22.04.2013 Views

Groundwater in Namibia - an Explanation to the ... - BGR

Groundwater in Namibia - an Explanation to the ... - BGR

Groundwater in Namibia - an Explanation to the ... - BGR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Groundwater</strong> <strong>in</strong> <strong>Namibia</strong><br />

<strong>an</strong> expl<strong>an</strong>ation <strong>to</strong> <strong>the</strong> Hydrogeological Map


<strong>Groundwater</strong> <strong>in</strong> <strong>Namibia</strong><br />

<strong>an</strong> expl<strong>an</strong>ation <strong>to</strong> <strong>the</strong> Hydrogeological Map<br />

Greg Christelis <strong>an</strong>d Wilhelm Struckmeier<br />

(edi<strong>to</strong>rs)<br />

<strong>an</strong>d<br />

Rol<strong>an</strong>d Bäumle, Arnold Bittner, Fr<strong>an</strong>k Bockmühl, Pierre Botha, Kathar<strong>in</strong>a Dierkes,<br />

Piet Heyns, Jürgen Kirchner, Roy McG Miller, S<strong>an</strong>dra Müller, S<strong>in</strong>dila Mwiya, Louis du Pis<strong>an</strong>i,<br />

Dieter Plöthner, Kev<strong>in</strong> Roberts, Gabi Schneider, Mart<strong>in</strong> Schneider, Al<strong>an</strong> Simmonds,<br />

Hartmut Strub, Abram v<strong>an</strong> Wyk<br />

under <strong>the</strong> supervision of <strong>the</strong> Steer<strong>in</strong>g Committee<br />

of <strong>the</strong> Hydrogeological Map of <strong>Namibia</strong> Project<br />

(Piet Heyns, Mar<strong>in</strong>a Coetzee, Karl-He<strong>in</strong>z Hoffm<strong>an</strong>n, John Mendelsohn,<br />

Gabi Schneider, Wyn<strong>an</strong>d Seimons)<br />

reviewed by Shirley Bethune<br />

This publication complements <strong>the</strong> Hydrogeological Map of <strong>Namibia</strong><br />

at scale 1:1000 000 prepared as a <strong>Namibia</strong>n – Germ<strong>an</strong> technical cooperation project<br />

of <strong>the</strong> Department of Water Affairs, M<strong>in</strong>istry of Agriculture, Water <strong>an</strong>d Rural Development;<br />

<strong>the</strong> Geological Survey of <strong>Namibia</strong>, M<strong>in</strong>istry of M<strong>in</strong>es <strong>an</strong>d Energy;<br />

<strong>the</strong> <strong>Namibia</strong> Water Corporation <strong>an</strong>d<br />

<strong>the</strong> Federal Institute for Geoscience <strong>an</strong>d Natural Resources<br />

on behalf of <strong>the</strong> Germ<strong>an</strong> M<strong>in</strong>istry of Economic Cooperation <strong>an</strong>d Development.<br />

Claudia du Plessis<br />

First edition December 2001<br />

unrevised second edition J<strong>an</strong>uary 2011


2<br />

Federal Institute for Geosciences<br />

<strong>an</strong>d Natural Resources<br />

Postfach 510153<br />

D-30631 H<strong>an</strong>nover · Germ<strong>an</strong>y<br />

M<strong>in</strong>istry of Agriculture, Water<br />

<strong>an</strong>d Rural Development<br />

Department of Water Affairs<br />

Division Geohydrology<br />

Private Bag 13193<br />

W<strong>in</strong>dhoek · <strong>Namibia</strong><br />

Geological Survey of <strong>Namibia</strong><br />

P.O. Box 2168<br />

W<strong>in</strong>dhoek<br />

<strong>Namibia</strong><br />

<strong>Namibia</strong> Water Corporation<br />

Private Bag 13389<br />

W<strong>in</strong>dhoek<br />

<strong>Namibia</strong>


Honorable M<strong>in</strong>ister<br />

Helmut K Angula<br />

MAWRD<br />

Water is essential for <strong>the</strong><br />

survival of m<strong>an</strong>k<strong>in</strong>d <strong>an</strong>d <strong>the</strong><br />

natural environment. Social<br />

wel fare <strong>an</strong>d economic devel -<br />

op ment c<strong>an</strong>not be susta<strong>in</strong>ed<br />

without reliable water supplies,<br />

<strong>an</strong>d this is particu larly<br />

true of arid countries, such<br />

as <strong>Namibia</strong>, where water<br />

resources are ex tremely limited<br />

<strong>an</strong>d highly valued as a<br />

social <strong>an</strong>d economic good.<br />

The early people who settled<br />

<strong>in</strong> <strong>Namibia</strong> migrated through <strong>the</strong> arid l<strong>an</strong>dscape <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>terior of <strong>the</strong> country <strong>to</strong> graze <strong>the</strong>ir cattle. They found founta<strong>in</strong>s,<br />

seeps <strong>an</strong>d spr<strong>in</strong>gs that provided <strong>the</strong>m with open surface<br />

water, <strong>an</strong>d also learned <strong>to</strong> dig shallow wells <strong>in</strong> <strong>the</strong> dry<br />

watercourses <strong>to</strong> f<strong>in</strong>d groundwater. M<strong>an</strong>y of our <strong>to</strong>wns,<br />

settlements, farms <strong>an</strong>d special places bear <strong>the</strong> names of<br />

<strong>the</strong> waters that were available <strong>to</strong> susta<strong>in</strong> wildlife, m<strong>an</strong> <strong>an</strong>d<br />

his lives<strong>to</strong>ck.<br />

The name of <strong>the</strong> <strong>to</strong>wn Gobabis is derived from a spr<strong>in</strong>g<br />

that was called “place of <strong>the</strong> eleph<strong>an</strong>ts”. In <strong>the</strong> south of<br />

<strong>Namibia</strong>, <strong>the</strong> <strong>to</strong>wns of Karasburg, Warmbad <strong>an</strong>d Keetm<strong>an</strong>shoop<br />

were founded at spr<strong>in</strong>gs, respectively called “Nomsoros”<br />

(water between <strong>the</strong> lime s<strong>to</strong>nes), “Gei-ous” (big hot<br />

water source) <strong>an</strong>d “Nugoeis” (black mud founta<strong>in</strong>). In <strong>the</strong><br />

north, <strong>to</strong>wns have been named after water features, for example<br />

Engela (wet place), Oka<strong>to</strong>pe (small well), Oshik<strong>an</strong>go<br />

(place with m<strong>an</strong>y p<strong>an</strong>s).<br />

Although surface waters are available dur<strong>in</strong>g <strong>the</strong> ra<strong>in</strong>y<br />

season, <strong>the</strong>se normally dry up very soon <strong>in</strong> <strong>the</strong> dry w<strong>in</strong>ter<br />

months. When <strong>the</strong>se resources dried up, <strong>the</strong> people <strong>an</strong>d<br />

<strong>the</strong>ir cattle even perished <strong>in</strong> <strong>the</strong> severe droughts that occur<br />

periodically <strong>in</strong> <strong>Namibia</strong> because <strong>the</strong>y did not know about<br />

<strong>the</strong> hidden treasure of groundwater deep underground.<br />

For more th<strong>an</strong> a century, <strong>the</strong> technology <strong>to</strong> f<strong>in</strong>d <strong>an</strong>d drill<br />

for groundwater cont<strong>in</strong>ued <strong>to</strong> improve <strong>an</strong>d brought additional<br />

benefits such as hydrogeological data collected <strong>in</strong> a sys -<br />

tematic, scientific way. This now provides <strong>an</strong> excellent oppor -<br />

tun ity <strong>to</strong> produce a hydrogeological map for <strong>the</strong> country. The<br />

Foreword<br />

value of a hydrogeological map is that <strong>the</strong> available <strong>in</strong>formation<br />

about <strong>the</strong> occurrence <strong>an</strong>d magnitude of <strong>the</strong> groundwater<br />

resources <strong>in</strong> <strong>the</strong> country c<strong>an</strong> be pre sented <strong>to</strong> <strong>the</strong> general<br />

public <strong>in</strong> a simplified way, but more specifically, it c<strong>an</strong> assist<br />

those that need accurate <strong>in</strong>form ation <strong>to</strong> direct <strong>the</strong> development<br />

of <strong>the</strong> country accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> availability of susta<strong>in</strong>able<br />

groundwater resources.<br />

Although <strong>the</strong> Geohydrology Division <strong>in</strong> <strong>the</strong> Department<br />

of Water Affairs <strong>in</strong> <strong>the</strong> M<strong>in</strong>istry of Agriculture, Water <strong>an</strong>d<br />

Rural Development has long recognised <strong>the</strong> need for a hydrogeological<br />

map, a lack of resources was a major challenge<br />

<strong>to</strong> this objective. In 1996, <strong>the</strong> <strong>Namibia</strong>n Govern ment<br />

approached <strong>the</strong> Germ<strong>an</strong> Government for support <strong>to</strong> prepare<br />

a national hydrogeological map. This request was thoroughly<br />

evaluated <strong>in</strong> terms of <strong>the</strong> availability of data <strong>an</strong>d <strong>the</strong> need for<br />

such a map. A wealth of <strong>in</strong>formation already collected about<br />

<strong>the</strong> hydrogeological environment could be used <strong>to</strong> prepare<br />

<strong>the</strong> map. The need for a hydrogeological map <strong>to</strong> enh<strong>an</strong>ce<br />

<strong>the</strong> future development of a develop<strong>in</strong>g country like <strong>Namibia</strong><br />

was also evident. This conv<strong>in</strong>ced <strong>the</strong> Germ<strong>an</strong> Government<br />

<strong>to</strong> provide technical expertise <strong>to</strong> produce <strong>the</strong> Hydrogeological<br />

Map of <strong>Namibia</strong>.<br />

After two years of close cooperation between staff of<br />

<strong>the</strong> Federal Institute of Geosciences <strong>an</strong>d Natural Resources<br />

<strong>in</strong> Germ<strong>an</strong>y, <strong>the</strong> M<strong>in</strong>istry of Agriculture, Water <strong>an</strong>d Rural<br />

Development, <strong>the</strong> Geological Survey of <strong>Namibia</strong> <strong>an</strong>d <strong>the</strong><br />

<strong>Namibia</strong> Water Corporation, <strong>the</strong> Hydrogeological Map<br />

of <strong>Namibia</strong> has become a reality.<br />

In my view, <strong>the</strong> Hydrogeological Map of <strong>Namibia</strong> <strong>an</strong>d<br />

this expl<strong>an</strong>a<strong>to</strong>ry book “<strong>Groundwater</strong> <strong>in</strong> <strong>Namibia</strong>” that<br />

accomp<strong>an</strong>ies <strong>the</strong> Map, will assist pl<strong>an</strong>ners, developers <strong>an</strong>d<br />

entrepreneurs <strong>to</strong> direct <strong>the</strong>ir activities <strong>in</strong> such a way that our<br />

valuable, yet vulnerable, groundwater sources will be utilised<br />

susta<strong>in</strong>ably <strong>to</strong> facilitate socio-economic development for <strong>the</strong><br />

benefit of all <strong>the</strong> people <strong>in</strong> this country now <strong>an</strong>d <strong>in</strong> <strong>the</strong> future.<br />

Helmut K Angula<br />

M<strong>in</strong>ister of Agri culture, Water<br />

<strong>an</strong>d Rural Develop ment<br />

3


4<br />

Acknowledgements<br />

The publication of this book would not have been possible without <strong>the</strong> enthusiastic assist<strong>an</strong>ce <strong>an</strong>d cooperation of<br />

numerous people. We would like <strong>to</strong> th<strong>an</strong>k <strong>the</strong> follow<strong>in</strong>g – should <strong>an</strong>yone have been omitted <strong>in</strong>advertently we<br />

apologise for <strong>the</strong> oversight.<br />

The follow<strong>in</strong>g authors helped compile <strong>the</strong> book with <strong>the</strong>ir contributions:<br />

HK Angula, MAWRD; R Bäumle, A Bittner, F Bockmühl, P Botha, K Dierkes, P Heyns, J Kirchner, R McG Miller, S<br />

Müller, S Mwiya, AL du Pis<strong>an</strong>i, D Plöthner, K Roberts, GIC Schneider, MB Schneider, A Simmonds, H Strub,<br />

A v<strong>an</strong> Wyk.<br />

The work was carried out under <strong>the</strong> leadership of <strong>the</strong> HYMNAM Steer<strong>in</strong>g Committee. We gratefully acknowledge <strong>the</strong><br />

advice of its members: P Heyns (Chairm<strong>an</strong>), DWA; M Coetzee, MAWRD; KH Hoffm<strong>an</strong>n, GSN; J Mendelsohn,<br />

Direc<strong>to</strong>rate of Environmental Affairs; GIC Schneider, GSN; W Seimons, NamWater.<br />

Useful suggestions have been received from a large number of colleagues <strong>an</strong>d friends, e.g. S Baumgartner, Namcor;<br />

I Demasius, <strong>Namibia</strong> Scientific Society; F-R Haut, <strong>BGR</strong>; J Kirchner, Hydrogeological Association of <strong>Namibia</strong>/HAN;<br />

P Kl<strong>in</strong>tenberg, Desert Research Foundation of <strong>Namibia</strong>/DRFN; U Knorr, <strong>BGR</strong>; C Roberts <strong>an</strong>d T Robertson,<br />

Atlas of <strong>Namibia</strong> Project; M Schmidt-Thomé, <strong>BGR</strong>; U Schreiber, GSN; T Schubert, <strong>BGR</strong>; M Seely, DRFN;<br />

R Wackerle, GSN.<br />

The edi<strong>to</strong>rs are th<strong>an</strong>kful <strong>to</strong> <strong>the</strong> follow<strong>in</strong>g for <strong>the</strong> follow<strong>in</strong>g services <strong>an</strong>d contributions:<br />

Proof-read<strong>in</strong>g: S Bethune <strong>an</strong>d E Chivell<br />

Figures <strong>an</strong>d draw<strong>in</strong>gs: I Bardenhagen, R Bäumle, A Calitz, M Coetzee, U Gersdorf, R McG Miller, S Müller,<br />

A Nguno, U Schneider, G Schmidt, A Simmonds, H Strub, M Strub, S Tompson, C Wessels, A Wolff, A v<strong>an</strong> Wyk.<br />

Pho<strong>to</strong>graphs: S Bethune, A Bittner, F Bockmühl, C&W du Plessis, C Loftie-Ea<strong>to</strong>n, J Kirchner, G Madec, S Mwiya, D<br />

Plöthner, K Roberts, GIC Schneider, W Struckmeier.<br />

Copyrights<br />

© 2001, 2011 Text, tables <strong>an</strong>d graphs: Department of Water Affairs, Division Geohydrology<br />

© 2001, 2011 Pho<strong>to</strong>graphy as credited<br />

All rights reserved. No part of this publication may be reproduced, s<strong>to</strong>red <strong>in</strong> <strong>an</strong>y retrieval system or tr<strong>an</strong>smitted <strong>in</strong><br />

<strong>an</strong>y form or by <strong>an</strong>y me<strong>an</strong>s, electronic, mech<strong>an</strong>ical, pho<strong>to</strong>copy<strong>in</strong>g, record<strong>in</strong>g or o<strong>the</strong>rwise, without <strong>the</strong> written per -<br />

mission of <strong>the</strong> copyright owner(s).<br />

First edition December 2001, unrevised second edition J<strong>an</strong>uary 2011<br />

Layout & production: DesignBüro Claudia Habenicht, Somerset West, RSA<br />

Pr<strong>in</strong>t<strong>in</strong>g: Formset (PTY) Ltd, PO Box 225, Epp<strong>in</strong>gdust, 7475 Cape Town, RSA<br />

ISBN No. 0-86976-571-X<br />

Inside <strong>an</strong>d outside cover pho<strong>to</strong>graphy:<br />

Claudia & Wyn<strong>an</strong>d du Plessis, Wildlife Pho<strong>to</strong>graphers, PO Box 1339, Swakopmund,<br />

E-mail: clawyn@iway.na . www.claudiawyn<strong>an</strong>dduplessis.com


Contents<br />

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

Executive Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

Natural & Socio-Economic Environment<br />

Geology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

Geomorphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Hydrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

Vegetation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

Agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

M<strong>in</strong><strong>in</strong>g, fisheries <strong>an</strong>d <strong>to</strong>urism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

Essentials of <strong>Groundwater</strong> <strong>in</strong> <strong>Namibia</strong><br />

<strong>Groundwater</strong> potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

Tapp<strong>in</strong>g <strong>an</strong>d abstract<strong>in</strong>g <strong>the</strong> groundwater . . . . . . . . . . . . . . . . . . . . . . 34<br />

Susta<strong>in</strong>able use of groundwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

Vulnerability <strong>an</strong>d protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

Hydrogeological Framework<br />

<strong>Groundwater</strong> bas<strong>in</strong>s <strong>an</strong>d <strong>the</strong>ir hydrogeological features . . . . . . . . . . . 44<br />

Caprivi Strip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

Okav<strong>an</strong>go - Epukiro Bas<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

Cuvelai - E<strong>to</strong>sha Bas<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

Otavi Mounta<strong>in</strong> L<strong>an</strong>d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

Nor<strong>the</strong>rn Namib <strong>an</strong>d Kaokoveld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br />

The Br<strong>an</strong>dberg, Erongo <strong>an</strong>d Waterberg Area . . . . . . . . . . . . . . . . . . . . 75<br />

Central Namib - W<strong>in</strong>dhoek Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

Hochfeld - Dordabis - Gobabis Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />

Stampriet Artesi<strong>an</strong> Bas<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88<br />

Fish River - Aroab Bas<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92<br />

Sou<strong>the</strong>rn Namib <strong>an</strong>d Naukluft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96<br />

Karas Basement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100<br />

The <strong>Groundwater</strong> Map<br />

Data of <strong>the</strong> Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

Inset maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

Use of <strong>the</strong> Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110<br />

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

Annex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124<br />

75


6<br />

Executive Summary<br />

Water is life, but <strong>in</strong> a country<br />

as dry as <strong>Namibia</strong>, water resources are often<br />

scarce <strong>an</strong>d unreliable. Surface water availability<br />

is closely l<strong>in</strong>ked <strong>to</strong> a ra<strong>in</strong>fall pattern<br />

that is extremely <strong>in</strong>consistent <strong>in</strong> both time<br />

<strong>an</strong>d space. Too much ra<strong>in</strong> c<strong>an</strong> cause floods<br />

that are difficult <strong>to</strong> master <strong>an</strong>d dur<strong>in</strong>g<br />

droughts surface waters evaporate quickly.<br />

<strong>Groundwater</strong> resources, a “hidden treasure”<br />

underground, are more reliable, widespread<br />

<strong>an</strong>d naturally protected aga<strong>in</strong>st evaporation. The groundwater<br />

s<strong>to</strong>red <strong>in</strong> <strong>the</strong> pore spaces between s<strong>an</strong>d gra<strong>in</strong>s <strong>an</strong>d <strong>in</strong> voids of rocks<br />

has a regulat<strong>in</strong>g function: it c<strong>an</strong> be abstracted dur<strong>in</strong>g dry periods<br />

<strong>an</strong>d filled up aga<strong>in</strong> by recharge dur<strong>in</strong>g good ra<strong>in</strong>s.<br />

<strong>Namibia</strong>, <strong>the</strong> driest country <strong>in</strong> Africa south of <strong>the</strong> Sahara,<br />

depends largely on groundwater. Over <strong>the</strong> past century, more<br />

th<strong>an</strong> 100 000 boreholes have been drilled. Half of <strong>the</strong>se are still<br />

<strong>in</strong> operation <strong>an</strong>d produce groundwater for <strong>in</strong>dustrial, municipal<br />

<strong>an</strong>d rural water supply. They provide dr<strong>in</strong>k<strong>in</strong>g water <strong>to</strong><br />

m<strong>an</strong>, lives<strong>to</strong>ck <strong>an</strong>d game, irrigation water for crop production<br />

<strong>an</strong>d supply dist<strong>an</strong>t m<strong>in</strong>es. The adv<strong>an</strong>tage of us<strong>in</strong>g groundwater<br />

sources is that even isolated communities <strong>an</strong>d those economic<br />

activities located far from good surface water sources<br />

like m<strong>in</strong><strong>in</strong>g, agriculture <strong>an</strong>d <strong>to</strong>urism, c<strong>an</strong> be supplied from<br />

groundwater over nearly 80 % of <strong>the</strong> country.<br />

Despite considerable <strong>in</strong>vestment <strong>in</strong> drill<strong>in</strong>g, borehole design<br />

<strong>an</strong>d construction as well as pump<strong>in</strong>g <strong>an</strong>d ma<strong>in</strong>ten<strong>an</strong>ce, groundwater<br />

is usually <strong>the</strong> most economical way of supply<strong>in</strong>g water.<br />

However, groundwater resources, be<strong>in</strong>g closely associated with<br />

underground rock types that vary with <strong>the</strong> geological situation,<br />

are unevenly distributed across <strong>the</strong> country. There are only a<br />

few favourable places where high volumes of groundwater c<strong>an</strong> be<br />

susta<strong>in</strong>ably abstracted, but fortunately <strong>the</strong>re are also few places<br />

where no groundwater is found at all. But even if <strong>the</strong>re is enough<br />

groundwater <strong>in</strong> a region, it might be unfit for hum<strong>an</strong> use because<br />

of its poor quality. The north-western part of <strong>the</strong> Cuvelai-E<strong>to</strong>sha<br />

Bas<strong>in</strong> <strong>an</strong>d <strong>the</strong> south-eastern part of <strong>the</strong> Stamp riet Bas<strong>in</strong>, <strong>the</strong> socalled<br />

salt block, are prom<strong>in</strong>ent examples.<br />

This book “<strong>Groundwater</strong> <strong>in</strong> <strong>Namibia</strong>” <strong>an</strong>d <strong>the</strong> attached<br />

“Hydrogeological Map of <strong>Namibia</strong>” at a 1:1000 000 scale,<br />

are <strong>the</strong> result of a two years’ technical<br />

cooperation project of <strong>the</strong> Republic of<br />

<strong>Namibia</strong> <strong>an</strong>d <strong>the</strong> Federal Republic of<br />

Germ<strong>an</strong>y. The Map <strong>an</strong>d Book syn<strong>the</strong>sise<br />

<strong>the</strong> groundwater related data, <strong>in</strong>formation<br />

<strong>an</strong>d knowledge available <strong>in</strong> <strong>Namibia</strong>.<br />

The project enjoyed <strong>the</strong> cooperation of<br />

experts from <strong>the</strong> Department of Water<br />

Affairs (DWA) <strong>in</strong> <strong>the</strong> M<strong>in</strong>istry of Agriculture,<br />

Water <strong>an</strong>d Rural Development;<br />

from <strong>the</strong> Geological Survey of <strong>Namibia</strong><br />

(GSN) <strong>in</strong> <strong>the</strong> M<strong>in</strong>istry of M<strong>in</strong>es <strong>an</strong>d Energy; from <strong>the</strong> <strong>Namibia</strong><br />

Water Corporation Ltd. (NamWater); from <strong>the</strong> Federal Institute<br />

for Geosciences <strong>an</strong>d Natural Resources (<strong>BGR</strong>) on behalf of <strong>the</strong><br />

Germ<strong>an</strong> M<strong>in</strong>istry for Economic Cooperation <strong>an</strong>d Development<br />

(BMZ), <strong>an</strong>d m<strong>an</strong>y o<strong>the</strong>r hydrogeological <strong>an</strong>d geological experts<br />

<strong>in</strong> <strong>the</strong> country.<br />

The groundwater situation <strong>in</strong> <strong>Namibia</strong> is outl<strong>in</strong>ed <strong>in</strong> detail<br />

<strong>in</strong> <strong>the</strong> chapter “Hydrogeological Framework”. Compilers of<br />

<strong>the</strong> Map identified twelve ma<strong>in</strong> hydrogeological units based<br />

on <strong>the</strong>ir coherent geological <strong>an</strong>d hydrogeological conditions.<br />

The chapter presents <strong>the</strong> status of <strong>the</strong> groundwater resources<br />

<strong>in</strong> <strong>the</strong>se groundwater bas<strong>in</strong>s or units, <strong>the</strong>ir qu<strong>an</strong>titative <strong>an</strong>d<br />

qualitative aspects, <strong>an</strong>d <strong>the</strong>ir present-day use.<br />

Good data were usually available for <strong>the</strong> <strong>Groundwater</strong> Supply<br />

Schemes (109 sites) run by NamWater <strong>an</strong>d certa<strong>in</strong> Municipalities<br />

listed <strong>in</strong> Annex 1. In o<strong>the</strong>r areas, boreholes representative<br />

of <strong>the</strong> hydrogeological situation <strong>in</strong> <strong>the</strong>ir vic<strong>in</strong>ity were added<br />

(see Annex 2). The rest of <strong>the</strong> country was classified <strong>in</strong><strong>to</strong> aquifers,<br />

aquitards <strong>an</strong>d aquicludes us<strong>in</strong>g <strong>the</strong> data available <strong>in</strong> <strong>the</strong> databases<br />

of DWA, GSN <strong>an</strong>d NamWater, records <strong>an</strong>d documentation<br />

as well as <strong>the</strong> local expertise of numerous groundwater<br />

experts, most of whom contributed voluntarily <strong>to</strong> <strong>the</strong> Map <strong>an</strong>d<br />

<strong>the</strong> Book. Despite this wealth of <strong>in</strong>formation, knowledge about<br />

groundwater is still sparse or <strong>in</strong>sufficient for some areas. Here<br />

<strong>the</strong> Map <strong>an</strong>d <strong>the</strong> Book c<strong>an</strong> help focus future <strong>in</strong>vestigations <strong>an</strong>d<br />

programmes.<br />

Whe<strong>the</strong>r or not groundwater c<strong>an</strong> be s<strong>to</strong>red <strong>an</strong>d <strong>the</strong> way it<br />

flows is largely determ<strong>in</strong>ed by <strong>the</strong> types of rocks underground.<br />

About half (48 %) of <strong>the</strong> country is covered by unconsolidated<br />

deposits that are potential porous aquifers <strong>an</strong>d <strong>the</strong> rest is made


up of hard rocks, more or less<br />

fractured. Fractured hard rocks <strong>an</strong>d<br />

porous unconsolidated rocks are re -<br />

garded as aquifers, only if <strong>the</strong>y s<strong>to</strong>re<br />

extractable groundwater <strong>in</strong> <strong>an</strong> appreciable<br />

qu<strong>an</strong>tity. Only groundwaterproduc<strong>in</strong>g<br />

rock bodies, <strong>in</strong> which<br />

borehole yields generally exceed 3 m 3 /h, are classified as aquifers<br />

<strong>an</strong>d are shown <strong>in</strong> blue or green on <strong>the</strong> Map. Those with borehole<br />

yields between 3 <strong>an</strong>d 0.5 m 3 /h are aquitards, <strong>an</strong>d are shown<br />

<strong>in</strong> light brown, while rocks <strong>in</strong> which very little groundwater<br />

is found (borehole yields less th<strong>an</strong> 0.5 m 3 /h) are shown as dark<br />

brown aquicludes. Only 42 % of <strong>the</strong> country overlies aquifers,<br />

of which 26 % of <strong>the</strong> area conta<strong>in</strong>s porous aquifers <strong>an</strong>d 16%<br />

fractured aquifers. With<strong>in</strong> <strong>the</strong>se aquifers, <strong>the</strong> borehole yields<br />

exceed 15 m 3 /h only over some 14 000 km 2 or 3 % of <strong>the</strong><br />

<strong>to</strong>tal terri<strong>to</strong>ry, mak<strong>in</strong>g <strong>the</strong>se highly productive aquifers <strong>an</strong>d<br />

strategic targets for groundwater supply. Not surpris<strong>in</strong>gly, most<br />

of <strong>the</strong>se areas are already declared groundwater control areas.<br />

Wherever known, qu<strong>an</strong>titative <strong>in</strong>formation about aquifer<br />

parameters, groundwater volumes <strong>an</strong>d water bal<strong>an</strong>ce figures<br />

have been provided <strong>in</strong> <strong>the</strong> text. However, detailed figures<br />

exist only <strong>in</strong> a few places where groundwater models have been<br />

established, e.g. <strong>in</strong> <strong>the</strong> Grootfonte<strong>in</strong> <strong>an</strong>d Tsumeb areas <strong>an</strong>d<br />

<strong>in</strong> <strong>the</strong> Stampriet Artesi<strong>an</strong> Bas<strong>in</strong>.<br />

Although <strong>Namibia</strong> is <strong>an</strong> arid country, its f<strong>in</strong>ite water re -<br />

sources are sufficient <strong>to</strong> susta<strong>in</strong> cont<strong>in</strong>uous growth <strong>an</strong>d steady<br />

development of <strong>the</strong> Nation. There are however great variations<br />

<strong>in</strong> <strong>the</strong> availability of water. At <strong>the</strong> sou<strong>the</strong>rn, nor<strong>the</strong>rn <strong>an</strong>d nor<strong>the</strong>astern<br />

borders where surface water is available throughout <strong>the</strong><br />

year from perennial rivers, <strong>the</strong>re is <strong>an</strong> excess ra<strong>the</strong>r th<strong>an</strong> a shortage<br />

of water, although this is shared with neighbour<strong>in</strong>g countries.<br />

The rest of <strong>the</strong> country ei<strong>the</strong>r relies on dams constructed <strong>in</strong><br />

ephemeral rivers that have low safe yields <strong>in</strong> comparison <strong>to</strong> <strong>the</strong>ir<br />

<strong>to</strong>tal volume, because of drought <strong>an</strong>d high evaporation losses,<br />

or on groundwater. The <strong>to</strong>tal, overall groundwater resources<br />

are sufficient <strong>to</strong> assure long-term water supply if used susta<strong>in</strong>ably,<br />

yet <strong>the</strong>re are great regional variations. In m<strong>an</strong>y areas,<br />

groundwater conditions are unfavourable due <strong>to</strong> limited water<br />

availability, little <strong>an</strong>d unreliable recharge, low borehole yields,<br />

W<strong>in</strong>dpump <strong>an</strong>d borehole <strong>in</strong>stallation<br />

m<strong>in</strong>ation. O<strong>the</strong>r areas are favourable,<br />

sitt<strong>in</strong>g on high-yield<strong>in</strong>g, very productive<br />

aquifers that conta<strong>in</strong> more<br />

water th<strong>an</strong> farmers <strong>an</strong>d communities<br />

presently need. Numer ous small<br />

spr<strong>in</strong>gs, founta<strong>in</strong>s <strong>an</strong>d seeps throughout<br />

<strong>the</strong> country susta<strong>in</strong> wildlife, m<strong>an</strong><br />

<strong>an</strong>d lives<strong>to</strong>ck <strong>in</strong> <strong>an</strong> o<strong>the</strong>r wise arid environment.<br />

<strong>Groundwater</strong> resources should be preserved <strong>an</strong>d protected<br />

as <strong>an</strong> underground treasure, as a strategic reserve for dr<strong>in</strong>k<strong>in</strong>g<br />

water supply <strong>in</strong> prolonged periods of drought <strong>an</strong>d for future<br />

generations. It must not be spoiled by over-exploitation now,<br />

just because <strong>the</strong> water “is <strong>the</strong>re”, <strong>an</strong>d care should be taken<br />

not <strong>to</strong> contam<strong>in</strong>ate <strong>the</strong>m with pollut<strong>an</strong>ts.<br />

The Hydrogeological Map <strong>an</strong>d this Book summarise <strong>the</strong><br />

<strong>in</strong>formation on groundwater <strong>in</strong> <strong>Namibia</strong>, <strong>an</strong>d p<strong>in</strong>po<strong>in</strong>t where<br />

groundwater is sparse or abund<strong>an</strong>t. This <strong>in</strong>formation, judiciously<br />

used, c<strong>an</strong> provide <strong>the</strong> backbone for <strong>the</strong> equitable distribution,<br />

sound development <strong>an</strong>d long-term susta<strong>in</strong> able m<strong>an</strong>agement<br />

of <strong>Namibia</strong>’s groundwater resources, <strong>an</strong>d <strong>the</strong> protection<br />

of groundwater resources from degradation <strong>in</strong> qu<strong>an</strong>tity <strong>an</strong>d<br />

quality. As such, <strong>the</strong>se results of <strong>the</strong> Hydro geo logical Map of<br />

<strong>Namibia</strong> Project are a miles<strong>to</strong>ne <strong>in</strong> ground water-related work<br />

<strong>in</strong> <strong>Namibia</strong> <strong>an</strong>d a corners<strong>to</strong>ne for a susta<strong>in</strong> able, environmentally-sound<br />

water development strategy for <strong>Namibia</strong>.<br />

G CHRISTELIS, W STRUCKMEIER<br />

great depths, poor groundwater quality <strong>an</strong>d high risks of conta - Water is life – but it c<strong>an</strong> be d<strong>an</strong>gerous <strong>an</strong>d destructive<br />

DWA Archive<br />

Cronje Loftie-Ea<strong>to</strong>n<br />

7


8<br />

Introduction<br />

3.0


Water <strong>in</strong> <strong>Namibia</strong> <strong>an</strong>d rationale for a Hydrogeological Map Project<br />

Claudia du Plessis<br />

9


10<br />

In arid areas, where ra<strong>in</strong>fall is limited<br />

<strong>an</strong>d surface runoff is only available<br />

dur<strong>in</strong>g <strong>the</strong> ra<strong>in</strong>y season, m<strong>an</strong> has<br />

learnt through experience that <strong>the</strong>re is<br />

water underground that c<strong>an</strong> be used<br />

dur<strong>in</strong>g <strong>the</strong> dry season. Thus, groundwater<br />

has played <strong>an</strong> import<strong>an</strong>t role<br />

<strong>in</strong> <strong>the</strong> development of <strong>Namibia</strong>.<br />

<strong>Groundwater</strong> resources have been recognised <strong>an</strong>d used<br />

for dr<strong>in</strong>k<strong>in</strong>g purposes s<strong>in</strong>ce hum<strong>an</strong>s settled <strong>in</strong> <strong>Namibia</strong>. The<br />

preferential areas of settlement were near spr<strong>in</strong>gs or founta<strong>in</strong>s<br />

from which groundwater naturally seeped <strong>in</strong><strong>to</strong> ponds<br />

or even formed <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of small perennial watercourses.<br />

Hauchabfonte<strong>in</strong>, Sesfonte<strong>in</strong> <strong>an</strong>d Kowarib are well<br />

known examples. Even <strong>the</strong> capital city, W<strong>in</strong>dhoek, owes its<br />

orig<strong>in</strong> <strong>to</strong> <strong>the</strong> availability of safe ground water from flow<strong>in</strong>g<br />

spr<strong>in</strong>gs. Later, spr<strong>in</strong>gs <strong>an</strong>d ponds were deepened by h<strong>an</strong>d<br />

<strong>to</strong> reach more water. Wells were also dug <strong>in</strong><strong>to</strong> <strong>the</strong> dry watercourses<br />

where no spr<strong>in</strong>gs existed, but where <strong>the</strong> groundwater<br />

was shallow. Today, groundwater resources ly<strong>in</strong>g hundreds<br />

of metres below <strong>the</strong> surface, are tapped by deeply<br />

drilled boreholes.<br />

When <strong>Namibia</strong> became a Protec<strong>to</strong>rate of <strong>the</strong> Germ<strong>an</strong><br />

Empire <strong>in</strong> 1884, momentum was given <strong>to</strong> <strong>the</strong> development<br />

of agriculture, m<strong>in</strong><strong>in</strong>g <strong>an</strong>d <strong>in</strong>frastructure such as railways,<br />

roads <strong>an</strong>d water supplies. As <strong>the</strong> population grew, perm<strong>an</strong>ent<br />

<strong>to</strong>wns <strong>an</strong>d farms were established <strong>an</strong>d it soon became<br />

apparent that more reliable, assured water supplies were<br />

required <strong>to</strong> support future economic activities <strong>in</strong> <strong>Namibia</strong>.<br />

Old drill<strong>in</strong>g mach<strong>in</strong>e for groundwater boreholes<br />

Wilhelm Struckmeier<br />

In Oc<strong>to</strong>ber 1896, Dr Rehbock was<br />

commissioned by <strong>the</strong> Germ<strong>an</strong> Govern -<br />

ment <strong>to</strong> <strong>in</strong>vestigate <strong>the</strong> occurrence,<br />

availability <strong>an</strong>d utilisation of <strong>the</strong> water<br />

resources <strong>in</strong> <strong>the</strong> country. In 1897, he<br />

distributed <strong>the</strong> first ra<strong>in</strong> gauges <strong>to</strong> farmers<br />

<strong>to</strong> better underst<strong>an</strong>d <strong>the</strong> hydrology<br />

of <strong>the</strong> country by obta<strong>in</strong><strong>in</strong>g <strong>in</strong>formation<br />

about ra<strong>in</strong>fall <strong>an</strong>d runoff. The advice <strong>in</strong> <strong>the</strong> report <strong>to</strong><br />

his Government gave more direction <strong>to</strong> water resource development<br />

<strong>in</strong> <strong>Namibia</strong>.<br />

In 1903, <strong>the</strong> first drill<strong>in</strong>g mach<strong>in</strong>e arrived <strong>in</strong> <strong>the</strong> country<br />

<strong>an</strong>d by 1906 <strong>the</strong>re were two drill<strong>in</strong>g units, one for <strong>the</strong> south<br />

<strong>an</strong>d one for <strong>the</strong> north. They operated under <strong>the</strong> control <strong>an</strong>d<br />

supervision of a geologist, Dr Lotz, who conducted <strong>the</strong><br />

search for groundwater <strong>in</strong> <strong>an</strong> org<strong>an</strong>ised m<strong>an</strong>ner. This<br />

improved technology <strong>an</strong>d expertise brought <strong>in</strong><strong>to</strong> <strong>the</strong> country,<br />

made it possible <strong>to</strong> drill boreholes for groundwater at greater<br />

depths <strong>an</strong>d <strong>in</strong> water bear<strong>in</strong>g geological formations that had<br />

previously been <strong>in</strong>accessible. In 1906, Dr R<strong>an</strong>ge, a hydrogeological<br />

expert, was sent <strong>to</strong> <strong>Namibia</strong> <strong>to</strong> assist with <strong>the</strong><br />

groundwater development programme <strong>an</strong>d he takes credit<br />

for recognis<strong>in</strong>g <strong>the</strong> artesi<strong>an</strong> conditions of <strong>the</strong> Stamp riet<br />

bas<strong>in</strong>. By 1913, a geographer, Prof Jaeger, used <strong>the</strong> available<br />

<strong>in</strong>formation on surface runoff <strong>an</strong>d groundwater <strong>to</strong> compile<br />

<strong>the</strong> first water register for <strong>the</strong> country.<br />

After <strong>the</strong> First World War, a new Adm<strong>in</strong>istration for <strong>the</strong><br />

Terri<strong>to</strong>ry of South West Africa was established <strong>an</strong>d <strong>an</strong> Irri -<br />

g ation Department with a Bor<strong>in</strong>g Division, directed by a<br />

drill<strong>in</strong>g eng<strong>in</strong>eer, was created. The duty of this Department<br />

was <strong>to</strong> f<strong>in</strong>d groundwater sources suitable for s<strong>to</strong>ck farm<strong>in</strong>g<br />

<strong>an</strong>d irrigation. The activities of <strong>the</strong> Bor<strong>in</strong>g Division,<br />

as well as <strong>the</strong> work of m<strong>an</strong>y geologists, hydrogeologists, water<br />

div<strong>in</strong>ers <strong>an</strong>d private drill<strong>in</strong>g contrac<strong>to</strong>rs s<strong>in</strong>ce <strong>the</strong>n, made it<br />

possible <strong>to</strong> extend <strong>the</strong> availability of groundwater sources<br />

<strong>to</strong> m<strong>an</strong>y places <strong>in</strong> <strong>the</strong> country where <strong>the</strong>re had previously<br />

been no water available for s<strong>to</strong>ck dr<strong>in</strong>k<strong>in</strong>g <strong>an</strong>d hum<strong>an</strong> consumption.<br />

This <strong>in</strong>creased availability of groundwater secured<br />

<strong>the</strong> development of s<strong>to</strong>ck farm<strong>in</strong>g on <strong>the</strong> grassl<strong>an</strong>ds <strong>in</strong> <strong>the</strong><br />

more remote areas of <strong>Namibia</strong>, <strong>an</strong>d <strong>the</strong> development of<br />

stronger boreholes made it possible <strong>to</strong> susta<strong>in</strong> <strong>the</strong> larger<br />

<strong>to</strong>wns <strong>an</strong>d settlements, as well as o<strong>the</strong>r import<strong>an</strong>t economic


activities such as m<strong>in</strong><strong>in</strong>g, <strong>in</strong>dustry <strong>an</strong>d small-scale irrigated<br />

agriculture.<br />

Whenever <strong>the</strong>re is a scarcity of water, it is ma<strong>in</strong>ly due<br />

<strong>to</strong> low ra<strong>in</strong>fall. The distribution of ra<strong>in</strong>fall across <strong>the</strong> Sou<strong>the</strong>rn<br />

Afric<strong>an</strong> subcont<strong>in</strong>ent is <strong>the</strong> lowest along <strong>the</strong> south-western<br />

Atl<strong>an</strong>tic coast, <strong>an</strong> area largely covered by <strong>the</strong> terri<strong>to</strong>ry<br />

of <strong>Namibia</strong> (refer <strong>to</strong> <strong>the</strong> “Ra<strong>in</strong>fall <strong>an</strong>d Watershed” <strong>in</strong>set map<br />

on <strong>the</strong> Hydrogeological Map). In addition <strong>to</strong> <strong>the</strong> general<br />

paucity of precipitation, ra<strong>in</strong>fall events are extremely un -<br />

reliable, variable <strong>an</strong>d unevenly distributed <strong>in</strong> space <strong>an</strong>d time<br />

over <strong>the</strong> l<strong>an</strong>dscape. Fur<strong>the</strong>rmore, <strong>the</strong> prevail<strong>in</strong>g high<br />

temperature <strong>in</strong> <strong>the</strong> ra<strong>in</strong>y season <strong>an</strong>d huge evaporation losses<br />

make <strong>Namibia</strong> not only <strong>the</strong> driest country <strong>in</strong> sou<strong>the</strong>rn Africa,<br />

but most probably <strong>in</strong> <strong>the</strong> whole of <strong>the</strong> Sou<strong>the</strong>rn Hemi sphere.<br />

