24.04.2013 Views

SHANNON SAMPLING SERIES WITH AVERAGED KERNELS1 1 ...

SHANNON SAMPLING SERIES WITH AVERAGED KERNELS1 1 ...

SHANNON SAMPLING SERIES WITH AVERAGED KERNELS1 1 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PROCEEDINGS OF SAMPTA 2007 JUNE 1 - 5, 2007, THESSALONIKI, GREECE<br />

<strong>SHANNON</strong> <strong>SAMPLING</strong> <strong>SERIES</strong> <strong>WITH</strong> <strong>AVERAGED</strong> KERNELS 1<br />

SampTA 2007 – June 1 - 5, 2007, Thessaloniki, Greece<br />

ANDI KIVUNUKK (andik@tlu.ee)<br />

Tallinn University, Estonia.<br />

GERT TAMBERG (gert.tamberg@mail.ee)<br />

Tallinn University of Technology, Estonia.<br />

Abstract<br />

The aim of this paper is to study the generalized sampling operators defined by averaged band-limited<br />

kernels. It is shown that averaging leads to sampling operators suitable for functions of bounded variation.<br />

1. Introduction<br />

For the uniformly continuous and bounded functions f ∈ C(R) the generalized sampling series are given by<br />

(t ∈ R; W > 0)<br />

∞<br />

(SW f)(t) := f( k<br />

)s(W t − k), (1)<br />

W<br />

k=−∞<br />

where the condition for the operator SW : C(R) → C(R) to be well-defined is<br />

∞<br />

k=−∞<br />

the absolute convergence being uniform on compact intervals of R.<br />

If the kernel function is the sinc-function<br />

|s(u − k)| < ∞ (u ∈ R), (2)<br />

s(t) = sinc(t) :=<br />

we get the classical (Whittaker-Kotel’nikov-)Shannon operator,<br />

(S sinc<br />

W f)(t) :=<br />

∞<br />

k=−∞<br />

sin πt<br />

,<br />

πt<br />

f( k<br />

) sinc(W t − k).<br />

W<br />

Since (2) is not valid for the sinc-function, the Shannon operator is not defined for all f ∈ C(R). The Whittaker-<br />

Kotel’nikov-Shannon theorem ([7], [9]) states that a set of fixed points of the sampling operator Ssinc W is equal<br />

to the Bernstein class B p<br />

πW (if p = ∞, then Bp σ with σ < πW ) – the class of those bounded functions f ∈ Lp (R)<br />

(1 p ∞) which can be extended to an entire function f(z) (z ∈ C) of exponential type σ ([7] or [20], 4.3.1),<br />

i. e.,<br />

|f(z)| e σ|y| fC (z = x + iy ∈ C).<br />

Explicitly, if f ∈ B p<br />

πW , 1 p < ∞ or f ∈ Bp σ for some σ < πW , then<br />

S sinc<br />

W f = f.<br />

The idea to replace the sinc kernel sinc(·) ∈ L 1 (R) by another kernel function s ∈ L 1 (R) appeared first in<br />

[19], where the case s(t) = (sinc(t)) 2 was considered. A systematic study of sampling operators (1) for arbitrary<br />

kernel functions s with (2) was initiated at RWTH Aachen by P. L. Butzer and his students since 1977 (see [6],<br />

[7], [18] and references cited there).<br />

1 This research was partially supported by the Estonian Science Foundation grants 6943 and 7033. The second author is grateful<br />

to the Johann Radon Institute for Computational and Applied Mathematics (Austrian Academy of Sciences) for support.<br />

AMS Subject Classification 41A25, 41A45, 42A24.<br />

Keywords: sampling operators, band-limited kernels, averaged kernels, functions of bounded variation.


2 A.KIVUNUKK, G.TAMBERG<br />

In this paper we study an even band-limited kernel s, i.e. s ∈ B 1 π, defined by an even window function<br />

λ ∈ C [−1,1], λ(0) = 1, λ(u) = 0 (|u| 1) by the equality<br />

s(t) := s(λ; t) :=<br />

In fact, this kernel is the Fourier transform of λ ∈ L 1 (R),<br />

s(t) =<br />

1<br />

0<br />

λ(u) cos(πtu) du. (3)<br />

π<br />

2 λ∧ (πt). (4)<br />

These types of kernels arise in conjunction with window functions widely used in applications (e.g. [1], [2], [8],<br />

[16]), in Signal Analysis in particular. Many kernels can be defined by (3), e.g.<br />

