Spatial Characterization Of Two-Photon States - GAP-Optique

Spatial Characterization Of Two-Photon States - GAP-Optique Spatial Characterization Of Two-Photon States - GAP-Optique

gap.optique.unige.ch
from gap.optique.unige.ch More from this publisher
24.04.2013 Views

Abstract La notación matricial introducida para describir la función de modo de los pares generados, reduce considerablemente el tiempo de cálculo de diferentes características del estado. En particular, ésta notación hace posible calcular analíticamente la pureza de diferentes partes del estado, y estudiar el efecto de cada parámetro del spdc sobre las correlaciones entre los grados de libertad o entre los fotones. Hace posible, además, encontrar las condiciones necesarias para suprimir las correlaciones entre los grados de libertad o entre los fotones, y distinguir en que casos estas correlaciones se hacen mas relevantes. El estudio del mecanismo de transferencia del momento angular orbital, revela que éste es transferido totalmente del haz generador a los fotones generados. Si sólo una porción de estos fotones es considerada, el oam de éstos no da cuenta del momento oam total invertido por el haz generador. Los experimentos descritos en esta tesis muestran que la cantidad de oam transferido a una porción de los fotones puede ser controlada modificando el tamaño de esa porción, ya sea cambiando el ancho del haz incidente, el largo del cristal u otro parámetro. En el caso de la generación de pares de fotones en otros procesos no lineales, como las transiciones Raman, tanto las correlaciones como la transferencia de oam, son determinadas por las características especificas del proceso. Los resultados de esta tesis contribuyen a completar la descripción de las correlaciones dentro del estado de dos fotones. Esta descripción permite el uso de las correlaciones como herramienta para modificar el estado espacial de los fotones. La información espacial, traducida a modos de oam, ofrece un grado de libertad infinito dimensional y continuo, útil en ciertas tareas donde la polarización, bidimensional y discreta, no es suficiente. Para hacer estas tareas posibles, es necesario optimizar las herramientas para la detección de estados de oam para un sólo fotón [15, 16]. xiv

Introduction The role of photons in quantum physics and technology is growing [1, 2, 17]. Frequently, those applications are based on two dimensional systems, such as the two orthogonal polarization states of a photon, losing all information in other degrees of freedom. These applications only use a portion of the total quantum state of the light. The polarization itself is related to a broader degree of freedom. The angular momentum of the photons contains a spin contribution associated with the polarization, as well as an orbital contribution associated with the spatial distribution of the light (its intensity and phase). In general, the spin and the orbital angular momentum cannot be considered separately. However, in the paraxial regime both contributions are independent [18]. In this regime it is possible to exploit the possibilities offered by the infinite dimensions of the orbital angular momentum (oam) of the light. Currently available technology offers different possibilities to work with oam. Computer generated holograms are widely used in classical and quantum optics for generating and detecting different oam states [19, 20]. The efficiency of these processes has increased with the design of spatial light modulators capable of real time hologram generation [21]. Of special interest is the generation of paired photons entangled in oam. Entanglement is a quantum feature with no analogue in classical physics. Spontaneous parametric down-conversion (spdc) is a reliable source for the generation of pairs of photons entangled in different degrees of freedom, including oam [22]. The existence of correlations in the oam of pairs of photons generated in spdc was proven experimentally by Mair and coworkers in 2001. Other nonlinear processes can be used to generate pairs of photons with correlations in their oam content. In reference [23], the authors show the generation of spatially entangled pairs of photons by the excitation of Raman transitions in cold atomic ensembles. Several studies illustrate the potential offered by higher-dimensional quantum systems. For instance, reference [24] reports a Bell inequality violation by a two-photon three-dimensional system, confirming the existence of oam entanglement in the system. Reference [25] introduced a quantum coin tossing protocol based on oam states. In reference [26], the authors present a quantum key distribution scheme using entangled qutrits, which are encoded into the oam of pairs of photons generated in spdc. And, in reference [12], the authors report the generation of hyperentangled quantum states by using the combination of the degrees of freedom of polarization, time-energy and oam. All the previously mentioned applications are based on specific oam correlations between the photons. However, there has been some controversy about xv

Introduction<br />

The role of photons in quantum physics and technology is growing [1, 2, 17].<br />

Frequently, those applications are based on two dimensional systems, such as<br />

the two orthogonal polarization states of a photon, losing all information in<br />

other degrees of freedom. These applications only use a portion of the total<br />

quantum state of the light.<br />

The polarization itself is related to a broader degree of freedom. The angular<br />

momentum of the photons contains a spin contribution associated with<br />

the polarization, as well as an orbital contribution associated with the spatial<br />

distribution of the light (its intensity and phase). In general, the spin and<br />

the orbital angular momentum cannot be considered separately. However, in<br />

the paraxial regime both contributions are independent [18]. In this regime it<br />

is possible to exploit the possibilities offered by the infinite dimensions of the<br />

orbital angular momentum (oam) of the light.<br />

Currently available technology offers different possibilities to work with<br />

oam. Computer generated holograms are widely used in classical and quantum<br />

optics for generating and detecting different oam states [19, 20]. The efficiency<br />

of these processes has increased with the design of spatial light modulators<br />

capable of real time hologram generation [21].<br />

<strong>Of</strong> special interest is the generation of paired photons entangled in oam.<br />

Entanglement is a quantum feature with no analogue in classical physics. Spontaneous<br />

parametric down-conversion (spdc) is a reliable source for the generation<br />

of pairs of photons entangled in different degrees of freedom, including<br />

oam [22]. The existence of correlations in the oam of pairs of photons generated<br />

in spdc was proven experimentally by Mair and coworkers in 2001. Other<br />

nonlinear processes can be used to generate pairs of photons with correlations<br />

in their oam content. In reference [23], the authors show the generation of<br />

spatially entangled pairs of photons by the excitation of Raman transitions in<br />

cold atomic ensembles.<br />

Several studies illustrate the potential offered by higher-dimensional quantum<br />

systems. For instance, reference [24] reports a Bell inequality violation<br />

by a two-photon three-dimensional system, confirming the existence of oam<br />

entanglement in the system. Reference [25] introduced a quantum coin tossing<br />

protocol based on oam states. In reference [26], the authors present a quantum<br />

key distribution scheme using entangled qutrits, which are encoded into<br />

the oam of pairs of photons generated in spdc. And, in reference [12], the<br />

authors report the generation of hyperentangled quantum states by using the<br />

combination of the degrees of freedom of polarization, time-energy and oam.<br />

All the previously mentioned applications are based on specific oam correlations<br />

between the photons. However, there has been some controversy about<br />

xv

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!