In order <strong>to</strong> utilise surface runoff, dams have been built<br />

<strong>to</strong> capture <strong>an</strong>d s<strong>to</strong>re water from <strong>the</strong> floods dur<strong>in</strong>g <strong>the</strong> ra<strong>in</strong>y<br />

season. However, <strong>the</strong> assured susta<strong>in</strong>able safe yield of such<br />

dams is dependent on unreliable <strong>an</strong>d unfavourable hydroclimatic<br />

conditions. The availability of surface water resources<br />

c<strong>an</strong> <strong>the</strong>refore not be guar<strong>an</strong>teed, even with creation of <strong>the</strong><br />

most appropriate facilities. The construction of s<strong>to</strong>rage reservoirs<br />

or dams is also limited by <strong>the</strong> <strong>to</strong>pography of <strong>the</strong> l<strong>an</strong>d -<br />

scape <strong>an</strong>d <strong>the</strong>re are large areas <strong>in</strong> <strong>Namibia</strong> where <strong>the</strong> terra<strong>in</strong><br />

is <strong>to</strong>o flat <strong>to</strong> build viable dams <strong>to</strong> harness surface runoff.<br />

It may be reasoned that <strong>in</strong> areas where surface water<br />

use is limited, one ra<strong>the</strong>r expensive option is <strong>to</strong> import<br />

<strong>the</strong> water required over long dist<strong>an</strong>ces from o<strong>the</strong>r surface or<br />

groundwater sources, however, <strong>the</strong> use of local groundwater<br />

sources is still <strong>the</strong> most appropriate <strong>an</strong>d cost- effective<br />

Omatako Dam, a dam site vulnerable <strong>to</strong> high evaporation<br />

Wilhelm Struckmeier<br />

way <strong>to</strong> provide water <strong>in</strong> most of <strong>the</strong>se areas.<br />

The wea<strong>the</strong>r systems, ra<strong>in</strong>fall, surface runoff <strong>an</strong>d open<br />

water bodies are <strong>the</strong> visible components of <strong>the</strong> water cycle.<br />

However, <strong>the</strong> surface water that <strong>in</strong>filtrates <strong>in</strong><strong>to</strong> <strong>the</strong> ground<br />

fills up <strong>the</strong> voids <strong>an</strong>d pore spaces of <strong>the</strong> rock formations<br />

mak<strong>in</strong>g up <strong>the</strong> crust of <strong>the</strong> earth, <strong>an</strong>d this accumulation<br />

of water <strong>in</strong> <strong>the</strong> aquifers below <strong>the</strong> surface is not only <strong>in</strong> -<br />

visible, but <strong>an</strong> <strong>in</strong>tegral part of <strong>the</strong> hydrological cycle. The<br />

availability of water resources <strong>in</strong> <strong>Namibia</strong> is reflected <strong>in</strong> <strong>the</strong><br />

table below.<br />

Like surface water sources, groundwater c<strong>an</strong> also be regen-<br />

Water availability<br />

Source<br />

<strong>Groundwater</strong><br />

Ephemeral<br />

Surface<br />

Water<br />

Perennial<br />

Surface<br />

Water<br />

Unconventional<br />

vailable<br />

Resources<br />

Volume<br />

3 ( Mm<br />

/ a)<br />

300<br />

200<br />

150<br />

10<br />

66<br />

A 0<br />

Remark<br />

Estimated<br />

long-term<br />

susta<strong>in</strong>able<br />

safe<br />

yield<br />

Full<br />

development<br />

at<br />

95<br />

%<br />

assur<strong>an</strong>ce<br />

of<br />

supply<br />

Presently<br />

<strong>in</strong>stalled<br />

abstraction<br />

capacity<br />

Reclamation,<br />

re-use,<br />

recycl<strong>in</strong>g<br />

erated <strong>an</strong>d replenished by ra<strong>in</strong>water filter<strong>in</strong>g <strong>in</strong><strong>to</strong> <strong>the</strong> ground.<br />

The magnitude <strong>an</strong>d susta<strong>in</strong>able yield of <strong>the</strong> groundwater<br />

sources are <strong>the</strong>refore determ<strong>in</strong>ed by <strong>the</strong> size <strong>an</strong>d extent of<br />

<strong>the</strong> aquifers, <strong>the</strong> conditions that facilitate <strong>the</strong> rate of recharge<br />

<strong>to</strong> <strong>the</strong> aquifers <strong>an</strong>d <strong>the</strong> potential of <strong>the</strong> hydro climate <strong>to</strong> produce<br />

ra<strong>in</strong>fall <strong>an</strong>d runoff.<br />

However, <strong>the</strong>re are also fossil groundwaters that have<br />

accumulated tens of thous<strong>an</strong>ds of years ago <strong>in</strong> water- bear<strong>in</strong>g<br />

aquifers when <strong>the</strong> climate <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn Afric<strong>an</strong> region<br />

was much wetter <strong>an</strong>d a large lake covered areas <strong>in</strong> nor<strong>the</strong>rn<br />

<strong>Namibia</strong> <strong>an</strong>d sou<strong>the</strong>rn Angola where <strong>the</strong> Cuvelai Bas<strong>in</strong> is<br />

located <strong>to</strong>day.<br />

In order <strong>to</strong> f<strong>in</strong>d groundwater, more th<strong>an</strong> 100 000 boreholes<br />

have been drilled, <strong>an</strong>d of <strong>the</strong>se a large number have<br />

ei<strong>the</strong>r come up dry or dried up over time. It is estimated<br />

that <strong>the</strong>re are more th<strong>an</strong> 50 000 production boreholes <strong>in</strong><br />

use <strong>in</strong> <strong>the</strong> country. <strong>Groundwater</strong> is pumped from <strong>the</strong>se<br />

<strong>in</strong>stallations for domestic, lives<strong>to</strong>ck <strong>an</strong>d wildlife consumption,<br />

as well as for m<strong>in</strong><strong>in</strong>g, <strong>in</strong>dustrial operations <strong>an</strong>d<br />

irrigation.<br />

The only assured water supply from surface water is lim -<br />

11


12<br />

ited <strong>to</strong> <strong>the</strong> perennial rivers<br />

on <strong>the</strong> nor<strong>the</strong>rn <strong>an</strong>d sou<strong>the</strong>rn<br />

<strong>an</strong>d borders of <strong>Namibia</strong>,<br />

but this water must also be<br />

shared with <strong>the</strong> countries<br />

neighbour<strong>in</strong>g <strong>Namibia</strong>. The<br />

country is thus highly<br />

dependent on groundwater<br />

because <strong>the</strong> surface water<br />

sources <strong>in</strong> <strong>the</strong> <strong>in</strong> terior of<br />

<strong>Namibia</strong> are unreliable. The dependence on groundwater<br />

is accentuated dur<strong>in</strong>g prolonged periods of drought, when<br />

surface water sources tend <strong>to</strong> dry up.<br />

The adv<strong>an</strong>tage of us<strong>in</strong>g groundwater sources <strong>in</strong> Nami bia<br />

is that it is possible <strong>to</strong> supply water <strong>to</strong> isolated communities,<br />

<strong>an</strong>d for economic activities like m<strong>in</strong><strong>in</strong>g, <strong>in</strong>dustry <strong>an</strong>d<br />

agriculture over nearly 80% of <strong>the</strong> country. Without groundwater,<br />

development <strong>in</strong> m<strong>an</strong>y of <strong>the</strong>se cases would have been<br />

impossible due <strong>to</strong> <strong>the</strong> need <strong>to</strong> import prohibit ively expensive<br />

water over long dist<strong>an</strong>ces via c<strong>an</strong>als or pipel<strong>in</strong>es. About<br />

45 % of <strong>the</strong> water supplied <strong>to</strong> <strong>to</strong>wns, villages <strong>an</strong>d farms <strong>in</strong><br />

<strong>Namibia</strong> comes from boreholes or spr<strong>in</strong>gs. It is also <strong>in</strong>terest<strong>in</strong>g<br />

<strong>to</strong> note that 45 % of <strong>the</strong> water used <strong>in</strong> agriculture<br />

comes from groundwater sources. The table below shows<br />

<strong>the</strong> use of <strong>the</strong> water resources <strong>in</strong> <strong>Namibia</strong> by each major<br />

consumer group.<br />

Thus it is obvious that <strong>Namibia</strong> could not survive without<br />

us<strong>in</strong>g its precious groundwater resources. However,<br />

although groundwater had been sought <strong>an</strong>d used for more<br />

th<strong>an</strong> a century, <strong>the</strong> occurrence, magnitude <strong>an</strong>d po ten tial of<br />

Use of water resources per consumer group <strong>in</strong> 2000<br />

Consumer<br />

Group<br />

Dem<strong>an</strong>d<br />

3 ( Mm<br />

)<br />

Perennial<br />

Rivers<br />

Or<strong>an</strong>ge River at <strong>the</strong> Noordoewer Bridge<br />

Source<br />

of<br />

Supply<br />

*<br />

Ephemeral<br />

Rivers<br />

<strong>Groundwater</strong><br />

3 3 3 ( Mm<br />

) ( % ) ( Mm<br />

) ( % ) ( Mm<br />

) ( % )<br />

Domestic*<br />

* 73<br />

18<br />

25<br />

20<br />

27<br />

35<br />

48<br />

S<strong>to</strong>ck<br />

77<br />

14<br />

18<br />

3 4 60<br />

78<br />

M<strong>in</strong><strong>in</strong>g<br />

14<br />

8 57<br />

1 7 5 36<br />

Irrigation<br />

136<br />

60<br />

44<br />

41<br />

30<br />

35<br />

26<br />

Total 300 100 33 6522 135 45<br />

* The unconventional water sources are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> ephemeral <strong>an</strong>d<br />

groundwater sources<br />

** Industrial <strong>an</strong>d <strong>to</strong>urism use is <strong>in</strong>cluded <strong>in</strong> domestic use because it is only<br />

about 4 % of <strong>the</strong> <strong>to</strong>tal water consumption <strong>in</strong> <strong>Namibia</strong><br />

groundwater resources are<br />

still not fully known. This is<br />

particularly true <strong>in</strong> remote<br />

areas where <strong>the</strong> dem<strong>an</strong>d for<br />

water is small <strong>an</strong>d little<br />

ground water <strong>in</strong>vestigation<br />

had been done. Even <strong>in</strong> areas<br />

of <strong>in</strong>tensive groundwater<br />

abstraction, <strong>the</strong> knowledge<br />

about <strong>the</strong> water bal<strong>an</strong>ce or<br />

recharge versus abstraction, is often <strong>in</strong>sufficient due <strong>to</strong> <strong>the</strong><br />

short period of moni<strong>to</strong>r<strong>in</strong>g of <strong>the</strong>se aquifers (<strong>in</strong> m<strong>an</strong>y cases<br />

less th<strong>an</strong> 50 years). This makes it difficult <strong>to</strong> predict <strong>the</strong><br />

long-term assured, susta<strong>in</strong>able, safe yield of <strong>an</strong> aquifer. Each<br />

major aquifer is operated accord<strong>in</strong>g <strong>to</strong> <strong>an</strong> aquifer m<strong>an</strong>agement<br />

pl<strong>an</strong>. The behaviour of <strong>the</strong> aquifer is closely moni<strong>to</strong>red,<br />

<strong>an</strong>d <strong>an</strong> appropriate m<strong>an</strong>agement strategy adopted <strong>to</strong><br />

ensure <strong>the</strong> susta<strong>in</strong>able utilisation of <strong>the</strong> aquifer.<br />

It is also clear that <strong>Namibia</strong> has a “hidden treasure” of<br />

groundwaters, <strong>an</strong>d <strong>the</strong>se resources have <strong>to</strong> be identified <strong>an</strong>d<br />

mapped for <strong>the</strong> whole country <strong>to</strong> provide a comprehensive<br />

basis for <strong>the</strong> utilisation of groundwater <strong>in</strong> development<br />

pl<strong>an</strong>n<strong>in</strong>g. All natural resources <strong>an</strong>d how <strong>the</strong>y function must<br />

be well known <strong>an</strong>d fully unders<strong>to</strong>od, <strong>an</strong>d this knowledge<br />

taken <strong>in</strong><strong>to</strong> account <strong>in</strong> <strong>an</strong>y national development strategy<br />

if pl<strong>an</strong>ners w<strong>an</strong>t <strong>to</strong> make optimum use of <strong>the</strong> assets provided<br />

by nature. Equitable <strong>an</strong>d susta<strong>in</strong>able development, as<br />

spelled out <strong>in</strong> <strong>the</strong> Constitution of <strong>Namibia</strong>, <strong>in</strong>cludes <strong>the</strong><br />

proper <strong>an</strong>d wise use of all natural resources <strong>in</strong>clud<strong>in</strong>g ground -<br />

water, <strong>to</strong> supply <strong>the</strong> water needed without harm<strong>in</strong>g <strong>the</strong><br />

environ ment.<br />

Information about <strong>the</strong> occurrence of groundwater <strong>an</strong>d<br />

<strong>the</strong> magnitude of groundwater resources have been ga<strong>the</strong>red<br />

<strong>in</strong> <strong>Namibia</strong> for more th<strong>an</strong> a century, but all this know -<br />

ledge had never been collated <strong>an</strong>d presented <strong>in</strong> a way that<br />

<strong>the</strong> general public <strong>an</strong>d scholars c<strong>an</strong> access, appreciate <strong>an</strong>d<br />

underst<strong>an</strong>d.<br />

The Hydrogeological Map of <strong>Namibia</strong> at scale 1:1000000,<br />

provides <strong>an</strong> overview of <strong>the</strong> groundwater situation <strong>in</strong> <strong>the</strong><br />

whole country. It shows <strong>the</strong> aerial extent of <strong>the</strong> rock bodies<br />

conta<strong>in</strong><strong>in</strong>g groundwater <strong>an</strong>d <strong>the</strong>ir potential. Moreover, it<br />

depicts <strong>the</strong> hydrodynamic features such as <strong>the</strong> groundwa-<br />

Wilhelm Struckmeier


Drill<strong>in</strong>g is required <strong>to</strong> know more about groundwater resources<br />

ter flow direction, depth <strong>to</strong> groundwater, art esi<strong>an</strong> areas, <strong>an</strong>d<br />

major groundwater quality restrictions. Inform ation on<br />

<strong>in</strong>stallations for <strong>the</strong> abstraction of water (water supply<br />

schemes, irrigation schemes), as well as <strong>the</strong> distribution <strong>an</strong>d<br />

tr<strong>an</strong>sfer of water (c<strong>an</strong>als <strong>an</strong>d pipel<strong>in</strong>es) are port rayed, <strong>to</strong>o.<br />

The Map <strong>in</strong>tegrates all this complex <strong>an</strong>d <strong>in</strong>terdependent<br />

<strong>in</strong>formation <strong>in</strong> <strong>an</strong> easily readable form.<br />

There are m<strong>an</strong>y import<strong>an</strong>t reasons why a Hydrogeological<br />

Map for <strong>Namibia</strong> <strong>an</strong>d this expl<strong>an</strong>a<strong>to</strong>ry book “<strong>Groundwater</strong><br />

<strong>in</strong> <strong>Namibia</strong>” were prepared. The Map <strong>an</strong>d this book<br />

will greatly improve <strong>the</strong> knowledge <strong>an</strong>d underst<strong>an</strong>d<strong>in</strong>g of<br />

<strong>the</strong> groundwater situation <strong>in</strong> <strong>Namibia</strong>. It will create <strong>an</strong> awareness<br />

of a natural resource that is vulnerable, but vital for<br />

water supply <strong>in</strong> <strong>the</strong> country. The Map will also serve as a<br />

guide <strong>to</strong> national development strategies aimed at <strong>the</strong> sound<br />

<strong>an</strong>d susta<strong>in</strong>able development of <strong>the</strong> Nation’s natural resources.<br />

However, a Hydrogeological Map is never complete <strong>an</strong>d <strong>the</strong><br />

<strong>in</strong>set map on <strong>the</strong> “density of boreholes” clearly shows that<br />

<strong>the</strong>re is a lack of <strong>in</strong>formation <strong>in</strong> certa<strong>in</strong> areas. This will<br />

certa<strong>in</strong>ly encourage fur<strong>the</strong>r <strong>in</strong>vestigations <strong>in</strong><strong>to</strong> those groundwater<br />

resources that are not yet well known. The same applies<br />

<strong>to</strong> <strong>the</strong> <strong>in</strong>set map on <strong>the</strong> “Vulner ability of <strong>the</strong> groundwater<br />

resources” <strong>in</strong> <strong>Namibia</strong>. More studies <strong>in</strong> this field are also<br />

vital as <strong>the</strong>re is no hope of recovery if <strong>an</strong> aquifer <strong>in</strong> <strong>an</strong> arid<br />

area is polluted. The work that has been done on <strong>the</strong> Map<br />

<strong>an</strong>d this book provides <strong>in</strong>form ation, creates awareness, gives<br />

guidel<strong>in</strong>es for development, <strong>an</strong>d illustrates some of <strong>the</strong> major<br />

challenges that face water resource m<strong>an</strong>agers now <strong>an</strong>d <strong>in</strong><br />

future.<br />

P HEYNS, W STRUCKMEIER<br />

FURTHER READING<br />

• Heyns P, S Montgomery, J Pallett, M Seely (Eds).<br />

1998. <strong>Namibia</strong>’s Water, A Decision Makers’<br />

Guide. Desert Research Foundation of <strong>Namibia</strong><br />

<strong>an</strong>d DWA, W<strong>in</strong>dhoek, <strong>Namibia</strong>.<br />

• Lau B & C Stern. 1990. <strong>Namibia</strong>n Water<br />

Resources <strong>an</strong>d <strong>the</strong>ir M<strong>an</strong>agement – A prelim<strong>in</strong>ary<br />

His<strong>to</strong>ry. Archeia, No.15, W<strong>in</strong>dhoek.<br />

• Pallett J (Ed). 1997. Shar<strong>in</strong>g Water <strong>in</strong> Sou<strong>the</strong>rn<br />

Africa. DRFN. W<strong>in</strong>dhoek.<br />

Wilhelm Struckmeier<br />

13


14<br />

Natural& Socio-Economic Environment


Wyn<strong>an</strong>d du Plessis<br />

15


16<br />

Geology<br />

<strong>Namibia</strong>’s varied geology encompasses<br />

rocks of Archae<strong>an</strong> <strong>to</strong> Cenozoic<br />

age, thus cover<strong>in</strong>g more th<strong>an</strong> 2 600<br />

million years (Ma) of Earth his<strong>to</strong>ry.<br />

Nearly half of <strong>the</strong> country’s surface area<br />

is bedrock exposure, while <strong>the</strong> rema<strong>in</strong>der<br />

is covered by young surficial deposits of <strong>the</strong> Kalahari<br />

<strong>an</strong>d Namib Deserts.<br />

Metamorphic <strong>in</strong>liers consist<strong>in</strong>g of highly deformed<br />

gneisses, amphibolites, meta-sediments <strong>an</strong>d associated <strong>in</strong>trusive<br />

rocks occur <strong>in</strong> <strong>the</strong> central <strong>an</strong>d nor<strong>the</strong>rn parts of <strong>the</strong> country,<br />

<strong>an</strong>d represent some of <strong>the</strong> oldest rocks of Palaeoproterozoic<br />

age (ca. 2200 <strong>to</strong> 1800 Ma) <strong>in</strong> <strong>Namibia</strong>. The Kunene<br />

<strong>an</strong>d Grootfonte<strong>in</strong> Igneous Complexes <strong>in</strong> <strong>the</strong> north, <strong>the</strong> volc<strong>an</strong>ic<br />

Or<strong>an</strong>ge River Group <strong>an</strong>d <strong>the</strong> Vioolsdrif Suite <strong>in</strong> <strong>the</strong><br />

south, as well as <strong>the</strong> volc<strong>an</strong>o-sedimentary Khoabendus Group<br />

Stratigraphical units <strong>in</strong> <strong>Namibia</strong><br />

Era Formation <strong>Namibia</strong>n<br />

Classification<br />

Cenozoic<br />

< 65<br />

Ma<br />

Mesozoic<br />

65-250<br />

Ma<br />

Paleozoic<br />

250-540<br />

Ma<br />

Cretaceous<br />

<strong>to</strong><br />

Quarternary<br />

< 135<br />

Ma<br />

Permi<strong>an</strong><br />

<strong>to</strong><br />

Jurassic<br />

135-300<br />

Ma<br />

< 135<br />

Ma<br />

300-500 Ma<br />

Erosion<br />

Cambri<strong>an</strong><br />

500-540<br />

Ma<br />

Neoproterozoic<br />

540-1000<br />

Ma<br />

Precambri<strong>an</strong><br />

> 540<br />

Ma<br />

Mesoproterozoic<br />

1000-1600<br />

Ma<br />

Paleoproterozoic<br />

<strong>an</strong>d<br />

Archae<strong>an</strong><br />

> 1600<br />

Ma<br />

Cenozoic<br />

Post-Karoo<br />

Sediments<br />

135-300 Ma<br />

Karoo<br />

Sequence<br />

<strong>Namibia</strong>n<br />

<strong>to</strong><br />

early<br />

Cambri<strong>an</strong><br />

500-1000<br />

Ma<br />

Middle<br />

<strong>to</strong><br />

Mokoli<strong>an</strong><br />

late<br />

1000-1800<br />

Ma<br />

Vaali<strong>an</strong><br />

<strong>to</strong><br />

early<br />

Mokoli<strong>an</strong><br />

> 1800<br />

Ma<br />

Nama<br />

G<br />

Damara<br />

roup<br />

Complexes<br />

Sequence<br />

Gariep<br />

Complex<br />

Gamsberg<br />

Gr<strong>an</strong>ite<br />

Fr<strong>an</strong>sfonte<strong>in</strong><br />

Suite<br />

S<strong>in</strong>clair<br />

Sequence<br />

Namaqual<strong>an</strong>d<br />

Complex<br />

Rehoboth<br />

Sequence<br />

Elim<br />

Formation<br />

Khoabendus<br />

Group<br />

Vioolsdrif<br />

Suite<br />

Or<strong>an</strong>ge<br />

River<br />

Group<br />

Mooirivier<br />

Complex<br />

Neuhof<br />

Formation<br />

Hohewarte<br />

Complex<br />

Abbabis<br />

Complex<br />

Grootfonte<strong>in</strong><br />

Complex<br />

Huab<br />

Complex<br />

Kunene<br />

Complex<br />

Epupa<br />

Complex<br />

<strong>an</strong>d Rehoboth Sequence also belong <strong>to</strong><br />

this group.<br />

The Mesoproterozoic (1800 <strong>to</strong> 1000<br />

Ma) is represented by <strong>the</strong> Namaqual<strong>an</strong>d<br />

Metamorphic Complex, which<br />

comprises gr<strong>an</strong>itic gneisses, metasedimen<br />

tary rocks <strong>an</strong>d magmatic <strong>in</strong> -<br />

trusions, <strong>an</strong>d by <strong>the</strong> volc<strong>an</strong>o-sedimen -<br />

tary S<strong>in</strong>clair Sequence of central <strong>Namibia</strong>, with associ ated<br />

gr<strong>an</strong>ites (e.g. Gamsberg Gr<strong>an</strong>ite Suite).<br />

The coastal <strong>an</strong>d <strong>in</strong>tra-cont<strong>in</strong>ental arms of <strong>the</strong> Neoproterozoic<br />

Damara Orogen (800 <strong>to</strong> 500 Ma) underlie large<br />

parts of north-western <strong>an</strong>d central <strong>Namibia</strong>, with platform<br />

carbonates <strong>in</strong> <strong>the</strong> north <strong>an</strong>d a variety of meta-sedimentary<br />

rocks po<strong>in</strong>t<strong>in</strong>g <strong>to</strong> more variable depositional conditions fur<strong>the</strong>r<br />

south. Along <strong>the</strong> south-western coast, <strong>the</strong> volc<strong>an</strong>o-sedimentary<br />

Gariep Complex is <strong>in</strong>terpreted as <strong>the</strong> sou<strong>the</strong>rn<br />

extension of <strong>the</strong> Damara Orogen. Dur<strong>in</strong>g <strong>the</strong> later stages of<br />

orogenic evolution, <strong>the</strong> shallow-mar<strong>in</strong>e clastic sediments of<br />

<strong>the</strong> Nama Group, which covers much of central sou<strong>the</strong>rn<br />

<strong>Namibia</strong>, were derived from <strong>the</strong> uplifted Damara <strong>an</strong>d Gariep<br />

Belts.<br />

Sedimentary <strong>an</strong>d volc<strong>an</strong>ic rocks of <strong>the</strong> Permi<strong>an</strong> <strong>to</strong><br />

Jurassic Karoo Sequence occur <strong>in</strong> <strong>the</strong> Ar<strong>an</strong>os, Huab <strong>an</strong>d<br />

Waterberg Bas<strong>in</strong>s, <strong>in</strong> <strong>the</strong> south-eastern <strong>an</strong>d north- western<br />

parts of <strong>the</strong> country. They are extensively <strong>in</strong>truded by dolerite<br />

sills <strong>an</strong>d dyke swarms, which <strong>in</strong> association with predom<strong>in</strong><strong>an</strong>tly<br />

basaltic volc<strong>an</strong>ism <strong>an</strong>d a number of alkal<strong>in</strong>e sub-volc<strong>an</strong>ic<br />

<strong>in</strong>trusions, mark <strong>the</strong> break up of Gondw<strong>an</strong>a l<strong>an</strong>d<br />

<strong>an</strong>d <strong>the</strong> formation of <strong>the</strong> South Atl<strong>an</strong>tic oce<strong>an</strong> dur<strong>in</strong>g <strong>the</strong><br />

Cretaceous.<br />

The currently last chapter of <strong>Namibia</strong>’s geological his<strong>to</strong>ry<br />

is represented by <strong>the</strong> widespread Tertiary <strong>to</strong> recent (< 50 Ma)<br />

sediments of <strong>the</strong> Kalahari Sequence.<br />

The ma<strong>in</strong> rock types<br />

Based on <strong>the</strong>ir hydrogeological characteristics, <strong>the</strong><br />

extremely varied lithologies occurr<strong>in</strong>g <strong>in</strong> <strong>Namibia</strong> were<br />

grouped <strong>in</strong><strong>to</strong> 12 ma<strong>in</strong> units for <strong>the</strong> Hydrogeological Map.<br />

While stratigraphic positions <strong>an</strong>d spatial distribution were<br />

taken <strong>in</strong><strong>to</strong> consideration, <strong>the</strong> ma<strong>in</strong> focus was placed on<br />

<strong>the</strong> groundwater potential of <strong>the</strong> rocks. The result<strong>in</strong>g sub -


Source: HYMNAM Project<br />

© GSN, DWA<br />

Simplified lithological map of <strong>Namibia</strong><br />

division is <strong>the</strong>refore quite different from <strong>the</strong> lithological<br />

units shown on <strong>the</strong> Geological Map of <strong>Namibia</strong>.<br />

The follow<strong>in</strong>g units were established:<br />

(1) S<strong>an</strong>d <strong>an</strong>d gravel, valley deposits (alluvium)<br />

(2) Unconsolidated <strong>to</strong> semi-consolidated s<strong>an</strong>d <strong>an</strong>d gravel,<br />

locally calcrete<br />

(3) Unconsolidated <strong>to</strong> semi-consolidated s<strong>an</strong>d <strong>an</strong>d gravel,<br />

locally calcrete; with scattered bedrock outcrops<br />

(4) Calcrete<br />

(5) S<strong>an</strong>ds<strong>to</strong>ne<br />

(6) Shale, muds<strong>to</strong>ne, silts<strong>to</strong>ne<br />

(7) Limes<strong>to</strong>ne, dolomite, marble<br />

(8) Non-porous s<strong>an</strong>ds<strong>to</strong>ne, conglomerate, quartzite<br />

(9) Volc<strong>an</strong>ic rocks (Karoo <strong>an</strong>d younger)<br />

(10) Metamorphic rocks, <strong>in</strong>clud<strong>in</strong>g quartzite <strong>an</strong>d marble<br />

b<strong>an</strong>ds<br />

(11) Metamorphic rocks, <strong>in</strong>clud<strong>in</strong>g quartzite <strong>an</strong>d marble<br />

b<strong>an</strong>ds; with gr<strong>an</strong>itic <strong>in</strong>trusions<br />

(12) Gr<strong>an</strong>ite, gneiss, old volc<strong>an</strong>ic rocks<br />

Unit 1, “S<strong>an</strong>d <strong>an</strong>d gravel, valley deposits (alluvium)”<br />

comprises <strong>the</strong> young <strong>in</strong>fill <strong>in</strong> valleys <strong>an</strong>d some courses of<br />

ephemeral rivers where <strong>the</strong>y are extensive.<br />

Unit 2, “Unconsolidated <strong>to</strong> semi-consolidated s<strong>an</strong>d <strong>an</strong>d<br />

gravel, locally calcrete” occurs abund<strong>an</strong>tly <strong>in</strong> <strong>the</strong> Namib Desert<br />

between Walvis Bay <strong>an</strong>d Or<strong>an</strong>jemund, <strong>an</strong>d conta<strong>in</strong>s <strong>the</strong> Cenozoic<br />

sediments of <strong>the</strong> Namib Desert. Fur<strong>the</strong>r north, this unit<br />

occurs east of Terrace Bay <strong>an</strong>d south of <strong>the</strong> Kunene River<br />

17


18<br />

mouth, where dunes are<br />

locally de vel oped. Infill of<br />

<strong>the</strong> Kalahari Bas<strong>in</strong>, which<br />

covers <strong>the</strong> entire Kalahari<br />

S<strong>an</strong>d veld, <strong>the</strong> Owambo<br />

Bas<strong>in</strong>, as well as <strong>the</strong> Kav<strong>an</strong>go<br />

<strong>an</strong>d Caprivi re gions, also<br />

belong <strong>to</strong> this unit.<br />

In <strong>the</strong> south, between Tses<br />

<strong>an</strong>d Keetm<strong>an</strong>shoop, s<strong>an</strong>ds<strong>to</strong>nes<br />

of <strong>the</strong> Auob <strong>an</strong>d<br />

Nossob Members of <strong>the</strong> Pr<strong>in</strong>ce Albert Formation, Karoo<br />

Sequence, that occur along <strong>the</strong> Weissr<strong>an</strong>d Escarpment have<br />

also been <strong>in</strong>cluded <strong>in</strong> this unit, because <strong>the</strong>y frequently form<br />

a jo<strong>in</strong>t groundwater system <strong>to</strong>ge<strong>the</strong>r with <strong>the</strong> overly<strong>in</strong>g Kalahari<br />

of <strong>the</strong> Stampriet Bas<strong>in</strong>.<br />

In <strong>the</strong> Namib south of Lüderitz, as well as <strong>in</strong> <strong>the</strong> area east<br />

of <strong>the</strong> ma<strong>in</strong> Namib s<strong>an</strong>d sea close <strong>to</strong> <strong>the</strong> Great Escarpment,<br />

<strong>the</strong> unconsolidated <strong>to</strong> semi-consolidated sediments show<br />

scattered bedrock outcrops, which r<strong>an</strong>ge from small hills <strong>to</strong><br />

prom<strong>in</strong>ent <strong>in</strong>selbergs composed of ma<strong>in</strong>ly Proterozoic<br />

lithologies. These areas fall <strong>in</strong><strong>to</strong> unit 3, “Unconsolidated <strong>to</strong><br />

semi-consolidated s<strong>an</strong>d <strong>an</strong>d gravel, locally calcrete, with<br />

scattered bedrock outcrops”.<br />

Unit 4, “Calcrete” comprises a white, flat-ly<strong>in</strong>g surface<br />

limes<strong>to</strong>ne which is commonly developed <strong>in</strong> warm, arid <strong>an</strong>d<br />

semi-arid regions, where it forms by solution <strong>an</strong>d redeposition<br />

of calcium carbonate by meteoric waters. The<br />

lime forms a hard cement <strong>to</strong> s<strong>an</strong>d <strong>an</strong>d gravel beds, <strong>an</strong>d<br />

c<strong>an</strong> even replace pre-exist<strong>in</strong>g material. Such calcretes have<br />

a large distribution <strong>in</strong> <strong>the</strong> area of Grootfonte<strong>in</strong> <strong>an</strong>d along<br />

<strong>the</strong> sou<strong>the</strong>rn marg<strong>in</strong> of <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong>. They also extensively<br />

cover some valley <strong>in</strong>fills. Most of <strong>the</strong> calcretes have<br />

been mapped by remote sens<strong>in</strong>g methods from satellite<br />

images, s<strong>in</strong>ce <strong>the</strong>y form very import<strong>an</strong>t hydrogeological<br />

units (see Box on “Calcrete”).<br />

Unit 5, “S<strong>an</strong>ds<strong>to</strong>ne” occurs <strong>in</strong> <strong>the</strong> Otjiwarongo area south<br />

of <strong>the</strong> Waterberg Fault, where <strong>the</strong>y belong <strong>to</strong> <strong>the</strong> flat-ly<strong>in</strong>g<br />

aeoli<strong>an</strong> Etjo Formation of <strong>the</strong> Karoo Sequence.<br />

Unit 6, “Shale, muds<strong>to</strong>ne <strong>an</strong>d silts<strong>to</strong>ne” forms part of<br />

<strong>the</strong> flat-ly<strong>in</strong>g Permi<strong>an</strong> <strong>to</strong> Jurassic Karoo Sequence <strong>in</strong> <strong>the</strong><br />

Stampriet, Huab, Waterberg <strong>an</strong>d Owambo Bas<strong>in</strong>s <strong>in</strong> <strong>the</strong><br />

View from <strong>the</strong> Gamsberg look<strong>in</strong>g north-west <strong>to</strong> <strong>the</strong> Namib<br />

south-eastern <strong>an</strong>d northwestern<br />

parts of <strong>Namibia</strong>.<br />

As part of Gondw<strong>an</strong>al<strong>an</strong>d,<br />

sou<strong>the</strong>rn Africa <strong>in</strong>itially occupied<br />

a position close <strong>to</strong> <strong>the</strong><br />

south pole, <strong>an</strong>d a huge ice<br />

sheet covered <strong>the</strong> region.<br />

Basal glacial rocks of <strong>the</strong><br />

lower Permi<strong>an</strong> Dwyka Formation<br />

were de po sited before<br />

<strong>the</strong> Dwyka glaciation ended<br />

approximately 280 million years ago, when plate tec<strong>to</strong>nic<br />

movements brought sou<strong>the</strong>rn Africa <strong>to</strong> a more moderate climatic<br />

realm. The melt<strong>in</strong>g ice sheet provided ample water <strong>to</strong><br />

create <strong>an</strong> environ ment with huge lakes <strong>an</strong>d rivers, <strong>an</strong>d <strong>the</strong><br />

Dwyka Formation is overla<strong>in</strong> by lacustr<strong>in</strong>e grey <strong>to</strong> green shales,<br />

muds<strong>to</strong>nes, limes<strong>to</strong>nes, s<strong>an</strong>ds<strong>to</strong>nes <strong>an</strong>d coal-bear<strong>in</strong>g shales<br />

of <strong>the</strong> Pr<strong>in</strong>ce Albert Formation. Mid- Permi<strong>an</strong> rocks <strong>in</strong> <strong>the</strong><br />

Stampriet Bas<strong>in</strong> consist of 600 metres of shales with th<strong>in</strong> limes<strong>to</strong>ne<br />

layers overla<strong>in</strong> by shale <strong>an</strong>d s<strong>an</strong>ds<strong>to</strong>ne. In <strong>the</strong> Huab<br />

Bas<strong>in</strong>, mid-Permi<strong>an</strong> rocks are re presented by purple shales<br />

<strong>an</strong>d s<strong>an</strong>ds<strong>to</strong>nes. Muds<strong>to</strong>nes also occur with<strong>in</strong> <strong>the</strong> Om<strong>in</strong>gonde<br />

Formation of <strong>the</strong> Waterberg which <strong>in</strong> addition comprises red<br />

conglomerates, s<strong>an</strong>ds<strong>to</strong>nes <strong>an</strong>d grits up <strong>to</strong> 600 metres thick.<br />

In addition, shales of <strong>the</strong> Fish River Subgroup, Nama Group,<br />

a sou<strong>the</strong>rn molasse, <strong>an</strong>d <strong>the</strong> Mulden Group, a nor<strong>the</strong>rn<br />

molasse, both <strong>to</strong> <strong>the</strong> Damara Orogen, belong <strong>to</strong> this unit (6),<br />

termed “Shale, muds<strong>to</strong>ne, silts<strong>to</strong>ne”.<br />

Unit 7, “Limes<strong>to</strong>ne, dolomite, marble” comprises rocks<br />

of <strong>the</strong> Neoproterozoic Damara Orogen which were deposited<br />

<strong>in</strong> <strong>an</strong> oce<strong>an</strong> formed dur<strong>in</strong>g successive phases of <strong>in</strong>tracont<strong>in</strong>ental<br />

rift<strong>in</strong>g, spread<strong>in</strong>g <strong>an</strong>d <strong>the</strong> formation of passive<br />

cont<strong>in</strong>ental marg<strong>in</strong>s. The marbles of <strong>the</strong> Karibib Formation<br />

accumulated <strong>in</strong> a shelf area <strong>in</strong> north-western central<br />

<strong>Namibia</strong>, while <strong>the</strong> thick succession of dolomites <strong>an</strong>d limes<strong>to</strong>nes<br />

of <strong>the</strong> Otavi Group was deposited on a north ern platform<br />

<strong>an</strong>d <strong>to</strong>day crop out <strong>in</strong> fold structures between<br />

Grootfonte<strong>in</strong> <strong>an</strong>d Opuwo. The Naukluft Nappe Complex<br />

conta<strong>in</strong>s appreciable qu<strong>an</strong>tities of flat-ly<strong>in</strong>g limes<strong>to</strong>nes,<br />

<strong>an</strong>d <strong>the</strong>refore also belongs <strong>to</strong> this unit, as well as limes<strong>to</strong>nes<br />

of <strong>the</strong> Nama Group which were deposited <strong>in</strong> a shallow syntec<strong>to</strong>nic<br />

forel<strong>an</strong>d bas<strong>in</strong> of <strong>the</strong> Damara Orogen.<br />

Jürgen Kirchner


Unit 8, “Non-porous s<strong>an</strong>ds<strong>to</strong>ne, conglomerate, quartzite”<br />

forms a unit which was ma<strong>in</strong>ly deposited dur<strong>in</strong>g Damar<strong>an</strong><br />

times. It comprises <strong>the</strong> basal Nosib Group of <strong>the</strong> Damara<br />

Sequence which was laid down <strong>in</strong>, or marg<strong>in</strong>al <strong>to</strong>, <strong>in</strong>tra -<br />

cont<strong>in</strong>ental rifts, <strong>an</strong>d consists of quartzite, arkose, conglo -<br />

merate, phyllite, calc-silicate <strong>an</strong>d subord<strong>in</strong>ate limes<strong>to</strong>ne,<br />

as well as <strong>the</strong> deep water sediments of <strong>the</strong> Auas Formation<br />

deposited on <strong>the</strong> edge of a narrow develop<strong>in</strong>g oce<strong>an</strong>. This<br />

unit fur<strong>the</strong>r conta<strong>in</strong>s <strong>the</strong> flat-ly<strong>in</strong>g basal <strong>an</strong>d upper s<strong>an</strong>ds<strong>to</strong>nes<br />

of <strong>the</strong> Nama Group of sou<strong>the</strong>rn <strong>Namibia</strong>.<br />

A sequence of <strong>the</strong> 180 million year old basalts of <strong>the</strong><br />

Kalkr<strong>an</strong>d Formation, that are about 360 metres thick, occur<br />

<strong>in</strong> <strong>the</strong> Mariental area. Volc<strong>an</strong>ic rocks of <strong>the</strong> Etendeka<br />

Formation <strong>in</strong> north-western <strong>Namibia</strong> have ages of about<br />

135 million years. Both formations are flat-ly<strong>in</strong>g. Extensive<br />

dolerite sills <strong>an</strong>d dyke swarms are related <strong>to</strong> <strong>the</strong> volc<strong>an</strong>ic<br />

rocks which have formed <strong>in</strong> connection with <strong>the</strong> cont<strong>in</strong>ental<br />

break up of Gondw<strong>an</strong>al<strong>an</strong>d <strong>an</strong>d form unit 9 “Volc<strong>an</strong>ic rocks<br />

(Karoo <strong>an</strong>d younger)”.<br />

M<strong>an</strong>y different, highly folded rock types of Mokoli<strong>an</strong><br />

<strong>an</strong>d <strong>Namibia</strong>n ages are <strong>in</strong>cluded <strong>in</strong> unit 10 “Metamorphic<br />

rocks, <strong>in</strong>clud<strong>in</strong>g quartzite <strong>an</strong>d marble b<strong>an</strong>ds”. These<br />

extend from <strong>the</strong> Gobabis area <strong>to</strong> <strong>the</strong> Gamsberg region <strong>an</strong>d<br />

<strong>the</strong>n southwards <strong>to</strong> Helmer<strong>in</strong>ghausen.<br />

The 1800 million year old Reho both Sequence is thought<br />

<strong>to</strong> have formed <strong>in</strong> <strong>the</strong> back-arc bas<strong>in</strong> of a magmatic arc<br />

<strong>an</strong>d comprises schist, phyllite, amphibolite <strong>an</strong>d quartzite.<br />

Rocks of <strong>the</strong> S<strong>in</strong>clair Sequence accumulated with<strong>in</strong> <strong>an</strong> <strong>in</strong>tra -<br />

con ti nental rift. Deposi tion<br />

of quartzites <strong>to</strong>ok place <strong>in</strong><br />

narrow fault-bounded<br />

troughs <strong>in</strong> <strong>to</strong>day’s Helme -<br />

r<strong>in</strong>ghausen-Solitaire area<br />

after a cycle of magmatic<br />

activity. Damar<strong>an</strong> rocks present<br />

<strong>in</strong> this unit <strong>in</strong>clude<br />

schists of <strong>the</strong> basal Nosib<br />

Group, marbles of <strong>the</strong> Ugab<br />

<strong>an</strong>d Kudis Subgroups, schist,<br />

phyllite <strong>an</strong>d amphibolite of<br />

<strong>the</strong> Chuos Formation <strong>an</strong>d<br />

marble, schists <strong>an</strong>d amphi-<br />

Etendeka Formation at Grootberg<br />

bolites of <strong>the</strong> Karibib <strong>an</strong>d Kuiseb Formations, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong><br />

Matchless Amphibolite Belt.<br />

Damar<strong>an</strong> meta-sediments have been <strong>in</strong>truded by gr<strong>an</strong>ites<br />

<strong>in</strong> a broad zone between Otjiwarongo <strong>an</strong>d Okah<strong>an</strong>dja <strong>an</strong>d<br />

<strong>the</strong> coast. The <strong>in</strong>trusion accomp<strong>an</strong>ied <strong>the</strong> mounta<strong>in</strong> build<strong>in</strong>g<br />

process between 650 <strong>an</strong>d 450 million years ago. Where<br />

<strong>in</strong>dividual gr<strong>an</strong>ite bodies are <strong>to</strong>o small <strong>to</strong> be shown on<br />