1) λ(u) = 1 defines the sinc function;<br />

2) λ(u) = 1 − u defines the Fejér kernel sF (t) = 1 2 t<br />

2sinc 2 (cf. [19]);<br />

3) λj(u) := cos π(j + 1/2)u, j = 0, 1, 2, . . . defines the Rogosinski-type kernel (see [11]) in the form<br />

2 πu<br />

4) λH(u) := cos 2<br />

rj(t) := 1<br />

<br />

2<br />

sinc(t + j + 1<br />

1<br />

) + sinc(t − j −<br />

2 2 )<br />

<br />

= (−1)j<br />

π<br />

1 = 2 (1 + cos πu) defines the Hann kernel (see [13])<br />

(j + 1/2) cos πt<br />

(j + 1/2) 2 ; (5)<br />

− t2 sH(t) := 1 sinc t<br />

; (6)<br />

2 1 − t2 5) λB,a(u) := 1<br />

1<br />

2 + a cos πu + ( 2 − a) cos 3πu defines the Blackman-Harris kernel (a special case of the general<br />

cosine window, where: a0 = 1<br />

2 , a1 = a = 1<br />

2 − a3, a2 = 0, cf. [14], [15])<br />

sB,a(t) := (16a − 9)t2 + 9<br />

2(1 − t 2 )(9 − t 2 )<br />

sinc t = 1<br />

2<br />

3<br />

k=0<br />

ak<br />

<br />

<br />

sinc(t + k) + sinc(t − k) . (7)<br />

If a = 9/16 the latter has especially rapid decrease at infinity – s B,9/16(t) = O(|t| −5 ) as |t| → ∞.<br />

First we used the band-limited kernel in general form (3) in [10], see also [5].<br />

Now we will study the sampling operators (1) using averaged kernels of the kernel functions (3), i.e.<br />

sm(t) := 1<br />

m<br />

m/2 <br />

−m/2<br />

s(t + v) dv (m > 0), (8)<br />

which is suitable for functions of bounded variation. To give concrete examples we restrict ourselves to Blackman-<br />

Harris kernels, because they are rapidly decreasing at infinity and the Blackman-Harris operators have norms,<br />

which are very close to one.<br />

We say that the sampling operator SW : T V (R) → T V (R) has the variation detracting property for functions<br />

f ∈ T V (R) of bounded variation (cf. [4] and references cited therein), if<br />

VR[SW f] SW VR[f]. (9)<br />

As an introductory approach we use averaged kernels to get for these operators the variation detracting property.<br />

2. Preliminary results<br />

The most general kernel for the sampling operators (1) is defined in the following way.


<strong>SHANNON</strong> <strong>SAMPLING</strong> <strong>SERIES</strong> <strong>WITH</strong> <strong>AVERAGED</strong> KERNELS 3<br />

Definition 1 ([18, Def. 6.3]) If s : R → C is a bounded function such that<br />

∞<br />

k=−∞<br />

the absolute convergence being uniform on compact subsets of R, and<br />

∞<br />

k=−∞<br />

then s is said to be a kernel for sampling operators (1).<br />

|s(u − k)| < ∞ (u ∈ R), (10)<br />

s(u − k) = 1 (u ∈ R), (11)<br />

The definition formulated above guarantees that operators (1) give approximations for continuous functions<br />

f ∈ C(R).<br />

Theorem 1 ([7, Th. 4.1]) Let s ∈ C(R) be a kernel. Then {SW } W >0 defines a family of bounded linear<br />

operators from C(R) into itself, satisfying<br />

SW = sup<br />

∞<br />

u∈R<br />

k=−∞<br />

|s(u − k)| (W > 0). (12)<br />

In the following we assume that our kernel (3) belongs to L1 (R), which yields s ∈ B1 π, because the Fourier<br />

transform of s,<br />

s ∧ (x) = 1<br />

<br />

x<br />

<br />

√ λ<br />

2π π<br />

implies s ∧ (x) = 0 for |x| π. (13)<br />

For the band-limited functions s ∈ B p π ⊂ L p (R) the norm (12) is related to the norm sp as shown in following.<br />

