

t<br />

2j<br />

2n<br />

2s<br />

2d<br />

v<br />

w<br />

0<br />

0<br />

0<br />

0<br />

v<br />

k<br />

p<br />

t<br />

v<br />

2f<br />

2z<br />

k<br />

p<br />

t<br />

v<br />

0<br />

l<br />

r<br />

u<br />

w<br />

2z<br />

2g<br />

l<br />

r<br />

u<br />

w<br />

0<br />

0<br />

0<br />

0<br />

0<br />

k<br />

l<br />

2a<br />

2h<br />

2i<br />

2j<br />

k<br />

0<br />

0<br />

0<br />

0<br />

p<br />

r<br />

2h<br />

2b<br />

2m<br />

2n<br />

p<br />

0<br />

0<br />

0<br />

0<br />

t<br />

u<br />

2i<br />

2m<br />

2c<br />

2s<br />

t<br />

0<br />

0<br />

0<br />

0<br />

v<br />

w<br />

2j<br />

2n<br />

2s<br />

2d<br />

v<br />

k<br />

p<br />

t<br />

v<br />

0<br />

0<br />

k<br />

p<br />

t<br />

v<br />

2f<br />

l<br />

r<br />

u<br />

w<br />

0<br />

0<br />

l<br />

r<br />

u<br />

w<br />

2z<br />

⎞<br />

⎟ .<br />

⎟<br />

⎠<br />

l r u w 0 0 l r u w 2z 2g<br />

(A.10)<br />

In an analogous way, the integrand on the expression for the signal photon<br />

purity<br />

<br />

T r[ρ 2 signal] =<br />

is written in a matrix notation as<br />

66<br />

dqsdΩsdqidΩidq ′ sdΩ ′ sdq ′ idΩ ′ i<br />

× Φ(qs, Ωs, qi, Ωi)Φ ∗ (q ′ s, Ω ′ s, qi, Ωi)<br />

× Φ(q ′ s, Ω ′ s, q ′ i, Ω ′ i)Φ ∗ (qs, Ωs, q ′ i, Ω ′ i). (A.11)<br />

Φ(qs, Ωs, qi, Ωi)Φ ∗ (q ′ s, Ω ′ s, qi, Ωi)Φ(q ′ s, Ω ′ s, q ′ i, Ω ′ i)Φ ∗ (qs, Ωs, q ′ i, Ω ′ i)<br />

= N 4 exp<br />

<br />

− 1<br />

2 Xt <br />

CX . (A.12)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!