<strong>the</strong> Map, <strong>the</strong>y were <strong>in</strong>cluded <strong>in</strong> unit 11, “Metamorphic<br />

rocks, <strong>in</strong>clud<strong>in</strong>g quartzite <strong>an</strong>d marble b<strong>an</strong>ds; with gr<strong>an</strong>itic<br />

<strong>in</strong>trusions”.<br />

Unit 12, “Gr<strong>an</strong>ite, gneiss, old volc<strong>an</strong>ic rocks” f<strong>in</strong>ally<br />

<strong>in</strong>cludes a multitude of lithologies almost cover<strong>in</strong>g <strong>the</strong> entire<br />

geological his<strong>to</strong>ry of <strong>Namibia</strong>. Vaali<strong>an</strong> rocks comprise <strong>the</strong><br />

gneisses of <strong>the</strong> Epupa Complex <strong>an</strong>d <strong>the</strong> <strong>in</strong>trusives of <strong>the</strong><br />

Kunene Complex. Early Mokoli<strong>an</strong> rocks <strong>in</strong>clude gneisses<br />

<strong>an</strong>d meta-volc<strong>an</strong>ics of <strong>the</strong> old metamorphic complexes, metavolc<strong>an</strong>ics<br />

of <strong>the</strong> Or<strong>an</strong>ge River Group, gr<strong>an</strong>ites of <strong>the</strong> Vioolsdrif<br />

Suite, gneisses of <strong>the</strong> Elim Formation <strong>an</strong>d meta-volc<strong>an</strong>ics<br />

<strong>an</strong>d gneisses of <strong>the</strong> Khoabendus Group. Middle <strong>to</strong> late Mokoli<strong>an</strong><br />

rocks of this unit are <strong>the</strong> meta-volc<strong>an</strong>ics of <strong>the</strong> Rehoboth<br />

Sequence, <strong>the</strong> gneisses of <strong>the</strong> Namaqual<strong>an</strong>d Metamorphic<br />

Complex, <strong>the</strong> meta-volc<strong>an</strong>ics of <strong>the</strong> S<strong>in</strong>clair Sequence, <strong>the</strong><br />

gr<strong>an</strong>ites of <strong>the</strong> Fr<strong>an</strong>sfonte<strong>in</strong> Suite, as well as <strong>the</strong> younger gr<strong>an</strong>ites,<br />

for example <strong>the</strong> Gamsberg Gr<strong>an</strong>ite. The unit also com -<br />

prises a r<strong>an</strong>ge of syn- <strong>to</strong> post- tec<strong>to</strong>nic gr<strong>an</strong>ites which <strong>in</strong>truded<br />

Damar<strong>an</strong> sediments dur<strong>in</strong>g <strong>the</strong> course of <strong>the</strong> Damar<strong>an</strong><br />

Orogeny. Complex <strong>in</strong>trusions with ages of about 135 million<br />

years occur <strong>in</strong> a zone extend<strong>in</strong>g from <strong>the</strong> coast north<br />

of Swakopmund <strong>in</strong> a nor<strong>the</strong>asterly<br />

direction. Some of<br />

<strong>the</strong>m are extremely complex<br />

layered <strong>in</strong>trusions <strong>an</strong>d conta<strong>in</strong><br />

rhyolite, gr<strong>an</strong>o phyre,<br />

gr<strong>an</strong>ite, syenite, foyaite, gabbro,<br />

dunite, pyroxenite <strong>an</strong>d<br />

carbonatite. They are not<br />

related <strong>to</strong> <strong>an</strong>y orogeny <strong>an</strong>d<br />

<strong>in</strong>terpretated as a result of<br />

a hot m<strong>an</strong>tle plume, <strong>an</strong>d<br />

have also been <strong>in</strong>cluded <strong>in</strong><br />

this unit.<br />

Kev<strong>in</strong> Roberts<br />

19


20<br />

Calcrete<br />

The deposition of calcrete is<br />

affected primarily by climate <strong>an</strong>d<br />

dra<strong>in</strong>age. O<strong>the</strong>r import<strong>an</strong>t <strong>an</strong>d <strong>in</strong>teract<strong>in</strong>g<br />

fac<strong>to</strong>rs are soil composition <strong>an</strong>d<br />

thickness, <strong>to</strong>pography, amount of<br />

dissolved Calcium <strong>an</strong>d Magnesium<br />

carbonates <strong>in</strong> <strong>the</strong> water, time, stability<br />

of terra<strong>in</strong> surfaces, vegetation, <strong>an</strong>d,<br />

<strong>in</strong> areas of th<strong>in</strong> soil cover, bedrock<br />

composition, structure <strong>an</strong>d permeability.<br />

There are essentially two types<br />

of calcrete, pedogenic <strong>an</strong>d non-pedogenic<br />

(groundwater) calcretes. In<br />

general, calcretes form <strong>in</strong> areas receiv<strong>in</strong>g<br />

a me<strong>an</strong> <strong>an</strong>nual ra<strong>in</strong>fall of less th<strong>an</strong><br />

800 mm. Above 800 mm, all calcareous<br />

material is leached from <strong>the</strong> soil.<br />

In areas receiv<strong>in</strong>g between 550 <strong>an</strong>d<br />

800 mm, only calcrete nodules <strong>an</strong>d<br />

calcareous soils form. Hardp<strong>an</strong> <strong>an</strong>d<br />

boulder calcretes form where ra<strong>in</strong>fall<br />

is less th<strong>an</strong> 550 mm. Calcification<br />

develops readily <strong>in</strong> clayey, lowpermeability<br />

soils, <strong>an</strong>d less readily <strong>in</strong><br />

s<strong>an</strong>dy, permeable soils. Ow<strong>in</strong>g <strong>to</strong> <strong>the</strong><br />

climatic conditions, calcretes c<strong>an</strong> occur<br />

throughout <strong>Namibia</strong>.<br />

Diagrammatic section show<strong>in</strong>g pedogenic calcrete <strong>an</strong>d a ground -<br />

water calcrete mound on a fault between poorly jo<strong>in</strong>ted Guperas<br />

shales, s<strong>an</strong>ds<strong>to</strong>nes <strong>an</strong>d highly jo<strong>in</strong>ted Aubures s<strong>an</strong>ds<strong>to</strong>ne (Farm<br />

Aruab, Beth<strong>an</strong>ie District).<br />

The ma<strong>in</strong> components of calcretes<br />

are cryp<strong>to</strong>crystall<strong>in</strong>e calcite <strong>an</strong>d dolo -<br />

mite. Calcretes often cement fluvial<br />

gravels. Most exposed calcretes are<br />

fossil calcretes, but it is difficult <strong>to</strong><br />

dist<strong>in</strong>guish present-day calcretes from<br />

fossil calcretes formed under previous<br />

climatic conditions. M<strong>an</strong>y calcretes<br />

are complex, may be of both pedogenic<br />

<strong>an</strong>d non-pedogenic orig<strong>in</strong> <strong>an</strong>d<br />

formed by more th<strong>an</strong> one phase of calcification.<br />

Pedogenic calcrete<br />

Formation of pedogenic calcrete is<br />

part of <strong>the</strong> soil-form<strong>in</strong>g process. Where<br />

shallow bedrock is present, <strong>the</strong> pedogenic<br />

calcrete forms at <strong>the</strong> contact<br />

between <strong>the</strong> bedrock <strong>an</strong>d <strong>the</strong> over ly<strong>in</strong>g<br />

soil cover. In thick soil profiles or alluvial<br />

f<strong>an</strong>s it generally forms at <strong>the</strong> lower<br />

limit of ra<strong>in</strong> penetration. It is usually<br />

less th<strong>an</strong> 1 m thick, but may reach<br />

up <strong>to</strong> 3 m <strong>in</strong> places, e.g. capp<strong>in</strong>g <strong>the</strong><br />

Tsondab aeoli<strong>an</strong> s<strong>an</strong>ds<strong>to</strong>ne.<br />

M<strong>an</strong>y pedogenic calcretes are well<br />

structured consist<strong>in</strong>g of <strong>in</strong>dividual calcrete<br />

nodules at <strong>the</strong> base, becom<strong>in</strong>g<br />

more abund<strong>an</strong>t <strong>an</strong>d larger <strong>in</strong> size until<br />

coa lesc<strong>in</strong>g <strong>to</strong><br />

form a zone of<br />

honeycomb calcrete.<br />

The uppermost<br />

zone is a<br />

solid hardp<strong>an</strong><br />

cal crete that is<br />

sel dom more<br />

th<strong>an</strong> 45cm thick.<br />

Where a pedo-<br />

genic calcrete is<br />

very th<strong>in</strong>, this<br />

three-unit struc-<br />

ture is commonly absent <strong>an</strong>d <strong>the</strong> calcrete<br />

may be almost entirely hardp<strong>an</strong>.<br />

The depth <strong>to</strong> <strong>the</strong> <strong>to</strong>p of a pedogenic<br />

calcrete is generally about 20 cm <strong>in</strong><br />

areas with less th<strong>an</strong> 125 mm ra<strong>in</strong>fall<br />

<strong>in</strong> creas<strong>in</strong>g <strong>to</strong> about 50cm <strong>in</strong> areas with<br />

750 mm of ra<strong>in</strong>fall <strong>an</strong>d more.<br />

Critical <strong>to</strong> <strong>the</strong> development of<br />

pedogenic calcrete is <strong>the</strong> presence of<br />

groundwater or moisture with dissolved<br />

calcium carbonate with<strong>in</strong> <strong>the</strong><br />

zone of evaporation <strong>in</strong> surface soils or<br />

s<strong>an</strong>ds. Evaporation of this moisture<br />

precipitates <strong>the</strong> dissolved calcium<br />

carbonate as secondary limes<strong>to</strong>nepedogenic<br />

calcrete. Commonly <strong>in</strong><br />

sou<strong>the</strong>rn <strong>Namibia</strong>, <strong>the</strong> soil cover is<br />

only 5 <strong>to</strong> 30 cm thick. Although <strong>the</strong><br />

underly<strong>in</strong>g calcrete may be extensive,<br />

it is often only seen <strong>in</strong> <strong>in</strong>cised stream<br />

profiles where <strong>the</strong> soil cover has been<br />

removed. Pedogenic calcretes form<br />

slowly <strong>an</strong>d only below low-<strong>an</strong>gle<br />

slopes. Each hardp<strong>an</strong> layer represents<br />

a period of stability of <strong>the</strong> l<strong>an</strong>d surface<br />

under which <strong>the</strong> hardp<strong>an</strong> formed.<br />

Although pedogenic calcretes may<br />

be common <strong>in</strong> certa<strong>in</strong> areas, <strong>the</strong>y are<br />

not necessarily ubiqui<strong>to</strong>us as <strong>the</strong> structure<br />

of <strong>the</strong> underly<strong>in</strong>g bedrock <strong>an</strong>d <strong>the</strong><br />

porosity of <strong>the</strong> soil play <strong>an</strong> import<strong>an</strong>t<br />

role <strong>in</strong> prevent<strong>in</strong>g or enabl<strong>in</strong>g water <strong>to</strong><br />

seep below <strong>the</strong> zone of evaporation.<br />

An example is provided from sou<strong>the</strong>rn<br />

<strong>Namibia</strong> where sedimentary rocks<br />

of contrast<strong>in</strong>g permeability are juxta -<br />

posed across a fault (as shown <strong>in</strong> <strong>the</strong><br />

diagram). The Aubures s<strong>an</strong>ds<strong>to</strong>nes are<br />

non-porous but highly jo<strong>in</strong>ted. Soil<br />

derived from <strong>the</strong> s<strong>an</strong>ds<strong>to</strong>nes is s<strong>an</strong>dy<br />

<strong>an</strong>d sparse. In contrast, soils on <strong>the</strong><br />

Guperas sediments from poorly


jo<strong>in</strong>ted shales <strong>an</strong>d s<strong>an</strong>ds<strong>to</strong>nes<br />

produce a f<strong>in</strong>er<br />

gra<strong>in</strong>ed soil, which is generally<br />

less th<strong>an</strong> 20 cm thick.<br />

There are no pedogenic<br />

calcretes on <strong>the</strong> Aubures<br />

Formation, yet <strong>the</strong>y are<br />

common at <strong>the</strong> soil/bedrock<br />

contact on <strong>the</strong> Guperas<br />

Formation. This difference<br />

is ascribed <strong>to</strong> <strong>the</strong> contrast<strong>in</strong>g<br />

jo<strong>in</strong>t density <strong>an</strong>d hence<br />

permeability of <strong>the</strong> two<br />

underly<strong>in</strong>g bedrock types.<br />

Pedogenic calcretes are not<br />

<strong>an</strong> <strong>in</strong>dica<strong>to</strong>r of groundwater at depth.<br />

Where <strong>the</strong>y occur at <strong>the</strong> soil/bedrock<br />

<strong>in</strong>terface <strong>the</strong>y are ra<strong>the</strong>r <strong>an</strong> <strong>in</strong>dica<strong>to</strong>r<br />

of impervious bedrock.<br />

Non-pedogenic or “groundwater”<br />

calcretes<br />

Such calcretes are formed by fluvial<br />

action or by groundwater. They are<br />

deposited <strong>in</strong> <strong>the</strong> unsaturated zone above<br />

a shallow water table or below <strong>the</strong> water<br />

table where surface evaporation is<br />

extreme. On a small scale, seepages <strong>an</strong>d<br />

evaporation at spr<strong>in</strong>gs <strong>an</strong>d along faults<br />

c<strong>an</strong> form mounds of calcrete of limited<br />

lateral extent. However, calcretes<br />

formed by fluvial action or extensive<br />

near-surface flow of ground water c<strong>an</strong><br />

exceed 100 m <strong>in</strong> thickness. In <strong>the</strong> fluvial<br />

process, <strong>the</strong> fluvial ch<strong>an</strong>nel fill c<strong>an</strong><br />

become <strong>to</strong>tally cemented by calcrete,<br />

e.g. <strong>the</strong> 100 m thick terraces on <strong>the</strong><br />

north b<strong>an</strong>k of <strong>the</strong> Ugab River west of<br />

Outjo or <strong>the</strong> gravels of <strong>the</strong> palaeo-<br />

Kuiseb River rest<strong>in</strong>g on <strong>to</strong>p of <strong>the</strong><br />

Tsondab aeoli<strong>an</strong> s<strong>an</strong>ds<strong>to</strong>ne.<br />

However, far more spectacular, yet<br />

Schematic section through karstified Otavi Group carbonate rocks<br />

<strong>an</strong>d impervious Mulden Group phyllites <strong>an</strong>d arkoses. Primary<br />

spr<strong>in</strong>gs at <strong>the</strong> contact of <strong>the</strong> carbonates <strong>an</strong>d phyllites are buried<br />

beneath <strong>the</strong>ir own calcrete <strong>an</strong>d secondary spr<strong>in</strong>gs emerge down<br />

slope where <strong>the</strong> thickness of <strong>the</strong> calcrete decreases.<br />

much less obvious, are <strong>the</strong> groundwater<br />

calcretes associated with spr<strong>in</strong>gs<br />

along <strong>the</strong> contact between <strong>the</strong> Otavi<br />

Group dolomites <strong>an</strong>d limes<strong>to</strong>nes <strong>an</strong>d<br />

<strong>the</strong> Mulden Group arkoses <strong>an</strong>d<br />

phyllites <strong>in</strong> nor<strong>the</strong>rn <strong>Namibia</strong>. The<br />

Mulden rocks, particularly <strong>the</strong><br />

phyllites, are largely impervious. S<strong>in</strong>ce<br />

<strong>the</strong> water table <strong>in</strong> <strong>the</strong> ridges is higher<br />

th<strong>an</strong> that <strong>in</strong> <strong>the</strong> valleys, <strong>in</strong>numerable<br />

spr<strong>in</strong>gs must have existed at <strong>the</strong><br />

contact between <strong>the</strong> Otavi <strong>an</strong>d<br />

Mulden rocks, even <strong>in</strong> Early Tertiary<br />

times. Upon evaporation of <strong>the</strong> spr<strong>in</strong>g<br />

water on surface, calcrete (<strong>an</strong>d not<br />

tufa) was deposited at <strong>an</strong>d downhill<br />

of <strong>the</strong> spr<strong>in</strong>g.<br />

With time, <strong>the</strong> bl<strong>an</strong>ket of calcrete<br />

on <strong>the</strong> Mulden phyllites spread as <strong>the</strong><br />

spr<strong>in</strong>g water seeped through <strong>the</strong><br />

calcrete <strong>an</strong>d emerged <strong>in</strong> places,<br />

particularly at <strong>the</strong> fur<strong>the</strong>st edges of<br />

<strong>the</strong> calcrete. This calcrete bl<strong>an</strong>ket<br />

thickened as it spread, eventually<br />

bury<strong>in</strong>g <strong>the</strong> spr<strong>in</strong>g under its own<br />

calcrete.<br />

The process is bound <strong>to</strong> have been<br />

more complex th<strong>an</strong> this<br />

relatively simplistic model,<br />

<strong>an</strong>d it is probable that pedogenic<br />

pro cesses were also<br />

<strong>in</strong>volved.<br />

This spr<strong>in</strong>g-generated<br />

ground water calcrete is<br />

128 m thick, 60 km north<br />

of Tsumeb, <strong>an</strong>d 73m thick,<br />

on <strong>the</strong> farm Braunfels, near<br />

Khorixas. Northwards <strong>in</strong><strong>to</strong><br />

<strong>the</strong> Owambo Bas<strong>in</strong>, as <strong>the</strong><br />

dist<strong>an</strong>ce from <strong>the</strong> Otavi<br />

carbonate rocks <strong>an</strong>d <strong>the</strong><br />

spr<strong>in</strong>gs <strong>in</strong>creases, <strong>the</strong> calcretes<br />

<strong>in</strong>ter f<strong>in</strong>ger with clastic Kalahari<br />

sediments. Extensive karstification of<br />

<strong>the</strong> calcrete has enh<strong>an</strong>ced its porosity<br />

<strong>an</strong>d permeability. The subsurface<br />

contact spr<strong>in</strong>gs still flow <strong>to</strong>day, feed<strong>in</strong>g<br />

<strong>the</strong> calcretes as well as <strong>the</strong> surface<br />

spr<strong>in</strong>gs, e.g. <strong>the</strong> spr<strong>in</strong>gs at <strong>the</strong> sou<strong>the</strong>rn<br />

edge of <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong> (illustrated<br />

<strong>in</strong> this dia gram).<br />

Evidence <strong>in</strong> support of <strong>the</strong> above<br />

model is provided by <strong>the</strong> composition<br />

of <strong>the</strong> calcrete. Close <strong>to</strong> <strong>the</strong> bas<strong>in</strong><br />

marg<strong>in</strong>s <strong>an</strong>d, hence, <strong>the</strong> source contact<br />

spr<strong>in</strong>gs, <strong>the</strong> calcrete is a pure calcium<br />

carbonate. Fur<strong>the</strong>r <strong>in</strong><strong>to</strong> <strong>the</strong> bas<strong>in</strong>, <strong>the</strong><br />

calcrete becomes more dolomitic. In<br />

<strong>the</strong> center of <strong>the</strong> bas<strong>in</strong>, some of <strong>the</strong><br />

boulder calcretes found at depth are<br />

actually dolocretes.<br />

This ch<strong>an</strong>ge <strong>in</strong> composition of <strong>the</strong><br />

calcrete with <strong>in</strong>creas<strong>in</strong>g dist<strong>an</strong>ce from<br />

source is due <strong>to</strong> <strong>the</strong> greater solubility<br />

of dolomite. Calcite is <strong>the</strong>refore<br />

deposited close <strong>to</strong> <strong>the</strong> source <strong>an</strong>d<br />

dolomite fur<strong>the</strong>r away.<br />

R McG MILLER<br />

21


22<br />

The l<strong>an</strong>dscape of <strong>Namibia</strong><br />

Geomorphology<br />

The subdivision of <strong>Namibia</strong> <strong>in</strong><strong>to</strong> geomorphological units<br />

is based on its position on <strong>the</strong> edge of <strong>the</strong> Afric<strong>an</strong> cont<strong>in</strong>ent<br />

<strong>an</strong>d under <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> cold Benguela Current.<br />

Dur<strong>in</strong>g <strong>the</strong> Cretaceous <strong>an</strong>d <strong>the</strong> Tertiary, sou<strong>the</strong>rn Africa<br />

completed its separation from <strong>the</strong> neighbour<strong>in</strong>g parts of<br />

Gondw<strong>an</strong>al<strong>an</strong>d. As a result of isostatic movements, <strong>the</strong> whole<br />

subcont<strong>in</strong>ent underwent various stages of upliftment <strong>an</strong>d<br />

<strong>the</strong> present <strong>in</strong>terior was subjected <strong>to</strong> erosion. Such isostatic<br />

upliftment is most prom<strong>in</strong>ent along <strong>the</strong> edges of a cont<strong>in</strong>ent,<br />

where erosion is most <strong>in</strong>tense, <strong>an</strong>d consequently,<br />

<strong>the</strong> Great Escarpment developed. Some of <strong>the</strong> highest peaks<br />

<strong>in</strong> <strong>Namibia</strong> occur along <strong>the</strong> Great Escarpment (see also<br />

<strong>the</strong> <strong>in</strong>set map “Altitude of ground surface” on <strong>the</strong> Map).<br />

The coastal zone west of <strong>the</strong> Great Escarpment forms a<br />

100 km-wide, low-ly<strong>in</strong>g strip characterised by extreme aridity<br />

<strong>an</strong>d occupied by <strong>the</strong> Namib Desert. This desert, which<br />

is <strong>the</strong> world’s most arid region, is underla<strong>in</strong> by s<strong>an</strong>ds of a<br />

pro<strong>to</strong>-Namib phase which started <strong>to</strong> develop 35 million years<br />

ago. It stretches along <strong>the</strong> entire Atl<strong>an</strong>tic coast <strong>an</strong>d rises <strong>to</strong><br />

a level of approximately 800 m at <strong>the</strong> foot of <strong>the</strong> Great Escarpment<br />

<strong>in</strong> <strong>the</strong> east. The Namib l<strong>an</strong>dscapes are quite diverse.<br />

They r<strong>an</strong>ge from mounta<strong>in</strong>ous red dunes <strong>in</strong> <strong>the</strong> south-eastern<br />

part of <strong>the</strong> <strong>in</strong>terior pla<strong>in</strong>s <strong>an</strong>d flat-<strong>to</strong>pped, steep sided<br />

<strong>in</strong>selbergs <strong>in</strong> <strong>the</strong> central<br />

region. Rocky desert as well<br />

as s<strong>an</strong>d seas with various<br />

types of shift<strong>in</strong>g <strong>an</strong>d stable<br />

s<strong>an</strong>d dunes occur. The<br />

Namib s<strong>an</strong>d sea is cut<br />

sharply by <strong>the</strong> Kuiseb River<br />

east of Walvis Bay. The<br />

nor<strong>the</strong>rn part of <strong>the</strong> Namib,<br />

known as <strong>the</strong> Skele<strong>to</strong>n<br />

Coast, displays bare dunes as<br />

well as s<strong>to</strong>ny <strong>an</strong>d rocky<br />

pla<strong>in</strong>s. The Namib Desert is<br />

dissected by a number of<br />

rivers that rise <strong>in</strong> <strong>the</strong> Central<br />

Plateau but only carry water<br />

after good ra<strong>in</strong>s <strong>in</strong> <strong>the</strong>ir<br />

catchment areas. They form l<strong>in</strong>ear oases <strong>in</strong> <strong>the</strong> desert.<br />

With differences <strong>in</strong> altitude of more th<strong>an</strong> 1000 m, <strong>the</strong><br />

Great Escarpment marks <strong>the</strong> tr<strong>an</strong>sition <strong>to</strong> <strong>the</strong> Central<br />

Plateau east of <strong>the</strong> desert. It is formed by mounta<strong>in</strong> r<strong>an</strong>ges<br />

or s<strong>in</strong>gle mounta<strong>in</strong>s that are much higher th<strong>an</strong> <strong>the</strong> Central<br />

Plateau. Between <strong>the</strong> nor<strong>the</strong>rn <strong>an</strong>d <strong>the</strong> sou<strong>the</strong>rn parts <strong>the</strong>re<br />

is <strong>an</strong> area that has been deeply eroded <strong>an</strong>d where <strong>the</strong> ground<br />

rises gradually <strong>to</strong> <strong>the</strong> height of <strong>the</strong> Central Plateau. Pla<strong>in</strong>s<br />

<strong>an</strong>d hills, as well as outst<strong>an</strong>d<strong>in</strong>g mounta<strong>in</strong>s such as Br<strong>an</strong>dberg,<br />

Erongo <strong>an</strong>d Spitzkoppe, characterise this area. The<br />

l<strong>an</strong>dscapes of <strong>the</strong> Central Plateau vary between very flat<br />

<strong>an</strong>d mounta<strong>in</strong>ous areas at altitudes between 1000 <strong>an</strong>d<br />

2 000 m.<br />

This mounta<strong>in</strong>ous plateau covers almost half of <strong>the</strong><br />

country <strong>an</strong>d is bordered <strong>in</strong> <strong>the</strong> east <strong>an</strong>d north-east by <strong>the</strong><br />

semi-arid Kalahari Bas<strong>in</strong>. Two different ma<strong>in</strong> l<strong>an</strong>dscapes<br />

c<strong>an</strong> be dist<strong>in</strong>guished. The north-western highl<strong>an</strong>ds are<br />

characterised by broad valleys <strong>an</strong>d <strong>in</strong>selbergs, while <strong>the</strong><br />

south is a flat plateau dissected by deep valleys.<br />

The Kalahari S<strong>an</strong>dveld stretches east of <strong>the</strong> Central<br />

Plateau <strong>an</strong>d is formed by deep red or pale s<strong>an</strong>ds overlay<strong>in</strong>g<br />

bedrock. This region is very flat <strong>an</strong>d <strong>in</strong>terrupted only by<br />

fossil valleys <strong>an</strong>d dunes. A typical phenomenon <strong>in</strong> <strong>the</strong><br />

Kalahari S<strong>an</strong>dveld are p<strong>an</strong>s that are often covered by clay<br />

layers. The north- eastern Kav<strong>an</strong>go <strong>an</strong>d Caprivi Regions are


characterised by a densely wooded bushl<strong>an</strong>d <strong>an</strong>d comprise<br />

extensive wetl<strong>an</strong>d areas dom<strong>in</strong>ated by <strong>the</strong> Okav<strong>an</strong>go,<br />

Zambezi <strong>an</strong>d Kw<strong>an</strong>do-L<strong>in</strong>y<strong>an</strong>ti-Chobe river systems.<br />

Climate<br />

<strong>Namibia</strong> is <strong>an</strong> arid country that has a semi-desert on<br />

its eastern edge (Kalahari) <strong>an</strong>d a desert on its western edge<br />

(Namib). The Namib Desert has a me<strong>an</strong> <strong>an</strong>nual ra<strong>in</strong>fall of<br />

less th<strong>an</strong> 20 mm <strong>in</strong> places <strong>an</strong>d mostly below 50 mm. The<br />

Kalahari stretches over three sou<strong>the</strong>rn Afric<strong>an</strong> countries,<br />

i.e. <strong>Namibia</strong>, Botsw<strong>an</strong>a <strong>an</strong>d South Africa, <strong>an</strong>d is largely a<br />

semi-desert with me<strong>an</strong> <strong>an</strong>nual ra<strong>in</strong>fall <strong>in</strong> <strong>the</strong> 150-350 mm<br />

r<strong>an</strong>ge. Accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> Köppen classification, <strong>Namibia</strong> as<br />

a whole is characterised as a dry climate. Three major types<br />

clearly emerge viz. cool deserts along <strong>the</strong> coast <strong>an</strong>d southwestern<br />

<strong>in</strong>terior; warm deserts <strong>in</strong> <strong>the</strong> south-east <strong>an</strong>d northwest;<br />

semi-desert steppe <strong>in</strong> <strong>the</strong> north <strong>an</strong>d north-east. The<br />

Time series of <strong>an</strong>nual ra<strong>in</strong>fall at certa<strong>in</strong> climatic stations <strong>in</strong> <strong>Namibia</strong><br />

me<strong>an</strong> <strong>an</strong>nual ra<strong>in</strong>fall for <strong>Namibia</strong> is about 270 mm <strong>an</strong>d<br />

r<strong>an</strong>ges from less th<strong>an</strong> 20 mm <strong>in</strong> <strong>the</strong> Namib Desert <strong>to</strong> more<br />

th<strong>an</strong> 700 mm at Katima Mulilo <strong>in</strong> <strong>the</strong> Caprivi Strip (see<br />

<strong>in</strong>set map “Ra<strong>in</strong>fall <strong>an</strong>d ma<strong>in</strong> catchments <strong>in</strong> Sou<strong>the</strong>rn<br />

Africa” on <strong>the</strong> Hydrogeological Map). The distribution<br />

of l<strong>an</strong>d area receiv<strong>in</strong>g different categories of ra<strong>in</strong>fall is as<br />

follows:<br />

Ra<strong>in</strong>fall Percentage of l<strong>an</strong>d surface<br />

less th<strong>an</strong> 100 mm/a 22 %<br />

100-300 mm/a 33 %<br />

300-500 mm/a 37 %<br />

more th<strong>an</strong> 500 mm/a 8 %<br />

However, <strong>the</strong> average figures may be mislead<strong>in</strong>g, s<strong>in</strong>ce<br />

<strong>the</strong> <strong>an</strong>nual ra<strong>in</strong>fall is extremely variable <strong>in</strong> time <strong>an</strong>d space,<br />

<strong>an</strong>d variability generally <strong>in</strong>creases <strong>to</strong>wards <strong>the</strong> west <strong>an</strong>d <strong>the</strong><br />

south. Therefore, <strong>the</strong> variation of ra<strong>in</strong>fall <strong>in</strong> time needs<br />

<strong>to</strong> be considered <strong>in</strong> addition <strong>to</strong> <strong>the</strong> long-term average aerial<br />

values. This variation is illustrated<br />

by <strong>the</strong> graph of<br />

<strong>an</strong>nual ra<strong>in</strong>fall for several<br />

climatic stations that have<br />

long-term records.<br />

<strong>Namibia</strong> has a pas<strong>to</strong>ral<br />

agriculture with crop production<br />

only be<strong>in</strong>g practised<br />

<strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn areas of <strong>the</strong><br />

country where ra<strong>in</strong>fall<br />

usually exceeds 500 mm.<br />

Climate variations like<br />

droughts <strong>an</strong>d <strong>to</strong> a lesser<br />

degree floods, have a major<br />

impact on <strong>the</strong> agriculture,<br />

<strong>an</strong>d s<strong>in</strong>ce a large proportion<br />

of <strong>the</strong> population still lives<br />

<strong>in</strong> rural areas, drought usually<br />

has devastat<strong>in</strong>g effects<br />

Source: M<strong>in</strong>istry of Agriculture, Water<br />

<strong>an</strong>d Rural Development; Direc<strong>to</strong>rate of<br />

Agriculture, Research <strong>an</strong>d Tra<strong>in</strong><strong>in</strong>g<br />

© MAWRD<br />

on commercial agricultural<br />

productivity <strong>an</strong>d <strong>the</strong> rural<br />

poor.<br />

The <strong>in</strong>terior plateau of <strong>the</strong><br />

country is characterised by<br />

23


24<br />

<strong>an</strong> extremely high evaporation rate that far exceeds <strong>the</strong> average<br />

ra<strong>in</strong>fall. Evaporation r<strong>an</strong>ges between 2 400 mm/a along<br />

<strong>the</strong> coast <strong>an</strong>d <strong>in</strong> <strong>the</strong> Caprivi, <strong>an</strong>d more th<strong>an</strong> 3 600 mm/a<br />

<strong>in</strong> <strong>the</strong> south-east (Aroab area of eastern Karas Region).<br />

Dist<strong>in</strong>ct warm <strong>an</strong>d cool seasons are dist<strong>in</strong>guishable. The<br />

presence of a cold stable air mass along <strong>the</strong> coast <strong>an</strong>d <strong>the</strong> altitude<br />

of <strong>the</strong> <strong>in</strong>terior plateau result <strong>in</strong> temperatures lower th<strong>an</strong><br />

those expected for <strong>the</strong>se latitudes. Temperature conditions<br />

along <strong>the</strong> coast c<strong>an</strong> be described as moderately cool (15-20°C)<br />

while those of <strong>the</strong> <strong>in</strong>terior as moderately warm (20-25°C).<br />

The temperature variation between summer <strong>an</strong>d w<strong>in</strong>ter is<br />

more accentuated <strong>in</strong> <strong>the</strong> <strong>in</strong>terior th<strong>an</strong> <strong>the</strong> coast <strong>an</strong>d <strong>the</strong>se seasonal<br />

contrasts decrease northward. The warmest month differs<br />

from region <strong>to</strong> region with Oc<strong>to</strong>ber be<strong>in</strong>g <strong>the</strong> hottest<br />

month <strong>in</strong> <strong>the</strong> north, <strong>in</strong> <strong>the</strong> central region it is December, <strong>an</strong>d<br />

J<strong>an</strong>uary <strong>in</strong> <strong>the</strong> south. The hottest temperatures occur <strong>in</strong> <strong>the</strong><br />

south especially <strong>in</strong> <strong>the</strong> Or<strong>an</strong>ge River Bas<strong>in</strong> (36 <strong>to</strong> > 40°C<br />

average daily maximum for <strong>the</strong> hottest month). Similarly, <strong>the</strong><br />

coldest month varies from August along <strong>the</strong> coast <strong>to</strong> July <strong>in</strong><br />

<strong>the</strong> rest of <strong>the</strong> country. The lowest temperatures occur <strong>in</strong><br />

<strong>the</strong> eastern half of <strong>the</strong> central <strong>in</strong>terior plateau (with night temperatures<br />

dropp<strong>in</strong>g below zero °C).<br />

Along <strong>the</strong> coast <strong>the</strong> sou<strong>the</strong>rly <strong>an</strong>d south-westerly w<strong>in</strong>ds<br />

dom<strong>in</strong>ate both <strong>in</strong> frequency (30-45 %) <strong>an</strong>d strength (6<br />

<strong>to</strong> more th<strong>an</strong> 9 m/s), whereas <strong>the</strong> variable w<strong>in</strong>ds of <strong>the</strong><br />

<strong>in</strong>terior do not present a clear pattern. The warm, dry <strong>an</strong>d<br />

dusty easterly w<strong>in</strong>ds that blow dur<strong>in</strong>g late autumn <strong>an</strong>d early<br />

w<strong>in</strong>ter, cause much discomfort along <strong>the</strong> coast as it is usually<br />

hot as well.<br />

The cool air mass above <strong>the</strong> cold Atl<strong>an</strong>tic sea water is<br />

overla<strong>in</strong> by a warmer, dry air mass, result<strong>in</strong>g <strong>in</strong> <strong>an</strong> almost<br />

perm<strong>an</strong>ent temperature <strong>in</strong>version. Relative humidity is<br />

usually higher th<strong>an</strong> 80 %. These conditions are ideal for <strong>the</strong><br />

formation of fog <strong>an</strong>d low stratus clouds. On average approximately<br />

100 days are foggy, while <strong>the</strong>re is a somewhat higher<br />

occurrence dur<strong>in</strong>g w<strong>in</strong>ter along <strong>the</strong> central coast. This fog<br />

bl<strong>an</strong>ket is <strong>an</strong> import<strong>an</strong>t, <strong>an</strong>d sometimes <strong>the</strong> sole source of<br />

moisture for <strong>the</strong> fauna <strong>an</strong>d flora of <strong>the</strong> Namib Desert. In<br />

<strong>the</strong> desert research site of Gobabeb, new technologies are<br />

be<strong>in</strong>g tested <strong>to</strong> harvest <strong>the</strong> fog with large nets for water supply.<br />

Hydrology<br />

The hydrology of <strong>Namibia</strong> is characterised by <strong>the</strong> semiarid<br />

<strong>to</strong> arid climate, <strong>an</strong>d <strong>the</strong> very limited occurrence of surface<br />

waters. In fact, <strong>Namibia</strong> has no perm<strong>an</strong>ent rivers except for<br />

<strong>the</strong> border rivers Kunene, Okav<strong>an</strong>go, Zambezi <strong>an</strong>d Kw<strong>an</strong>do-<br />

L<strong>in</strong>y<strong>an</strong>ti - Chobe <strong>in</strong> <strong>the</strong> north <strong>an</strong>d <strong>the</strong> Or<strong>an</strong>ge River <strong>in</strong><br />

<strong>the</strong> south, all of which have <strong>the</strong>ir sources outside <strong>Namibia</strong>,<br />

<strong>an</strong>d are shared with o<strong>the</strong>r countries (see <strong>in</strong>set map “Ra<strong>in</strong>fall<br />

<strong>an</strong>d ma<strong>in</strong> catchments <strong>in</strong> Sou<strong>the</strong>rn Africa” <strong>an</strong>d <strong>the</strong> table<br />

below). Some 23 % of <strong>the</strong> water used <strong>in</strong> <strong>Namibia</strong> is derived<br />

from <strong>the</strong>se rivers, however, most of <strong>the</strong> country does not<br />

have access <strong>to</strong> this water due <strong>to</strong> <strong>the</strong> dist<strong>an</strong>ces <strong>in</strong>volved. Consequently,<br />

only 0.1 % of <strong>the</strong> <strong>to</strong>tal <strong>an</strong>nual flow of <strong>the</strong>se rivers<br />

is abstracted, <strong>in</strong> <strong>Namibia</strong>.<br />

Percentage of <strong>Namibia</strong>’s l<strong>an</strong>d surface belong<strong>in</strong>g <strong>to</strong> various<br />

catchment bas<strong>in</strong>s<br />

Catchment Bas<strong>in</strong><br />

D ra<strong>in</strong>age<br />

System<br />

Area<br />

( % )<br />

Or<strong>an</strong>ge<br />

Fish<br />

River<br />

Tributaries<br />

of<br />

<strong>the</strong><br />

Or<strong>an</strong>ge<br />

River<br />

14.<br />

7<br />

Kunene Tributaries of<br />

<strong>the</strong><br />

Kunene<br />

River<br />

1.<br />

8<br />

Atl<strong>an</strong>tic<br />

coast,<br />

comb<strong>in</strong>ed<br />

catchments<br />

westward<br />

flow<strong>in</strong>g<br />

ephemeral<br />

rivers<br />

Zambezi<br />

of<br />

Nor<strong>the</strong>rn<br />

coast<br />

Sou<strong>the</strong>rn<br />

Namib<br />

Zambezi<br />

Kw<strong>an</strong>do-L<strong>in</strong>y<strong>an</strong>ti-Chobe<br />

22.<br />

1<br />

10.<br />

2<br />

0.<br />

2<br />

1.<br />

9<br />

Okav<strong>an</strong>go Okav<strong>an</strong>go River<br />

<strong>an</strong>d<br />

Delta<br />

23.<br />

9<br />

Cuvelai / E<strong>to</strong>sha<br />

Cuvelai / E<strong>to</strong>sha<br />

P<strong>an</strong><br />

12.<br />

6<br />

Sou<strong>the</strong>rn Kalahari<br />

Auob, Nossob,<br />

Olif<strong>an</strong>ts<br />

rivers<br />

12.<br />

6<br />

The rivers with<strong>in</strong> <strong>Namibia</strong> are ephemeral rivers, flow<strong>in</strong>g<br />

only for a short period after good ra<strong>in</strong>s <strong>in</strong> <strong>the</strong>ir catchment<br />

areas. Most of <strong>the</strong>m flow <strong>to</strong>wards <strong>the</strong> Atl<strong>an</strong>tic Oce<strong>an</strong>, <strong>an</strong>d<br />

form l<strong>in</strong>ear oases <strong>in</strong> <strong>the</strong> Namib Desert. Some limited dra<strong>in</strong>age<br />

occurs <strong>to</strong>wards <strong>the</strong> Kalahari Bas<strong>in</strong>. Some large surface water<br />

s<strong>to</strong>rage dams have been built on <strong>the</strong>se rivers <strong>to</strong> supply <strong>the</strong><br />

major centres with water.<br />

The percentage of <strong>the</strong> l<strong>an</strong>d area with<strong>in</strong> <strong>the</strong> catchments<br />

of <strong>the</strong> large river systems with<strong>in</strong> <strong>Namibia</strong> is given <strong>in</strong> <strong>the</strong><br />

table above.