Theorem 2 (Nikolskii inequality; [17, p. 124], [9, Th. 6.8]) Let 1 p ∞. Then, for every s ∈ B p σ,<br />

sp sup<br />

u∈R<br />

∞<br />

k=−∞<br />

|s(u − k)| p<br />

1/p<br />

(1 + σ)sp.<br />

From the Nikolskii inequality we see that our assumption s ∈ L 1 (R) is sufficient for (10) and thus s in (3) is<br />

indeed a kernel in the sense of Definition 1.<br />

3. Sampling operators with averaged kernels and the variation detracting property<br />

The variation detracting property of certain sampling operators will be considered for T V (R), the space of<br />

all functions of bounded variation on R endowed with the seminorm<br />

f T V (R) := VR[f] = sup<br />

I⊂R<br />

VI[f] = sup sup<br />

I⊂R xj∈I<br />

j=1<br />

n<br />

|f(xj) − f(xj+1)|,<br />

the first supremum being taken over all intervals I ⊂ R. By AC(R) we denote the subspace of T V (R) consisting<br />

of those functions, which are locally absolutely continuous on R. We say that the sampling operator SW :<br />

T V (R) → T V (R) has the variation detracting property (see [4] and references cited therein), if (9) is valid for<br />

every f ∈ T V (R). This property is important in practice, since very often signals are discontinuous but still<br />

with bounded variation.<br />

Looking for sampling operators with the variation detracting property our first observation was that if we<br />

take λL,m(u) = sinc mu (m ∈ N) as a window function, then by (3) we obtain the averaged sinc-function<br />

sL,m(t) = 1<br />

2m<br />

m<br />

−m<br />

sinc(t + v) dv. (14)


4 A.KIVUNUKK, G.TAMBERG<br />

Here L stands for Lanczos, since sinc as the window is often called the Lanczos window [21].<br />

Although the sinc function does not belong to B 1 π, the kernel sL,m does. Indeed, integrating by parts in (14)<br />

yields for |t| > m<br />

sL,m(t) = (−1)m cos(πt)<br />

π 2 (t 2 − m 2 )<br />

and therefore sL,m ∈ L 1 (R). On the other hand, by (3)<br />

sL,m(t) =<br />

which shows by the Paley-Wiener theorem that sL,m ∈ B 1 π.<br />

Now we will average some other kernels s ∈ B 1 π.<br />

1<br />

0<br />

1<br />

−<br />

2π2m t+m <br />

t−m<br />

sinc(mu) cos(πut) du,<br />

cos(πu)<br />

u 2<br />

Theorem 3 Let the kernel s ∈ B 1 π be defined by (3) using the window function λ. Then the window function<br />

defines by (3) the averaged kernel sm ∈ B 1 π, where<br />

Proof: By (3) we have<br />

Using the representation<br />

it is possible to write (16) in the form<br />

sm(t) = 1<br />

m<br />

= 1<br />

2m<br />

= 1<br />

2m<br />

Since s ∈ L 1 (R), we have by (15)<br />

<br />

R<br />

λm(u) := λ(u) sinc mu<br />

2<br />

sm(t) = 1<br />

m<br />

sm(t) :=<br />

m/2 <br />

−m/2<br />

m/2 <br />

−m/2<br />

m/2 <br />

−m/2<br />

1<br />

0<br />

sinc mu<br />

2<br />

0<br />

m/2 <br />

−m/2<br />

λ(u) sinc mu<br />

2<br />

1<br />

=<br />

m<br />

m/2 <br />

−m/2<br />

(m > 0)<br />

du<br />

s(t + v) dv. (15)<br />

cos(πtu) du. (16)<br />

cos(πvu) dv<br />

1<br />

dv λ(u) cos(πvu) cos(πtu) du<br />

<br />

dv<br />

0<br />

1<br />

<br />

<br />

λ(u) cos π(t − v)u + cos π(t + v)u du<br />

<br />

<br />

s(t − v) + s(t + v) dv = 1<br />

m<br />

|sm(t)|dt 1<br />

m<br />

m/2 <br />

−m/2<br />

R<br />

m/2 <br />

−m/2<br />

⎛ ⎞<br />

<br />

⎝ |s(t)|dt⎠<br />

dv = s1.<br />

s(t + v) dv.<br />

Hence, by (16), sm ∈ B 1 π.<br />

To obtain the estimates for the variation detracting property we first have to estimate the operator norms.