Soils of <strong>Namibia</strong><br />

Soils<br />

Extensive physical wea<strong>the</strong>r<strong>in</strong>g, as well as erosion under<br />

arid <strong>an</strong>d semi-arid conditions are <strong>the</strong> dom<strong>in</strong><strong>an</strong>t soil form<strong>in</strong>g<br />

processes throughout <strong>Namibia</strong>. Fluvial tr<strong>an</strong>sportation is a<br />

prom<strong>in</strong>ent feature <strong>in</strong> <strong>the</strong> central highl<strong>an</strong>d areas associated<br />

with widespread sheet erosion. Over 70 % of <strong>Namibia</strong>’s surface<br />

area c<strong>an</strong> be classified as highly susceptible <strong>to</strong> erosion<br />

activities, mak<strong>in</strong>g soil development very difficult <strong>in</strong> general.<br />

Aeoli<strong>an</strong> sedimentation processes are active <strong>in</strong> <strong>the</strong> Kalahari<br />

<strong>an</strong>d Namib Deserts, where dunes <strong>an</strong>d Hamada type<br />

l<strong>an</strong>dscapes prevail. Chemical wea<strong>the</strong>r<strong>in</strong>g is hampered, mostly<br />

due <strong>to</strong> <strong>the</strong> lack of moisture. In <strong>the</strong> western Namib Desert,<br />

Source: M<strong>in</strong>istry of Agriculture, Water<br />

<strong>an</strong>d Rural Development; Direc<strong>to</strong>rate of<br />

Agriculture, Research <strong>an</strong>d Tra<strong>in</strong><strong>in</strong>g<br />

© MAWRD<br />

however, <strong>the</strong> breakdown of bedrock material is caused by<br />

salt conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> coastal fog <strong>an</strong>d derived from <strong>the</strong> mar<strong>in</strong>e<br />

environment. Tertiary <strong>an</strong>d Quarternary deposits, such as<br />

dunes <strong>an</strong>d flat s<strong>an</strong>d pla<strong>in</strong>s, are morphological features dom<strong>in</strong><strong>an</strong>t<br />

<strong>in</strong> <strong>the</strong> Kalahari <strong>an</strong>d Namib Desert. Due <strong>to</strong> <strong>the</strong> low<br />

relief <strong>in</strong> <strong>the</strong>se areas, calcareous deposits c<strong>an</strong> be found <strong>in</strong><br />

weakly eroded valleys (see Box on “Calcrete”).<br />

Soil form<strong>in</strong>g processes, which are commonly found <strong>in</strong><br />

<strong>the</strong> central highl<strong>an</strong>ds of <strong>Namibia</strong>, are mostly associated with<br />

saprolite wea<strong>the</strong>r<strong>in</strong>g. Morphologically, such soil profiles are<br />

divided <strong>in</strong><strong>to</strong> a lower part with a more or less well pre served<br />

petrographic substructure of <strong>the</strong> bedrock material, <strong>an</strong>d <strong>in</strong><strong>to</strong><br />

<strong>an</strong> upper part, dom<strong>in</strong>ated ma<strong>in</strong>ly by dis<strong>in</strong>tegrated rock mate-<br />

25


26<br />

rial. The saprolite material<br />

c<strong>an</strong> reach up <strong>to</strong> several tens<br />

of metres <strong>in</strong> thickness <strong>an</strong>d is<br />

dependent on <strong>the</strong> accomp<strong>an</strong>y<strong>in</strong>g<br />

relief position,<br />

dom<strong>in</strong>ated by its erosion<br />

gradient <strong>an</strong>d <strong>the</strong> geological<br />

substratum.<br />

Accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> FAO<br />

soil classification system, out<br />

of <strong>the</strong> 30 major reference soil<br />

groups <strong>the</strong> follow<strong>in</strong>g do<br />

Market near Oshik<strong>an</strong>go<br />

occur throug hout <strong>Namibia</strong>:<br />

Acrisols, Arenosols, Calcisols, Cambisols, Ferralsols, Fluvisols,<br />

Gleysols, Gypsisols, Lep<strong>to</strong>sols, Luvisols, Phaeozems,<br />

Regosols, Solonetz, Solonchaks <strong>an</strong>d Vertisols. By far <strong>the</strong><br />

most common soils are Regosols, Arenosols <strong>an</strong>d Luvisols.<br />

Their ma<strong>in</strong> characteristic features <strong>in</strong>clude: high s<strong>an</strong>d stratum,<br />

low nutrient content, low org<strong>an</strong>ic content, alkal<strong>in</strong>e<br />

pH-conditions, typical for arid climate conditions with high<br />

evaporation rates, as well as high sal<strong>in</strong>ity. These soil groups<br />

<strong>in</strong> <strong>Namibia</strong> almost follow <strong>the</strong> major geomorphological <strong>an</strong>d<br />

geological boundaries. The largest variety of different soil<br />

groups such as Cambisols, Luvisols, Acrisols, Regosols,<br />

Gleysols, Solonchaks <strong>an</strong>d Solonetz, occurs with<strong>in</strong> <strong>the</strong> coastal<br />

zone, <strong>the</strong> Namib <strong>an</strong>d <strong>the</strong> Kalahari areas, whereas <strong>the</strong> central<br />

mounta<strong>in</strong>ous plateau, between <strong>the</strong> Namib <strong>an</strong>d <strong>the</strong><br />

Kalahari Bas<strong>in</strong>, is dom<strong>in</strong>ated ma<strong>in</strong>ly by Acrisols, Cambisols<br />

<strong>an</strong>d Luvisols.<br />

Along <strong>Namibia</strong>’s perm<strong>an</strong>ent rivers, i.e. <strong>the</strong> Okav<strong>an</strong>go,<br />

Zambezi, Kunene, Kw<strong>an</strong>do-L<strong>in</strong>y<strong>an</strong>ti-Chobe <strong>an</strong>d <strong>the</strong><br />

Or<strong>an</strong>ge rivers, Acrisols, Arenosols, Fluvisols, Regosols,<br />

Luvisols <strong>an</strong>d Cambisols are common at various levels adjacent<br />

<strong>to</strong> <strong>the</strong> rivers on terraces <strong>an</strong>d floodpla<strong>in</strong>s.<br />

Vegetation<br />

Three major vegetation zones, namely: deserts, sav<strong>an</strong>nas<br />

<strong>an</strong>d woodl<strong>an</strong>ds, are dom<strong>in</strong><strong>an</strong>t <strong>in</strong> <strong>Namibia</strong>. They are fur<strong>the</strong>r<br />

classified <strong>in</strong><strong>to</strong> 14 subdivisons, which are determ<strong>in</strong>ed accord<strong>in</strong>g<br />

<strong>to</strong> major physiographical characteristics such as geology,<br />

<strong>to</strong>pography <strong>an</strong>d climate, <strong>an</strong>d do follow <strong>the</strong>ir respective<br />

boundaries (after Giess,<br />

1971, <strong>in</strong> Barnard, 1998).<br />

Woodl<strong>an</strong>ds <strong>an</strong>d forest<br />

sav<strong>an</strong>na make up <strong>the</strong> major<br />

types of woodl<strong>an</strong>d <strong>an</strong>d cover<br />

<strong>the</strong> more humid north-eastern<br />

regions of <strong>Namibia</strong>.<br />

They also occur along all<br />

perennial rivers <strong>an</strong>d <strong>the</strong><br />

more common dry river<br />

beds, due <strong>to</strong> more favour -<br />

able moisture conditions all<br />

year round. A variety of<br />

sav<strong>an</strong>na type vegetation covers most of <strong>the</strong> country, of which<br />

highl<strong>an</strong>d, thornbush <strong>an</strong>d mounta<strong>in</strong> sav<strong>an</strong>nas are <strong>the</strong> most<br />

dom<strong>in</strong><strong>an</strong>t ones <strong>to</strong> occur <strong>in</strong> <strong>the</strong> central highl<strong>an</strong>ds, <strong>an</strong>d shrub<br />

<strong>an</strong>d mop<strong>an</strong>e sav<strong>an</strong>nas are <strong>to</strong> be found more frequently <strong>in</strong><br />

<strong>the</strong> central sou<strong>the</strong>rn parts, <strong>the</strong> Kalahari S<strong>an</strong>dveld <strong>an</strong>d <strong>in</strong> <strong>the</strong><br />

north-western parts of <strong>the</strong> country.<br />

The desert as <strong>the</strong> rema<strong>in</strong><strong>in</strong>g vegetation zone is divided<br />

<strong>in</strong><strong>to</strong> <strong>the</strong> nor<strong>the</strong>rn, central <strong>an</strong>d sou<strong>the</strong>rn Namib Desert,<br />

which <strong>in</strong>cludes <strong>the</strong> succulent steppe vegetation zone <strong>in</strong>fluenced<br />

by w<strong>in</strong>ter ra<strong>in</strong>fall. A more prom<strong>in</strong>ent semi-desert<br />

<strong>an</strong>d sav<strong>an</strong>na tr<strong>an</strong>sition zone divides <strong>the</strong> Namib Desert<br />

from <strong>the</strong> sav<strong>an</strong>na vegetation type along <strong>the</strong> Namib Escarp -<br />

ment.<br />

Population<br />

Wyn<strong>an</strong>d du Plessis<br />

<strong>Namibia</strong>’s current (2001) <strong>to</strong>tal population is estimated<br />

at approximately 1.8 million, <strong>an</strong>d more th<strong>an</strong> 70 % live <strong>in</strong><br />

<strong>the</strong> central nor<strong>the</strong>rn <strong>an</strong>d north-eastern parts of <strong>the</strong> country<br />

(as shown on <strong>the</strong> map of “Distribution of <strong>Namibia</strong>’s<br />

population”). With <strong>an</strong> average <strong>an</strong>nual growth rate of between<br />

2.5-3.5 %, <strong>the</strong> popu lation is set <strong>to</strong> grow <strong>to</strong> 2.6 million by<br />

2011 <strong>an</strong>d 3.5 million by 2021. 70 % of <strong>the</strong> nation is younger<br />

th<strong>an</strong> 30 years <strong>an</strong>d 45 % younger th<strong>an</strong> 15. Although <strong>Namibia</strong><br />

r<strong>an</strong>ks amongst <strong>the</strong> most scarcely populated countries worldwide,<br />

with <strong>an</strong> estima ted density rate of 2 per sons/km 2 , only<br />

1 % of its <strong>to</strong>tal area of 824 268 km 2 is suitable for seasonal<br />

<strong>an</strong>d perm<strong>an</strong>ent crop production. Thus, <strong>the</strong> grow<strong>in</strong>g popu -<br />

lation puts <strong>in</strong>creas<strong>in</strong>g pressure on limited water <strong>an</strong>d l<strong>an</strong>d


Distribution of <strong>Namibia</strong>’s population<br />

resources, health <strong>an</strong>d education services, on <strong>the</strong> environment<br />

<strong>an</strong>d on <strong>the</strong> adult work<strong>in</strong>g population. Rapid urb<strong>an</strong>isation<br />

<strong>an</strong>d <strong>an</strong> ever <strong>in</strong>creas<strong>in</strong>g number of young people mov<strong>in</strong>g<br />

from rural areas <strong>to</strong> <strong>the</strong> few large settlements, <strong>to</strong>wns <strong>an</strong>d cities,<br />

will require well developed water m<strong>an</strong>agement strate gies <strong>to</strong><br />

secure even basic liv<strong>in</strong>g st<strong>an</strong>dards for <strong>Namibia</strong>’s grow<strong>in</strong>g<br />

population.<br />

Agriculture<br />

<strong>Namibia</strong>’s agriculture is dom<strong>in</strong>ated by lives<strong>to</strong>ck farm<strong>in</strong>g.<br />

Limited productive soils are common <strong>an</strong>d <strong>the</strong>se <strong>to</strong>ge<strong>the</strong>r<br />

with <strong>the</strong> low average ra<strong>in</strong>fall of between 200-400 mm, as<br />

well as <strong>the</strong> extreme arid <strong>to</strong> semi-arid climatic <strong>an</strong>d physiographic<br />

conditions, place severe limitations upon <strong>the</strong><br />

country’s agriculture. Cattle farm<strong>in</strong>g <strong>an</strong>d crop production<br />

are ma<strong>in</strong>ly practised <strong>in</strong> <strong>the</strong> north of <strong>the</strong> country, where<br />

<strong>the</strong> ra<strong>in</strong>fall exceeds 500 mm. Central <strong>Namibia</strong>, where me<strong>an</strong><br />

ra<strong>in</strong>fall figures vary between 200 <strong>an</strong>d 400 mm, is suitable<br />

for lives<strong>to</strong>ck farm<strong>in</strong>g <strong>in</strong> general (cattle, sheep <strong>an</strong>d goats),<br />

whereas <strong>the</strong> arid south-central <strong>an</strong>d sou<strong>the</strong>rn parts of <strong>the</strong><br />

country, with a me<strong>an</strong> <strong>an</strong>nual ra<strong>in</strong>fall of between 50 <strong>an</strong>d 300<br />

mm, are only suitable for small s<strong>to</strong>ck farm<strong>in</strong>g. Major commercial<br />

irrigation farm<strong>in</strong>g takes place along <strong>the</strong> Or<strong>an</strong>ge<br />

River, at <strong>the</strong> Naute <strong>an</strong>d Hardap Dams, <strong>an</strong>d <strong>in</strong> <strong>the</strong> Stampriet,<br />

Tsumeb <strong>an</strong>d Grootfonte<strong>in</strong> districts.<br />

27


28<br />

To a lesser extent, cash crops are irrigated with<strong>in</strong> <strong>the</strong> -<br />

so-called maize tri<strong>an</strong>gle between Grootfonte<strong>in</strong>, Otavi <strong>an</strong>d<br />

Tsumeb; along <strong>the</strong> Okav<strong>an</strong>go <strong>an</strong>d Zambezi rivers as well as<br />

close <strong>to</strong> m<strong>an</strong>y dry river beds throughout <strong>the</strong> country. Smallscale<br />

irrigation is also practised by various communities,<br />

mission stations <strong>an</strong>d farm hold<strong>in</strong>gs, us<strong>in</strong>g founta<strong>in</strong> <strong>an</strong>d<br />

borehole water <strong>to</strong> cultivate a variety of crops for own consumption.<br />

In 2000, irrigation from groundwater amounted<br />

<strong>to</strong> 30 Mm 3 /a (see irrigation symbols on <strong>the</strong> Map), <strong>an</strong>d <strong>the</strong>re<br />

are pl<strong>an</strong>s <strong>to</strong> develop fur<strong>the</strong>r irrigation from groundwater.<br />

However, this must be considered uneconomical <strong>an</strong>d unsusta<strong>in</strong>able<br />

for <strong>the</strong> scarce groundwater resources. <strong>Namibia</strong> still<br />

imports more th<strong>an</strong> 80 % of its fruit <strong>an</strong>d vegetable from<br />

South Africa, although <strong>the</strong> potential for <strong>in</strong>creased irrigation<br />

from surface water resources exists. Prohibitive fac<strong>to</strong>rs however,<br />

are <strong>the</strong> lack of m<strong>an</strong>agement capacity <strong>an</strong>d fund<strong>in</strong>g for<br />

<strong>the</strong> comparatively expensive <strong>in</strong>vestment of adequate, watersav<strong>in</strong>g<br />

irrigation equipment <strong>an</strong>d technology.<br />

The import<strong>an</strong>t physical conditions of soils be<strong>in</strong>g utilised<br />

for irrigation <strong>in</strong>clude permeability, <strong>in</strong>filtration rate, field<br />

capacity, texture <strong>an</strong>d water-hold<strong>in</strong>g capacity. Generally, soils<br />

used for crop irrigation <strong>in</strong> <strong>Namibia</strong> do have high s<strong>an</strong>d <strong>an</strong>d<br />

low fertility rates <strong>an</strong>d low org<strong>an</strong>ic content, all of which<br />

requires proper soil m<strong>an</strong>agement. Sal<strong>in</strong>ity, high evaporation<br />

rates <strong>an</strong>d extreme erosion pose additional d<strong>an</strong>gers.<br />

Although water resources are well m<strong>an</strong>aged, severe<br />

droughts <strong>in</strong> <strong>the</strong> past have unfavourably <strong>in</strong>fluenced production<br />

figures for agricultural commodities. Agriculture’s <strong>to</strong>tal<br />

contribution <strong>to</strong> <strong>Namibia</strong>’s Gross Domestic Product (GDP)<br />

is between 9-10 % on average, of which 75-80 % c<strong>an</strong> be<br />

attributed <strong>to</strong> extensive cattle farm<strong>in</strong>g activities, thus mak<strong>in</strong>g<br />

lives<strong>to</strong>ck <strong>the</strong> major commodity with<strong>in</strong> agriculture’s <strong>to</strong>tal<br />

GDP contribution.<br />

M<strong>in</strong><strong>in</strong>g, fisheries <strong>an</strong>d<br />

<strong>to</strong>urism<br />

<strong>Namibia</strong>’s economy rests on three import<strong>an</strong>t pillars,<br />

namely m<strong>in</strong><strong>in</strong>g, fisheries, <strong>an</strong>d agriculture. Only limited beneficiation<br />

of raw materials is tak<strong>in</strong>g place, <strong>an</strong>d <strong>Namibia</strong><br />

depends heavily on imports of m<strong>an</strong>ufactured goods <strong>an</strong>d<br />

technology, while it exports m<strong>in</strong>erals, fish <strong>an</strong>d beef.<br />

M<strong>in</strong><strong>in</strong>g has long been <strong>the</strong> backbone of <strong>the</strong> <strong>Namibia</strong>n<br />

economy <strong>an</strong>d still <strong>to</strong>day is <strong>the</strong> major contribu<strong>to</strong>r <strong>to</strong> GDP<br />

(12 %) <strong>an</strong>d export revenues (40 %), as well as taxes paid <strong>in</strong><strong>to</strong><br />

<strong>the</strong> Government coffers. M<strong>in</strong><strong>in</strong>g is also <strong>an</strong> import<strong>an</strong>t<br />

employer <strong>in</strong> <strong>Namibia</strong>. By far <strong>the</strong> most import<strong>an</strong>t m<strong>in</strong>eral<br />

commodity is <strong>the</strong> diamond, m<strong>in</strong>ed <strong>in</strong> <strong>the</strong> south-western<br />

part of <strong>the</strong> country, as well as <strong>in</strong> unique offshore operations.<br />

So far, more th<strong>an</strong> 70 million carats of diamonds have been<br />

produced <strong>in</strong> <strong>Namibia</strong>, <strong>the</strong> vast majority of which are of gems<strong>to</strong>ne<br />

quality, plac<strong>in</strong>g <strong>the</strong> <strong>Namibia</strong>n deposits amongst <strong>the</strong><br />

best <strong>in</strong> <strong>the</strong> world.<br />

<strong>Namibia</strong> is also one of <strong>the</strong> world’s pr<strong>in</strong>cipal ur<strong>an</strong>ium producers,<br />

<strong>an</strong>d <strong>the</strong> Röss<strong>in</strong>g Ur<strong>an</strong>ium M<strong>in</strong>e operates <strong>the</strong> world’s<br />

second largest open pit ur<strong>an</strong>ium m<strong>in</strong>e near Swakopmund.<br />

Base metal m<strong>in</strong><strong>in</strong>g has a long tradition <strong>in</strong> <strong>Namibia</strong>, with<br />

copper be<strong>in</strong>g <strong>the</strong> most import<strong>an</strong>t metal followed by lead<br />

<strong>an</strong>d z<strong>in</strong>c. A gold m<strong>in</strong>e operates near Karibib. The <strong>Namibia</strong>n<br />

<strong>in</strong>dustrial m<strong>in</strong>erals production comprises a r<strong>an</strong>ge of commodities,<br />

<strong>in</strong>clud<strong>in</strong>g fluorite, salt <strong>an</strong>d wollas<strong>to</strong>nite. <strong>Namibia</strong><br />

produces a r<strong>an</strong>ge of dimension s<strong>to</strong>nes, <strong>in</strong>clud<strong>in</strong>g marble,<br />

gr<strong>an</strong>ite <strong>an</strong>d sodalite.<br />

Commercial mar<strong>in</strong>e fisheries is <strong>an</strong> import<strong>an</strong>t sec<strong>to</strong>r of<br />

<strong>the</strong> <strong>Namibia</strong>n economy. The Benguela Current off <strong>the</strong><br />

<strong>Namibia</strong>n coast is one of <strong>the</strong> most productive mar<strong>in</strong>e systems,<br />

second only <strong>to</strong> <strong>the</strong> Humbold current off South America.<br />

However, over-exploitation of pelagic fish between 1960<br />

<strong>an</strong>d 1980, when <strong>Namibia</strong> had no control of her mar<strong>in</strong>e<br />

areas, led <strong>to</strong> a collapse <strong>in</strong> <strong>the</strong> populations of several species.<br />

Str<strong>in</strong>gent m<strong>an</strong>agement after Independence has accounted<br />

for some recovery, <strong>an</strong>d <strong>the</strong> contribution of fisheries <strong>to</strong> GDP<br />

has risen <strong>to</strong> 10 %. Like m<strong>in</strong><strong>in</strong>g, fisheries is <strong>an</strong> import<strong>an</strong>t<br />

employer.<br />

Tourism is <strong>an</strong> import<strong>an</strong>t growth sec<strong>to</strong>r <strong>in</strong> <strong>the</strong> <strong>Namibia</strong>n<br />

economy. The country boasts a variety of unique l<strong>an</strong>dscapes<br />

<strong>an</strong>d splendid wildlife. The vast open spaces <strong>in</strong> <strong>Namibia</strong>’s<br />

sparsely populated areas allow <strong>the</strong> experience of solitude <strong>an</strong>d<br />

direct contact with nature, especially appreciated by travellers<br />

from <strong>the</strong> overcrowded centres of Europe <strong>an</strong>d elsewhere<br />

<strong>in</strong> <strong>the</strong> world. Coupled with <strong>the</strong> well developed <strong>in</strong>frastructure<br />

<strong>an</strong>d abund<strong>an</strong>t accommodation, from camp sites <strong>to</strong> 5<br />

star hotels, this makes <strong>the</strong> country a prime <strong>to</strong>urist desti-


nation. <strong>Namibia</strong> is l<strong>in</strong>ked <strong>to</strong> Europe by regular flights,<br />

<strong>an</strong>d via Joh<strong>an</strong>nesburg, South Africa, <strong>to</strong> all major centres<br />

<strong>in</strong> <strong>the</strong> world.<br />

In this context, eco-<strong>to</strong>urism plays <strong>an</strong> ever <strong>in</strong>creas<strong>in</strong>g role.<br />

This gives <strong>the</strong> country a good opportunity <strong>to</strong> develop its<br />

community-based <strong>to</strong>urism ventures, which already br<strong>in</strong>gs<br />

a lot of benefit for <strong>the</strong> local people <strong>in</strong> remote areas, who<br />

o<strong>the</strong>rwise have little access <strong>to</strong> economic activities o<strong>the</strong>r th<strong>an</strong><br />

subsistence agriculture. In turn, it gives <strong>the</strong> <strong>to</strong>urist <strong>the</strong> opportunity<br />

<strong>to</strong> become acqua<strong>in</strong>ted with <strong>the</strong> <strong>Namibia</strong>n way of life.<br />

Tourism currently directly contributes 3 % <strong>to</strong> GDP, however<br />

<strong>in</strong>direct contributions also occur. This figure represents<br />

a growth of 100 % <strong>in</strong> <strong>the</strong> last decade, <strong>an</strong>d is certa<strong>in</strong>ly set <strong>to</strong><br />

<strong>in</strong>crease even fur<strong>the</strong>r, as <strong>to</strong>urism develops <strong>in</strong> <strong>Namibia</strong>.<br />

GIC SCHNEIDER, MB SCHNEIDER, AL DU PISANI<br />

FURTHER READING<br />

Etendeka Mounta<strong>in</strong> Camp <strong>in</strong> a scenic area dependent on very limited groundwater supplies<br />

• Statistical Abstract 1999. National Pl<strong>an</strong>n<strong>in</strong>g<br />

Commission. Central Bureau of Statistics, No. 6,<br />

W<strong>in</strong>dhoek.<br />

• Atlas of <strong>Namibia</strong> (<strong>in</strong> pr<strong>in</strong>t). M<strong>in</strong>istry of<br />

Environment <strong>an</strong>d Tourism. Direc<strong>to</strong>rate of<br />

Environmental Affairs. W<strong>in</strong>dhoek.<br />

• Giess W. 1971. A prelim<strong>in</strong>ary vegetation map of<br />

South West Africa. D<strong>in</strong>teria, 4.<br />

• Schneider G I C (<strong>in</strong> pr<strong>in</strong>t). The Road-Side<br />

Geology of <strong>Namibia</strong>. Sammlung Geol. Führer.<br />

Schweizerbarth, Stuttgart.<br />

• The M<strong>in</strong>eral Resources of <strong>Namibia</strong> (1992).<br />

M<strong>in</strong>istry of M<strong>in</strong>es <strong>an</strong>d Energy, Geological Survey.<br />

W<strong>in</strong>dhoek.<br />

Kev<strong>in</strong> Roberts<br />

29


30<br />

Essentials of <strong>Groundwater</strong><br />

5.0


Wyn<strong>an</strong>d du Plessis<br />

31


32<br />

This chapter describes some<br />

of <strong>the</strong> general features of <strong>the</strong> hydro -<br />

geological environments <strong>in</strong> which<br />

ground water occurs. This should<br />

help <strong>the</strong> reader <strong>to</strong> underst<strong>an</strong>d <strong>the</strong><br />

chapters that provide a more detailed<br />

account of <strong>the</strong> geology related <strong>to</strong><br />

water bear<strong>in</strong>g formations, <strong>the</strong> occurrence of groundwater,<br />

<strong>an</strong>d <strong>the</strong> water supply potential of <strong>the</strong> aquifers.<br />

The occurrence of groundwater is closely associated with<br />

<strong>the</strong> rock formations mak<strong>in</strong>g up <strong>the</strong> crust of <strong>the</strong> earth. When<br />

<strong>the</strong>se three-dimensional bodies of rock conta<strong>in</strong> underground<br />

water, <strong>the</strong>y are called “aquifers”. These aquifers have unique<br />

properties dependent on <strong>in</strong>ternal <strong>an</strong>d external fac<strong>to</strong>rs controll<strong>in</strong>g<br />

<strong>the</strong>ir size, capacity, <strong>the</strong> groundwater flow regime,<br />

<strong>the</strong> quality of <strong>the</strong> groundwater <strong>an</strong>d <strong>the</strong>ir long-term<br />

susta<strong>in</strong>able safe yield potential.<br />

A groundwater flow system with its <strong>in</strong>put (recharge) <strong>an</strong>d output<br />

(discharge)<br />

<strong>Groundwater</strong> potential<br />

The potential of <strong>an</strong> aquifer <strong>to</strong> yield a certa<strong>in</strong> qu<strong>an</strong>tity<br />

of water with a certa<strong>in</strong> chemical quality at a certa<strong>in</strong> rate<br />

depends on its size, <strong>the</strong> volume of water that c<strong>an</strong> be s<strong>to</strong>red,<br />

(called <strong>the</strong> s<strong>to</strong>rage capacity) <strong>the</strong> chemical composition of<br />

<strong>the</strong> rocks that <strong>the</strong> water comes <strong>in</strong><strong>to</strong> contact with, <strong>the</strong> volume<br />

of water mov<strong>in</strong>g through <strong>the</strong> aquifer system per time<br />

unit (called <strong>the</strong> flux), <strong>the</strong> water available<br />

<strong>to</strong> replenish or recharge <strong>the</strong> aquifer<br />

<strong>an</strong>d <strong>the</strong> water flow<strong>in</strong>g out of <strong>the</strong> s ystem<br />

(called <strong>the</strong> discharge). The recharge<br />

is normally from ra<strong>in</strong>fall <strong>an</strong>d runoff<br />

seep<strong>in</strong>g <strong>in</strong><strong>to</strong> <strong>the</strong> aquifer while <strong>the</strong> discharge<br />

c<strong>an</strong> be natural or m<strong>an</strong>-made.<br />

Natural discharge takes place at spr<strong>in</strong>gs<br />

or seeps. M<strong>an</strong>-made discharge is caused by collect<strong>in</strong>g water<br />

from wells that have been dug by h<strong>an</strong>d or by pump<strong>in</strong>g <strong>the</strong><br />

water out through boreholes drilled deep <strong>in</strong><strong>to</strong> <strong>an</strong> aquifer.<br />

The nature of <strong>the</strong> rocks underground determ<strong>in</strong>es if <strong>the</strong>y<br />

are water bear<strong>in</strong>g, <strong>the</strong> quality of <strong>the</strong> accumulated water, <strong>an</strong>d<br />

how much groundwater <strong>the</strong>re is. The s<strong>to</strong>rage capacity of <strong>an</strong><br />

aquifer <strong>in</strong> a rock formation is determ<strong>in</strong>ed by <strong>the</strong> percentage<br />

of open spaces <strong>in</strong> <strong>the</strong> rock that c<strong>an</strong> collect water <strong>in</strong> comparison<br />

<strong>to</strong> <strong>the</strong> <strong>to</strong>tal volume of <strong>the</strong> solid rock. This is called<br />

<strong>the</strong> porosity of <strong>the</strong> aquifer.<br />

In s<strong>an</strong>d, <strong>the</strong> porosity may be as high as 20 % because <strong>the</strong><br />

number of spaces between <strong>the</strong> s<strong>an</strong>d gra<strong>in</strong>s are high. The<br />

unconsolidated or poorly consolidated s<strong>an</strong>d <strong>an</strong>d gravel layers<br />

<strong>in</strong> sedimentary rocks generally form excellent aquifers,<br />

but <strong>the</strong> s<strong>to</strong>red volume of groundwater depends on <strong>the</strong> thickness<br />

of <strong>the</strong> rock saturated with water. The qu<strong>an</strong>tity of groundwater<br />

s<strong>to</strong>red <strong>in</strong> fractured aquifers is usually much less, because<br />

<strong>the</strong> space is conf<strong>in</strong>ed <strong>to</strong> cracks, fissures <strong>an</strong>d fractures <strong>in</strong> <strong>an</strong><br />

o<strong>the</strong>rwise solid mass of rock.<br />

An import<strong>an</strong>t variation <strong>in</strong> fractured hard rock aquifers<br />

are <strong>the</strong> carbonaceous rocks <strong>in</strong> which <strong>the</strong> fractures have been<br />

enlarged by <strong>the</strong> chemical solution of <strong>the</strong> rock <strong>in</strong> <strong>the</strong> water<br />

percolat<strong>in</strong>g through <strong>the</strong> aquifer system. These aquifers are<br />

called karstified aquifers <strong>an</strong>d <strong>the</strong> aquifers <strong>in</strong> <strong>the</strong> Grootfonte<strong>in</strong>-<br />

Tsumeb-Otavi Mounta<strong>in</strong> L<strong>an</strong>d are typical examples.<br />

The rate at which water c<strong>an</strong> flow through <strong>an</strong> aquifer is<br />

called <strong>the</strong> permeability of <strong>the</strong> aquifer. In some deposits such<br />

as clay, silt <strong>an</strong>d f<strong>in</strong>e s<strong>an</strong>d <strong>the</strong> porosity may be high, but<br />

<strong>the</strong> permeability is low because <strong>the</strong> capillary forces hold <strong>the</strong><br />

water conf<strong>in</strong>ed <strong>in</strong> <strong>the</strong> rock mass. Aquifers with low perm -<br />

eability are called aquitards or aquicludes. In such cases it is<br />

difficult or impossible <strong>to</strong> abstract <strong>the</strong> groundwater<br />

economically because a large number of large dia meter<br />

boreholes must be drilled <strong>an</strong>d <strong>in</strong>stalled <strong>to</strong> obta<strong>in</strong> enough


The pr<strong>in</strong>cipal aquifer formations of <strong>Namibia</strong> <strong>an</strong>d <strong>the</strong>ir representation on <strong>the</strong> Hydrogeological Map<br />

water <strong>to</strong> meet <strong>the</strong> required dem<strong>an</strong>d.<br />

Certa<strong>in</strong> favourable geological features enh<strong>an</strong>ce <strong>the</strong> use<br />

of aquifers with low perm eability. When fault zones or valleys<br />

follow<strong>in</strong>g zones of crustal weakness cut through aquifers<br />

with low permeability, <strong>the</strong> water collects over a large area<br />

<strong>an</strong>d c<strong>an</strong> be abstracted at <strong>an</strong> exceptionally high rate by boreholes<br />

drilled <strong>in</strong><strong>to</strong> <strong>the</strong>se favourable water collect<strong>in</strong>g structures.<br />

As shown <strong>in</strong> <strong>the</strong> map above, <strong>the</strong> follow<strong>in</strong>g types of aquifers<br />

are widespread <strong>in</strong> <strong>Namibia</strong>:<br />

• Porous aquifers<br />

Source: HYMNAM Project<br />

© GSN, DWA<br />

• Fractured aquifers<br />

• Aquitards or aquicludes<br />

The rate at which groundwater c<strong>an</strong> be abstracted from <strong>an</strong><br />

aquifer is determ<strong>in</strong>ed by <strong>the</strong> porosity <strong>an</strong>d <strong>the</strong> permeability.<br />

The qu<strong>an</strong>tity of groundwater that c<strong>an</strong> be abstracted over time<br />

is determ<strong>in</strong>ed by <strong>the</strong> rate at which <strong>the</strong> water c<strong>an</strong> be abstracted<br />

<strong>an</strong>d <strong>the</strong> volume of water that is available for abstraction is determ<strong>in</strong>ed<br />

by <strong>the</strong> s<strong>to</strong>rage capacity of <strong>the</strong> aquifer. The long-term susta<strong>in</strong>able<br />

safe yield from <strong>an</strong> aquifer also depends on <strong>the</strong> recharge<br />

of <strong>the</strong> water abstracted or discharged from <strong>an</strong> aquifer.<br />

From this it is clear that a number of hydrogeological<br />

33


34<br />

fac<strong>to</strong>rs must be considered when look<strong>in</strong>g at <strong>the</strong> groundwater<br />

potential <strong>an</strong>d good structural geological knowledge<br />

is imperative <strong>to</strong> site successful boreholes, especially <strong>in</strong> hard<br />

rock aquifers (see Box on “Borehole design”).<br />

Technical <strong>an</strong>d economical aspects are also import<strong>an</strong>t.<br />

These are, for example, <strong>the</strong> depth that a borehole must be<br />

drilled <strong>in</strong><strong>to</strong> <strong>the</strong> aquifer, <strong>the</strong> type of pump<strong>in</strong>g <strong>in</strong>stallation<br />

required, <strong>the</strong> depth at which <strong>the</strong> pumpset must be <strong>in</strong>stalled,<br />

<strong>the</strong> rate of abstraction possible from <strong>the</strong> aquifer, <strong>the</strong> pump<strong>in</strong>g<br />

head <strong>to</strong> elevate <strong>the</strong> water <strong>to</strong> <strong>the</strong> surface <strong>an</strong>d how much<br />

water c<strong>an</strong> be abstracted on a susta<strong>in</strong>able basis.<br />

Tapp<strong>in</strong>g <strong>an</strong>d abstract<strong>in</strong>g<br />

<strong>the</strong> groundwater<br />

To use groundwater usually requires <strong>in</strong>vestments <strong>to</strong> drill<br />

a borehole <strong>an</strong>d <strong>to</strong> <strong>in</strong>stall a pumpset <strong>to</strong> abstract <strong>the</strong> water.<br />

Spr<strong>in</strong>gs are certa<strong>in</strong>ly <strong>the</strong> lowest cost option. Where groundwater<br />

naturally appears on <strong>the</strong> surface, it c<strong>an</strong> be harnessed<br />

almost for free, as a gift of nature. However, <strong>to</strong> meet grow<strong>in</strong>g<br />

dem<strong>an</strong>d <strong>an</strong>d <strong>to</strong> provide cle<strong>an</strong> spr<strong>in</strong>g water, <strong>in</strong>vestments are<br />

required <strong>to</strong> fence <strong>the</strong> spr<strong>in</strong>gs, or deepen <strong>the</strong> pond <strong>an</strong>d capture<br />

<strong>the</strong> discharge <strong>in</strong> a reservoir. The potential value of spr<strong>in</strong>gs as<br />

a source of low cost water supply has given rise <strong>to</strong> a new database<br />

<strong>in</strong> which <strong>in</strong>formation on spr<strong>in</strong>g locations, discharge<br />

yield <strong>an</strong>d flow regime (perennial or seasonal), water quality,<br />

technical <strong>in</strong>stallations <strong>an</strong>d water use are kept. This database<br />

must be cont<strong>in</strong>uously updated <strong>an</strong>d exp<strong>an</strong>ded, s<strong>in</strong>ce<br />

spr<strong>in</strong>gs are ecologically <strong>an</strong>d hydrogeolo gically very import<strong>an</strong>t<br />

sensitive po<strong>in</strong>ts, that c<strong>an</strong> provide <strong>in</strong>tegrated <strong>in</strong>formation<br />

about <strong>the</strong> groundwater systems that feed <strong>the</strong>m. When<br />

a spr<strong>in</strong>g ceases <strong>to</strong> flow, <strong>the</strong> consequences c<strong>an</strong> be dramatic.<br />

People <strong>an</strong>d <strong>an</strong>imals lose a reliable source of dr<strong>in</strong>k<strong>in</strong>g water<br />

supply <strong>an</strong>d <strong>an</strong> import<strong>an</strong>t aquatic habitat is lost. For <strong>the</strong><br />

scientist, this is a clear <strong>in</strong>dication of alarm that someth<strong>in</strong>g<br />

has happened <strong>to</strong> <strong>the</strong> groundwater flow system feed<strong>in</strong>g <strong>the</strong><br />

spr<strong>in</strong>g, e.g. <strong>the</strong> bal<strong>an</strong>ce between recharge <strong>an</strong>d spr<strong>in</strong>g discharge<br />

has been disturbed by drought, climate ch<strong>an</strong>ge, or by<br />

high groundwater abstraction <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> spr<strong>in</strong>g<br />

(see Box on “<strong>Groundwater</strong>-fed wetl<strong>an</strong>ds”).<br />

Where groundwater levels are close <strong>to</strong> <strong>the</strong> surface, shallow<br />

wells c<strong>an</strong> be dug by h<strong>an</strong>d. The isol<strong>in</strong>e of 20 metres depth<br />

<strong>to</strong> <strong>the</strong> groundwater table is shown on <strong>the</strong> Map, <strong>in</strong>dicat<strong>in</strong>g<br />

where groundwater levels are regionally shallow. The isol<strong>in</strong>e<br />

of 100 m is also shown, <strong>to</strong> del<strong>in</strong>eate areas where <strong>the</strong> groundwater<br />

is very deep. Everywhere else, <strong>the</strong> depth of <strong>the</strong> water<br />

table varies widely, depend<strong>in</strong>g on <strong>the</strong> <strong>to</strong>pography <strong>an</strong>d geology,<br />

but good site-specific predictions c<strong>an</strong> be obta<strong>in</strong>ed from<br />

professional hydrogeologists. <strong>Groundwater</strong> resources ly<strong>in</strong>g<br />

deeper underground are tapped by boreholes or wells. Boreholes<br />

have a designed <strong>in</strong>stallation <strong>an</strong>d are built <strong>to</strong> use groundwater<br />

on a long-term basis (see Box on “Borehole design”).<br />

S<strong>in</strong>ce <strong>the</strong> groundwater table generally follows <strong>the</strong> surface<br />

<strong>to</strong>pography, it is clear that groundwater is found at more<br />

shallow depths <strong>in</strong> valleys while higher up <strong>in</strong> <strong>the</strong> hills <strong>an</strong>d<br />

mounta<strong>in</strong>s <strong>the</strong> groundwater is much deeper. However, under<br />

certa<strong>in</strong> favourable conditions (<strong>in</strong> a conf<strong>in</strong>ed aquifer) groundwater<br />

at depth, might be under pressure <strong>an</strong>d come up close<br />

<strong>to</strong> <strong>the</strong> surface, even <strong>in</strong> a deep well. This is often encountered<br />

<strong>in</strong> a multi-layered sedimentary bas<strong>in</strong> where <strong>the</strong> aquifer is<br />

sealed at <strong>the</strong> <strong>to</strong>p by low permeable beds, <strong>an</strong>d its pressure<br />

relates <strong>to</strong> <strong>the</strong> higher ly<strong>in</strong>g recharge areas at <strong>the</strong> marg<strong>in</strong> of<br />

<strong>the</strong> bas<strong>in</strong> or <strong>in</strong> hard rock areas where conf<strong>in</strong>ed groundwater<br />

from a deep fracture zone is struck. In some areas of<br />

<strong>Namibia</strong>, e.g. <strong>in</strong> <strong>the</strong> Stampriet Bas<strong>in</strong>, <strong>the</strong> Malta höhe- or <strong>the</strong><br />

Oshivelo area, groundwater tapped <strong>in</strong> deep wells need not<br />

be pumped because <strong>the</strong> water flows out freely from <strong>the</strong> borehole<br />

due <strong>to</strong> <strong>the</strong> high pressure head, thus form<strong>in</strong>g <strong>an</strong> artesi<strong>an</strong><br />

well. Artesi<strong>an</strong> <strong>an</strong>d sub-artesi<strong>an</strong> zones are delimited<br />

on <strong>the</strong> Hydrogeological Map.<br />

Susta<strong>in</strong>able use of groundwater<br />

It is a clear objective of water resource m<strong>an</strong>agement <strong>in</strong><br />

<strong>Namibia</strong> <strong>to</strong> use <strong>the</strong> groundwater resources on a long-term<br />

susta<strong>in</strong>able basis, without caus<strong>in</strong>g environmental damage.<br />

This implies that <strong>the</strong> full s<strong>to</strong>rage potential of a ground water<br />

system is not utilised, but merely <strong>the</strong> long-term <strong>an</strong>nual<br />

recharge determ<strong>in</strong>ed from water bal<strong>an</strong>ce calculations.<br />

Accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> overall water bal<strong>an</strong>ce of <strong>Namibia</strong>, it is<br />

estimated that on average only 2 % of <strong>the</strong> <strong>an</strong>nual ra<strong>in</strong>fall


Import<strong>an</strong>ce <strong>an</strong>d vulnera -<br />

bility of groundwater-fed<br />

wetl<strong>an</strong>ds<br />

<strong>Groundwater</strong> supports m<strong>an</strong>y of <strong>Namibia</strong>’s wetl<strong>an</strong>ds.<br />

Perennial rivers only occur along <strong>the</strong> nor<strong>the</strong>rn <strong>an</strong>d sou<strong>the</strong>rn<br />

borders of <strong>the</strong> country <strong>an</strong>d o<strong>the</strong>r surface water is<br />

seasonal or restricted <strong>to</strong> impoundments.<br />

The ripari<strong>an</strong> zones of ephemeral rivercourses, s<strong>in</strong>khole<br />

lakes, spr<strong>in</strong>gs, seeps <strong>an</strong>d waterholes are all examples of<br />

wetl<strong>an</strong>ds fed by groundwater. Such wetl<strong>an</strong>ds provide<br />

resources <strong>to</strong> wildlife, lives<strong>to</strong>ck <strong>an</strong>d people throughout<br />

<strong>Namibia</strong> <strong>an</strong>d have a signific<strong>an</strong>ce far greater th<strong>an</strong> <strong>the</strong>ir water<br />

production alone. They are oases of resources, provid<strong>in</strong>g a<br />

habitat, shelter <strong>an</strong>d food <strong>in</strong> o<strong>the</strong>rwise dry surround<strong>in</strong>gs<br />

for a variety of pl<strong>an</strong>ts <strong>an</strong>d <strong>an</strong>imals. M<strong>an</strong>y of <strong>the</strong>se are specially<br />

adapted org<strong>an</strong>isms not found <strong>an</strong>ywhere else, such as<br />

<strong>the</strong> Otjiko<strong>to</strong> tilapia, Tilapia gu<strong>in</strong>as<strong>an</strong>a, that occurs only<br />

<strong>in</strong> s<strong>in</strong>khole lakes <strong>an</strong>d <strong>the</strong> bl<strong>in</strong>d cave catfish, Clarias<br />

cavernicola, found only <strong>in</strong> Aigamas Cave <strong>in</strong> <strong>the</strong> Karst area,<br />

both endemic <strong>to</strong> <strong>Namibia</strong>.<br />

Spr<strong>in</strong>gs are often <strong>an</strong>cient <strong>in</strong> hum<strong>an</strong> terms <strong>an</strong>d all those <strong>in</strong><br />

<strong>Namibia</strong> are sites of archaeological <strong>in</strong>terest <strong>an</strong>d early<br />

settlement.<br />

Gemsbokbron, Skele<strong>to</strong>n Coast Park<br />

Shirley Bethune<br />

Threats <strong>to</strong> groundwater-fed wetl<strong>an</strong>ds<br />

Spr<strong>in</strong>gs <strong>an</strong>d ri pa ri<strong>an</strong> zones are often threatened by hum<strong>an</strong><br />

use. As natural focal po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> arid l<strong>an</strong>dscape, promis<strong>in</strong>g<br />

water, shade <strong>an</strong>d food, <strong>the</strong>y attract hum<strong>an</strong> activity. Because<br />

<strong>the</strong>y are small, spr<strong>in</strong>g-fed wetl<strong>an</strong>ds are vulnerable <strong>to</strong> activities<br />

that c<strong>an</strong> reduce <strong>the</strong>ir natural re source value <strong>an</strong>d decrease<br />

bio di versity. Some activities c<strong>an</strong> destroy a wetl<strong>an</strong>d or cause<br />

<strong>the</strong> ext<strong>in</strong>ction of endemic species.<br />

Lower<strong>in</strong>g of groundwater levels through overabstraction<br />

Perm<strong>an</strong>ent spr<strong>in</strong>gs c<strong>an</strong> become temporary <strong>an</strong>d ripari<strong>an</strong><br />

trees <strong>an</strong>d floodpla<strong>in</strong> vegetation die. The size of wetl<strong>an</strong>ds c<strong>an</strong><br />

be reduced <strong>an</strong>d biodiversity lost.<br />

Pollution<br />

Diesel pump leaks, faeces <strong>an</strong>d <strong>in</strong>secticides easily pollute<br />

spr<strong>in</strong>gs <strong>an</strong>d pools because of <strong>the</strong> small <strong>to</strong>tal volume <strong>an</strong>d<br />

flow. Graz<strong>in</strong>g <strong>an</strong>d trampl<strong>in</strong>g by lives<strong>to</strong>ck c<strong>an</strong> quickly destroy<br />

<strong>the</strong> habitat of small wetl<strong>an</strong>ds <strong>an</strong>d ripari<strong>an</strong> zones.<br />

Alterations <strong>to</strong> spr<strong>in</strong>gs<br />

Dams, capp<strong>in</strong>g, blast<strong>in</strong>g <strong>an</strong>d dra<strong>in</strong>s are often attempted<br />

<strong>to</strong> “improve” spr<strong>in</strong>gs. These activities c<strong>an</strong> reduce <strong>the</strong> wetl<strong>an</strong>d<br />

area, s<strong>to</strong>p <strong>the</strong> water flow, kill aquatic life <strong>an</strong>d cut off<br />

access for dependent wildlife.<br />

Developments<br />

Tourist lodges, houses, dams or m<strong>in</strong>es near spr<strong>in</strong>gs scare<br />

wildlife away. Pesticides <strong>to</strong> control water-borne disease vec<strong>to</strong>rs<br />

<strong>an</strong>d even lights c<strong>an</strong> elim<strong>in</strong>ate local populations of useful<br />

aquatic <strong>in</strong>vertebrates.<br />

Impoundments<br />

Build<strong>in</strong>g dams on ephemeral rivers c<strong>an</strong> cut off natural<br />

floods <strong>an</strong>d reduce groundwater recharge <strong>to</strong> downstream<br />

aquifers <strong>an</strong>d floodpla<strong>in</strong>s on which ripari<strong>an</strong> vegetation, people,<br />

lives<strong>to</strong>ck <strong>an</strong>d wildlife depend, e.g. O<strong>an</strong>ob Dam <strong>an</strong>d <strong>the</strong><br />

downstream Rehoboth camelthorn woodl<strong>an</strong>d.<br />

Tourism<br />

People often camp at spr<strong>in</strong>g pools <strong>in</strong> remote areas. This<br />

may reduce access for wildlife <strong>an</strong>d cause pollution <strong>an</strong>d disturb<strong>an</strong>ce.<br />

Tourists may unwitt<strong>in</strong>gly bath, <strong>an</strong>d even wash<br />

<strong>the</strong>ir vehicles, <strong>in</strong> spr<strong>in</strong>gs caus<strong>in</strong>g pollution. Although one<br />

group may only spend a s<strong>in</strong>gle night at a spr<strong>in</strong>g, it is likely<br />

that o<strong>the</strong>r groups will soon follow.<br />

K ROBERTS<br />

35


36<br />

creates surface runoff, <strong>an</strong>d only 1 % contributes <strong>to</strong> groundwater<br />

recharge. However, this does not take regional surface<br />

differences <strong>in</strong><strong>to</strong> consideration. Certa<strong>in</strong> rock types exposed at<br />

surface are impermeable <strong>an</strong>d no water c<strong>an</strong> <strong>in</strong>filtrate, but o<strong>the</strong>rs<br />

are capable of absorb<strong>in</strong>g <strong>an</strong>d s<strong>to</strong>r<strong>in</strong>g virtually all excess<br />

ra<strong>in</strong>fall which is not lost <strong>to</strong> direct evaporation or evapotr<strong>an</strong>spiration.<br />

In <strong>the</strong>se areas almost no surface water dra<strong>in</strong>age<br />

system develops. Predom<strong>in</strong><strong>an</strong>t examples are <strong>the</strong> Otavi<br />

Mounta<strong>in</strong> L<strong>an</strong>d with its karstic aquifers <strong>an</strong>d <strong>the</strong> area covered<br />

by calcrete or dune-s<strong>an</strong>d <strong>in</strong> <strong>the</strong> Stampriet Artesi<strong>an</strong> Bas<strong>in</strong>.<br />

Recharge <strong>to</strong> groundwater systems is difficult <strong>to</strong> measure.<br />

It depends on a complex variety of fac<strong>to</strong>rs, such as ra<strong>in</strong>fall<br />

<strong>in</strong>tensity, soil conditions <strong>an</strong>d soil moisture, <strong>the</strong> slope or gradient<br />

of <strong>the</strong> surface <strong>to</strong>pography, vegetation cover <strong>an</strong>d l<strong>an</strong>d<br />

use, depth of <strong>the</strong> water table <strong>an</strong>d, of course, <strong>the</strong> charac -<br />

teristics of <strong>the</strong> underly<strong>in</strong>g aquifer. This implies that <strong>the</strong> same<br />

ra<strong>in</strong>fall event c<strong>an</strong> produce different amounts of recharge,<br />

not only for different hydrogeological environments (s<strong>an</strong>d<br />

cover, s<strong>an</strong>ds<strong>to</strong>ne, gr<strong>an</strong>ite, calcrete or dolomite terra<strong>in</strong>s), but<br />

also whe<strong>the</strong>r it falls on a pla<strong>in</strong> or <strong>in</strong> <strong>the</strong> mounta<strong>in</strong>s. Less<br />

water <strong>in</strong>filtrates dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season when vegetation<br />

cover is denser <strong>an</strong>d pl<strong>an</strong>ts take up water for growth <strong>an</strong>d tr<strong>an</strong>spiration.<br />

Stable <strong>an</strong>d radioactive iso<strong>to</strong>pes <strong>in</strong> atmospheric water, soils<br />

<strong>an</strong>d groundwater are often used <strong>to</strong> determ<strong>in</strong>e <strong>the</strong> age of<br />

groundwater <strong>an</strong>d its recharge. The safest way <strong>to</strong> compute<br />

<strong>the</strong> recharge, however, is by hydrogeological model l<strong>in</strong>g of<br />

<strong>the</strong> water budget of a groundwater flow system, provided<br />

its size <strong>an</strong>d aquifer parameters as well as <strong>the</strong> cumulative discharge<br />

abstracted from <strong>the</strong> system are suffi ciently known.<br />

The aquifer parameters, such as permeabil ity, tr<strong>an</strong>smis sivity<br />

<strong>an</strong>d s<strong>to</strong>rage coefficient c<strong>an</strong> be <strong>an</strong>alysed from pump<strong>in</strong>g tests<br />

of boreholes. The abstraction from boreholes must be con -<br />

t<strong>in</strong>uously moni<strong>to</strong>red. The correct design, construction <strong>an</strong>d<br />

<strong>in</strong>stallation of boreholes is crucial <strong>to</strong> successful ground water<br />

abstraction (see Box on “Borehole design”).<br />

In general, <strong>the</strong>re is a strong correlation between ra<strong>in</strong>fall <strong>an</strong>d<br />

recharge. This is evident <strong>in</strong> comparisons of ra<strong>in</strong>fall records <strong>an</strong>d<br />

<strong>the</strong> groundwater levels, moni<strong>to</strong>red <strong>in</strong> m<strong>an</strong>y places <strong>in</strong> <strong>Namibia</strong>,<br />

by <strong>the</strong> DWA, NamWater <strong>an</strong>d private l<strong>an</strong>d owners.<br />

In a semi-arid <strong>to</strong> arid country like <strong>Namibia</strong>, it is of crucial<br />

import<strong>an</strong>ce that groundwater abstraction volumes are known<br />

Borehole design<br />

A borehole is a hydraulic structure that permits<br />

<strong>the</strong> abstraction of water from <strong>an</strong> underground<br />

water bear<strong>in</strong>g formation. S<strong>in</strong>ce boreholes are drilled<br />

<strong>in</strong><strong>to</strong> <strong>the</strong> ground <strong>an</strong>d some of <strong>the</strong> equipment <strong>to</strong><br />

abstract <strong>the</strong> groundwater is located underground,<br />

<strong>the</strong> capital <strong>in</strong>vestment <strong>in</strong> <strong>the</strong> <strong>in</strong>stallation is only<br />

partially visible. As boreholes are ra<strong>the</strong>r expensive<br />

<strong>in</strong>frastructures, <strong>the</strong>y must be properly designed,<br />

constructed <strong>an</strong>d <strong>in</strong>stalled <strong>to</strong> ensure a long service<br />

life <strong>an</strong>d <strong>the</strong> most economic operation. If<br />

this is not done properly it will result <strong>in</strong> <strong>an</strong> <strong>in</strong>efficient<br />

water yield <strong>an</strong>d high pump<strong>in</strong>g costs. In <strong>the</strong><br />

long run this will be a very expensive mistake. The<br />

development of a successful borehole is achieved<br />

through <strong>the</strong> jo<strong>in</strong>t efforts of hydrogeologists, drillers<br />

<strong>an</strong>d eng<strong>in</strong>eers. The hydrogeologist sites <strong>the</strong> borehole,<br />

supervises <strong>the</strong> drill<strong>in</strong>g <strong>an</strong>d designs <strong>the</strong> borehole<br />

once it has been drilled. The driller uses <strong>the</strong><br />

most appropriate drill<strong>in</strong>g technique <strong>an</strong>d materials<br />

for a particular hydrogeo log ical environment.<br />

The eng<strong>in</strong>eer takes adv<strong>an</strong>tage of <strong>the</strong> hydraulic conditions<br />

of <strong>the</strong> borehole <strong>to</strong> design <strong>the</strong> equipment<br />

<strong>to</strong> abstract <strong>the</strong> water <strong>in</strong> <strong>the</strong> most economical way<br />

<strong>an</strong>d <strong>to</strong> distribute <strong>the</strong> water <strong>to</strong> <strong>the</strong> users.<br />

Various drill<strong>in</strong>g methods have been developed<br />

<strong>to</strong> cope with different geological conditions r<strong>an</strong>g<strong>in</strong>g<br />

from hard rock environments such as gr<strong>an</strong>ite<br />

or dolomite, <strong>to</strong> unconsolidated sediments such<br />

as alluvial s<strong>an</strong>ds or gravels. Borehole construction<br />

usually comprises several activities of which <strong>the</strong><br />

drill<strong>in</strong>g of <strong>the</strong> borehole is <strong>the</strong> most basic. This<br />

is followed by <strong>the</strong> <strong>in</strong>stallation of cas<strong>in</strong>g, well<br />

screens <strong>an</strong>d <strong>the</strong> plac<strong>in</strong>g of filter packs as necessary.<br />

Then <strong>the</strong> borehole is developed <strong>to</strong> ensure that <strong>the</strong><br />

water is free of s<strong>an</strong>d <strong>an</strong>d that <strong>the</strong> susta<strong>in</strong>able maximum<br />

yield is obta<strong>in</strong>ed. Grout<strong>in</strong>g c<strong>an</strong> also be<br />

done <strong>to</strong> provide a s<strong>an</strong>itary seal <strong>to</strong> protect <strong>the</strong> water<br />

<strong>in</strong> <strong>the</strong> borehole from contam<strong>in</strong>ation. Private boreholes<br />

are usually drilled only until enough water<br />

has been struck <strong>an</strong>d fur<strong>the</strong>r cost is avoided. How


ever, such boreholes c<strong>an</strong> only tap part<br />

of <strong>the</strong> aquifer potential. Preferably,<br />

<strong>the</strong>y should <strong>in</strong>tersect <strong>the</strong> whole water<br />

bear<strong>in</strong>g formation. In production boreholes<br />

for large scale abstraction <strong>the</strong> correct<br />

aquifer parameters are scientifically<br />

determ<strong>in</strong>ed, yet <strong>in</strong> practice even<br />

such boreholes are often “<strong>in</strong>complete”<br />

due <strong>to</strong> technical constra<strong>in</strong>ts such as <strong>the</strong><br />

thickness or depth of <strong>the</strong> geological<br />

units, <strong>the</strong> high drill<strong>in</strong>g cost <strong>to</strong> drill a<br />

deep borehole <strong>an</strong>d <strong>the</strong> energy cost <strong>to</strong><br />

abstract water from great depths. In<br />

o<strong>the</strong>r words, <strong>the</strong> shallower <strong>the</strong> water,<br />

<strong>the</strong> more economical it is <strong>to</strong> abstract.<br />

When boreholes are drilled <strong>in</strong><br />

fractured rock environments, water is<br />

struck when a water bear<strong>in</strong>g rock frac-<br />

Borehole design for fractured aquifers<br />

ture is <strong>in</strong>tercepted. The borehole will<br />

yield little or no water if such fractures<br />

are missed. Fractured aquifers are<br />

mostly conf<strong>in</strong>ed, so that a sudden rise<br />

<strong>in</strong> <strong>the</strong> water level occurs when <strong>the</strong> water<br />

bear<strong>in</strong>g fracture has been struck. In<br />

<strong>Namibia</strong>, <strong>the</strong>se boreholes are usually<br />

drilled with <strong>the</strong> “down-<strong>the</strong>-holehammer-rotary-percussion”<br />

method.<br />

Borehole design for porous aquifers<br />

The borehole wall <strong>in</strong> rock environments<br />

is usually stable, <strong>an</strong>d only a<br />

st<strong>an</strong>dpipe is set up <strong>in</strong> <strong>the</strong> upper parts<br />

of <strong>the</strong> borehole <strong>to</strong> prevent loose soil<br />

enter<strong>in</strong>g <strong>the</strong> borehole.<br />

Special drill<strong>in</strong>g methods are re -<br />

quired <strong>to</strong> drill <strong>in</strong> unconsolidated<br />

sediments. The most common method<br />

used <strong>in</strong> <strong>Namibia</strong> is <strong>the</strong> mud rotary<br />

method. Chemicals are used <strong>to</strong> stabilise<br />

<strong>the</strong> borehole wall <strong>to</strong> prevent it from<br />

collaps<strong>in</strong>g. Mud is pumped down <strong>the</strong><br />

borehole dur<strong>in</strong>g drill<strong>in</strong>g <strong>to</strong> ensure that<br />

<strong>the</strong> pressure <strong>in</strong>side <strong>the</strong> borehole is<br />

higher th<strong>an</strong> that of <strong>the</strong> surround<strong>in</strong>g<br />

formation. After <strong>the</strong> well screen <strong>an</strong>d<br />

filter pack are <strong>in</strong>stalled, <strong>the</strong> mud must<br />

be removed.<br />

The filter pack allows <strong>the</strong> formation<br />

<strong>to</strong> be hydraulically connected <strong>to</strong> <strong>the</strong><br />

borehole but prevents it from enter<strong>in</strong>g<br />

<strong>the</strong> borehole through <strong>the</strong> well screen.<br />

A s<strong>an</strong>itary seal is required at <strong>the</strong> surface,<br />

<strong>an</strong>d <strong>the</strong> borehole must be grouted<br />

at <strong>the</strong> bot<strong>to</strong>m <strong>to</strong> prevent <strong>the</strong> filter pack<br />

or aquifer material enter<strong>in</strong>g <strong>the</strong> well dur<strong>in</strong>g<br />

pump<strong>in</strong>g. Un con soli dated formations<br />

are often unconf<strong>in</strong>ed so that <strong>the</strong><br />

depth at which ground water is encountered<br />

<strong>an</strong>d <strong>the</strong> depth <strong>to</strong> <strong>the</strong> water level<br />

are <strong>the</strong> same. This dist<strong>an</strong>ce from <strong>the</strong><br />

Jürgen Kirchner<br />

ground surface <strong>to</strong> <strong>the</strong> water level <strong>in</strong> <strong>the</strong><br />

borehole is called <strong>the</strong> depth <strong>to</strong> groundwater.<br />

The level at which <strong>the</strong> water st<strong>an</strong>ds<br />

<strong>in</strong> a borehole before water is pumped<br />

out is called <strong>the</strong> rest water level. When<br />

<strong>the</strong> abstraction of water is <strong>in</strong> progress,<br />

<strong>the</strong> water table is lowered <strong>an</strong>d this is<br />

called <strong>the</strong> pump<strong>in</strong>g water level. When<br />

<strong>the</strong> groundwater is under pressure <strong>in</strong> a<br />

conf<strong>in</strong>ed aquifer, <strong>the</strong> water level rises<br />

<strong>in</strong> <strong>the</strong> borehole after drill<strong>in</strong>g <strong>an</strong>d when<br />

<strong>the</strong> groundwater flows out naturally at<br />

<strong>the</strong> ground surface, it is referred <strong>to</strong> as<br />

artesi<strong>an</strong>. In some cases, e.g. <strong>in</strong> <strong>the</strong> Stampriet<br />

Artesi<strong>an</strong> Bas<strong>in</strong> or <strong>in</strong> <strong>the</strong> Oshivelo<br />

Artesi<strong>an</strong> Aquifer, <strong>the</strong> artesi<strong>an</strong> water level<br />

may be several metres higher th<strong>an</strong><br />

ground level.<br />

The borehole yield is <strong>the</strong> volume of<br />

water per time unit that is discharged<br />

from a borehole, ei<strong>the</strong>r by pump<strong>in</strong>g or<br />

when it flows out freely under artesi<strong>an</strong><br />

conditions. In <strong>Namibia</strong>, <strong>the</strong> rate of flow<br />

is commonly measured <strong>in</strong> cubic metres<br />

Afric<strong>an</strong> IAEA tra<strong>in</strong><strong>in</strong>g course at artesi<strong>an</strong><br />

borehole <strong>in</strong> Stampriet<br />

per hour. A VAN WYK<br />

37


38<br />

Source: C Wessels, NamWater<br />

Correlation between ra<strong>in</strong>fall <strong>an</strong>d water level, <strong>in</strong> different groundwater regions <strong>in</strong> <strong>Namibia</strong><br />

<strong>an</strong>d measured, <strong>to</strong> avoid over-abstraction <strong>an</strong>d environmental<br />

damage. This requires that groundwater users are listed,<br />

receive a license <strong>to</strong> use <strong>the</strong> groundwater <strong>an</strong>d that <strong>the</strong>y are<br />

obliged <strong>to</strong> measure <strong>the</strong>ir abstraction <strong>an</strong>d report it. This,<br />

<strong>to</strong>ge<strong>the</strong>r with <strong>in</strong>dependent records from a groundwater moni<strong>to</strong>r<strong>in</strong>g<br />

programme, ensures that aquifers are used <strong>in</strong> a bal<strong>an</strong>ced<br />

<strong>an</strong>d susta<strong>in</strong>able m<strong>an</strong>ner.<br />

Lower<strong>in</strong>g of water levels alone is not clear proof of ground-<br />

water over-abstraction, but c<strong>an</strong> be a warn<strong>in</strong>g sign. In properly<br />

m<strong>an</strong>aged groundwater systems, abstraction from s<strong>to</strong>rage<br />

<strong>an</strong>d decl<strong>in</strong><strong>in</strong>g water levels may be permis sible <strong>to</strong> susta<strong>in</strong><br />

<strong>the</strong> water dem<strong>an</strong>d dur<strong>in</strong>g drier periods, provided it causes<br />

no last<strong>in</strong>g environmental damage (see Box on “Vulnerability<br />

of groundwater-fed wetl<strong>an</strong>ds”). The system c<strong>an</strong> <strong>the</strong>n be<br />

recharged <strong>in</strong> future wetter periods <strong>an</strong>d <strong>the</strong> water levels<br />

c<strong>an</strong> recover completely.


Ano<strong>the</strong>r clever option <strong>to</strong> m<strong>an</strong>age water resources <strong>in</strong><br />

<strong>Namibia</strong> is <strong>to</strong> tr<strong>an</strong>sform surface water <strong>in</strong><strong>to</strong> groundwater.<br />

Open water surfaces, e.g. lakes or dams, are extremely prone<br />

<strong>to</strong> evaporation <strong>an</strong>d this loss of water may be as high as 70 %.<br />

Therefore, techniques <strong>to</strong> s<strong>to</strong>re water underground <strong>to</strong> protect<br />

it from evaporation <strong>an</strong>d <strong>to</strong> enh<strong>an</strong>ce recharge have been<br />

developed <strong>an</strong>d used <strong>in</strong> <strong>Namibia</strong> s<strong>in</strong>ce <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong><br />

century. Simple options are <strong>the</strong> construction of s<strong>an</strong>d s<strong>to</strong>rage<br />

dams <strong>an</strong>d ground weirs <strong>in</strong> river beds. All <strong>the</strong>se traditional<br />

techniques of harvest<strong>in</strong>g surface water <strong>an</strong>d groundwater<br />

were <strong>to</strong> ensure wise water use. This is thoroughly reviewed<br />

by Lau & Stern (1990).<br />

A larger, more sophisticated artificial groundwater<br />

recharge scheme has been built <strong>in</strong> <strong>the</strong> lower reaches of<br />

<strong>the</strong> Omaruru River. Here, <strong>the</strong> Omaruru Delta (Omdel)<br />

ground water scheme is recharged from <strong>an</strong> impoundment<br />

with a s<strong>to</strong>rage volume of 41.3 million m 3 when full. Surface<br />

runoff collects <strong>in</strong> <strong>the</strong> dam upstream from <strong>the</strong> aquifer, where<br />

once <strong>the</strong> silt has settled out, <strong>the</strong> water is <strong>the</strong>n slowly released<br />

<strong>in</strong><strong>to</strong> <strong>in</strong>filtration bas<strong>in</strong>s downstream of <strong>the</strong> dam. Bore -<br />

holes are used <strong>to</strong> abstract this enh<strong>an</strong>ced, recharged groundwater<br />

from <strong>the</strong> Omaruru Delta Aquifer. This <strong>in</strong>novative<br />

scheme forms part of <strong>the</strong> water supply <strong>to</strong> <strong>the</strong> central coastal<br />

area.<br />

Vulnerability <strong>an</strong>d protection<br />

<strong>Namibia</strong> is <strong>the</strong> most arid country <strong>in</strong> sou<strong>the</strong>rn Africa,<br />

mak<strong>in</strong>g <strong>the</strong> surface <strong>an</strong>d groundwater resources all <strong>the</strong> more<br />

import<strong>an</strong>t <strong>an</strong>d vulnerable <strong>to</strong> pollution <strong>an</strong>d over-utilisation.<br />

To guard aga<strong>in</strong>st this, a vulnerability assessment must be<br />

carried out before <strong>an</strong>y development of <strong>the</strong> resources. The<br />

f<strong>in</strong>d<strong>in</strong>gs <strong>an</strong>d mitigat<strong>in</strong>g measures must be applied <strong>in</strong> <strong>the</strong><br />

m<strong>an</strong>agement strategy <strong>to</strong> ensure <strong>the</strong> protection of <strong>the</strong><br />

resources. Although groundwater resources are, <strong>to</strong> a certa<strong>in</strong><br />

extent, naturally protected underground, <strong>the</strong>y <strong>to</strong>o are<br />

vulnerable <strong>to</strong> certa<strong>in</strong> pollut<strong>an</strong>ts <strong>an</strong>d hazards. The qu<strong>an</strong>tita -<br />

tive aspect of vulnerability, e.g. over-abstraction, m<strong>in</strong><strong>in</strong>g<br />

<strong>an</strong>d dry<strong>in</strong>g up groundwater systems, is covered on <strong>the</strong><br />

previous page.<br />

The quality of a groundwater system might be end<strong>an</strong> -<br />

gered or destroyed by <strong>in</strong>appropriate or no protection of <strong>the</strong><br />

“hidden groundwater treasure”. There are numerous exam -<br />

ples world-wide, where precious groundwater resources that<br />

are <strong>in</strong>valuable assets for <strong>the</strong> water supply <strong>to</strong> both <strong>the</strong> environ -<br />

ment <strong>an</strong>d future generations, have been damaged or made<br />

useless by pollution result<strong>in</strong>g from <strong>in</strong>appropriate agri cultural<br />

<strong>an</strong>d <strong>in</strong>dustrial l<strong>an</strong>d-use activities above or upstream of import<strong>an</strong>t<br />

groundwater systems.<br />

Despite a good environmental policy protect<strong>in</strong>g bio -<br />

diversity <strong>an</strong>d ecosystem function<strong>in</strong>g <strong>in</strong> <strong>Namibia</strong> <strong>an</strong>d<br />

successful environmental assessment programmes, a deficit<br />

rema<strong>in</strong>s regard<strong>in</strong>g <strong>the</strong> protection of known <strong>an</strong>d potential<br />

groundwater resources. The potential hazard for contam<strong>in</strong>ation<br />

of groundwater systems from private, municipal <strong>an</strong>d<br />

<strong>in</strong>dustrial activities, particularly <strong>the</strong> discharge of waste water<br />

effluents, <strong>the</strong> use of l<strong>an</strong>dfills <strong>an</strong>d refuse dumps, must be<br />

assessed (see Box on “<strong>Groundwater</strong> <strong>an</strong>d waste disposal”).<br />

The same applies for more diffuse contam<strong>in</strong>ation from<br />

<strong>in</strong>tensive agricultural activities. Similarly <strong>the</strong> threats <strong>to</strong> groundwater-fed<br />

wetl<strong>an</strong>ds must be assessed <strong>an</strong>d taken <strong>in</strong><strong>to</strong><br />

consideration <strong>in</strong> <strong>an</strong>y future development of <strong>the</strong>se as a potential<br />

low-cost water supply alternative (see Box on “Import<strong>an</strong>ce<br />

<strong>an</strong>d vulnerabiliy of groundwater-fed wet l<strong>an</strong>ds”).<br />

G CHRISTELIS, P HEYNS, W STRUCKMEIER<br />

FURTHER READING<br />

• Lau B & C Stern. 1990. <strong>Namibia</strong>n Water<br />

Resources <strong>an</strong>d <strong>the</strong>ir M<strong>an</strong>agement – A prelim<strong>in</strong>ary<br />

His<strong>to</strong>ry. Archeia, No.15. W<strong>in</strong>dhoek.<br />

• Jacobson P J, K M Jacobson <strong>an</strong>d M K Seely.<br />

1995. Ephemeral Rivers <strong>an</strong>d <strong>the</strong>ir catchments:<br />

Susta<strong>in</strong><strong>in</strong>g people <strong>an</strong>d development <strong>in</strong> western<br />

<strong>Namibia</strong>. DRFN, W<strong>in</strong>dhoek.<br />

• Bentley S P (Ed). 1996. Eng<strong>in</strong>eer<strong>in</strong>g geology of<br />

waste disposal. Geological Society Eng<strong>in</strong>eer<strong>in</strong>g<br />

Geology Special Publication, No. 11. London.<br />

• Tarr J. 2002. Water pollution. A resource book<br />

for Senior Secondary learners <strong>in</strong> <strong>Namibia</strong>.<br />

National Water Awareness Campaign. MAWRD,<br />

W<strong>in</strong>dhoek.<br />

39


40<br />

<strong>Groundwater</strong> <strong>an</strong>d<br />

waste disposal<br />

Waste disposal by l<strong>an</strong>dfill is <strong>the</strong> most<br />

common me<strong>an</strong>s of dispos<strong>in</strong>g of municipal<br />

refuse, ash, garbage, build<strong>in</strong>g rubble<br />

as well as sludge from municipal<br />

<strong>an</strong>d <strong>in</strong>dustrial wastewater treatment<br />

facilities. Radioactive, <strong>to</strong>xic <strong>an</strong>d hazardous<br />

waste has also been buried.<br />

Water that runs over un covered waste<br />

or <strong>in</strong>filtrates <strong>in</strong><strong>to</strong> buried waste c<strong>an</strong> cause<br />

compounds <strong>to</strong> leach from <strong>the</strong> solid<br />

waste. The result<strong>an</strong>t liquid is called <strong>the</strong><br />

leachate. Leachate from waste disposal<br />

c<strong>an</strong> conta<strong>in</strong> very high concentrations<br />

of both org<strong>an</strong>ic <strong>an</strong>d <strong>in</strong>org<strong>an</strong>ic compounds.<br />

It c<strong>an</strong> move as surface runoff<br />

dur<strong>in</strong>g <strong>the</strong> ra<strong>in</strong>y season <strong>in</strong><strong>to</strong> dr<strong>in</strong>k<strong>in</strong>g<br />

water supplies such as dams, lakes <strong>an</strong>d<br />

rivers, or downward from a waste disposal<br />

site <strong>in</strong><strong>to</strong> underly<strong>in</strong>g groundwater<br />

systems <strong>an</strong>d cause contam<strong>in</strong>ation.<br />

When leachate mixes with water, it<br />

forms a plume that spreads <strong>in</strong> <strong>the</strong> direction<br />

of <strong>the</strong> groundwater flow. With dist<strong>an</strong>ce<br />

from <strong>the</strong> source of <strong>the</strong> plume, <strong>the</strong><br />

concentration decreases due <strong>to</strong> dilution,<br />

dispersion <strong>an</strong>d retard a tion<br />

processes. The volume of leachate produced<br />

is a function of <strong>the</strong> amount of<br />

water that percolates through <strong>the</strong> refuse.<br />

Waste disposal m<strong>an</strong>agement must be<br />

designed <strong>to</strong> m<strong>in</strong>imise <strong>the</strong> formation of<br />

leachate <strong>an</strong>d <strong>to</strong> control <strong>the</strong> leakage from<br />

a waste disposal site.<br />

Waste disposal <strong>in</strong> <strong>Namibia</strong> has been,<br />

<strong>an</strong>d still is, a neighbourhood dump on<br />

<strong>the</strong> edge of a <strong>to</strong>wn, village or m<strong>in</strong><strong>in</strong>g<br />

settlement. All types of waste have been,<br />

<strong>an</strong>d still are, be<strong>in</strong>g dumped <strong>in</strong> <strong>an</strong>y read-<br />

ily available hole or depression such as<br />

valleys, s<strong>an</strong>d <strong>an</strong>d gravel quarries, <strong>an</strong>d<br />

marg<strong>in</strong>al lowl<strong>an</strong>ds. M<strong>an</strong>y of <strong>the</strong> sites<br />

have been located near residential areas<br />

<strong>an</strong>d water supply zones, result<strong>in</strong>g <strong>in</strong><br />

high pollution <strong>an</strong>d health risks. Dur<strong>in</strong>g<br />

<strong>the</strong> pl<strong>an</strong>n<strong>in</strong>g of most of <strong>the</strong> waste<br />

disposal sites still <strong>in</strong> use, no ground<br />

<strong>in</strong>vestigations were conducted <strong>an</strong>d nei<strong>the</strong>r<br />

were pollution risks <strong>an</strong>d environmental<br />

protection taken adequately<br />

<strong>in</strong><strong>to</strong> consideration.<br />

However, current state of <strong>the</strong> art<br />

practices for select<strong>in</strong>g a suitable waste<br />

disposal site, call for careful evaluation<br />

of climatic, environmental <strong>an</strong>d geo -<br />

logical data. A desk study is undertaken<br />

<strong>to</strong> ga<strong>the</strong>r pert<strong>in</strong>ent data sets, <strong>an</strong>d <strong>the</strong>se<br />

are used <strong>in</strong> <strong>the</strong> detailed site <strong>in</strong>vestigations,<br />

data evaluation <strong>an</strong>d risk assessment,<br />

tak<strong>in</strong>g <strong>in</strong><strong>to</strong> consideration social,<br />

economic <strong>an</strong>d political <strong>in</strong>teractions.<br />

Field studies are <strong>the</strong>n undertaken for<br />

<strong>in</strong>dividual sites <strong>an</strong>d detailed data<br />

collected on <strong>the</strong> environmental <strong>an</strong>d<br />

ground models, <strong>the</strong> amount <strong>an</strong>d type<br />

of waste, <strong>an</strong>d major <strong>in</strong>dustrial activities.<br />

Potential contam<strong>in</strong><strong>an</strong>ts from <strong>the</strong><br />

waste generated<br />

are evaluated<br />

with respect <strong>to</strong><br />

<strong>the</strong>ir impact on<br />

fauna <strong>an</strong>d flora as<br />

well as <strong>the</strong>ir<br />

potential for surface<br />

<strong>an</strong>d groundwatercontam<strong>in</strong>ation.Environmental<br />

geological<br />

mapp<strong>in</strong>g is<br />

undertaken <strong>to</strong><br />

S<strong>in</strong>dila Mwiya<br />

fractured dolomite<br />

Tsumeb open dump<strong>in</strong>g sites<br />

obta<strong>in</strong> detailed qualitative ground data<br />

required for a safe, sound <strong>an</strong>d economic<br />

site design. The pathways of potential<br />

contam<strong>in</strong><strong>an</strong>ts such as faults, fractures,<br />

gullies <strong>an</strong>d ephemeral rivers are<br />

del<strong>in</strong>eated <strong>to</strong> determ<strong>in</strong>e risks <strong>to</strong> surface<br />

<strong>an</strong>d ground water. This de l<strong>in</strong>eation<br />

of possible pathways is done through<br />

field geomorphological mapp<strong>in</strong>g,<br />

hydrological <strong>an</strong>d geo technical evaluations.<br />

Labora<strong>to</strong>ry studies on <strong>the</strong> m<strong>in</strong>eral<br />

composition of <strong>in</strong>dividual lithologies<br />

<strong>an</strong>d geotechnical <strong>an</strong>alyses of <strong>the</strong><br />

soil <strong>an</strong>d rock samples are also carried<br />

out.<br />

Tsumeb municipal waste<br />

disposal sites<br />

Tsumeb has three municipal solid<br />

waste disposal sites all situated <strong>to</strong> <strong>the</strong><br />

south-west of <strong>the</strong> <strong>to</strong>wn. All are located<br />

on <strong>to</strong>p of heavily fractured <strong>an</strong>d partially<br />

karstified dolomite rock outcrops<br />

form<strong>in</strong>g a major aquifer throughout<br />

<strong>the</strong> Otavi Mounta<strong>in</strong> L<strong>an</strong>d. Tsumeb<br />

receives a variable ra<strong>in</strong>fall averag<strong>in</strong>g 550<br />

<strong>to</strong> 600mm/a <strong>an</strong>d given <strong>the</strong> high<br />

<strong>in</strong>filtration rates typical for this Karst<br />

uncovered waste


Tsumeb open dump<strong>in</strong>g sites: burn<strong>in</strong>g waste <strong>in</strong> a heavily fractured<br />

old quarry<br />

area, groundwater recharge is relatively<br />

high, <strong>to</strong>o. Thus, all three municipal<br />

solid waste disposal sites <strong>in</strong> Tsumeb are<br />

at risk of large-scale groundwater contam<strong>in</strong>ation.<br />

W<strong>in</strong>dhoek municipal solid<br />

waste disposal sites<br />

The W<strong>in</strong>dhoek municipal solid<br />

waste disposal sites are located <strong>in</strong> <strong>an</strong>d<br />

around <strong>the</strong> city. There are seven sites,<br />

of which six are for garden <strong>an</strong>d buil -<br />

d<strong>in</strong>g rubble (class three sites) <strong>an</strong>d<br />

W<strong>in</strong>dhoek’s waste disposal sites<br />

S<strong>in</strong>dila Mwiya<br />

Kupfer berg is <strong>the</strong><br />

only class one site<br />

capable of h<strong>an</strong>d -<br />

l<strong>in</strong>g hazardous<br />

waste. The ra<strong>in</strong>fall<br />

for <strong>the</strong> W<strong>in</strong>dhoek<br />

area is<br />

highly variable<br />

but averages<br />

around 400 mm<br />

a year. The geo logy of <strong>the</strong> area consists<br />

of ma<strong>in</strong>ly schist with quartzite. None<br />

of <strong>the</strong>se sites are located on <strong>the</strong><br />

quartzite with a good ground water<br />

potential. Never <strong>the</strong>less, at most of <strong>the</strong><br />

sites <strong>the</strong>re is a high risk of contam<strong>in</strong>at<strong>in</strong>g<br />

surface water resources. The<br />

ma<strong>in</strong> risk pathways are river valleys<br />

<strong>an</strong>d gullies through which conta -<br />

m<strong>in</strong>ated runoff from <strong>the</strong> open dump<strong>in</strong>g<br />

sites c<strong>an</strong> reach dr<strong>in</strong>k<strong>in</strong>g water<br />

sources such as dams.<br />

Gobabis municipal waste<br />

L<strong>an</strong>dsat Thematic Mapper (TM) b<strong>an</strong>d 1, 2 <strong>an</strong>d 4 (false colour composite)<br />

L<strong>an</strong>dsat Thematic Mapper Image<br />

disposal sites<br />

The Gobabis waste disposal site is<br />

located <strong>to</strong> <strong>the</strong> south-west of <strong>the</strong> <strong>to</strong>wn.<br />

The area receives around 300-400 mm<br />

of ra<strong>in</strong> per <strong>an</strong>num. The geology consists<br />

of variable schists with quartzite.<br />

The open dump<strong>in</strong>g area c<strong>an</strong> <strong>in</strong>fluence<br />

water quality, because <strong>the</strong> w<strong>in</strong>d c<strong>an</strong><br />

tr<strong>an</strong>sport con tam<strong>in</strong><strong>an</strong>ts from <strong>the</strong> open<br />

dump<strong>in</strong>g area <strong>to</strong> where <strong>the</strong>se c<strong>an</strong> <strong>the</strong>n<br />

be tr<strong>an</strong>sported fur<strong>the</strong>r by surface run -<br />

Gobabis open dump<strong>in</strong>g site<br />

off <strong>to</strong> open water supplies such as dams.<br />

Municipal waste disposal <strong>an</strong>d o<strong>the</strong>r<br />

potential sources of water contam<strong>in</strong>ation<br />

such as septic t<strong>an</strong>ks, fuel s<strong>to</strong>rage<br />

t<strong>an</strong>ks at service stations <strong>an</strong>d m<strong>in</strong>es will<br />

always be of great concern. Underst<strong>an</strong>d<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>teractions of climate, environment<br />

<strong>an</strong>d geology is vital for select<strong>in</strong>g<br />

suitable waste disposal sites that<br />

m<strong>in</strong>imise <strong>the</strong> risk of contam<strong>in</strong>ation. The<br />

research <strong>an</strong>d development of know ledgebased<br />

systems <strong>in</strong> waste disposal technology<br />

is <strong>an</strong> import<strong>an</strong>t <strong>to</strong>ol that will<br />

ensure <strong>the</strong> protection of ground- <strong>an</strong>d<br />

surface waters <strong>an</strong>d limit <strong>the</strong> risks <strong>an</strong>d<br />

impacts of pollution. S MWIYA<br />

41


42<br />

Hydrogeological Framework


L<strong>an</strong>dsat Thematic Mapper Image<br />

43


44<br />

<strong>Groundwater</strong> bas<strong>in</strong>s <strong>an</strong>d <strong>the</strong>ir<br />

hydrogeological features<br />

The country has been divided <strong>in</strong><strong>to</strong><br />

twelve hydrogeological regions based<br />

ma<strong>in</strong>ly on geological structure <strong>an</strong>d<br />

groundwater flow. To avoid confusion<br />

with political regions, <strong>the</strong>se units are<br />

called “groundwater bas<strong>in</strong>s”. Their<br />

boundaries were chosen <strong>to</strong> encompass areas of similar geology<br />

<strong>an</strong>d hydrogeology. This chapter describes <strong>the</strong> geological<br />

structures, <strong>the</strong> lithological bodies <strong>an</strong>d <strong>the</strong>ir hydrogeological<br />

properties, <strong>the</strong> groundwater quality as well as <strong>the</strong> use<br />

of <strong>the</strong> groundwater resources. For <strong>the</strong> well-known groundwater<br />

supply schemes run by NamWater, numbers referred<br />

<strong>to</strong> <strong>in</strong> Annex 1 are added <strong>in</strong> brackets.<br />

The sub-chapters have been written by groundwater<br />

experts familiar with <strong>the</strong> various regions. They <strong>in</strong>tegrate <strong>the</strong><br />

<strong>in</strong>formation on geology, drill<strong>in</strong>g, geophysical <strong>in</strong>vestigations<br />

<strong>an</strong>d hydrogeology <strong>in</strong> <strong>the</strong> broader sense tak<strong>in</strong>g <strong>in</strong><strong>to</strong> consideration<br />

aspects of ground water qu<strong>an</strong>tity <strong>an</strong>d quality. The<br />

Source: HYMNAM Project<br />

© DWA, GSN<br />

<strong>Groundwater</strong> bas<strong>in</strong>s <strong>an</strong>d hydrogeological regions <strong>in</strong> <strong>Namibia</strong><br />

<strong>in</strong>formation provided <strong>in</strong> this chapter<br />

summarises <strong>the</strong> state of know ledge on<br />

<strong>the</strong> groundwater situation <strong>an</strong>d complements<br />

<strong>the</strong> Hydrogeolo gical Map,<br />

which, <strong>to</strong> rema<strong>in</strong> legible, portrays only<br />

<strong>the</strong> most pert<strong>in</strong>ent hydrogeological features<br />

<strong>an</strong>d detail. To know more, <strong>the</strong><br />

reader is referred <strong>to</strong> <strong>the</strong> groundwater<br />

<strong>an</strong>d environment related literature, reports <strong>an</strong>d data kept <strong>in</strong><br />

<strong>the</strong> files of <strong>the</strong> ma<strong>in</strong> co-operat<strong>in</strong>g partners for this<br />

Hydrogeological Map Project, i.e. <strong>the</strong> Department of Water<br />

Affairs (DWA); <strong>the</strong> Geological Survey of <strong>Namibia</strong> (GSN);<br />

<strong>an</strong>d <strong>the</strong> <strong>Namibia</strong> Water Corporation Ltd. (NamWater).<br />

The technical <strong>an</strong>d professional terms used are expla<strong>in</strong>ed<br />

<strong>in</strong> <strong>the</strong> attached glossary. Accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> <strong>Namibia</strong>n classifi -<br />

ca tion system, groundwater quality r<strong>an</strong>ges from Group A<br />

<strong>to</strong> D. This classification system based on <strong>the</strong> concentration<br />

of <strong>to</strong>tal dissolved solids (TDS) is expla<strong>in</strong>ed <strong>in</strong> Annex 4. Areas<br />

<strong>in</strong> which poor quality groundwater occurs are shown by<br />

or<strong>an</strong>ge hatch<strong>in</strong>g on <strong>the</strong> Map.