<strong>SHANNON</strong> <strong>SAMPLING</strong> <strong>SERIES</strong> <strong>WITH</strong> <strong>AVERAGED</strong> KERNELS 5<br />

Theorem 4 Let the sampling operator SW be defined by the kernel s ∈ B 1 π from (3) and the averaged sampling<br />

operator SW,m be defined by the kernel sm ∈ B 1 π, m ∈ N, from (15). Then the operator norm of the sampling<br />

operator SW,m has an estimate<br />

SW,m s1 SW .<br />

Proof: For s ∈ B 1 π we have by the definition (15)<br />

∞<br />

k=−∞<br />

|sm(u − k)| =<br />

= 1<br />

m<br />

∞<br />

∞<br />

k=−∞<br />

which by Theorem 1 yields<br />

Using Theorem 2 we get<br />

m−1 <br />

<br />

<br />

<br />

1<br />

<br />

m<br />

<br />

m/2 <br />

−m/2<br />

<br />

−m/2+j+1<br />

k=−∞ j=0<br />

−m/2+j<br />

<br />

<br />

<br />

<br />

s(u − k + v) dv<br />

<br />

<br />

1<br />

m<br />

|s(k − v − u)| dv = 1<br />

m<br />

∞<br />

SW,m s1.<br />

m/2 <br />

k=−∞<br />

−m/2<br />

m−1 <br />

SW,m s1 SW .<br />

∞<br />

j=0 k=−∞<br />

k−1<br />

|s(u − k + v)| dv<br />

k<br />

= 1<br />

m−1 <br />

m<br />

<br />

j=0<br />

−∞<br />

|s(w + m<br />

2<br />

∞<br />

|s(v)| dv =<br />

For some averaged sampling operators we can compute the exact value of the norm.<br />

− j − u)| dw<br />

∞<br />

−∞<br />

|s(v)| dv = s1,<br />

Theorem 5 If there exists a constant a ∈ [0, 1], such that for all k ∈ Z the kernel function s ∈ B1 π does not have<br />

zeroes on (a − k − 1<br />

1<br />

2 , a − k + 2 ), then for the sampling operator SW,1 with the kernel s1 defined by (15) (m = 1)<br />

we get an exact value of the operator norm<br />

SW,1 = s1.<br />

Proof: By the definition of the operator norm<br />

SW,1 = sup<br />

∞<br />

u∈[a−1/2,a+1/2]<br />

k=−∞<br />

|s1(u − k)| <br />

∞<br />

k=−∞<br />

For s ∈ B 1 π we have by the definition (15) and by the assumption on zeroes<br />

By (17) we get<br />

∞<br />

k=−∞<br />

|s1(a − k)| =<br />

∞<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1/2<br />

k=−∞<br />

−1/2<br />

=<br />

∞<br />

k<br />

k=−∞<br />

k−1<br />

<br />

<br />

<br />

<br />

s(a − k + v) dv<br />

=<br />

<br />

<br />

|s(w − a + 1<br />

)| dw =<br />

2<br />

SW,1 s1.<br />

Using Theorem 4 completes the proof.<br />

Now we are able to consider the variation detracting property.<br />

∞<br />

1/2<br />

k=−∞<br />

−1/2<br />

∞<br />

−∞<br />

|s1(a − k)|. (17)<br />

|s(a − k + v)| dv<br />

|s(v)| dv = s1.<br />

Theorem 6 Let the sampling operator SW be defined by the kernel s ∈ B 1 π from (3) and the averaged sampling<br />

operator SW,m be defined by the kernel sm ∈ B 1 π , m ∈ N, from (15). Then f ∈ T V (R) implies SW,mf ∈ AC(R)<br />

and<br />

VR[SW,mf] s1 VR[f] SW VR[f], (18)<br />

moreover, under the assumptions of Theorem 5, we have<br />

VR[SW,mf] SW,1 VR[f]. (19)


6 A.KIVUNUKK, G.TAMBERG<br />

Proof: Let f ∈ T V (R), hence f is bounded on R. Since sm ∈ B 1 π, the derivative s ′ m ∈ B 1 π also, and by<br />