Caprivi Strip<br />

The hydrogeological region of <strong>the</strong> Caprivi Strip encompasses<br />

<strong>the</strong> <strong>Namibia</strong>n terri<strong>to</strong>ry east of <strong>the</strong> Okav<strong>an</strong>go River.<br />

This flat area is characterised by ra<strong>the</strong>r uniform geolo gical<br />

conditions at <strong>the</strong> surface, dense vegetation, <strong>the</strong> highest ra<strong>in</strong>fall<br />

<strong>an</strong>d <strong>the</strong> lowest evaporation rates <strong>in</strong> <strong>the</strong> country.<br />

Sediments of <strong>the</strong> Kalahari Se quence <strong>an</strong>d more recent<br />

deposits overlie almost <strong>the</strong> entire Caprivi area. An isopach<br />

map of <strong>the</strong> Kalahari deposits shows that it thickens from<br />

<strong>the</strong> western end of <strong>the</strong> Caprivi Strip (where it is absent <strong>in</strong><br />

<strong>the</strong> basement outcrops <strong>in</strong> <strong>the</strong> Okav<strong>an</strong>go River south of<br />

Bag<strong>an</strong>i) <strong>to</strong>wards <strong>the</strong> Kw<strong>an</strong>do <strong>an</strong>d L<strong>in</strong>y<strong>an</strong>ti rivers reach<strong>in</strong>g<br />

a thickness of up <strong>to</strong> 300 m. From <strong>the</strong> Kw<strong>an</strong>do River <strong>to</strong>wards<br />

<strong>the</strong> north-east <strong>the</strong> Kalahari, cover th<strong>in</strong>s out aga<strong>in</strong> <strong>to</strong> less th<strong>an</strong><br />

30 m.<br />

Outcrops of underly<strong>in</strong>g rocks are scarce <strong>an</strong>d <strong>the</strong> geo logy<br />

is only known from a few exploration boreholes. The subsurface<br />

geology of <strong>the</strong> Western Caprivi is dom<strong>in</strong>ated by <strong>the</strong><br />

Damara Sequence consist<strong>in</strong>g of quartzitic s<strong>an</strong>ds<strong>to</strong>ne <strong>an</strong>d<br />

dolomites, partly covered by volc<strong>an</strong>ic rocks <strong>in</strong> <strong>the</strong> central<br />

western part. Ma<strong>in</strong>ly volc<strong>an</strong>ic rocks underlie <strong>the</strong> Kalahari<br />

throughout <strong>the</strong> Eastern Caprivi although s<strong>an</strong>ds<strong>to</strong>nes of <strong>the</strong><br />

Etjo Formation are present <strong>in</strong> some parts.<br />

Hydrogeology<br />

<strong>Groundwater</strong> <strong>in</strong> <strong>the</strong> Caprivi is ma<strong>in</strong>ly tapped from <strong>the</strong><br />

Kalahari Sequence, which displays variable groundwater<br />

properties over short dist<strong>an</strong>ces. It forms a porous aquifer,<br />

<strong>in</strong>dicated <strong>in</strong> blue shades on <strong>the</strong> ma<strong>in</strong> Map. Fractured aquifers<br />

are absent <strong>in</strong> <strong>the</strong> region. Variable yields from 0 <strong>to</strong> more th<strong>an</strong><br />

20 m 3 /h are recorded. Although <strong>the</strong> lithology <strong>in</strong>tersected<br />

dur<strong>in</strong>g drill<strong>in</strong>g is import<strong>an</strong>t, <strong>the</strong> success of a borehole is less<br />

dependent on <strong>the</strong> sit<strong>in</strong>g technique th<strong>an</strong> on drill<strong>in</strong>g <strong>an</strong>d well<br />

construction methods. In m<strong>an</strong>y boreholes, low yields <strong>an</strong>d<br />

clogg<strong>in</strong>g are due <strong>to</strong> poor borehole design <strong>an</strong>d construction.<br />

Ow<strong>in</strong>g <strong>to</strong> <strong>the</strong> generally shallow water tables, boreholes<br />

drilled for water production, tap only <strong>the</strong> upper Kalahari<br />

layers <strong>in</strong> which <strong>the</strong> follow<strong>in</strong>g six lithological classifications<br />

are recognised: Alluvium <strong>an</strong>d lacustr<strong>in</strong>e deposits, duricrusts<br />

(calcrete, silcrete, ferricrete), s<strong>an</strong>d, s<strong>an</strong>ds<strong>to</strong>ne, marl, basal<br />

conglomerate <strong>an</strong>d gravel. Recent alluvium of fluvial ori-<br />

Floodpla<strong>in</strong> of <strong>the</strong> Zambezi River <strong>in</strong> Eastern Caprivi<br />

g<strong>in</strong> usually occurs <strong>in</strong> <strong>the</strong> floodpla<strong>in</strong>s of <strong>the</strong> Kw<strong>an</strong>do-L<strong>in</strong>y<strong>an</strong>ti-<br />

Chobe system. Coarse pebbly gravels with<strong>in</strong> <strong>the</strong> upper 30m<br />

<strong>in</strong> <strong>the</strong> central area between Katima Mulilo <strong>an</strong>d Ngoma,<br />

probably represent paleo-Zambezi deposits of Pleis<strong>to</strong>cene<br />

age.<br />

Surficial s<strong>an</strong>d of aeoli<strong>an</strong> orig<strong>in</strong> consist<strong>in</strong>g of reworked Kalahari<br />

sediments covers almost <strong>the</strong> entire l<strong>an</strong>d surface of Eastern<br />

Caprivi. The tr<strong>an</strong>sition from <strong>the</strong> so-called Kalahari s<strong>an</strong>d<br />

<strong>to</strong> <strong>the</strong> older, underly<strong>in</strong>g s<strong>an</strong>ds<strong>to</strong>ne is gradual <strong>an</strong>d often not<br />

clearly dist<strong>in</strong>guished <strong>in</strong> borehole samples. S<strong>an</strong>ds<strong>to</strong>nes represent<br />

<strong>the</strong> major lithology <strong>in</strong> <strong>the</strong> Kalahari Sequence, however,<br />

<strong>the</strong> term must be used with caution. Dur<strong>in</strong>g drill<strong>in</strong>g operations,<br />

every gradation from unconsolidated s<strong>an</strong>d <strong>to</strong> dense<br />

quartzite was observed. In less consolidated material, clay is<br />

often present, <strong>to</strong> <strong>the</strong> extent that <strong>the</strong> s<strong>an</strong>ds<strong>to</strong>ne grades <strong>in</strong><strong>to</strong><br />

s<strong>an</strong>dy clay. Where more consolidated, <strong>the</strong> s<strong>an</strong>ds<strong>to</strong>ne conta<strong>in</strong>s<br />

ei<strong>the</strong>r a silic eous or calcareous matrix.<br />

Rock outcrops <strong>in</strong> <strong>the</strong> Zambezi River at Wenela<br />

Gabi Schneider<br />

Kev<strong>in</strong> Roberts<br />

45


46<br />

Lacustr<strong>in</strong>e deposits are found <strong>in</strong><br />

<strong>an</strong> extensive network of l<strong>in</strong>ear p<strong>an</strong>s<br />

ly<strong>in</strong>g east-north-easterly. These are<br />

seen as <strong>an</strong>alogues of <strong>an</strong>cient, larger<br />

lake systems with<strong>in</strong> <strong>the</strong> assumed<br />

bas<strong>in</strong> structure under ly<strong>in</strong>g a large<br />

part of Eastern Caprivi. Marls generally<br />

occur as th<strong>in</strong> horizons, up <strong>to</strong><br />

several metres thick, <strong>an</strong>d probably<br />

represent ra<strong>the</strong>r isolated lenses<br />

with<strong>in</strong> <strong>the</strong> succession of s<strong>an</strong>ds<strong>to</strong>nes.<br />

<strong>Groundwater</strong> use <strong>an</strong>d quality<br />

Although geophysical techniques<br />

are less import<strong>an</strong>t for sit<strong>in</strong>g<br />

high yield<strong>in</strong>g boreholes <strong>in</strong> <strong>the</strong><br />

Caprivi, <strong>the</strong>y help trace ground -<br />

water quality. Generally, it is <strong>the</strong><br />

chemical composition ra<strong>the</strong>r th<strong>an</strong> <strong>the</strong> yield potential that<br />

restricts groundwater use. The water quality is highly variable<br />

throughout <strong>the</strong> region. Iron is a major concern, caus<strong>in</strong>g<br />

a high percentage of water po<strong>in</strong>ts <strong>to</strong> be classified as Group<br />

D water. This c<strong>an</strong> be effectively overcome through <strong>the</strong> use<br />

of low-technology iron removal systems. Good quality water<br />

is generally found up <strong>to</strong> 5-20 km from <strong>the</strong> rivers, which<br />

recharge <strong>the</strong> aquifers. The water quality often deter iorates<br />

rapidly away from <strong>the</strong> rivers <strong>an</strong>d with <strong>in</strong>creas<strong>in</strong>g depth <strong>to</strong><br />

groundwater. Recharge <strong>in</strong> <strong>the</strong> central part is low with most<br />

of <strong>the</strong> water derived from precipitation. The velocity of<br />

<strong>the</strong> regional groundwater flow is extremely low.<br />

The Caprivi has been di vi ded <strong>in</strong><strong>to</strong> five hydrogeological<br />

prov<strong>in</strong>ces display<strong>in</strong>g similar <strong>an</strong>d consistent hydrogeological<br />

characteristics:<br />

The Caprivi -West Prov<strong>in</strong>ce stretches between <strong>the</strong><br />

Okav<strong>an</strong>go <strong>an</strong>d <strong>the</strong> Kw<strong>an</strong>do rivers exclud<strong>in</strong>g a 20 km-wide<br />

zone along <strong>the</strong>se rivers. The water quality is usually good,<br />

groundwater c<strong>an</strong> be located easily <strong>an</strong>d is available <strong>in</strong> sufficient<br />

qu<strong>an</strong>tities. The depth <strong>to</strong> water level deepens <strong>to</strong>wards<br />

<strong>the</strong> west <strong>an</strong>d is mostly <strong>to</strong>o deep for h<strong>an</strong>dpump <strong>in</strong>stallations.<br />

The military base at Omega (73) has a water supply scheme<br />

based on this aquifer. The thick Kalahari sediments obta<strong>in</strong><br />

fairly regular recharge from ra<strong>in</strong>fall <strong>an</strong>d susta<strong>in</strong> a wellfield<br />

After a hot day <strong>in</strong> <strong>the</strong> Caprivi, when Lake Liambezi<br />

still had water<br />

Shirley Bethune<br />

of medium poten tial <strong>an</strong>d Group<br />

B water quality.<br />

The Kw<strong>an</strong>do Prov<strong>in</strong>ce consists<br />

of a 20 km-wide zone along <strong>the</strong><br />

Kw<strong>an</strong>do River from <strong>the</strong> Angol<strong>an</strong><br />

border <strong>to</strong> <strong>the</strong> Samudono village.<br />

This prov<strong>in</strong>ce is recharged from <strong>the</strong><br />

Kw<strong>an</strong>do River <strong>an</strong>d borehole yields<br />

are mostly high. The water quality<br />

is generally Group A, but ris<strong>in</strong>g<br />

iron concentrations c<strong>an</strong> result <strong>in</strong><br />

B-D Group quality.<br />

The L<strong>in</strong>y<strong>an</strong>ti Prov<strong>in</strong>ce is a 20 kmwide<br />

zone north of <strong>the</strong> L<strong>in</strong>y<strong>an</strong>ti<br />

River, stretch<strong>in</strong>g from Samudono<br />

<strong>in</strong> <strong>the</strong> south-west <strong>to</strong> Lake Liambezi<br />

<strong>in</strong> <strong>the</strong> north-east. Water quality is<br />

generally poor, with elevated con-<br />

centrations of sulphate <strong>an</strong>d <strong>to</strong>tal dissolved solids. High<br />

iron concentrations are also common, especially near Lake<br />

Liambezi. At Ch<strong>in</strong>chim<strong>an</strong>e (20), close <strong>to</strong> <strong>the</strong> L<strong>in</strong>y<strong>an</strong>ti River,<br />

a water supply scheme was built, because <strong>the</strong> <strong>in</strong>termittent<br />

flow <strong>in</strong> <strong>the</strong> river threatened <strong>the</strong> surface water supply. In<br />

this area a layer of better quality water is s<strong>an</strong>dwiched between<br />

two layers conta<strong>in</strong><strong>in</strong>g poor quality water. The upper aquifer<br />

has Group B-C water, but <strong>the</strong> lower aquifer (deeper th<strong>an</strong><br />

50 m) is sal<strong>in</strong>e. The sediments consist of f<strong>in</strong>e s<strong>an</strong>d, silt <strong>an</strong>d<br />

clay, that often conta<strong>in</strong> org<strong>an</strong>ic matter, caus<strong>in</strong>g <strong>an</strong>aerobic<br />

conditions, <strong>an</strong> un pleas<strong>an</strong>t smell, <strong>an</strong>d deposits of “black mud”<br />

<strong>in</strong> <strong>the</strong> boreholes. The pump<strong>in</strong>g rate of <strong>the</strong> wells is limited <strong>to</strong><br />

2-4 m 3 /h <strong>to</strong> prevent <strong>the</strong> <strong>in</strong>flow of sal<strong>in</strong>e water from <strong>the</strong> lower<br />

aquifer.<br />

The Nor<strong>the</strong>rn Prov<strong>in</strong>ce jo<strong>in</strong>s <strong>the</strong> Kw<strong>an</strong>do Prov<strong>in</strong>ce <strong>an</strong>d<br />

<strong>the</strong> L<strong>in</strong>y<strong>an</strong>ti Prov<strong>in</strong>ce east <strong>an</strong>d north up <strong>to</strong> a l<strong>in</strong>e runn<strong>in</strong>g<br />

from Lake Liambezi <strong>to</strong> <strong>the</strong> Zambi<strong>an</strong> border. Water quality<br />

r<strong>an</strong>ges from Group A <strong>to</strong> D, with prob lems caused ma<strong>in</strong>ly<br />

by sodium, sulphate <strong>an</strong>d chloride, while iron concentrations<br />

are generally low. Water levels are <strong>the</strong> deepest <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

part of this prov<strong>in</strong>ce, mak<strong>in</strong>g it difficult <strong>to</strong> use conventional<br />

h<strong>an</strong>dpumps. Most of <strong>the</strong> groundwater development is alongside<br />

<strong>the</strong> B 8 Golden Highway. The rest of <strong>the</strong> area is not well<br />

developed <strong>an</strong>d little water quality <strong>in</strong>formation is available.


Village <strong>in</strong> <strong>the</strong> Eastern Caprivi<br />

The Zambezi-Chobe Prov<strong>in</strong>ce is situated between <strong>the</strong><br />

Zambezi <strong>an</strong>d Chobe rivers, bordered <strong>to</strong> <strong>the</strong> west by <strong>the</strong><br />

L<strong>in</strong>y<strong>an</strong>ti <strong>an</strong>d Nor<strong>the</strong>rn Prov<strong>in</strong>ces. Water quality is generally<br />

good, but elevated iron concentrations may produce Group<br />

B <strong>to</strong> D water. Water levels are mostly shallow mak<strong>in</strong>g <strong>the</strong><br />

<strong>in</strong>stallation of h<strong>an</strong>dpumps possible. <strong>Groundwater</strong> <strong>in</strong>formation<br />

for this prov<strong>in</strong>ce is limited <strong>to</strong> a few po<strong>in</strong>ts <strong>in</strong> <strong>the</strong><br />

west. At <strong>the</strong> groundwater supply scheme of Bukalo (19),<br />

<strong>the</strong> Kalahari sediments are very f<strong>in</strong>e-gra<strong>in</strong>ed mak<strong>in</strong>g it diffi -<br />

cult <strong>to</strong> establish high-yield<strong>in</strong>g boreholes. Large diameter<br />

wells made of concrete r<strong>in</strong>gs were tried as <strong>an</strong> alternative with<br />

limited success. P BOTHA<br />

FURTHER READING<br />

• Mendelsohn J & C Roberts. 1997. An Environ -<br />

mental Profile <strong>an</strong>d Atlas of Caprivi. Environ mental<br />

Profiles Project. Direc<strong>to</strong>rate of Environmental<br />

Affairs. W<strong>in</strong>dhoek, <strong>Namibia</strong>.<br />

• Haddon I G. 2000. Isopach Map of <strong>the</strong> Kalahari<br />

Group. Council for Geoscience. Pre<strong>to</strong>ria, RSA.<br />

• Plata B A. 1999. <strong>Groundwater</strong> Investigation<br />

at Caprivi Region us<strong>in</strong>g Iso<strong>to</strong>pe <strong>an</strong>d Chemical<br />

Techniques. IAEA Report NAM/8/002.<br />

W<strong>in</strong>dhoek, <strong>Namibia</strong>.<br />

Gabi Schneider<br />

Okav<strong>an</strong>go-Epukiro Bas<strong>in</strong><br />

The Okav<strong>an</strong>go-Epukiro groundwater region is located<br />

<strong>in</strong> a huge flat area <strong>in</strong> north-eastern <strong>Namibia</strong> encompass<strong>in</strong>g<br />

<strong>the</strong> entire Kav<strong>an</strong>go Region as well as <strong>the</strong> eastern parts<br />

of Otjozondjupa <strong>an</strong>d nor<strong>the</strong>rn Omaheke.<br />

Most of <strong>the</strong> area belongs <strong>to</strong> <strong>the</strong> Okav<strong>an</strong>go dra<strong>in</strong>age<br />

system, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> dorm<strong>an</strong>t, usually dry riverbeds dra<strong>in</strong><strong>in</strong>g<br />

east <strong>to</strong>wards <strong>the</strong> central Kalahari. The area generally<br />

receives comparatively good ra<strong>in</strong>fall <strong>an</strong>d is covered by<br />

thornbush sav<strong>an</strong>na.<br />

Geology<br />

The Okav<strong>an</strong>go-Epukiro Bas<strong>in</strong> lies at <strong>the</strong> marg<strong>in</strong> of <strong>the</strong><br />

much larger Kalahari Bas<strong>in</strong>, which extends far across <strong>the</strong><br />

<strong>Namibia</strong>n border. The bedrock that underlies this huge<br />

s<strong>an</strong>d-filled bas<strong>in</strong> consists of various rock types. Outcrops of<br />

carbonate <strong>an</strong>d quartzite of <strong>the</strong> Damara Sequence are present<br />

<strong>in</strong> <strong>the</strong> area of Gam <strong>an</strong>d Tsumkwe. The carbonate rocks,<br />

which are correlated with <strong>the</strong> dolomites <strong>in</strong> <strong>the</strong> Otavi-Tsumeb<br />

area, form <strong>the</strong> Aha Hills 60 km north of Gam. Fur<strong>the</strong>r south<br />

of Gam, dra<strong>in</strong>age courses such as <strong>the</strong> Epukiro <strong>an</strong>d <strong>the</strong> Eiseb<br />

omiramba have exposed <strong>the</strong> underly<strong>in</strong>g bedrock composed<br />

of marble, mica schist, quartzite <strong>an</strong>d amphibolite. Dolerite<br />

dyke <strong>an</strong>d sill <strong>in</strong>trusions occur <strong>in</strong> <strong>the</strong> area, but outcrops are<br />

very scarce <strong>an</strong>d c<strong>an</strong> usually only be detected by geophysical<br />

methods. Some volc<strong>an</strong>ic rocks are exposed <strong>in</strong> <strong>the</strong> Okav<strong>an</strong>go<br />

River at Rundu <strong>an</strong>d between Mukwe <strong>an</strong>d Bag<strong>an</strong>i, at Dobe<br />

P<strong>an</strong> <strong>an</strong>d <strong>in</strong> <strong>the</strong> upper reaches of <strong>the</strong> Otjosondjo Omuramba.<br />

The Kalahari Sequence forms a bl<strong>an</strong>ket of unconsolidated<br />

<strong>to</strong> semi-consolidated s<strong>an</strong>d cover<strong>in</strong>g most of <strong>the</strong> area.<br />

Specialists divide <strong>the</strong> Kalahari layers here <strong>in</strong><strong>to</strong> three ma<strong>in</strong><br />

units. The uppermost consists mostly of unconsolidated<br />

w<strong>in</strong>dblown s<strong>an</strong>d <strong>an</strong>d s<strong>an</strong>d deposited under fluvial conditions.<br />

The middle part is predom<strong>in</strong><strong>an</strong>tly fluvial s<strong>an</strong>d with<br />

m<strong>in</strong>or aeoli<strong>an</strong> deposits. The basal layer is as yet poorly unders<strong>to</strong>od<br />

<strong>an</strong>d consists of conglomeratic, red clayey s<strong>an</strong>d with<br />

carbonate cement. The thickness of <strong>the</strong> Kalahari layers is<br />

lowest (less th<strong>an</strong> 50 m) along <strong>the</strong> Botsw<strong>an</strong><strong>an</strong> border <strong>an</strong>d<br />

<strong>in</strong>creases <strong>to</strong>wards <strong>the</strong> middle reaches of <strong>the</strong> Omatako<br />

Omuramba <strong>an</strong>d fur<strong>the</strong>r <strong>to</strong> <strong>the</strong> north-west.<br />

Several prom<strong>in</strong>ent geological structures are found <strong>in</strong><br />

47


48<br />

north-eastern <strong>Namibia</strong>. The south-east trend<strong>in</strong>g Gam<br />

l<strong>in</strong>eament is a major fault with a downward displacement<br />

of 200 m on <strong>the</strong> sou<strong>the</strong>rn side. The Eiseb graben extends<br />

between <strong>the</strong> Eiseb <strong>an</strong>d El<strong>an</strong>dslaagte omiramba <strong>an</strong>d conta<strong>in</strong>s<br />

250 m thick s<strong>an</strong>d layers. Towards Otjiwarongo <strong>the</strong> nor<strong>the</strong>ast<br />

trend<strong>in</strong>g Waterberg thrust brought about <strong>an</strong> ab normal<br />

thicken<strong>in</strong>g of Kalahari sediments. Recent drill<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

Goblenz area penetrated more th<strong>an</strong> 460 m of Kalahari<br />

deposits.<br />

Hydrogeology<br />

<strong>Groundwater</strong> with<strong>in</strong><br />

<strong>the</strong> area is hosted <strong>in</strong> two<br />

dist<strong>in</strong>ct aquifer systems,<br />

Kalahari aquifers <strong>an</strong>d<br />

fractured bedrock aqui -<br />

fers. These two aquifer<br />

types are treated separately<br />

here as <strong>the</strong>y have<br />

different characteristics.<br />

Kalahari aquifers hold<br />

water <strong>in</strong> <strong>in</strong>tergr<strong>an</strong>ular<br />

pore spaces, whereas<br />

water <strong>in</strong> fractured<br />

aquifers is held <strong>in</strong> cracks<br />

<strong>an</strong>d fractures <strong>in</strong> o<strong>the</strong>rwise<br />

impermeable strata.<br />

Kalahari aquifers are<br />

common <strong>in</strong> <strong>the</strong> nor<strong>the</strong>astern<br />

Otjozondjupa<br />

<strong>an</strong>d Kav<strong>an</strong>go regions. In<br />

nor<strong>the</strong>rn Omaheke, <strong>the</strong><br />

Kalahari is generally nonsaturated,<br />

but groundwater<br />

may be present <strong>in</strong><br />

fractures <strong>in</strong> <strong>the</strong> under -<br />

ly<strong>in</strong>g bedrock. Adjacent<br />

<strong>to</strong> <strong>the</strong> Botsw<strong>an</strong>a border,<br />

from Gam <strong>in</strong> <strong>the</strong> south<br />

<strong>to</strong> <strong>the</strong> Kaudom Park <strong>in</strong><br />

<strong>the</strong> north, bedrock formations<br />

crop out <strong>an</strong>d<br />

Natural ra<strong>in</strong>water pool with water lilies <strong>in</strong> <strong>the</strong> Khaudum Game Park<br />

groundwater occurs <strong>in</strong> fractured aquifers.<br />

Drill<strong>in</strong>g success rates, def<strong>in</strong>ed as <strong>the</strong> percentage of boreholes<br />

yield<strong>in</strong>g more th<strong>an</strong> 1m3 /h, are commonly 100 % <strong>in</strong><br />

areas of known Kalahari aquifers, whilst <strong>the</strong> lowest success<br />

rates, of less th<strong>an</strong> 25 %, are common for fractured aqui fers<br />

beneath thick unsaturated Kalahari layers. The most difficult<br />

areas <strong>to</strong> f<strong>in</strong>d groundwater are north <strong>an</strong>d east of Otj<strong>in</strong>ene.<br />

<strong>Groundwater</strong> <strong>in</strong> <strong>the</strong> Kalahari aquifers is relatively easy<br />

<strong>to</strong> locate throughout most of <strong>the</strong> north-western <strong>an</strong>d central<br />

nor<strong>the</strong>rn Tsumkwe district <strong>an</strong>d <strong>the</strong> Kav<strong>an</strong>go Region. The<br />

sediments form <strong>an</strong> al most cont<strong>in</strong>uous permeable layer from<br />

which generally low<br />

yields c<strong>an</strong> be abstracted<br />

via bore holes. Fac<strong>to</strong>rs<br />

determ<strong>in</strong><strong>in</strong>g yield<br />

<strong>in</strong>clude, va ri a tions <strong>in</strong><br />

perme ability, satura ted<br />

thickness (often limited<br />

by drill<strong>in</strong>g depth) <strong>an</strong>d<br />

borehole or well diameter<br />

<strong>an</strong>d design. Shallow<br />

aquifers with water levels<br />

above 20 m receive<br />

good recharge ei<strong>the</strong>r<br />

directly from ra<strong>in</strong>fall or<br />

<strong>in</strong>directly from<br />

ephemeral runoff.<br />

Deeper aquifers are<br />

recharged from <strong>the</strong><br />

Kalahari bas<strong>in</strong> marg<strong>in</strong>s<br />

<strong>an</strong>d under ly<strong>in</strong>g fractured<br />

aquifers. <strong>Groundwater</strong><br />

level elevation (piezometric<br />

surface) <strong>an</strong>d<br />

hydrochemical evidence<br />

suggest signific<strong>an</strong>t re -<br />

charge from <strong>the</strong> Otavi<br />

Group dolomites <strong>in</strong> <strong>the</strong><br />

Tsumeb-Grootfonte<strong>in</strong><br />

area, e.g. <strong>to</strong> <strong>the</strong> Goblenz<br />

area. Replenish ment of<br />

<strong>the</strong> deeper aquifers far<br />

Wyn<strong>an</strong>d du Plessis


away from <strong>the</strong> bas<strong>in</strong> marg<strong>in</strong>s is, however, unlikely <strong>to</strong> be signific<strong>an</strong>t.<br />

A depiction of depth <strong>to</strong> groundwater level provides a useful<br />

<strong>in</strong>dication of <strong>the</strong> depth of drill<strong>in</strong>g required. The nor<strong>the</strong>astern<br />

areas, north of Gam <strong>an</strong>d east of Rundu, ad jacent<br />

<strong>to</strong> <strong>the</strong> Okav<strong>an</strong>go River <strong>an</strong>d along <strong>the</strong> Omatako Omuramba<br />

are characterised by water levels less th<strong>an</strong> 30 m below ground.<br />

Water levels are also relatively shallow <strong>in</strong> <strong>the</strong> south-west adjacent<br />

<strong>to</strong> <strong>the</strong> marg<strong>in</strong> of <strong>the</strong> Kalahari <strong>an</strong>d along <strong>the</strong> upper<br />

reaches of <strong>the</strong> Epukiro <strong>an</strong>d Otjozondjo omiramba. Here,<br />

groundwater for domestic <strong>an</strong>d lives<strong>to</strong>ck use is supplied <strong>to</strong><br />

villages <strong>an</strong>d rural communities <strong>in</strong> clud<strong>in</strong>g farms. Boreholes<br />

closer <strong>to</strong> <strong>the</strong> centre of <strong>the</strong> bas<strong>in</strong>, tap deeper water as <strong>the</strong><br />

depth <strong>to</strong> groundwater gradually <strong>in</strong>creases <strong>to</strong> more th<strong>an</strong><br />

100 m.<br />

Boreholes <strong>in</strong>tersect<strong>in</strong>g fractured bedrock aquifers may<br />

show higher yields th<strong>an</strong> boreholes tapp<strong>in</strong>g Kalahari aquifers.<br />

However, groundwater exploration <strong>in</strong> fractured aquifers is<br />

more difficult, often rely<strong>in</strong>g on <strong>the</strong> application of geophysical<br />

<strong>an</strong>d remote sens<strong>in</strong>g data. Exploration for groundwater <strong>in</strong><br />

fractures from 30 <strong>to</strong> more th<strong>an</strong> 100 m below unsaturated<br />

Kalahari deposits <strong>in</strong> nor<strong>the</strong>rn Omaheke has met with low<br />

success, despite <strong>the</strong> application of sophisticated airborne<br />

<strong>an</strong>d surface geophysical techniques. This area is shaded <strong>in</strong><br />

brown on <strong>the</strong> Hydrogeological Map, <strong>in</strong>dicat<strong>in</strong>g a low yield<br />

potential.<br />

Drill<strong>in</strong>g along features such as <strong>the</strong> Gam L<strong>in</strong>eament has<br />

proven successful, with yields over 3m 3 /h be<strong>in</strong>g common.<br />

In areas of th<strong>in</strong> or absent Kalahari cover, as <strong>in</strong> <strong>the</strong> Epukiro<br />

Omuramba <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of Post 3, lithological contacts<br />

<strong>an</strong>d faults are discernible <strong>an</strong>d borehole success rates are moderate.<br />

Here, water quality is variable <strong>an</strong>d sal<strong>in</strong>e groundwater<br />

c<strong>an</strong> be expected <strong>in</strong> some boreholes. In <strong>the</strong> bedrock areas<br />

adjacent <strong>to</strong> <strong>the</strong> Botsw<strong>an</strong><strong>an</strong> border water levels tend <strong>to</strong> be<br />

shallow although groundwater levels c<strong>an</strong> vary up <strong>to</strong> 10m<br />

<strong>in</strong> places between dry <strong>an</strong>d wet seasons.<br />

<strong>Groundwater</strong> use <strong>an</strong>d quality<br />

Drill<strong>in</strong>g techniques <strong>an</strong>d borehole construction practices<br />

have ch<strong>an</strong>ged over <strong>the</strong> years, <strong>an</strong>d recent drill<strong>in</strong>g results show<br />

a general improvement <strong>in</strong> yields <strong>in</strong> some Kalahari aquifers.<br />

In most cases high yields are not required for small<br />

communities. Boreholes are thus drilled <strong>to</strong> <strong>the</strong> depth at<br />

which sufficient yields are achieved. It is probable that <strong>in</strong><br />

m<strong>an</strong>y areas where low yields were reported <strong>in</strong> <strong>the</strong> past, deeper<br />

drill<strong>in</strong>g <strong>an</strong>d appropriate borehole construction might have<br />

resulted <strong>in</strong> higher yields. Similarly, <strong>in</strong> o<strong>the</strong>r areas, deeper<br />

<strong>in</strong>tersection of fractured aquifers c<strong>an</strong> also achieve a marked<br />

<strong>in</strong>crease <strong>in</strong> borehole yields.<br />

In <strong>the</strong> Kav<strong>an</strong>go Region, boreholes <strong>an</strong>d dug-wells are con -<br />

centrated, as are <strong>the</strong> people, along <strong>the</strong> Okav<strong>an</strong>go River,<br />

<strong>the</strong> Omatako valley <strong>an</strong>d <strong>the</strong> ma<strong>in</strong> roads from Grootfonte<strong>in</strong><br />

<strong>to</strong> Rundu <strong>an</strong>d Tsumkwe. The ma<strong>in</strong> criteria have apparently<br />

been physical access <strong>an</strong>d communication ra<strong>the</strong>r th<strong>an</strong> con -<br />

stra<strong>in</strong>ts imposed by groundwater availability.<br />

The follow<strong>in</strong>g water supply schemes <strong>in</strong> <strong>the</strong> Okav<strong>an</strong>go-<br />

Epukiro Bas<strong>in</strong> make use of groundwater. The western-most<br />

scheme close <strong>to</strong> <strong>the</strong> Okav<strong>an</strong>go River is Mpungu vlei (59)<br />

where, <strong>in</strong> spite of <strong>the</strong> name, no “vlei” (marsh) or surface water<br />

c<strong>an</strong> be found. <strong>Groundwater</strong> occurs at considerable depth<br />

<strong>in</strong> <strong>the</strong> Kalahari sediments, is of <strong>in</strong>sufficient qu<strong>an</strong>tity <strong>an</strong>d<br />

Group D quality due <strong>to</strong> high fluoride concentrations.<br />

Fur<strong>the</strong>r <strong>to</strong> <strong>the</strong> east, a number of missions, hospitals <strong>an</strong>d<br />

schools form <strong>the</strong> core of villages on <strong>the</strong> b<strong>an</strong>ks of <strong>the</strong><br />

Okav<strong>an</strong>go River. Most of <strong>the</strong>se are supplied with groundwater,<br />

because <strong>the</strong> river water may be <strong>in</strong>fected with bilharzia.<br />

The yield of boreholes <strong>in</strong> <strong>the</strong> f<strong>in</strong>e-gra<strong>in</strong>ed Kalahari layers<br />

along <strong>the</strong> Okav<strong>an</strong>go River is generally low. The groundwater<br />

flow direction is chiefly <strong>to</strong>wards <strong>the</strong> river <strong>an</strong>d <strong>the</strong>re<br />

is hardly <strong>an</strong>y recharge of river water <strong>in</strong><strong>to</strong> <strong>the</strong> Kalahari aquifer.<br />

<strong>Groundwater</strong> <strong>in</strong> <strong>the</strong> Kalahari along <strong>the</strong> b<strong>an</strong>ks of <strong>the</strong> river<br />

often shows poor quality due <strong>to</strong> its iron <strong>an</strong>d m<strong>an</strong>g<strong>an</strong>ese content,<br />

which exceeds <strong>the</strong> limits for dr<strong>in</strong>k<strong>in</strong>g water. The water<br />

quality is ma<strong>in</strong>ly determ<strong>in</strong>ed by <strong>the</strong> Kalahari aquifer, <strong>in</strong><br />

which <strong>the</strong> groundwater travels over long dist<strong>an</strong>ces. When<br />

<strong>the</strong> Okav<strong>an</strong>go River recharges <strong>the</strong> aquifer dur<strong>in</strong>g floods, this<br />

<strong>in</strong>flow of river water c<strong>an</strong> locally improve <strong>the</strong> groundwater<br />

quality.<br />

Due <strong>to</strong> problems experienced with corrosion of steel cas<strong>in</strong>gs<br />

<strong>an</strong>d clogg<strong>in</strong>g of borehole screens with org<strong>an</strong>ic matter<br />

<strong>an</strong>d precipitates, borehole schemes have been ab<strong>an</strong>doned at<br />

places where large volumes of water were needed. For<br />

<strong>in</strong>st<strong>an</strong>ce, <strong>the</strong> L<strong>in</strong>us Shashipapo <strong>an</strong>d K<strong>an</strong>djimi Mur<strong>an</strong>gi<br />

schools now receive treated river water.<br />

49


50<br />

The eleven schemes still<br />

operat<strong>in</strong>g along <strong>the</strong> Okav<strong>an</strong>go<br />

River are from west<br />

<strong>to</strong> east: Nkurenkuru (63),<br />

Kahenge (39), Tondoro<br />

(97), Rupara (89), Bu<strong>in</strong>ja<br />

(17), Mup<strong>in</strong>i (60), Kayengona<br />

(46), a relatively new<br />

water scheme with higher<br />

th<strong>an</strong> average pump<strong>in</strong>g rates,<br />

Sambiu (90), Ny<strong>an</strong>g<strong>an</strong>a<br />

mission (64), where replacement boreholes with plastic<br />

cas<strong>in</strong>g were drilled, Andara mission (4) <strong>an</strong>d Bag<strong>an</strong>i school<br />

(11). The more dispersed distribution of water po<strong>in</strong>ts <strong>an</strong>d<br />

settlements <strong>in</strong> <strong>the</strong> north-eastern Otjozondjupa <strong>an</strong>d nor<strong>the</strong>rn<br />

Omaheke regions, is a consequence of poor groundwater<br />

availability. The schemes at Rooidaghek (87) <strong>an</strong>d Runduhek/<br />

Murur<strong>an</strong>i gate (88) are used for veter<strong>in</strong>ary border posts<br />

on <strong>the</strong> roads from Grootfonte<strong>in</strong> <strong>to</strong> Tsumkwe <strong>an</strong>d Rundu.<br />

The Kalahari sediments <strong>in</strong> this area are up <strong>to</strong> 350 m thick,<br />

<strong>the</strong> aquifers are semi-conf<strong>in</strong>ed <strong>an</strong>d have low groundwater<br />

potential. Similar conditions apply <strong>to</strong> <strong>the</strong> police station at<br />

Maroelaboom (57) <strong>an</strong>d <strong>the</strong> now defunct police station at<br />

Ts<strong>in</strong>tsabis (99). The settlement of Ts<strong>in</strong>tsabis is located close<br />

<strong>to</strong> <strong>the</strong> boundary with <strong>the</strong> Cuvelai Bas<strong>in</strong>. Here <strong>the</strong> Kalahari<br />

layers have very low yields <strong>an</strong>d <strong>the</strong> water dem<strong>an</strong>d has<br />

<strong>in</strong>creased <strong>to</strong> twice <strong>the</strong> susta<strong>in</strong>able yield.<br />

Four small water schemes are found fur<strong>the</strong>r east <strong>to</strong>wards<br />

Tsumkwe: Aasvoëlnes (1), M<strong>an</strong>getti Du<strong>in</strong> (56), M’kata (58)<br />

<strong>an</strong>d Omatako (69). They supply settlements established<br />

at former army camps from 145-200 m deep boreholes tapp<strong>in</strong>g<br />

low-yield<strong>in</strong>g Kalahari aquifers.<br />

Tsumkwe (100), <strong>the</strong> centre of <strong>the</strong> former Bushm<strong>an</strong>l<strong>an</strong>d<br />

is surrounded by p<strong>an</strong>s <strong>an</strong>d vleis. The area has a shallow<br />

water table of 1- 6 m with groundwater occurr<strong>in</strong>g <strong>in</strong> Kalahari<br />

calcrete <strong>an</strong>d calcareous s<strong>an</strong>d. The th<strong>in</strong> Kalahari sediments<br />

are underla<strong>in</strong> by basalt of <strong>the</strong> Kalkr<strong>an</strong>d Formation. The<br />

water quality is variable. Two production boreholes have<br />

Group A water <strong>an</strong>d <strong>the</strong> o<strong>the</strong>r two Group C water due <strong>to</strong><br />

high fluoride concentrations. The yield of <strong>the</strong> scheme is <strong>in</strong> -<br />

sufficient <strong>to</strong> meet <strong>the</strong> <strong>to</strong>wn’s dem<strong>an</strong>d <strong>an</strong>d extensions are<br />

pl<strong>an</strong>ned for <strong>the</strong> near future.<br />

Dryl<strong>an</strong>d agriculture <strong>an</strong>d settlements close <strong>to</strong> <strong>the</strong> Okav<strong>an</strong>go River<br />

Bedrock outcrop areas such<br />

as <strong>the</strong> Aha Hills near<br />

Tsumkwe <strong>an</strong>d Gam are<br />

extremely vulnerable <strong>to</strong><br />

groundwater contam<strong>in</strong>ation.<br />

This is due <strong>to</strong> en h<strong>an</strong>ced<br />

recharge potent ial from shallower<br />

water levels, lack of<br />

soil cover <strong>an</strong>d <strong>the</strong> dom<strong>in</strong><strong>an</strong>ce<br />

of fracture flow with<strong>in</strong><br />

<strong>the</strong>se systems.<br />

The water supply scheme of Goblenz (33) is located sou<strong>the</strong>ast<br />

of Grootfonte<strong>in</strong> <strong>in</strong> <strong>an</strong> area where <strong>the</strong> rock formations<br />

of <strong>the</strong> Karst region dip steeply <strong>to</strong> <strong>the</strong> south <strong>an</strong>d disappear<br />

under more th<strong>an</strong> 460 m of Kalahari sediments. The <strong>to</strong>wn was<br />

supplied with groundwater from deep boreholes with <strong>in</strong> -<br />

sufficient yields until it was l<strong>in</strong>ked <strong>to</strong> <strong>the</strong> Hererol<strong>an</strong>d pipel<strong>in</strong>e<br />

system <strong>in</strong> <strong>the</strong> late 1980s. However, <strong>the</strong> groundwater resources<br />

were recently re-evaluated <strong>an</strong>d high-yield<strong>in</strong>g boreholes established<br />

<strong>to</strong> supply Goblenz with groundwater <strong>in</strong> future. The<br />

area is considered <strong>to</strong> have high potential <strong>in</strong>dicated <strong>in</strong> dark<br />

blue on <strong>the</strong> Map. The long-term susta<strong>in</strong>able yield of <strong>the</strong><br />

Goblenz Aquifer has been assessed <strong>to</strong> be 2.7 Mm3 /a, ma<strong>in</strong>ta<strong>in</strong>ed<br />

by diffuse groundwater flow from <strong>the</strong> dolomite recharge<br />

area <strong>to</strong> <strong>the</strong> Kalahari sediment trough. Along <strong>the</strong> flow path,<br />

<strong>the</strong> radiocarbon age of <strong>the</strong> groundwater <strong>in</strong>creases from a<br />

few decades <strong>to</strong> 3 000-10 000 years at Goblenz.<br />

The Otjituuo Reserve is supplied with 0.7 Mm3 /a of<br />

dolomite groundwater from two strong boreholes near Berg<br />

Aukas, east of Grootfonte<strong>in</strong>.<br />

The Okakarara treatment pl<strong>an</strong>t, as part of <strong>the</strong> Eastern<br />

National Water Carrier (ENWC), receives dolomite groundwater<br />

from Kombat M<strong>in</strong>e <strong>in</strong> <strong>the</strong> Otavi Mounta<strong>in</strong>s via <strong>the</strong><br />

Grootfonte<strong>in</strong>-Omatako C<strong>an</strong>al. It has a capacity of between<br />

3.2 <strong>to</strong> 3.5 Mm3 /a. Dur<strong>in</strong>g <strong>the</strong> past four years (1998-2001),<br />

<strong>an</strong> average of 2.3 Mm3 /a was pumped from <strong>the</strong> Kombat M<strong>in</strong>e<br />

water <strong>in</strong><strong>to</strong> <strong>the</strong> c<strong>an</strong>al <strong>an</strong>d treated at Okakarara. The treated water<br />

c<strong>an</strong> be piped <strong>to</strong> Otjituuo, as depicted <strong>in</strong> <strong>the</strong> Map.<br />