Nikolskii inequality <br />

k∈Z |s′ m(u − k)| < ∞. Therefore, there exists the bounded derivative<br />

(SW,mf) ′ (t) = W<br />

∞<br />

k=−∞<br />

f( k<br />

W )s′ m(W t − k),<br />

which implies SW,mf ∈ AC(R). Now we have for the total variation<br />

Since by (15) the derivative<br />

we get<br />

(SW,mf) ′ (t) = W<br />

m<br />

∞<br />

k=−∞<br />

k=−∞<br />

VR[SW,mf] =<br />

s ′ m(t) = 1<br />

<br />

m<br />

f( k<br />

W )<br />

<br />

∞<br />

−∞<br />

s(t + m<br />

2<br />

s(W t − k + m<br />

2<br />

|(SW,mf) ′ (t)|dt. (20)<br />

m<br />

) − s(t −<br />

2 )<br />

<br />

,<br />

m<br />

) − s(W t − k −<br />

2 )<br />

<br />

= W<br />

<br />

∞<br />

f(<br />

m<br />

k=−∞<br />

k<br />

∞ m<br />

)s(W t − k + ) −<br />

W 2<br />

k=−∞<br />

= W<br />

∞<br />

<br />

f(<br />

m<br />

k − m<br />

) − f(k<br />

W W )<br />

<br />

s(W t − k + m<br />

2 )<br />

= W<br />

m−1 <br />

m<br />

∞<br />

j=0 k=−∞<br />

<br />

f(<br />

k − j<br />

W<br />

Now by (20) and Theorem 4 we obtain for the total variation<br />

VR[SW,mf] 1<br />

m−1 <br />

m<br />

j=0 k=−∞<br />

∞<br />

<br />

<br />

<br />

− j − j − 1<br />

f(k ) − f(k<br />

W W<br />

)<br />

<br />

<br />

<br />

<br />

f( k<br />

m<br />

)s(W t − k −<br />

W 2 )<br />

<br />

− j − 1<br />

) − f(k<br />

W<br />

)<br />

<br />

s(W t − k + m<br />

2 ).<br />

∞<br />

−∞<br />

<br />

<br />

s(W t − k + m<br />

2 )<br />

<br />

<br />

d(W t)<br />

1<br />

m−1 <br />

VR[f]s1 = s1VR[f] SW VR[f]. (21)<br />

m<br />

j=0<br />

Under the assumptions of Theorem 5 we have s1 = SW,1, therefore<br />

VR[SW,1f] SW,1VR[f]<br />

4. Examples of operators with variation detracting property<br />

4.1 Hann’s sampling operators<br />

We can provide more examples of operators with variation detracting property (9).<br />

2 πu<br />

Take the Hann window λH(u) := cos . Then by (3)<br />

sH(t) = 1<br />

<br />

<br />

sinc(t − 1) + 2 sinc t + sinc(t + 1)<br />

4<br />

and its corresponding averaged kernel by (15) is<br />

sH,1(t) = 1<br />

<br />

4<br />

2<br />

Sci(t + 1<br />

2<br />

) − Sci(t − 1<br />

2<br />

= 1<br />

<br />

<br />

r0(t − 1/2) + r0(t + 1/2) =<br />

2<br />

sinc t<br />

3<br />

3<br />

) + Sci(t + ) − Sci(t −<br />

2 2 )<br />

<br />

,<br />

2(1 − t 2 )<br />

(22)


where the integral sinc is defined by<br />

<strong>SHANNON</strong> <strong>SAMPLING</strong> <strong>SERIES</strong> <strong>WITH</strong> <strong>AVERAGED</strong> KERNELS 7<br />

Sci(x) :=<br />

x<br />

0<br />

sinc(v)dv.<br />

Since sH does not have zeroes on (k, k + 1) for all k ∈ Z, we obtain by Theorems 5 and 6<br />

Corollary 1 Let f ∈ T V (R). Then HW,mf ∈ AC(R) and<br />

<br />

<br />

VR[HW,mf] HW,1VR[f] = Sci(1) + Sci(2) VR[f] = (1.0409 . . .)VR[f].<br />

Proof: The first inequality follows immediately from (18) of Theorem 6. We need only to compute the norm<br />

sH1. We have by (22)<br />

∞<br />

2<br />

∞<br />

sH1 = 2 |sH(t)| dt = 2 sH(t)dt + 2 (−1) k+1<br />

<br />

0<br />

2<br />

<br />

= 2 sH(t)dt − 2<br />

0<br />

0<br />

1<br />

0<br />

k=2<br />

k+1<br />

k<br />

sH(t)dt<br />

∞<br />

(−1) k sH(t + k)dt. (23)<br />

The representation of the kernel sH using Rogosinski kernels r0 in (22) allows us to write<br />