Okondjatu (68), a school village <strong>in</strong> <strong>the</strong> Otj<strong>in</strong>ene district,<br />

obta<strong>in</strong>s water from a wellfield approximately 10 km north,<br />

where a low-yield<strong>in</strong>g fractured aquifer is present <strong>in</strong> Damara<br />

Sequence meta-sediments beneath thick Kalahari layers.<br />

Wyn<strong>an</strong>d du Plessis


A group of old boreholes <strong>in</strong>stalled with w<strong>in</strong>d pumps <strong>an</strong>d<br />

deliver<strong>in</strong>g Group C quality water was replaced with new<br />

wells show<strong>in</strong>g better Group B water quality. Otj<strong>in</strong>ene (81)<br />

is a <strong>to</strong>wn on <strong>the</strong> Eiseb Omuramba <strong>in</strong> <strong>the</strong> Omaheke Region.<br />

Kalahari sediments of about 80 m thickness overlie metasediments<br />

of <strong>the</strong> Damara Sequence. Production boreholes<br />

were sited us<strong>in</strong>g geophysics <strong>to</strong> locate fractures <strong>in</strong> <strong>the</strong> bedrock,<br />

which promised higher yields. The water quality varies<br />

between boreholes from Group A <strong>to</strong> C. The scheme currently<br />

comprises 11 boreholes <strong>an</strong>d <strong>the</strong> susta<strong>in</strong>able yield is<br />

sufficient <strong>to</strong> meet <strong>the</strong> dem<strong>an</strong>d.<br />

In <strong>the</strong> s<strong>an</strong>dveld area of north-eastern Otjozondjupa <strong>an</strong>d<br />

nor<strong>the</strong>rn Omaheke, groundwater resources <strong>in</strong> <strong>the</strong> Kalahari<br />

beds <strong>an</strong>d underly<strong>in</strong>g bedrock are considered <strong>to</strong> require only<br />

m<strong>in</strong>imal protection, as groundwater vulnerability here is<br />

low or negligible. Signific<strong>an</strong>t depth <strong>to</strong> <strong>the</strong> water table <strong>an</strong>d<br />

a reasonable attenuation capability of <strong>the</strong> Kalahari s<strong>an</strong>ds<br />

account for this.<br />

In terms of water supply, <strong>the</strong> former "Epukiro Reserve"<br />

is a no<strong>to</strong>rious problem area. The Kalahari sediments <strong>in</strong><br />

<strong>the</strong> area around Omawewozonj<strong>an</strong>da or Epukiro Post 3 (23)<br />

<strong>an</strong>d Okovimburu/Post 10 (24) conta<strong>in</strong> no groundwater.<br />

Water is only found <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g Damara rocks, ma<strong>in</strong>ly<br />

<strong>in</strong> th<strong>in</strong> marble b<strong>an</strong>ds, on contact zones or fractured quartzite<br />

<strong>an</strong>d schist. F<strong>in</strong>d<strong>in</strong>g <strong>the</strong>se targets requires powerful geophysical<br />

techniques <strong>to</strong> ensure at least a moderate success rate<br />

for drill<strong>in</strong>g. Forty boreholes were drilled at Post 3, of which<br />

only 6 c<strong>an</strong> be used as production wells with yields of 1-4<br />

m 3 /h. Some boreholes are located on fractures cross<strong>in</strong>g<br />

<strong>the</strong> omuramba, but <strong>the</strong>se aquifers usually show a higher<br />

sal<strong>in</strong>ity. The borehole yields at Post 10 are low, but <strong>the</strong> water<br />

quality is better th<strong>an</strong> at Post 3. West of Epukiro, <strong>the</strong> Plessisplaas<br />

(85) police station is supplied from a low-yield<strong>in</strong>g<br />

aquifer <strong>in</strong> th<strong>in</strong> Kalahari layers.<br />

The Rietfonte<strong>in</strong> (86) water scheme supplies a number<br />

of farm<strong>in</strong>g communities along <strong>the</strong> Rietfonte<strong>in</strong> River near<br />

<strong>the</strong> Botsw<strong>an</strong><strong>an</strong> border. The Kalahari cover is almost absent<br />

<strong>in</strong> this area expos<strong>in</strong>g rocks of <strong>the</strong> Kamtsas Formation<br />

(Damara Sequence). The borehole yields are low <strong>to</strong><br />

moderate <strong>an</strong>d <strong>in</strong>sufficient <strong>to</strong> meet <strong>the</strong> ris<strong>in</strong>g dem<strong>an</strong>d. Overabstraction<br />

has caused a ch<strong>an</strong>ge <strong>in</strong> water quality from<br />

Group B <strong>to</strong> C. A SIMMONDS<br />

Cuvelai - E<strong>to</strong>sha Bas<strong>in</strong><br />

The Cuvelai-E<strong>to</strong>sha groundwater Bas<strong>in</strong> is <strong>the</strong> <strong>Namibia</strong>n<br />

part of <strong>the</strong> Cuvelai River catchment. Perennial tributaries<br />

occur only <strong>in</strong> Angola while <strong>in</strong> <strong>the</strong> <strong>Namibia</strong>n part of <strong>the</strong><br />

bas<strong>in</strong>, <strong>the</strong> osh<strong>an</strong>as flow only <strong>in</strong> <strong>the</strong> ra<strong>in</strong>y season. These<br />

osh<strong>an</strong>as are shallow, often vegetated, poorly def<strong>in</strong>ed but are<br />

<strong>in</strong>terconnected flood ch<strong>an</strong>nels <strong>an</strong>d p<strong>an</strong>s through which<br />

surface water flows slowly or may form pools depend<strong>in</strong>g on<br />

<strong>the</strong> <strong>in</strong>tensity of <strong>the</strong> floods (“efundja”). Water is also supplied<br />

<strong>to</strong> <strong>Namibia</strong>n villages <strong>an</strong>d <strong>to</strong>wns <strong>in</strong> <strong>the</strong> Cuvelai Bas<strong>in</strong> from<br />

Calueque Dam, just north of <strong>the</strong> Angol<strong>an</strong> border, via <strong>an</strong><br />

extensive system of c<strong>an</strong>als <strong>an</strong>d pipel<strong>in</strong>es.<br />

The Cuvelai Bas<strong>in</strong> is bordered <strong>in</strong> <strong>the</strong> south <strong>an</strong>d west<br />

by <strong>the</strong> surface water divide runn<strong>in</strong>g from Otavi <strong>to</strong> Outjo,<br />

Kam<strong>an</strong>jab, Otjovas<strong>an</strong>du, Otjondeka, Opuwo <strong>an</strong>d Ruac<strong>an</strong>a.<br />

In <strong>the</strong> east, <strong>the</strong> boundary is formed by a fa<strong>in</strong>t ground water<br />

divide runn<strong>in</strong>g north from Ts<strong>in</strong>tsabis almost at 18° E longi -<br />

tude, while <strong>in</strong> <strong>the</strong> north it is <strong>the</strong> <strong>in</strong>ternational border between<br />

Angola <strong>an</strong>d <strong>Namibia</strong>. The hydrogeological Cuvelai Bas<strong>in</strong><br />

thus comprises <strong>the</strong> Omusati, Osh<strong>an</strong>a, Oh<strong>an</strong>gwena, <strong>an</strong>d<br />

Oshiko<strong>to</strong> regions <strong>an</strong>d parts of <strong>the</strong> Kunene Region. Most of<br />

<strong>the</strong> l<strong>an</strong>d surface of <strong>the</strong> bas<strong>in</strong> is very flat dipp<strong>in</strong>g from some<br />

1150 m above sea level (asl) <strong>in</strong> <strong>the</strong> north-east <strong>to</strong> 1 080 m asl<br />

<strong>in</strong> <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong>, which is <strong>the</strong> largest p<strong>an</strong> <strong>in</strong> <strong>Namibia</strong>.<br />

All dra<strong>in</strong>age is thus <strong>in</strong> <strong>the</strong> direction of <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong>.<br />

The Cuvelai Bas<strong>in</strong> is <strong>the</strong> most densely populated area<br />

of <strong>Namibia</strong> <strong>an</strong>d most of <strong>the</strong> <strong>in</strong>habit<strong>an</strong>ts live <strong>in</strong> rural communities<br />

dependent on agriculture. Ra<strong>in</strong>fall decreases from<br />

600 mm/a <strong>in</strong> <strong>the</strong> north-east <strong>to</strong> 300 mm/a <strong>in</strong> <strong>the</strong> west. In<br />

<strong>the</strong> same direction, potential evaporation <strong>in</strong>creases from<br />

2 700 <strong>to</strong> 3000 mm/a. The relatively high <strong>an</strong>d reliable ra<strong>in</strong>fall<br />

allows dryl<strong>an</strong>d crop farm<strong>in</strong>g <strong>in</strong> addition <strong>to</strong> cattle <strong>an</strong>d<br />

small s<strong>to</strong>ck farm<strong>in</strong>g. Light <strong>in</strong>dustries <strong>an</strong>d bus<strong>in</strong>esses have<br />

been established <strong>in</strong> <strong>to</strong>wns like Oshakati <strong>an</strong>d Ond<strong>an</strong>gwa.<br />

Geology<br />

The Cuvelai Bas<strong>in</strong>, <strong>in</strong>clud<strong>in</strong>g E<strong>to</strong>sha P<strong>an</strong>, is part of <strong>the</strong><br />

much larger Kalahari Bas<strong>in</strong> cover<strong>in</strong>g parts of Angola,<br />

<strong>Namibia</strong>, Zambia, Botsw<strong>an</strong>a <strong>an</strong>d South Africa. It conta<strong>in</strong>s<br />

a very thick series of rocks of various ages. The bas<strong>in</strong><br />

floor consists of gneissic <strong>an</strong>d gr<strong>an</strong>itic basement. Outcrops<br />

51


52<br />

of this occur <strong>in</strong> <strong>the</strong> Kam<strong>an</strong>jab Inlier along <strong>the</strong> south-western<br />

rim of <strong>the</strong> bas<strong>in</strong> (Fr<strong>an</strong>sfonte<strong>in</strong> Gr<strong>an</strong>itic Suite <strong>an</strong>d<br />

Khoabendus Group, 2 700 <strong>to</strong> 1700 Ma). Up <strong>to</strong> 8 000 m of<br />

sedimentary rocks of <strong>the</strong> Nosib, Otavi <strong>an</strong>d Mulden groups<br />

of <strong>the</strong> late-Proterozoic Damara Sequence overlie this.<br />

Carbonatic rocks of <strong>the</strong> Otavi Group are found on <strong>the</strong><br />

surface <strong>in</strong> <strong>the</strong> mounta<strong>in</strong> ridges south <strong>an</strong>d west of <strong>the</strong> bas<strong>in</strong>.<br />

The Damara Sequence is followed by 360 m of Karoo<br />

Sequence rocks r<strong>an</strong>g<strong>in</strong>g from Lower Permi<strong>an</strong> <strong>to</strong> Jurassic<br />

(300 -130 Ma) <strong>an</strong>d up <strong>to</strong> 600 m of semi- <strong>to</strong> unconsolidated<br />

Aquifers <strong>an</strong>d aquitards of <strong>the</strong> bas<strong>in</strong><br />

sediments of <strong>the</strong> Cretaceous <strong>to</strong> Recent (< 70 Ma) Kalahari<br />

Sequence. This is shown <strong>in</strong> <strong>the</strong> table on “Aquifers <strong>an</strong>d<br />

aquitards of <strong>the</strong> bas<strong>in</strong>”.<br />

Hydrogeology<br />

All groundwater with<strong>in</strong> <strong>the</strong> bas<strong>in</strong> flows <strong>to</strong>wards <strong>the</strong> E<strong>to</strong>sha<br />

P<strong>an</strong>, due <strong>to</strong> <strong>the</strong> structure of <strong>the</strong> bas<strong>in</strong> <strong>an</strong>d because as <strong>the</strong><br />

p<strong>an</strong>, as <strong>the</strong> deepest po<strong>in</strong>t, is <strong>the</strong> base level of <strong>the</strong> groundwater<br />

flow system. <strong>Groundwater</strong>, recharged <strong>in</strong> <strong>the</strong> fractured<br />

dolomites of <strong>the</strong> Otavi Mounta<strong>in</strong> L<strong>an</strong>d, flows northwards<br />

Name<br />

of<br />

aquifers<br />

<strong>an</strong>d<br />

aquitards,<br />

Hydrogeological<br />

character<br />

Maximum<br />

thick-<br />

ness<br />

[ m]<br />

Lithology<br />

Formation,<br />

Subgroup,<br />

Group<br />

<strong>Groundwater</strong><br />

quality<br />

<strong>an</strong>d<br />

vulnerability<br />

Uncon-<br />

f<strong>in</strong>ed<br />

Kalahari<br />

Aquifers<br />

( ma<strong>in</strong>ly<br />

porous,<br />

locally<br />

fractured)<br />

DPA UKAEL UKAAN MSAAN Th<strong>in</strong> 150<br />

50<br />

70 S<strong>an</strong>d Calcrete,<br />

lime-<br />

s<strong>to</strong>ne;<br />

s<strong>an</strong>d<br />

layers<br />

Silt,<br />

clayey<br />

s<strong>an</strong>d;<br />

calcrete<br />

layers<br />

S<strong>an</strong>d, calcrete<br />

n/ a<br />

Clay<br />

Clay<br />

Silts<strong>to</strong>ne<br />

Recent<br />

Andoni<br />

( E<strong>to</strong>sha<br />

Limes<strong>to</strong>ne<br />

Member)<br />

Andoni<br />

Fresh,<br />

brackish<br />

dur<strong>in</strong>g<br />

dry<br />

season,<br />

extremely<br />

vulnerable<br />

<strong>to</strong><br />

pollution<br />

Fresh,<br />

locally<br />

high<br />

nitrate<br />

con-<br />

centration,<br />

vulnerable<br />

<strong>to</strong><br />

pollution<br />

Fresh<br />

<strong>to</strong><br />

brackish<br />

Brackish<br />

<strong>to</strong><br />

sal<strong>in</strong>e,<br />

local<br />

fresh<br />

water<br />

lenses<br />

Conf<strong>in</strong>ed<br />

Kalahari<br />

Aquifers<br />

( porous<br />

<strong>to</strong><br />

fractured)<br />

OAAAN MDAAN 100<br />

60 S<strong>an</strong>d,<br />

gravel,<br />

s<strong>an</strong>ds<strong>to</strong>ne<br />

S<strong>an</strong>d,<br />

s<strong>an</strong>ds<strong>to</strong>ne<br />

Clay Silcrete,<br />

lime-<br />

cemented<br />

s<strong>an</strong>d,<br />

clay<br />

Silcrete,<br />

lime-<br />

Fresh,<br />

Group<br />

B<br />

Fresh<br />

<strong>to</strong><br />

brackish<br />

( E of<br />

Ok<strong>an</strong>kolo)<br />

,<br />

Brackish<br />

<strong>to</strong><br />

sal<strong>in</strong>e<br />

( W of<br />

Ok<strong>an</strong>kolo)<br />

Fresh<br />

( Angol<strong>an</strong><br />

border,<br />

Eenyama,<br />

VDAOL 180 S<strong>an</strong>d,<br />

calcareous<br />

cemented<br />

s<strong>an</strong>d,<br />

Olukonda<br />

Ok<strong>an</strong>kolo)<br />

<strong>to</strong><br />

sal<strong>in</strong>e<br />

( 5 km<br />

south<br />

of<br />

clay<br />

Oshivelo)<br />

n/ a<br />

50<br />

S<strong>an</strong>ds<strong>to</strong>ne,<br />

conglomerate<br />

Muds<strong>to</strong>ne Beiseb n/<br />

a<br />

n/ a 100 S<strong>an</strong>ds<strong>to</strong>ne Muds<strong>to</strong>ne, shale<br />

Ombal<strong>an</strong>tu n/<br />

a<br />

Karoo<br />

Sequence<br />

Aquitard<br />

KSA<br />

200 n/<br />

a<br />

Basalt,<br />

s<strong>an</strong>ds<strong>to</strong>ne,<br />

shale<br />

Undifferentiated<br />

Brackish,<br />

Group<br />

C,<br />

South<br />

of<br />

Oshivelo;<br />

Halali<br />

( fractured,<br />

partly<br />

conf<strong>in</strong>ed)<br />

100 140 n/ a<br />

S<strong>an</strong>ds<strong>to</strong>ne Basalt, dykes<br />

n/ a<br />

Kalkr<strong>an</strong>d Etjo n/<br />

a<br />

n/<br />

a<br />

220 n/ a<br />

Shale Pr<strong>in</strong>ce Albert<br />

n/<br />

a<br />

160 Tillite Shale Dwyka n/<br />

a<br />

Mulden<br />

Group<br />

Aquitard,<br />

MGA<br />

( fractured,<br />

partly<br />

conf<strong>in</strong>ed)<br />

4200<br />

S<strong>an</strong>ds<strong>to</strong>ne,<br />

quartzite,<br />

limes<strong>to</strong>ne,<br />

dolomite<br />

Silts<strong>to</strong>ne,<br />

shale<br />

Owambo,<br />

Kombat,<br />

Tschudi<br />

Sal<strong>in</strong>e<br />

( depth:<br />

430<br />

<strong>to</strong><br />

670<br />

m)<br />

<strong>to</strong><br />

slightly<br />

brackish<br />

( at<br />

shallow<br />

depth,<br />

Okaukuejo)<br />

Otavi<br />

Dolomite<br />

Dolomite,<br />

Shale,<br />

Aquifer,<br />

ODA<br />

( fractured,<br />

partly<br />

4000<br />

limes<strong>to</strong>ne<br />

clay,<br />

schist<br />

Tsumeb Subgroup<br />

Fresh<br />

karstic,<br />

partly<br />

conf<strong>in</strong>ed)<br />

2000 A benab<br />

Subgroup<br />

Fresh<br />

( Otjuvas<strong>an</strong>du)<br />

Nosib Group<br />

Aquitard<br />

1200 n/<br />

a<br />

Mixtite,<br />

s<strong>an</strong>ds<strong>to</strong>ne,<br />

quartzite,<br />

conglomerate<br />

Vari<strong>an</strong><strong>to</strong>,<br />

Nabis<br />

n/<br />

a<br />

Basement<br />

Aquiclude,<br />

Gr<strong>an</strong>ite,<br />

gneiss,<br />

Fr<strong>an</strong>sfonte<strong>in</strong><br />

( aquitard<br />

at<br />

shallow<br />

n/ a n/<br />

a<br />

meta-sediments,<br />

Gr<strong>an</strong>itic<br />

Suite,<br />

Poor<br />

quality<br />

at<br />

Otjuvas<strong>an</strong>du<br />

depth)<br />

meta-volc<strong>an</strong>ics<br />

Khoabendus<br />

Gr.


<strong>an</strong>d feeds <strong>the</strong> aquifer system of <strong>the</strong> Karoo <strong>an</strong>d Kalahari.<br />

However, a major part of this northbound groundwater flow<br />

is shallow, <strong>an</strong>d discharges south-east of Namu<strong>to</strong>ni through<br />

numerous spr<strong>in</strong>gs along <strong>the</strong> sou<strong>the</strong>rn marg<strong>in</strong> of <strong>the</strong> E<strong>to</strong>sha<br />

P<strong>an</strong> <strong>an</strong>d through <strong>the</strong> bot<strong>to</strong>m of <strong>the</strong> p<strong>an</strong> from where it rapidly<br />

evaporates. East of <strong>the</strong> groundwater divide (17° 45’ E),<br />

<strong>the</strong> groundwater flow is most likely <strong>to</strong>wards <strong>the</strong> Okav<strong>an</strong>go<br />

River (1100 m asl). The detailed hydrogeo l ogy of <strong>the</strong> different<br />

sediment layers is discussed, start<strong>in</strong>g with <strong>the</strong> uppermost<br />

layers, work<strong>in</strong>g down.<br />

The Kalahari Sequence comprises <strong>the</strong> Ombal<strong>an</strong>tu, Beisib,<br />

Olukonda <strong>an</strong>d Andoni formations. It is entirely of cont<strong>in</strong>en -<br />

tal, aeoli<strong>an</strong> <strong>to</strong> fluvial orig<strong>in</strong>. The aeoli<strong>an</strong> material consists<br />

of f<strong>in</strong>e-gra<strong>in</strong>ed, well-sorted s<strong>an</strong>d, while <strong>the</strong> material deposited<br />

<strong>in</strong> a fluvial environment r<strong>an</strong>ges from gravel <strong>to</strong> clay <strong>an</strong>d often<br />

represents braided stream conditions, result<strong>in</strong>g <strong>in</strong> very variable<br />

lithologies both vertically <strong>an</strong>d horizontally. Fluvial sedimentation<br />

dom<strong>in</strong>ates with some rework<strong>in</strong>g of aeoli<strong>an</strong> s<strong>an</strong>d.<br />

Lacustr<strong>in</strong>e clays <strong>an</strong>d associated fluvial silts <strong>an</strong>d s<strong>an</strong>ds were<br />

most probably tr<strong>an</strong>sported by endorheric rivers flow<strong>in</strong>g<br />

south from <strong>the</strong> north-west, similarly <strong>to</strong> <strong>the</strong> way that <strong>the</strong><br />

Okav<strong>an</strong>go River now feeds <strong>in</strong><strong>to</strong> <strong>the</strong> Okav<strong>an</strong>go Swamps. The<br />

present p<strong>an</strong> floor consists of evaporitic calcareous s<strong>an</strong>ds<strong>to</strong>nes<br />

covered by a th<strong>in</strong> layer of salt-bear<strong>in</strong>g chalk.<br />

At <strong>the</strong> sou<strong>the</strong>rn <strong>an</strong>d western marg<strong>in</strong>s of <strong>the</strong> bas<strong>in</strong>, a<br />

rim of <strong>the</strong> E<strong>to</strong>sha Limes<strong>to</strong>ne Member is present close <strong>to</strong> <strong>the</strong><br />

surface. It consists ma<strong>in</strong>ly of karstified calcrete, s<strong>an</strong>d <strong>an</strong>d<br />

m<strong>in</strong>or clay <strong>an</strong>d is <strong>in</strong>terpreted as sedimentary-evaporitic limes<strong>to</strong>ne<br />

(groundwater calcrete). Stratigraphically, this unit is<br />

part of <strong>the</strong> Andoni Formation, but <strong>the</strong> carbonate<br />

composition of <strong>the</strong> rock <strong>in</strong>dicates a separate facies <strong>an</strong>d<br />

sedimentation milieu. The thickness of <strong>the</strong> calcrete <strong>in</strong>creases<br />

from 20 m near Tsumeb <strong>to</strong> more th<strong>an</strong> 150 m near Oshivelo<br />

<strong>an</strong>d is <strong>the</strong>refore assumed <strong>to</strong> be a groundwater calcrete.<br />

The Kalahari Sequence Aquifers are split <strong>in</strong><strong>to</strong> <strong>an</strong> unconf<strong>in</strong>ed<br />

<strong>an</strong>d a conf<strong>in</strong>ed <strong>to</strong> artesi<strong>an</strong> part. The Unconf<strong>in</strong>ed<br />

Kalahari Aquifers (UKA) comprise two types of facies: <strong>the</strong><br />

aquifer <strong>in</strong> <strong>the</strong> calcrete facies is classified as fractured, while<br />

<strong>the</strong> s<strong>an</strong>d facies acts as a porous aquifer. The facies tr<strong>an</strong>sition<br />

zone is located some 7 km south of Oshivelo (green/blue<br />

colour boundary on <strong>the</strong> Map). The Unconf<strong>in</strong>ed Kalahari<br />

Aquifer is subdivided <strong>in</strong><strong>to</strong> <strong>the</strong> Discont<strong>in</strong>uous Perched Aquifer<br />

(DPA) above <strong>the</strong> Ma<strong>in</strong> Shallow Aquifer (MSAAN) <strong>in</strong> <strong>the</strong><br />

north, <strong>the</strong> calcrete facies (UKAEL) <strong>in</strong> <strong>the</strong> south <strong>an</strong>d west, <strong>an</strong>d<br />

<strong>the</strong> s<strong>an</strong>dy facies (UKAAN) <strong>in</strong> <strong>the</strong> centre around Oshivelo.<br />

The Conf<strong>in</strong>ed Kalahari Aquifers are <strong>the</strong> Oshivelo Artesi<strong>an</strong><br />

Aquifer (OAAAN) <strong>in</strong> <strong>the</strong> centre around Oshivelo <strong>an</strong>d<br />

<strong>the</strong> Ma<strong>in</strong> Deep Aquifer (MDAAN) above <strong>the</strong> Very Deep<br />

Aquifer (VDAOL) <strong>in</strong> <strong>the</strong> north. The table shows <strong>the</strong>se <strong>an</strong>d<br />

provides <strong>an</strong> easy reference <strong>to</strong> <strong>the</strong> abbreviations used here.<br />

MSAAN, UKAEL <strong>an</strong>d UKAAN are stratigraphically equiv-<br />

Schematic representation of <strong>the</strong> position of aquifers <strong>in</strong> <strong>the</strong> Cuvelai<br />

Bas<strong>in</strong><br />

Unconf<strong>in</strong>ed<br />

Conf<strong>in</strong>ed<br />

North DPA<br />

-<br />

Discont<strong>in</strong>uous<br />

Perched<br />

Aquifer<br />

Centre South<br />

MSA - Ma<strong>in</strong><br />

AN<br />

Shallow<br />

Aquifer<br />

UKA - Unconf<strong>in</strong>ed<br />

AN<br />

Kalahari<br />

Aquifer<br />

UKA - Unconf<strong>in</strong>ed<br />

EL<br />

Kalahari<br />

Aquifer<br />

MDA - Ma<strong>in</strong><br />

AN<br />

Deep<br />

Aquifer<br />

VDA - Very<br />

OL<br />

Deep<br />

Aquifer<br />

OAA - Oshivelo<br />

AN<br />

Artesi<strong>an</strong><br />

Aquifer<br />

alent; UKAEL groundwater flows down-gradient <strong>in</strong><strong>to</strong> <strong>the</strong><br />

UKAAN, while UKAAN <strong>an</strong>d MSAAN groundwaters are mixed<br />

<strong>in</strong> <strong>the</strong> area of Omuramba Omuthiya <strong>an</strong>d eventually discharge<br />

<strong>in</strong><strong>to</strong> <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong> (see arrows on <strong>the</strong> Map). MDAAN<br />

<strong>an</strong>d VDAOL are likely <strong>to</strong> merge <strong>in</strong><strong>to</strong> OAAAN, however, <strong>the</strong><br />

stratigraphic equivalence <strong>an</strong>d hydraulic <strong>in</strong>terconnection<br />

between <strong>the</strong> three aquifers have not yet been confirmed.<br />

The Discont<strong>in</strong>uous Perched Aquifer (DPA) is not a s<strong>in</strong>gle<br />

aquifer, but consists of a series of small perched aquifers,<br />

which occur predom<strong>in</strong><strong>an</strong>tly <strong>in</strong> <strong>the</strong> dune-s<strong>an</strong>d covered area<br />

north-east of Ok<strong>an</strong>kolo. These aquifers are ma<strong>in</strong>ly recharged<br />

by direct <strong>in</strong>filtration of ra<strong>in</strong>water <strong>an</strong>d exploited by me<strong>an</strong>s<br />

of “omifima”, traditional, funnel-shaped dug wells. Although<br />

<strong>the</strong> yield is generally limited by <strong>the</strong> size of <strong>the</strong> aquifers, <strong>the</strong>y<br />

provide shallow, easily accessible <strong>an</strong>d good quality dr<strong>in</strong>k<strong>in</strong>g<br />

water <strong>to</strong> <strong>the</strong> scattered villages of <strong>the</strong> Oh<strong>an</strong>gwena <strong>an</strong>d nor<strong>the</strong>rn<br />

Oshiko<strong>to</strong> regions. The water quality is subject <strong>to</strong> seasonal<br />

variations, <strong>an</strong>d may become brackish <strong>to</strong>wards <strong>the</strong> end<br />

of <strong>the</strong> dry season. Because of <strong>the</strong> shallow water table, <strong>the</strong><br />

Discont<strong>in</strong>uous Perched Aquifer is extremely vulnerable <strong>to</strong><br />

pollution. Care must be taken <strong>to</strong> avoid contam<strong>in</strong>ation by<br />

dung at cattle dr<strong>in</strong>k<strong>in</strong>g po<strong>in</strong>ts.<br />

53


54<br />

“Omifima” tapp<strong>in</strong>g <strong>the</strong> Discont<strong>in</strong>uous Perched Aquifer (DPA) <strong>in</strong> <strong>the</strong><br />

Oh<strong>an</strong>gwena Region<br />

The Ma<strong>in</strong> Shallow Aquifer (MSAAN) <strong>in</strong> <strong>the</strong> Andoni<br />

Formation is a shallow (6-80 m), unconf<strong>in</strong>ed multi-aquifer<br />

system which comprises a relatively thick sequence of layered<br />

sediments with competent, fractured s<strong>an</strong>ds<strong>to</strong>ne aquifers, separated<br />

by less permeable aquitards consist<strong>in</strong>g of clay <strong>an</strong>d<br />

silts<strong>to</strong>ne. The aquifer is tapped by a series of dug wells <strong>an</strong>d<br />

has his<strong>to</strong>rically provided a large proportion of <strong>the</strong> water used<br />

<strong>in</strong> <strong>the</strong> central part of <strong>the</strong> Cuvelai Bas<strong>in</strong>. The MSAAN occurs<br />

north of <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong> <strong>an</strong>d Omuramba Omuthiya forms<br />

<strong>the</strong> south-eastern border. <strong>Groundwater</strong> flow is <strong>to</strong>wards <strong>the</strong><br />

E<strong>to</strong>sha P<strong>an</strong>. The flat water table gradient is 0.2 ‰. The MSAAN<br />

is recharged once a year by floodwaters from Angola, that flow<br />

via <strong>the</strong> osh<strong>an</strong>as <strong>in</strong><strong>to</strong> Lake Oponono <strong>an</strong>d c<strong>an</strong> even reach <strong>the</strong><br />

E<strong>to</strong>sha P<strong>an</strong> <strong>in</strong> years of high flow. These large flood events<br />

are called “efundjas”. The water quality of <strong>the</strong> MSAAN varies<br />

from brackish <strong>to</strong> sal<strong>in</strong>e with local freshwater lenses on <strong>to</strong>p<br />

of <strong>the</strong> sal<strong>in</strong>e water. The lenses form after flood events, ma<strong>in</strong>ly<br />

underneath <strong>the</strong> “osh<strong>an</strong>a” ch<strong>an</strong>nels <strong>an</strong>d <strong>the</strong> water quality deteriorates<br />

dur<strong>in</strong>g <strong>the</strong> dry season.<br />

With<strong>in</strong> <strong>the</strong> thick karstified calcretes of <strong>the</strong> E<strong>to</strong>sha Limes<strong>to</strong>ne<br />

Member (UKAEL), <strong>the</strong> depth <strong>to</strong> groundwater r<strong>an</strong>ges<br />

from a few metres <strong>to</strong> 25 m below ground level (bgl). The<br />

tr<strong>an</strong>smissivity values r<strong>an</strong>ge from 60 <strong>to</strong> 1000 m 2 /d. Yields<br />

vary from 1 m 3 /h <strong>to</strong> more th<strong>an</strong> 100 m 3 /h <strong>in</strong> <strong>the</strong> Halali<br />

area <strong>an</strong>d along <strong>the</strong> Ts<strong>in</strong>tsabis-Oshivelo road, where <strong>the</strong><br />

potential of <strong>the</strong> aquifer struck at depths between 70 <strong>to</strong> 90m<br />

below ground <strong>in</strong>creases westwards. The hydraulic cont<strong>in</strong>uity<br />

between <strong>the</strong> underly<strong>in</strong>g Otavi Dolomite Aquifer dolomites<br />

Arnold Bittner<br />

<strong>an</strong>d <strong>the</strong> Kalahari carbonates has not yet been proven. The<br />

age <strong>an</strong>d sal<strong>in</strong>ity of groundwater <strong>in</strong>crease along <strong>the</strong> flow path,<br />

particularly <strong>to</strong>wards <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong>.<br />

The Unconf<strong>in</strong>ed Kalahari Aquifer (UKAAN) covers most<br />

of <strong>the</strong> area around Oshivelo <strong>an</strong>d extends northwards <strong>to</strong>wards<br />

<strong>the</strong> Omuramba Akazulu <strong>an</strong>d <strong>the</strong>n north-east <strong>to</strong>wards <strong>the</strong><br />

Okav<strong>an</strong>go River. At Oshivelo, <strong>the</strong> UKAAN consists of 40m<br />

silty <strong>to</strong> clayey s<strong>an</strong>d-bear<strong>in</strong>g fresh <strong>to</strong> brackish ground water.<br />

The tr<strong>an</strong>smissivity is around 150 m 2 /d, while yields are less<br />

th<strong>an</strong> 10 m 3 /h. <strong>Groundwater</strong> sal<strong>in</strong>ity deteriorates with<strong>in</strong> a<br />

tr<strong>an</strong>sition zone of only 5 km from Group B <strong>to</strong> Group D<br />

<strong>in</strong> a nor<strong>the</strong>rnly direction.<br />

The Oshivelo Artesi<strong>an</strong> Aquifer (OAAAN) was first<br />

penetrated at Oshivelo where it is separated by a 13 m<br />

clay layer from <strong>the</strong> overly<strong>in</strong>g UKAAN. It cont<strong>in</strong>ues <strong>in</strong> a northwesterly<br />

direction <strong>an</strong>d was <strong>in</strong>tersected at depth <strong>in</strong> <strong>the</strong><br />

Okash<strong>an</strong>a <strong>an</strong>d K<strong>in</strong>g Kauluma areas. Although not certa<strong>in</strong>,<br />

it is assumed that <strong>the</strong> OAAAN extends as far as Ts<strong>in</strong>tsabis<br />

<strong>in</strong> <strong>the</strong> east <strong>an</strong>d <strong>the</strong> Omuramba Akazulu <strong>in</strong> <strong>the</strong> north, underly<strong>in</strong>g<br />

<strong>the</strong> UKAAN <strong>in</strong> <strong>the</strong> M<strong>an</strong>getti Duneveld. The sou<strong>the</strong>rn<br />

aquifer boundary is def<strong>in</strong>ed by <strong>the</strong> tr<strong>an</strong>sition between<br />

<strong>the</strong> calcrete <strong>an</strong>d s<strong>an</strong>d facies of <strong>the</strong> Unconf<strong>in</strong>ed Kalahari<br />

Aquifer, south of Oshivelo. The aquifer consists of s<strong>an</strong>ds<strong>to</strong>ne,<br />

gravel <strong>an</strong>d s<strong>an</strong>d, partly lime-cemented <strong>an</strong>d calcretised,<br />

separated from <strong>the</strong> upper aquifers by <strong>an</strong> aquitard compris<strong>in</strong>g<br />

brown-green clay, calcrete <strong>an</strong>d clayey s<strong>an</strong>d.<br />

In general, <strong>the</strong> deeper aquifers, underly<strong>in</strong>g <strong>the</strong> sou<strong>the</strong>rn<br />

H<strong>an</strong>d-dug well with<strong>in</strong> <strong>the</strong> Ma<strong>in</strong> Shallow Kalahari Aquifer (Oshiko<strong>to</strong><br />

Region). The groundwater is sal<strong>in</strong>e <strong>an</strong>d only suitable for lives<strong>to</strong>ck<br />

water<strong>in</strong>g.<br />

Dieter Plöthner


<strong>an</strong>d eastern parts of <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong><br />

<strong>an</strong>d <strong>the</strong> area around Oshivelo up <strong>to</strong><br />

Andoni vlakte, are under artesi<strong>an</strong><br />

pressure. The boundary of this area,<br />

some 8000km 2 <strong>in</strong> size, is de l<strong>in</strong>eated<br />

on <strong>the</strong> Map. The piezometric head<br />

of <strong>the</strong> OAAAN ground water is at<br />

1102m asl. Where <strong>the</strong> surface<br />

elevation is lower, <strong>the</strong>re is artesi<strong>an</strong><br />

flow. For <strong>in</strong>st<strong>an</strong>ce, <strong>in</strong> 1923 <strong>in</strong> <strong>the</strong><br />

Andonivlakte (1080 m asl) <strong>the</strong> piezometric head of <strong>the</strong><br />

OAAAN groundwater was 3 bars (304 kPa) or almost 30m<br />

above ground level. An upper freshwater layer <strong>an</strong>d a lower<br />

very brackish water horizon (TDS = 6700 mg/L) was struck<br />

<strong>an</strong>d screened at <strong>an</strong> average depth of 170 m bgl. In 1971, <strong>the</strong><br />

radiocarbon dat<strong>in</strong>g showed this groundwater <strong>to</strong> be 14 000<br />

years old.<br />

The values of tr<strong>an</strong>smissivity r<strong>an</strong>ge from 3000 <strong>to</strong> 10 000<br />

m 2 /d. The hydraulic conductivity is 8·10 -5 for <strong>the</strong> upper s<strong>an</strong>dy,<br />

<strong>an</strong>d 7·10 -3 m/s for <strong>the</strong> lower gravelly parts of <strong>the</strong> aquifer. The<br />

yield c<strong>an</strong> be very high <strong>in</strong> <strong>the</strong> Oshivelo area (>200 m 3 /h)<br />

but decreases <strong>to</strong>wards <strong>the</strong> north-west where <strong>the</strong> aquifer is less<br />

permeable. The OAAAN is recharged by throughflow from<br />

<strong>the</strong> Unconf<strong>in</strong>ed Kalahari Aquifer <strong>an</strong>d <strong>the</strong> Otavi Dolomite<br />

Aquifer south of <strong>the</strong> Omuramba Owambo. In <strong>the</strong> Omuramba<br />

Omuthiya area, <strong>the</strong> groundwaters of <strong>the</strong> UKAAN<br />

<strong>an</strong>d OAAAN become mixed <strong>an</strong>d eventually discharge <strong>in</strong><strong>to</strong> <strong>the</strong><br />

E<strong>to</strong>sha P<strong>an</strong>. The sal<strong>in</strong>ity of <strong>the</strong> artesi<strong>an</strong> groundwater r<strong>an</strong>ges<br />

from 600 <strong>to</strong> 1500 mg/L, deteriorat<strong>in</strong>g <strong>to</strong>wards <strong>the</strong> northwest<br />

where concentration of <strong>to</strong>tal dissolved solids, TDS,<br />

exceed 2 600 mg/L (Group D).<br />

The high groundwater potential <strong>in</strong> <strong>the</strong> surround<strong>in</strong>gs<br />

Generalised aquifer specifications of boreholes penetrat<strong>in</strong>g <strong>the</strong><br />

OAAAN at Oshivelo<br />

Depth<br />

[ m bgl]<br />

Aquifer<br />

thickness<br />

[ m]<br />

Lithology<br />

Aquifer<br />

/<br />

Aquitard<br />

Water<br />

quality<br />

0 – 40<br />

40<br />

s<strong>an</strong>d;<br />

white-green,<br />

calcareous,<br />

clayey<br />

UKA , MSA<br />

AN<br />

AN<br />

fresh<br />

<strong>to</strong><br />

brackish<br />

40 – 53<br />

13<br />

clay;<br />

seprolite;<br />

brown-green,<br />

s<strong>an</strong>dy<br />

A quitard<br />

–<br />

53– 67<br />

67 – 81<br />

14<br />

14<br />

silcrete<br />

<strong>an</strong>d<br />

quartz<br />

s<strong>an</strong>d;<br />

light<br />

brown<br />

s<strong>an</strong>d,<br />

s<strong>an</strong>ds<strong>to</strong>ne,<br />

gravel;<br />

white,<br />

light<br />

green<br />

upper<br />

section<br />

of<br />

OAAAN lower<br />

section<br />

of<br />

OAAAN fresh<br />

fresh<br />

Under pressure! Borehole penetrat<strong>in</strong>g <strong>the</strong> Oshivelo<br />

Artesi<strong>an</strong> Aquifer with a free flow<strong>in</strong>g yield of more<br />

th<strong>an</strong> 200 m 3 /h.<br />

Arnold Bittner<br />

of Oshivelo is <strong>in</strong>dicated by <strong>the</strong> dark<br />

blue (OAAAN) <strong>an</strong>d <strong>the</strong> dark green<br />

(UKAEL) colours on <strong>the</strong> Map. The<br />

susta<strong>in</strong>able yield of <strong>the</strong> aquifer was<br />

roughly estimated <strong>to</strong> be 2.5 Mm 3 /a.<br />

A ma<strong>the</strong> matical groundwater<br />

model suggests that, between<br />

Ts<strong>in</strong>tsabis <strong>an</strong>d Oshivelo, a groundwater<br />

flow of some 31 Mm 3 /a is<br />

directed northwards from <strong>the</strong><br />

dolomite areas around Tsumeb.<br />

The Ma<strong>in</strong> Deep Aquifer (MDAAN) is present <strong>in</strong> <strong>the</strong> eastern<br />

Oh<strong>an</strong>gwena <strong>an</strong>d nor<strong>the</strong>rn Oshiko<strong>to</strong> regions. The groundwater<br />

flow is southward, <strong>to</strong>wards <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong>, while<br />

<strong>the</strong> recharge area is probably located <strong>in</strong> sou<strong>the</strong>rn Angola.<br />

The sou<strong>the</strong>rn <strong>an</strong>d eastern boundary is uncerta<strong>in</strong> <strong>an</strong>d it is<br />

assumed that <strong>the</strong> conf<strong>in</strong>ed MDAAN underlies <strong>the</strong> unconf<strong>in</strong>ed<br />

MSAAN <strong>in</strong> <strong>the</strong> Eenh<strong>an</strong>a-Ok<strong>an</strong>kolo area. At K<strong>in</strong>g<br />

Kauluma, values of tr<strong>an</strong>smissivity r<strong>an</strong>ge from 20-60 m 2 /d<br />

<strong>an</strong>d yield from 3-10 m 3 /h.<br />

The MDAAN is a cont<strong>in</strong>uous porous aquifer, which was<br />

<strong>in</strong>tersected between Eenh<strong>an</strong>a <strong>an</strong>d Okongo at depths between<br />

60 <strong>an</strong>d 160 m bgl, represent<strong>in</strong>g <strong>the</strong> ma<strong>in</strong> freshwater source<br />

<strong>in</strong> <strong>the</strong> Oh<strong>an</strong>gwena Region. West of <strong>the</strong> l<strong>in</strong>e Eenh<strong>an</strong>a-<br />

Ok<strong>an</strong>kolo, <strong>the</strong> MDAAN is brackish <strong>to</strong> sal<strong>in</strong>e <strong>an</strong>d c<strong>an</strong>not<br />

be developed for dr<strong>in</strong>k<strong>in</strong>g water purposes. Towards <strong>the</strong> south,<br />