2<br />

2n<br />

k=2<br />

(−1) k sH(t + k) =<br />

So, we have by (5)<br />

<br />

2<br />

0<br />

1<br />

=<br />

2n<br />

k=2<br />

2n<br />

k=2<br />

k=2<br />

(−1) k<br />

<br />

r0(t + k − 1/2) + r0(t + k + 1/2)<br />

(−1) k r0(t + k − 1/2) −<br />

∞<br />

(−1) k sH(t + k)dt = 1<br />

2<br />

k=2<br />

1<br />

0<br />

<br />

(−1) k r0(t + k − 1/2) = r0(t + 3/2) + r0(t + 2n + 1/2).<br />

2n+1<br />

k=3<br />

<br />

<br />

sinc(t + 1) + sinc(t + 2)<br />

The representation of the kernel sH using sinc functions in (22) gives<br />

<br />

2<br />

0<br />

2<br />

sH(t)dt = 1<br />

2<br />

2<br />

0<br />

<br />

<br />

sinc(t − 1) + 2 sinc t + sinc(t + 1)<br />

dt = 1<br />

2<br />

Combining the equalities (25) and (24) we get from (23) by Theorem 5<br />

4.2 Lanczos’ sampling operators<br />

HW,1 = sH1 = Sci(1) + Sci(2).<br />

dt = 1<br />

2<br />

<br />

<br />

Sci(3) − Sci(1) . (24)<br />

<br />

<br />

Sci(1) + 2 Sci(2) + Sci(3) . (25)<br />

We can see that the Lanczos’ window function λL,m(u) = sinc(mu) for m = 2j + 1 can be represented via the<br />

Rogosinski’s window function λR,j(u) = cos π(j + 1/2)u as follows,<br />

λL,2j+1(u) = λR,j(u) sinc<br />

(2j + 1)u<br />

.<br />

2<br />

Now, by Theorem 3 (m = 2j + 1), the Lanczos’ sampling operator LW,2j+1 can be considered as the averaging<br />

of the Rogosinski sampling operator RW,j, i.e.<br />

Therefore we can use Theorem 6 getting<br />

LW,2j+1 = RW,j,2j+1.


8 A.KIVUNUKK, G.TAMBERG<br />

Corollary 2 Let the sampling operator LW,2j+1 be defined by the window function λL,2j+1(u) = sinc(2j + 1)u<br />

using (3). Then f ∈ T V (R) implies LW,2j+1f ∈ AC(R) and<br />

In particular,<br />

VR[LW,2j+1f] rj1VR[f] RW,jVR[f].<br />

VR[LW,1f] LW,1VR[f] = 2 Sci(1)VR[f] = (1.178979 . . .)VR[f].<br />

Proof: The first inequalities follow immediately from (18) of Theorem 6. For the second inequality we have<br />

consider the Rogosinski kernel (5) (j = 0)<br />

r0(t) =<br />

cos πt<br />

2π(1/4 − t 2 ) ,<br />

which does not have zeroes on (−k − 1/2, −k + 1/2). Therefore, by (19) we get VR[LW,1f] LW,1VR[f], where<br />

the numerical value of the norm LW,1 was calculated in [12], Theorem 1.<br />

Let us state an elementary proposition using the Rogosinski-type kernels.<br />

Proposition 1 For the kernel (14) we have<br />

thus d<br />

dt sL,m ∈ B 1 π.<br />

d<br />

dt sL,m(t) = 1<br />

m<br />

m<br />

j=1<br />

Proof: From the definition (14) we get<br />

<br />

r0(t − m + 2j − 1<br />

2 ) − r0(t − m + 2j − 3<br />

2 )<br />

<br />

,<br />

d<br />

dt sL,m(t) = 1<br />

(sinc(t + m) − sinc(t − m))<br />

2m<br />

= 1<br />

m<br />

(sinc(t − m + 2j) − sinc(t − m + 2(j − 1))) ,<br />

2m<br />

j=1<br />

which by (5) gives the assertion.<br />

Although sinc ∈ L 1 (R) we get in rather similar way as in Theorem 6 the following more general result for<br />

the Lanczos operators LW,m defined by the kernel (14).<br />

Theorem 7 Let f ∈ T V (R). Then for the Lanczos sampling operators LW,m defined by the kernel (14) we have<br />

LW,mf ∈ AC(R) and<br />

VR[LW,mf] LW,1VR[f],<br />

where LW,1 = r01 = 1.178979 . . .<br />

Proof: As in Theorem 6 we have<br />

where the derivative is<br />

By Proposition 1 we get<br />

(LW,mf) ′ (t) = W<br />

m<br />

= W<br />

m<br />

∞<br />

k=−∞<br />

m<br />

VR[LW,mf] =<br />

(LW,mf) ′ (t) = W<br />

f( k<br />

W )<br />

∞<br />

j=1 k=−∞<br />

<br />

f(<br />

m<br />

j=1<br />

∞<br />

−∞<br />

∞<br />

k=−∞<br />

|(LW,mf) ′ (t)|dt,<br />

f( k<br />

W )s′ L,m(W t − k).<br />

<br />

r0(W t − k − m + 2j − 1<br />

2 ) − r0(W t − k − m + 2j − 3<br />

2 )<br />

<br />

k + 2j<br />

W<br />

<br />

+ 2j − 1<br />

) − f(k ) r0(W t − m − k −<br />

W<br />

1<br />

2 ).


<strong>SHANNON</strong> <strong>SAMPLING</strong> <strong>SERIES</strong> <strong>WITH</strong> <strong>AVERAGED</strong> KERNELS 9<br />

For the total variation we obtain<br />

VR[LW,mf] = 1<br />

<br />

∞<br />

<br />

m ∞<br />

<br />

<br />

<br />

k + 2j + 2j − 1<br />

m f( ) − f(k ) r0(W t − m − k −<br />

<br />

W W<br />

−∞<br />

j=1 k=−∞<br />

1<br />

2 )<br />

<br />

<br />

<br />

<br />

d(W t)<br />

<br />

1<br />

m r01<br />

m ∞<br />

<br />

<br />

<br />

<br />

+ 2j + 2j − 1 <br />

f(k ) − f(k ) <br />

W W r01VR[f]. (26)<br />

j=1 k=−∞<br />

For the numerical value of LW,1 see Proof of Corollary 2.<br />

4.3 Blackman-Harris’ sampling operators<br />

The Blackman-Harris window λB,9/16 := 1<br />

16 (8 + 9 cos πu − cos 3πu) defines by (7) (a = 9/16) the kernel<br />

and by (15) the averaged kernel<br />

sB,9/16;1(t) = 1<br />

<br />

16<br />

7 Sci(t + 1<br />

2<br />

s B,9/16(t) :=<br />

) − 7 Sci(t − 1<br />

2<br />

9<br />

2(1 − t 2 )(9 − t 2 )<br />

3<br />

3<br />

) + 9 Sci(t + ) − 9 Sci(t −<br />

2 2 )<br />

+ Sci(t + 5<br />

2<br />

sinc t (27)<br />

) − Sci(t − 5<br />

2<br />

7<br />

7<br />

) − Sci(t + ) + Sci(t −<br />

2 2 )<br />

<br />

.<br />

Since sB,9/16 does not have zeroes on (k, k + 1) (k ∈ Z), we can compute by Theorem 5, using the scheme of the<br />

proof of Corollary 1, for the corresponding operator the norm<br />

BW,9/16;1 = sB,9/161 = 1<br />

<br />

<br />

11 Sci 1 + 15 Sci 2 + Sci 3 − 8 Sci 4 − 2 Sci 5 + Sci 6 = 1.178986 . . .<br />

8<br />

Theorem 6 applies also in this case.<br />

Corollary 3 Let f ∈ T V (R). Then B W,9/16;mf ∈ AC(R) and<br />

VR[B W,9/16;mf] B W,9/16;1VR[f] = (1.178986 . . .)VR[f].<br />

The two-parameter Blackman-Harris window, which is defined by (a0, a1 ∈ R)<br />

defines the kernel function<br />

where<br />

λ B,(a0,a1)(u) := a0 + a1 cos πu + ( 1<br />

2 − a0) cos 2πu + ( 1<br />

2 − a1) cos 3πu, (28)<br />

s B,(a0,a1)(t) =<br />

p (a0,a1)(t)<br />

2(9 − t 2 )(4 − t 2 )(1 − t 2 )<br />

sinc t, (29)<br />

p (a0,a1)(t) := (5 + 8a0 − 16a1)t 4 − (5 + 80a0 − 64a1)t 2 + 72a0. (30)<br />

If the discriminant of the polynomial (30) is negative, i.e. the inequality<br />

25 − 640 a0 + 4096a 2 0 − 640a1 − 5632a0a1 + 4096a 2 1 < 0 (31)<br />

is satisfied, then the polynomial (30) has no zeroes (see [15], Lemma 2). Note that on the a0a1-plane the<br />

inequality (31) determines the interior of an ellipse. The corresponding averaged operator by (15) (m = 1), with<br />

the parameters in that ellipse, has by Theorem 5 the norm<br />

<br />

BW,(a0,a1),1 = Sci 1 + Sci 6 + 2a0 Sci 3 − Sci 2 + Sci 4 − Sci 5 + 2a1 Sci 2 − Sci 1 + Sci 5 − Sci 6 (32)<br />

= 1.072 . . . + a0 (0.073 . . .) − a1 (0.202 . . .) (33)<br />

because the kernel (29) in this case do not have zeroes on (k, k + 1) for all k ∈ Z and, therefore, we have by<br />

Theorem 6 the following result.


10 A.KIVUNUKK, G.TAMBERG<br />

Corollary 4 Let f ∈ T V (R). If for a0, a1 ∈ R holds the inequality (31), then for the corresponding averaged<br />

sampling operators we have B W,(a0,a1),mf ∈ AC(R) and<br />

In particular,<br />

VR[B W,(a0,a1),mf] B W,(a0,a1),1VR[f].<br />

VR[B W,(0.352...,0.456...),mf] (1.000104 . . .)VR[f].<br />

Remark. The last inequality corresponds to the situation, when we minimized the norm (32) in the ellipse (31).<br />

References<br />

[1] H. H. Albrecht, A family of cosine-sum windows for high resolution measurements, in IEEE International Conference on Acoustics,<br />

Speech and Signal Processing, Salt Lake City, Mai 2001, pp. 3081-3084.<br />

[2] R. B. Blackman and J. W. Tukey, The measurement of power spectra, Dover, New York, 1958.<br />

[3] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation (vol. 1), Birkhäuser Verlag, Basel, Stuttgart, 1971.<br />

[4] C. Bardaro, P. L. Butzer, R. L. Stens and G. Vinti, Convergence in Variation and Rates of Approximation for Bernstein-Type<br />

Polynomials and Singular Convolution Integrals, Analysis (Munich), 23 (4), 2003, 299–346.<br />

[5] Z. Burinska, K. Runovski, and H.-J. Schmeisser, On the approximation by generalized sampling series in Lp-metrics, Sampling Theory<br />

in Signal and Image Processing, 5, 59–87, 2006.<br />

[6] P. L. Butzer, G. Schmeisser, and R. L. Stens, An introduction to sampling analysis, in Nonuniform Sampling, Theory and Practice,<br />

(F. Marvasti, ed.), Kluwer, New York, 2001, pp. 17–121.<br />

[7] P. L. Butzer, W. Splettstößer, and R. L. Stens, The sampling theorems and linear prediction in signal analysis, Jahresber. Deutsch.<br />

Math-Verein, 90, 1–70, 1988.<br />

[8] F. J. Harris, On the use of windows for harmonic analysis, Proc. of the IEEE, 66, 51–83, 1978.<br />

[9] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis, Clarendon Press, Oxford, 1996.<br />

[10] A. Kivinukk, Approximation of continuous functions by Rogosinski-type sampling series, in Modern Sampling Theory: Mathematics<br />

and Applications (J. Benedetto and P. Ferreira, eds.), Birkhäuser Verlag, Boston, 2001, pp. 233–248.<br />

[11] A. Kivinukk and G. Tamberg, Subordination in generalized sampling series by Rogosinski-type sampling series, in Proc. 1997 Intern.<br />

Workshop on Sampling Theory and Applications, Aveiro, Portugal, 1997, Univ. Aveiro, 1997, pp. 397–402.<br />

[12] A. Kivinukk and G. Tamberg, On sampling series based on some combinations of sinc functions, Proc. of the Estonian Academy of<br />

Sciences. Physics Mathematics, 51, 203–220, 2002.<br />

[13] A. Kivinukk and G. Tamberg, On sampling operators defined by the Hann window and some of their extensions Sampling Theory in<br />

Signal and Image Processing, 2, 235–258, 2003.<br />

[14] A. Kivinukk and G. Tamberg, Blackman-type windows for sampling series, J. of Comp. Analysis and Applications, 7, 361–372, 2005.<br />

[15] A. Kivinukk and G. Tamberg, On Blackman-Harris windows for Shannon sampling series, Sampling Theory in Signal and Image<br />

Processing, 6, 87–108, 2007.<br />

[16] H. D. Meikle, A New Twist to Fourier Tansforms, Wiley-VCH, Berlin, 2004.<br />

[17] S. M. Nikolskii, Approximation of Functions of Several Variables and Imbedding Theorems. Springer, Berlin, 1975. (Orig. Russian<br />

ed. Moscow, 1969)<br />

[18] R. L. Stens, Sampling with generalized kernels, in Sampling Theory in Fourier and Signal Analysis: Advanced Topics, (J.R. Higgins<br />

and R.L. Stens, eds.), Clarendon Press, Oxford, 1999.<br />

[19] M. Theis, Über eine Interpolationsformel von de la Vallee-Poussin. Math. Z. 3, 93–113, 1919.<br />

[20] A. F. Timan, Theory of Approximation of Functions of a Real Variable, MacMillan, New York, 1965. (Orig. Russian ed. Moscow,<br />

1960).<br />

[21] K. Turkowski, Filters for common resampling tasks. In: Graphics Gems I, A. S. Glassner, ed., Academic Press, 1990, pp. 147–165.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!