<strong>the</strong> water quality deteriorates over a short dist<strong>an</strong>ce <strong>an</strong>d is of<br />

Group D quality <strong>in</strong> <strong>the</strong> K<strong>in</strong>g Kauluma area, due <strong>to</strong> sal<strong>in</strong>ity<br />

<strong>an</strong>d high fluoride concentrations. Mix<strong>in</strong>g with waters<br />

well<strong>in</strong>g up along fault systems from deeper aquifers causes<br />

fur<strong>the</strong>r deterioration.<br />

The Very Deep Aquifer (VDAOL) was <strong>in</strong>tersected at <strong>the</strong><br />

same locations as <strong>the</strong> MDAAN, but at depths of between<br />

130 <strong>an</strong>d 380 m bgl. The VDAOL is situated with<strong>in</strong> <strong>the</strong><br />

Olukonda Formation, which underlies <strong>the</strong> Andoni<br />

Formation <strong>in</strong> most parts of <strong>the</strong> Owambo Bas<strong>in</strong>. Like <strong>the</strong><br />

MDAAN, <strong>the</strong> water quality deteriorates from north <strong>to</strong> south.<br />

The recharge area must be located <strong>in</strong> Angola. The water<br />

quality is fresh, east of Eenh<strong>an</strong>a, but becomes more <strong>an</strong>d<br />

more sal<strong>in</strong>e <strong>to</strong>wards <strong>the</strong> south-west. In <strong>the</strong> south-western<br />

area, however, it is generally better th<strong>an</strong> <strong>the</strong> quality of <strong>the</strong><br />

MDAAN, result<strong>in</strong>g <strong>in</strong> <strong>the</strong> situation that groundwater from<br />

55


56<br />

boreholes penetrat<strong>in</strong>g <strong>the</strong><br />

VDAOL at depth is fresh,<br />

while water pumped from<br />

<strong>the</strong> overly<strong>in</strong>g MDAAN is<br />

brackish. This occurs at<br />

Ok<strong>an</strong>kolo, Onayena <strong>an</strong>d<br />

Eenyama, where <strong>the</strong> upper<br />

sal<strong>in</strong>e aquifers are sealed off<br />

<strong>an</strong>d fresh groundwater is<br />

pumped from <strong>the</strong> VDAOL <strong>to</strong><br />

supply dr<strong>in</strong>k<strong>in</strong>g water. No details on aquifer parameters <strong>an</strong>d<br />

water quality are available for <strong>the</strong> Beisib <strong>an</strong>d Ombal<strong>an</strong>tu<br />

formations.<br />

In <strong>the</strong> central Cuvelai Bas<strong>in</strong>, <strong>the</strong> Karoo rock succession<br />

is made up of glaciogenic rocks (largely tillite with <strong>in</strong>terbedded<br />

shales) of <strong>the</strong> Dwyka Formation, shales <strong>an</strong>d coals of <strong>the</strong><br />

Pr<strong>in</strong>ce Albert Formation, <strong>an</strong>d aeoli<strong>an</strong> s<strong>an</strong>ds<strong>to</strong>ne of <strong>the</strong> Etjo<br />

Formation (only at N<strong>an</strong>zi). These lie on deeply wea<strong>the</strong>red<br />

rocks of <strong>the</strong> Owambo Formation. Aeromagnetic surveys<br />

<strong>in</strong>dicate basaltic lavas equivalent <strong>to</strong> <strong>the</strong> Rundu Formation<br />

<strong>in</strong> <strong>the</strong> south-east of <strong>the</strong> bas<strong>in</strong> beneath <strong>the</strong> Kalahari succession.<br />

Recent drill<strong>in</strong>g proved that <strong>the</strong> Karoo rocks <strong>in</strong>clud<strong>in</strong>g<br />

basalt lavas <strong>an</strong>d dykes underlie <strong>the</strong> Kalahari sediments <strong>in</strong><br />

<strong>the</strong> south of E<strong>to</strong>sha.<br />

The Karoo Sequence Aquitard (KSA) comprises rocks such<br />

as shale, muds<strong>to</strong>ne, s<strong>an</strong>ds<strong>to</strong>ne <strong>an</strong>d basalt. In general it acts<br />

as <strong>an</strong> aquitard with tr<strong>an</strong>smissivity values r<strong>an</strong>g<strong>in</strong>g from 1 <strong>to</strong><br />

10 m 2 /d. However, locally it constitutes <strong>an</strong> aquifer. Three boreholes<br />

encountered pelitic sediments, while two boreholes struck<br />

wea<strong>the</strong>red basalt. At four sites located between Tsumeb <strong>an</strong>d<br />

Oshivelo, <strong>the</strong> Karoo shales <strong>an</strong>d <strong>in</strong>trusives were penetrated at<br />

depths of between 160 <strong>an</strong>d 400 m bgl. The system is semiconf<strong>in</strong>ed<br />

<strong>to</strong> conf<strong>in</strong>ed. The Karoo aquitard hydraulically separates<br />

<strong>the</strong> underly<strong>in</strong>g Otavi Dolomites from <strong>the</strong> overly<strong>in</strong>g<br />

Kalahari Sequence. At Halali, some 100 km west of <strong>the</strong>se sites,<br />

Karoo dolerite acts as <strong>an</strong> aquifer, where <strong>the</strong> hydraulic parameters<br />

are: Tr<strong>an</strong>smissivity, T=50 m 2 /d <strong>an</strong>d hydraulic conductivity,<br />

K= 6 ·10 -5 m/s. The water quality is Group C due <strong>to</strong><br />

sodium con centrations above 400 mg/L.<br />

The lowest hydrogeological units <strong>in</strong> <strong>the</strong> bas<strong>in</strong> are rocks<br />

of <strong>the</strong> Damara Sequence. Al though <strong>the</strong>se are described <strong>in</strong><br />

detail <strong>in</strong> <strong>the</strong> section on <strong>the</strong> Otavi Mounta<strong>in</strong> L<strong>an</strong>d, <strong>the</strong>y need<br />

Flooded grassl<strong>an</strong>ds near Lake Oponono<br />

<strong>to</strong> be men tioned<br />

briefly here,<br />

because of <strong>the</strong><br />

hydraulic con -<br />

nections <strong>to</strong> <strong>the</strong><br />

Cuvelai-E<strong>to</strong>sha<br />

Bas<strong>in</strong> aquifers.<br />

The mostly f<strong>in</strong>egra<strong>in</strong>ed<br />

sediments<br />

of <strong>the</strong> Mulden<br />

Group Aquitard (MGA) are generally considered <strong>to</strong> act as<br />

<strong>an</strong> aquitard (T=3 m2 /d), however, locally <strong>the</strong>y c<strong>an</strong> constitute<br />

<strong>an</strong> aquifer. At Okaukuejo, <strong>the</strong> Mulden Group constitutes<br />

a local frac tured quartzite aquifer (T=300 m2 /d,<br />

K=2·10 -4 m/s) <strong>an</strong>d <strong>the</strong> groundwater is slightly brackish<br />

(TDS =1400 mg/L).<br />

The carbonates of <strong>the</strong> Otavi Dolomite Aquifer (ODA)<br />

constitute a thick fractured <strong>an</strong>d partly karstified aquifer system<br />

represent<strong>in</strong>g <strong>the</strong> ma<strong>in</strong> hardrock aquifer <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn<br />

part of <strong>the</strong> Cuvelai Bas<strong>in</strong>. Artesi<strong>an</strong> boreholes tapp<strong>in</strong>g<br />

<strong>the</strong> dolomite aquifer beneath Kalahari Sequence sediments<br />

are reported from <strong>the</strong> sou<strong>the</strong>rn marg<strong>in</strong> of <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong>.<br />

The dolomite groundwater is generally fresh (TDS


Except for brief periods of fresh -<br />

water flows <strong>in</strong><strong>to</strong> <strong>the</strong> aquifer, this source<br />

is of very limited use. North-west of<br />

Oshivelo, dashed or<strong>an</strong>ge hatch<strong>in</strong>g on<br />

<strong>the</strong> Map h<strong>in</strong>ts at poor quality groundwater<br />

at depth, correspond<strong>in</strong>g <strong>to</strong> deteriorat<strong>in</strong>g<br />

quality of <strong>the</strong> Oshivelo Artesi<strong>an</strong><br />

Aquifer groundwater southwards.<br />

North of <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong>, <strong>the</strong> Kalahari<br />

<strong>an</strong>d Karoo sequences <strong>an</strong>d <strong>the</strong><br />

upper part of <strong>the</strong> Owambo Formation<br />

form a large reservoir conta<strong>in</strong><strong>in</strong>g highly<br />

sal<strong>in</strong>e groundwater. The TDS r<strong>an</strong>ges<br />

from 30 000 <strong>to</strong> 100 000 mg/L <strong>an</strong>d<br />

chloride concentrations are 10 000 <strong>to</strong><br />

40 000 mg/L. The water quality im -<br />

proves as one moves eastwards, westwards <strong>an</strong>d southwards<br />

from <strong>the</strong> central zone. The best quality ground water is available<br />

along <strong>the</strong> bas<strong>in</strong> rim <strong>in</strong> much of <strong>the</strong> Tsumeb area, <strong>in</strong> <strong>the</strong><br />

entire north-eastern area of Oh<strong>an</strong>gwena <strong>an</strong>d Oshiko<strong>to</strong>, <strong>in</strong><br />

south-western Omusati <strong>an</strong>d E<strong>to</strong>sha, <strong>an</strong>d <strong>in</strong> <strong>the</strong> Uukwaluudhi<br />

area north <strong>to</strong>wards Ruac<strong>an</strong>a.<br />

Contrary <strong>to</strong> this general picture, relatively fresh groundwater<br />

c<strong>an</strong> sometimes be found with<strong>in</strong> <strong>the</strong> brackish central<br />

area, while places of sal<strong>in</strong>e water may be encountered <strong>in</strong> areas<br />

usually provid<strong>in</strong>g fresh groundwater (see small-scale <strong>in</strong>set<br />

map on “<strong>Groundwater</strong> quality”). Much of this patch<strong>in</strong>ess<br />

is due <strong>to</strong> <strong>the</strong> fact that separate horizons <strong>in</strong> <strong>the</strong> same area c<strong>an</strong><br />

Iso<strong>to</strong>pe sampl<strong>in</strong>g of a solar powered well <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>rn Central<br />

area<br />

Source: Ingo Bardenhagen<br />

Department of Water Affairs, <strong>Namibia</strong><br />

Block diagramme show<strong>in</strong>g <strong>the</strong> recharge of <strong>the</strong> Oshivelo Artesi<strong>an</strong> Aquifer<br />

Dieter Plöthner<br />

have very different qualities of water. Thus, a borehole may<br />

encounter a freshwater aquifer 50 m bgl, but deeper drill<strong>in</strong>g<br />

c<strong>an</strong> reach a brackish aquifer at 100 m depth.<br />

The mech<strong>an</strong>ism of groundwater recharge <strong>in</strong> <strong>the</strong> Cuvelai<br />

Bas<strong>in</strong> is not yet entirely unders<strong>to</strong>od. However, <strong>the</strong> follow<strong>in</strong>g<br />

scenarios, supported by <strong>the</strong> results of a stable iso<strong>to</strong>pe study<br />

<strong>in</strong> <strong>the</strong> north <strong>an</strong>d by numerical groundwater modell<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> south, are most likely <strong>to</strong> occur:<br />

• Direct recharge from ra<strong>in</strong>fall replenishes <strong>the</strong> Unconf<strong>in</strong>ed<br />

Kalahari Aquifers (UKA) <strong>in</strong> <strong>the</strong> north <strong>an</strong>d <strong>in</strong> <strong>the</strong> centre at<br />

a rate of up <strong>to</strong> 1 mm or 0.2 % of <strong>the</strong> me<strong>an</strong> <strong>an</strong>nual ra<strong>in</strong>fall,<br />

<strong>an</strong>d 0.25 % across <strong>the</strong> calcrete areas of <strong>the</strong> E<strong>to</strong>sha<br />

Limes<strong>to</strong>ne Member (UKAEL) <strong>in</strong> <strong>the</strong> south. In <strong>the</strong> nor<strong>the</strong>astern<br />

part of <strong>the</strong> bas<strong>in</strong>, where <strong>an</strong>nual average ra<strong>in</strong>fall is<br />

above 500 mm, groundwater recharge occurs <strong>in</strong> <strong>the</strong> Kalahari<br />

sediments, as <strong>in</strong>dicated by higher electromagnetic<br />

resistivities <strong>an</strong>d relatively young groundwater ages.<br />

• Indirect recharge through osh<strong>an</strong>as orig<strong>in</strong>at<strong>in</strong>g from<br />

Angola is likely <strong>to</strong> be <strong>the</strong> major driv<strong>in</strong>g force of groundwater<br />

recharge of <strong>the</strong> Ma<strong>in</strong> Deep Aquifer (MDAAN)<br />

<strong>an</strong>d <strong>the</strong> Very Deep Aquifer (VDAOL) <strong>in</strong> <strong>the</strong> north. The<br />

age, determ<strong>in</strong>ed by radiocarbon dat<strong>in</strong>g of <strong>the</strong> MDAAN<br />

groundwater <strong>in</strong>creases from 2000 years near Okongo <strong>to</strong><br />

15 000 years near Ok<strong>an</strong>kolo along its south-westerly flow<br />

path, while <strong>the</strong> VDAOL groundwater south-west of<br />

Ok<strong>an</strong>kolo is 35 000 years old.<br />

57


58<br />

Utilisation of ground -<br />

water<br />

S<strong>in</strong>ce surface water is<br />

only available for certa<strong>in</strong><br />

periods <strong>in</strong> <strong>the</strong> Cuvelai Bas<strong>in</strong>,<br />

people rely on o<strong>the</strong>r sources<br />

of water dur<strong>in</strong>g dry periods.<br />

Access <strong>to</strong> groundwater was<br />

a key fac<strong>to</strong>r en abl<strong>in</strong>g people<br />

<strong>to</strong> settle <strong>in</strong> <strong>the</strong> bas<strong>in</strong> m<strong>an</strong>y<br />

hundreds of years ago. Traditionally, <strong>the</strong> groundwater was<br />

tapped by dug wells. The western, sou<strong>the</strong>rn <strong>an</strong>d eastern areas<br />

of <strong>the</strong> region are supplied with groundwater from wells <strong>an</strong>d<br />

boreholes. In 1991, 60 % of <strong>the</strong> water supply depended on<br />

dug wells, 10 % on drilled wells <strong>an</strong>d 30 % on a pipel<strong>in</strong>e<br />

system. Dur<strong>in</strong>g <strong>the</strong> 1990s, several drill<strong>in</strong>g pro grammes were<br />

conducted, m<strong>an</strong>y for drought relief.<br />

The central Cuvelai area with its predom<strong>in</strong><strong>an</strong>tly sal<strong>in</strong>e<br />

groundwater (or<strong>an</strong>ge hatched area on <strong>the</strong> Map), is supplied<br />

by a complex system of c<strong>an</strong>als <strong>an</strong>d pipel<strong>in</strong>es from Angola.<br />

Water s<strong>to</strong>red <strong>in</strong> <strong>the</strong> Calueque Dam on <strong>the</strong> Kunene River<br />

just north of <strong>the</strong> border is pumped via a c<strong>an</strong>al <strong>to</strong> <strong>the</strong><br />

Olush<strong>an</strong>dja Dam <strong>in</strong> <strong>Namibia</strong>, from where it is gravity fed<br />

via a concrete-l<strong>in</strong>ed c<strong>an</strong>al <strong>to</strong> Oshakati. Olush<strong>an</strong>dja Dam<br />

also supplies water by gravity via <strong>the</strong> unl<strong>in</strong>ed Etaka c<strong>an</strong>al <strong>to</strong><br />

Ts<strong>an</strong>di <strong>an</strong>d Okahao, primarily for lives<strong>to</strong>ck water<strong>in</strong>g. Dr<strong>in</strong>k<strong>in</strong>g<br />

water is supplied <strong>to</strong> <strong>the</strong> same area by a pipel<strong>in</strong>e parallel<br />

<strong>to</strong> <strong>the</strong> c<strong>an</strong>al. The two c<strong>an</strong>als <strong>an</strong>d <strong>the</strong> major pipel<strong>in</strong>es<br />

are marked on <strong>the</strong> Map.<br />

In 2000, more th<strong>an</strong> 100 000 people (about 15 % of <strong>the</strong><br />

<strong>to</strong>tal population) still lived beyond <strong>the</strong> desired 2.5 km from<br />

safe dr<strong>in</strong>k<strong>in</strong>g water. Government rural water supply projects<br />

aim <strong>to</strong> br<strong>in</strong>g this number down by extend<strong>in</strong>g <strong>the</strong> surface<br />

water pipel<strong>in</strong>e system <strong>an</strong>d by drill<strong>in</strong>g new boreholes. The<br />

ma<strong>in</strong> drill<strong>in</strong>g target area is <strong>the</strong> Oshivelo Artesi<strong>an</strong> Aquifer.<br />

Pl<strong>an</strong>s are <strong>to</strong> tap this aquifer us<strong>in</strong>g 3 production wells<br />

supply<strong>in</strong>g some 2.5 Mm 3 /a of fresh groundwater via a<br />

pipel<strong>in</strong>e <strong>to</strong> <strong>the</strong> Oshivelo-Omutsegwonime-Ok<strong>an</strong>kolo area.<br />

There is a risk of salt water <strong>in</strong>trusion <strong>in</strong><strong>to</strong> <strong>the</strong> freshwater<br />

horizons, especially from <strong>the</strong> west <strong>an</strong>d from underly<strong>in</strong>g<br />

strata. Therefore <strong>the</strong> aquifer must be <strong>in</strong>vestigated <strong>in</strong> detail<br />

before its full potential c<strong>an</strong> be used.<br />

Makal<strong>an</strong>i palms typical of <strong>the</strong> Cuvelai Region<br />

Eight water supply schemes<br />

based on groundwater <strong>an</strong>d<br />

operated by NamWater ab -<br />

stract almost 0.9 Mm3 /a for<br />

dr<strong>in</strong>k<strong>in</strong>g water, of which<br />

0.5 Mm3 /a is supplied <strong>to</strong><br />

three <strong>to</strong>urist camps <strong>in</strong> <strong>the</strong><br />

E<strong>to</strong>sha National Park (see<br />

Box on opposite page).<br />

For <strong>the</strong> communal farm<strong>in</strong>g<br />

area north of <strong>the</strong> Omuramba Owambo, <strong>the</strong> dem<strong>an</strong>d for<br />

lives<strong>to</strong>ck water<strong>in</strong>g is approximately 13 Mm3 /a <strong>an</strong>d is based<br />

on 1998 lives<strong>to</strong>ck estimates of 550 000 cattle <strong>an</strong>d 1325 000<br />

goats <strong>an</strong>d sheep, <strong>an</strong>d dem<strong>an</strong>d figures of 45 L/d per large<br />

s<strong>to</strong>ck unit, LSU, 8 L/d per small s<strong>to</strong>ck unit, SSU. About 0.6<br />

Mm3 /a of ground water is abstracted each year for lives<strong>to</strong>ck<br />

water<strong>in</strong>g (31000 LSU, 34 000 SSU) <strong>in</strong> <strong>the</strong> Tsu meb<br />

commercial farm<strong>in</strong>g area south of <strong>the</strong> Omuramba Owambo.<br />

<strong>Groundwater</strong>-based irrigation is carried out on two farms:<br />

M<strong>an</strong>getti Dunes <strong>an</strong>d Namat<strong>an</strong>ga (Kaokol<strong>an</strong>d), vegetables<br />

are grown us<strong>in</strong>g drip irrigation. The water consumption rate<br />

is 10 000 m3 /a per hectare. Surface water is used for irrigation<br />

on three government farms near Ruac<strong>an</strong>a <strong>an</strong>d<br />

Oshikuku: Mahenne, Etunda <strong>an</strong>d Ogongo. Two grow ma<strong>in</strong>ly<br />

vegetables on 10 -12 ha of l<strong>an</strong>d each, while at Etunda 600<br />

of <strong>the</strong> 1200 ha of irrigable l<strong>an</strong>d is used <strong>to</strong> grow vegetables,<br />

maize <strong>an</strong>d wheat, us<strong>in</strong>g spr<strong>in</strong>klers. This water<strong>in</strong>g technique<br />

uses twice <strong>the</strong> amount of water, 15 000-24000 m3 /a per<br />

ha, that drip irrigation would for <strong>the</strong> same production.<br />

A BITTNER, D PLÖTHNER<br />

Kev<strong>in</strong> Roberts<br />

FURTHER READING<br />

• L<strong>in</strong>deque PM & M L<strong>in</strong>deque (Eds). 1997.<br />

Special Edition on <strong>the</strong> E<strong>to</strong>sha National Park<br />

MADOQUA, Vol 20,1. W<strong>in</strong>dhoek, <strong>Namibia</strong>.<br />

• Mendelsohn J, S el Obeid <strong>an</strong>d C Roberts. 2000.<br />

A profile of north-central <strong>Namibia</strong>. Environ -<br />

mental Profiles Project. W<strong>in</strong>dhoek, <strong>Namibia</strong>.<br />

• Miller R McG. 1990. The Owambo Bas<strong>in</strong> of<br />

Nor<strong>the</strong>rn <strong>Namibia</strong>. Geological Survey <strong>Namibia</strong>.<br />

W<strong>in</strong>dhoek, <strong>Namibia</strong>.


Water supply of<br />

<strong>the</strong> E<strong>to</strong>sha<br />

National Park<br />

The E<strong>to</strong>sha National Park, Nami bia’s<br />

best known <strong>to</strong>urist attraction, is one of<br />

<strong>the</strong> largest nature reserves <strong>in</strong> Africa,<br />

compris<strong>in</strong>g <strong>an</strong> area of 22 270 km 2 . The<br />

unique hydrogeological sett<strong>in</strong>g with<br />

50 <strong>to</strong> 60 perm<strong>an</strong>ent spr<strong>in</strong>gs, mostly<br />

contact spr<strong>in</strong>gs situated along <strong>the</strong><br />

sou<strong>the</strong>rn rim of <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong>, has<br />

attracted m<strong>an</strong> <strong>an</strong>d wildlife through out<br />

his<strong>to</strong>ry.<br />

Today, boreholes tapp<strong>in</strong>g groundwater<br />

from various aquifers supply most<br />

of <strong>the</strong> waterholes frequented by game,<br />

as well as <strong>the</strong> <strong>to</strong>urist camps. M<strong>an</strong>y contact<br />

spr<strong>in</strong>gs have dried up because <strong>the</strong><br />

water table was lowered by pump<strong>in</strong>g.<br />

Most of <strong>the</strong> waterholes are supplied by<br />

groundwater from <strong>the</strong> calcretes of <strong>the</strong><br />

Unconf<strong>in</strong>ed Kalahari Aquifer (UKAEL).<br />

The calcretes cover <strong>the</strong> entire area south<br />

<strong>an</strong>d west of <strong>the</strong> E<strong>to</strong>sha P<strong>an</strong>. The calcrete<br />

groundwater quality is of Group<br />

A <strong>an</strong>d B, i.e. suitable for dr<strong>in</strong>k<strong>in</strong>g, only<br />

The E<strong>to</strong>sha National Park – unique hydrogeological sett<strong>in</strong>g<br />

with 50 <strong>to</strong> 60 perm<strong>an</strong>ent spr<strong>in</strong>gs<br />

<strong>in</strong> <strong>the</strong> western <strong>an</strong>d sou<strong>the</strong>rn park area,<br />

decl<strong>in</strong><strong>in</strong>g <strong>to</strong> Group D, suitable only<br />

for wildlife <strong>an</strong>d road construction,<br />

<strong>to</strong>wards <strong>the</strong> sou<strong>the</strong>rn rim of <strong>the</strong> E<strong>to</strong>sha<br />

P<strong>an</strong>. Alternative groundwater resources<br />

had <strong>to</strong> be developed at greater depths<br />

for <strong>the</strong> three rest camps.<br />

At Okaukuejo, groundwater of<br />

Group B quality from a quartzitic horizon<br />

of <strong>the</strong> Mulden Group (MGA) is<br />

tapped <strong>to</strong> supply dr<strong>in</strong>k<strong>in</strong>g water, while<br />

<strong>the</strong> Group C water of <strong>the</strong> calcretes is<br />

used for l<strong>an</strong>dscape garden<strong>in</strong>g, <strong>the</strong><br />

waterhole <strong>an</strong>d <strong>the</strong> swimm<strong>in</strong>g pool.<br />

At Halali, poor quality ground water<br />

from <strong>the</strong> calcretes is pumped from <strong>the</strong><br />

Kle<strong>in</strong> Halali wellfield <strong>to</strong> <strong>the</strong> reservoir,<br />

where it is mixed with fresh groundwater<br />

of <strong>the</strong> Otavi Dolomite Aquifer<br />

(ODA) from <strong>the</strong> Renosterkom wellfield.<br />

This scheme is situated on a<br />

dolomite outcrop about 6 km south of<br />

Halali.<br />

Dr<strong>in</strong>k<strong>in</strong>g water for Namu<strong>to</strong>ni is<br />

supplied by a wellfield at <strong>the</strong> L<strong>in</strong>deque<br />

Gate 14 km east of Namu<strong>to</strong>ni <strong>an</strong>d taps<br />

groundwater from <strong>the</strong> Oshivelo Artesi<strong>an</strong><br />

Aquifer (OAAAN). The well at<br />

Namu<strong>to</strong>ni on <strong>the</strong> same<br />

aquifer is slightly brackish<br />

<strong>an</strong>d c<strong>an</strong> only be used<br />

<strong>to</strong> fill <strong>the</strong> artificial gameview<strong>in</strong>g<br />

waterhole <strong>an</strong>d<br />

for <strong>the</strong> camp gardens.<br />

The comb<strong>in</strong>ed water<br />

con sumption of <strong>the</strong> 3<br />

<strong>to</strong>urist rest camps was<br />

0.5 Mm 3 /a <strong>in</strong> 1994 <strong>an</strong>d<br />

is met by <strong>the</strong> aqui fers,<br />

Wyn<strong>an</strong>d du Plessis<br />

but water conservation<br />

is necessary <strong>to</strong> cope with<br />

<strong>the</strong> grow<strong>in</strong>g dem<strong>an</strong>d <strong>in</strong><br />

Karstified dolomites close <strong>to</strong> <strong>the</strong> artificial<br />

water hole at Halali<br />

<strong>the</strong> future. A <strong>to</strong>tal of 41000 day visi<strong>to</strong>rs<br />

<strong>an</strong>d 193 000 overnight guests were<br />

recorded <strong>in</strong> 1998, giv<strong>in</strong>g a relatively<br />

high average water dem<strong>an</strong>d of 210 L/d<br />

per <strong>to</strong>urist.<br />

A few waterholes for game water<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> west near Otjovas<strong>an</strong>du <strong>an</strong>d south<br />

of <strong>the</strong> park at Ombika/Anderson Gate<br />

tap fresh groundwater (Group A) from<br />

calcretes, dolomites <strong>an</strong>d quartzites. In<br />

contrast, <strong>the</strong> majority of <strong>the</strong> waterholes<br />

located <strong>in</strong> <strong>the</strong> central <strong>an</strong>d eastern parts<br />

of <strong>the</strong> park provide brackish groundwater<br />

of Group C-D quality. Most of<br />

<strong>the</strong>se do not meet <strong>the</strong> guidel<strong>in</strong>e values<br />

for hum<strong>an</strong> consumption <strong>an</strong>d <strong>in</strong><br />

cases exceed even those for lives<strong>to</strong>ck<br />

water<strong>in</strong>g. The problematic parameters<br />

are TDS, sodium, chloride <strong>an</strong>d sulphate.<br />

Poor quality water may also<br />

adversely affect wildlife.<br />

K DIERKES<br />

Wilhelm Struckmeier<br />

59


60<br />

Otavi Mounta<strong>in</strong> L<strong>an</strong>d<br />

The hydrogeological region of <strong>the</strong> Otavi Mounta<strong>in</strong> L<strong>an</strong>d<br />

comprises <strong>the</strong> nor<strong>the</strong>rn Otjozondjupa, <strong>the</strong> sou<strong>the</strong>rn<br />

Oshiko<strong>to</strong> <strong>an</strong>d <strong>the</strong> south-eastern Kunene regions. It stretches<br />

from <strong>the</strong> Otavi, Grootfonte<strong>in</strong>, Tsumeb tri<strong>an</strong>gle <strong>in</strong> <strong>the</strong> east<br />

along <strong>the</strong> sou<strong>the</strong>rn rim of <strong>the</strong> E<strong>to</strong>sha bas<strong>in</strong> <strong>an</strong>d westwards<br />

<strong>to</strong> 70 km beyond Outjo.<br />

The Otavi Mounta<strong>in</strong> L<strong>an</strong>d is a dolomitic massif ris<strong>in</strong>g<br />

up <strong>to</strong> 2 090 m asl, some 500 m above <strong>the</strong> surround<strong>in</strong>g pla<strong>in</strong>s<br />

as shown <strong>in</strong> this pho<strong>to</strong>graph west of Hoba. In <strong>the</strong> south<br />

<strong>the</strong>re is a gentle slope <strong>to</strong>wards Goblenz (1250 m asl) <strong>an</strong>d<br />

northwards <strong>to</strong> Oshivelo <strong>an</strong>d E<strong>to</strong>sha<br />

P<strong>an</strong> (1080 m asl). The Otavi Mounta<strong>in</strong><br />

L<strong>an</strong>d represents a watershed dra<strong>in</strong><strong>in</strong>g<br />

westwards <strong>in</strong><strong>to</strong> <strong>the</strong> Ugab River<br />

catchment, northwards <strong>in</strong><strong>to</strong> <strong>the</strong> E<strong>to</strong>sha<br />

P<strong>an</strong>, south <strong>an</strong>d eastwards <strong>in</strong><strong>to</strong> <strong>the</strong><br />

Omatako Omuramba, a tributary of<br />

<strong>the</strong> Okav<strong>an</strong>go River.<br />

The area receives a me<strong>an</strong> <strong>an</strong>nual<br />

ra<strong>in</strong> fall of 540 mm, decreas<strong>in</strong>g <strong>to</strong><br />

450 mm <strong>to</strong> wards Outjo. The graph<br />

shows <strong>the</strong> deviation of <strong>an</strong>nual ra<strong>in</strong>fall<br />

sums, based on <strong>the</strong> average from 50 stations, from <strong>the</strong><br />

long-term <strong>an</strong>nual me<strong>an</strong> (1926-1992) from 1911 <strong>to</strong> 1999.<br />

The large variation <strong>in</strong> ra<strong>in</strong>fall with time is evident <strong>an</strong>d<br />

amounts <strong>to</strong> 50-60 % of <strong>the</strong> me<strong>an</strong>. It is clear that <strong>the</strong> Otavi<br />

Mounta<strong>in</strong> L<strong>an</strong>d ma<strong>in</strong>ly received below me<strong>an</strong> <strong>an</strong>nual ra<strong>in</strong>-<br />

Source: G Schmidt, <strong>BGR</strong><br />

View, look<strong>in</strong>g west, from Hoba over <strong>the</strong> dolomitic massif of <strong>the</strong><br />

Otavi Mounta<strong>in</strong> L<strong>an</strong>d (Br<strong>an</strong>dwag) ris<strong>in</strong>g above <strong>the</strong> surround<strong>in</strong>g<br />

pla<strong>in</strong> where maize is grown<br />

fall over <strong>the</strong> past two decades. The me<strong>an</strong> <strong>an</strong>nual potential<br />

evaporation is between 2800 <strong>an</strong>d 3000 mm. Due <strong>to</strong> a me<strong>an</strong><br />

<strong>an</strong>nual ra<strong>in</strong>fall double that of <strong>the</strong> country as a whole (540<br />

mm/a vs 270 mm/a) <strong>an</strong>d good quality soils, this commercial<br />

farm<strong>in</strong>g area is import<strong>an</strong>t for cattle <strong>an</strong>d maize production.<br />

Most of <strong>the</strong> region has been declared a “<strong>Groundwater</strong><br />

Control Area”, underl<strong>in</strong><strong>in</strong>g <strong>the</strong> national import<strong>an</strong>ce of its<br />

groundwater potential.<br />

The area is also known for its high base metal potential,<br />

ma<strong>in</strong>ly copper, lead, z<strong>in</strong>c, silver <strong>an</strong>d v<strong>an</strong>adium. The<br />

m<strong>in</strong>es at Tsumeb, Khusib Spr<strong>in</strong>gs <strong>an</strong>d Kombat are operational,<br />

whilst those at Berg Aukas, Abenab <strong>an</strong>d Abenab West<br />

Deviation of <strong>the</strong> <strong>an</strong>nual ra<strong>in</strong>fall sums (average of 50 stations) from <strong>the</strong> long-term <strong>an</strong>nual<br />

me<strong>an</strong> (1926-1992) for <strong>the</strong> time period from 1911 <strong>to</strong> 1999.<br />

Dieter Plöthner<br />

have closed. The opposite table shows <strong>the</strong> characteristics<br />

of <strong>the</strong>se m<strong>in</strong>es <strong>an</strong>d <strong>the</strong>ir potential <strong>to</strong> contribute <strong>to</strong> water<br />

supply. The ore bodies at depths of up <strong>to</strong> 1800 m bgl are<br />

found along hydraulically favourable structures such as paleokarst<br />

cavities <strong>an</strong>d fault conduits, <strong>an</strong>d <strong>the</strong> m<strong>in</strong>e water dra<strong>in</strong>age<br />

rates c<strong>an</strong> reach up <strong>to</strong> 12 Mm 3 /a. Some of this is purified <strong>an</strong>d<br />

used for domestic water supply.<br />

Geology<br />

The Otavi Mounta<strong>in</strong> L<strong>an</strong>d lies on <strong>the</strong> nor<strong>the</strong>rn shelf<br />

platform of <strong>the</strong> Otjiwarongo br<strong>an</strong>ch of <strong>the</strong> Damara Orogen.<br />

Approximately 6 000 m of sediments of <strong>the</strong> nor<strong>the</strong>rn facies<br />

of <strong>the</strong> Damara Sequence have been accumulated on <strong>the</strong><br />

gr<strong>an</strong>ites <strong>an</strong>d gneisses of <strong>the</strong> Grootfonte<strong>in</strong> Basement Complex.<br />

The Proterozoic Damara Sequence consists of a basal<br />

arenaceous unit (Nosib Group, up <strong>to</strong> 1500 m), a middle<br />

carbonate unit (Otavi Group, up <strong>to</strong> 3 000 m) <strong>an</strong>d <strong>an</strong> upper<br />

clastic unit (Mulden Group, up <strong>to</strong> 1700 m). The rocks of


<strong>the</strong> Otavi Group have been stratigraphically subdivided <strong>in</strong><strong>to</strong><br />

<strong>the</strong> Abenab <strong>an</strong>d <strong>the</strong> Tsumeb subgroups <strong>an</strong>d a number of<br />

Formations as shown <strong>in</strong> <strong>the</strong> table on stratigraphic succession.<br />

The dolomitic rocks conta<strong>in</strong> <strong>in</strong>terbedded layers of limes<strong>to</strong>ne,<br />

marl <strong>an</strong>d shale. The strata were moderately folded<br />

dur<strong>in</strong>g <strong>the</strong> P<strong>an</strong>-Afric<strong>an</strong> Orogeny (680-450 Ma) <strong>in</strong><strong>to</strong> several<br />

syncl<strong>in</strong>es <strong>an</strong>d <strong>an</strong>ticl<strong>in</strong>es generally trend<strong>in</strong>g east-west evident<br />

<strong>in</strong> this map. From south <strong>to</strong> north, <strong>the</strong> three dolomite<br />

syncl<strong>in</strong>es are <strong>the</strong> Otavi Valley-Uitkomst (I), Grootfonte<strong>in</strong>-<br />

Berg Aukas (II), Harasib-Olif<strong>an</strong>tsfonte<strong>in</strong> (III), <strong>an</strong>d Tsumeb-<br />

Abenab (IV) syncl<strong>in</strong>orium fur<strong>the</strong>r north. The core of <strong>the</strong><br />

syncl<strong>in</strong>es is filled with <strong>the</strong> low permeable rocks of <strong>the</strong> Mulden<br />

Stratigraphic succession of <strong>the</strong> Otavi Mounta<strong>in</strong> L<strong>an</strong>d <strong>an</strong>d its hydrogeological signific<strong>an</strong>ce<br />

Group, whereas <strong>the</strong> <strong>an</strong>ticl<strong>in</strong>es reveal low permeable rocks<br />

of <strong>the</strong> Nosib Group <strong>an</strong>d Basement.<br />

The Kalahari Sequence is represented locally by a th<strong>in</strong><br />

aeoli<strong>an</strong> s<strong>an</strong>d bl<strong>an</strong>ket <strong>an</strong>d by calcretes which conta<strong>in</strong> subst<strong>an</strong>tial<br />

amounts of silt <strong>an</strong>d clayey material. The calcretes,<br />

<strong>in</strong> general, cover <strong>the</strong> low-ly<strong>in</strong>g groundwater discharge areas.<br />

They c<strong>an</strong> be up <strong>to</strong> 20 m thick around Tsumeb, across <strong>the</strong><br />

Nosib Anticl<strong>in</strong>e <strong>an</strong>d <strong>the</strong> Basement high near Grootfonte<strong>in</strong>,<br />

<strong>an</strong>d up <strong>to</strong> 50 m thick near Br<strong>an</strong>dwag/Uitkomst on <strong>the</strong> eastern<br />

tip of <strong>the</strong> Otavi Valley-Uitkomst Syncl<strong>in</strong>e (I). They<br />

widely cover <strong>the</strong> forel<strong>an</strong>d where <strong>the</strong> thickness <strong>in</strong>creases <strong>to</strong><br />

70 m <strong>to</strong>wards <strong>the</strong> south <strong>an</strong>d even 150 m <strong>to</strong>wards <strong>the</strong> north.<br />

System Sequence Group Subgroup Formation Lithology<br />

Average<br />

thickness<br />

[ m]<br />

Hydrogeological<br />

signific<strong>an</strong>ce<br />

Quaternary,<br />

Kalahari<br />

Karst<br />

Phase<br />

IV<br />

( 34<br />

000<br />

<strong>to</strong><br />

14<br />

000<br />

a BP)<br />

Tertiary<br />

( < 65<br />

Ma)<br />

Recent,<br />

Andoni<br />

Aeoli<strong>an</strong> s<strong>an</strong>d,<br />

calcrete<br />

20 Not<br />

considered<br />

Disconformity<br />

( 130-65<br />

Ma)<br />

, Karst<br />

Phase<br />

III<br />

Cretaceous,<br />

Karoo<br />

Rundu ( Kalkr<strong>an</strong>d)<br />

Dolerite dykes<br />

<strong>in</strong><br />

TKA<br />

n/ a Vertical<br />

Jurassic,<br />

( 300-130<br />

Ma)<br />

Conduit<br />

Triassic,<br />

Etjo A eoli<strong>an</strong><br />

s<strong>an</strong>ds<strong>to</strong>ne<br />

not pres.<br />

n/<br />

a<br />

Permi<strong>an</strong>,<br />

O m<strong>in</strong>gonde<br />

Conglomerate,<br />

grit,<br />

not<br />

n/<br />

a<br />

Carboniferous,<br />

Devoni<strong>an</strong>,<br />

Siluri<strong>an</strong>,<br />

Ordovici<strong>an</strong>,<br />

muds<strong>to</strong>ne<br />

present<br />

Cambri<strong>an</strong><br />

Disconformity<br />

( 550-300<br />

Ma)<br />

, Karst<br />

Phase<br />

II<br />

Mulden<br />

O wambo<br />

Marl,<br />

s<strong>an</strong>dst.<br />

, siltst.<br />

, shale,<br />

not<br />

( 570-550<br />

Ma)<br />

limest.<br />

, dolomite<br />

present<br />

K ombat<br />

Phylitte,<br />

dolomite,<br />

> 500<br />

Aquitard<br />

conglomerate,<br />

shale<br />

MGA<br />

T schudi<br />

Arkose,<br />

grit,<br />

conglomerate,<br />

argillite<br />

> 700<br />

Disconformity<br />

( 760-570<br />

Ma)<br />

, Karstic<br />

Phase<br />

I<br />

Otavi<br />

Tsumeb Hüttenberg Dolomite, shale,<br />

chert<br />

840 Aquifer<br />

<strong>Namibia</strong>n Damara<br />

( 830-760<br />

Ma)<br />

El<strong>an</strong>dshoek Maieberg Chuos Dolomite Dolomite Limes<strong>to</strong>ne, shale<br />

beds<br />

Quartzite, tillite,<br />

shale<br />

> 1200<br />

180<br />

700<br />

200<br />

Aquitard<br />

O<br />

D<br />

A<br />

Disconformity<br />

Abenab Auros Dolomite, limes<strong>to</strong>ne<br />

200 Aquifer O<br />

Marl, shale<br />

50 Aquitard<br />

D<br />

Gauss Dolomite 750 Aquifer<br />

A<br />

Disconformity<br />

( 840-830<br />

Ma)<br />

Berg Aukas<br />

Dolomite, limes<strong>to</strong>ne,<br />

shale<br />

550<br />

Nosib<br />

Vari<strong>an</strong><strong>to</strong> ( Ghaub)<br />

Mixtite, quartzite<br />

1200 Aquitard<br />

( 950-840<br />

Ma)<br />

Askevold Phyllite,<br />

agglomerate<br />

N abis<br />

Quartzite,<br />

arkose,<br />

conglom.<br />

, schist,<br />

phyllite<br />

M okoli<strong>an</strong><br />

Disconformity<br />

( 1500-950<br />

Ma)<br />

Grootfonte<strong>in</strong><br />

Basement<br />

Complex<br />

( Metamorphic<br />

Complex)<br />

Gr<strong>an</strong>ite,<br />

gneiss,<br />

shist,<br />

n / a Aquiclude<br />

/<br />

( 1580<br />

Ma)<br />

meta-gabbro<br />

Aquitard<br />

at<br />

( Grootfonte<strong>in</strong>,<br />

Berg<br />

Aukas)<br />

shallow<br />

depth<br />

61


62<br />

Source: HYMNAM Project<br />

D Plöthner<br />

Generalised geological map of <strong>the</strong> Otavi Mounta<strong>in</strong> L<strong>an</strong>d <strong>an</strong>d <strong>the</strong> boundaries of <strong>the</strong> GKA <strong>an</strong>d TKA numerical models<br />

Doleritic dykes <strong>an</strong>d dyke swarms with a length of several<br />

kilometres are present <strong>in</strong> <strong>the</strong> Tsumeb-Abenab Syncl<strong>in</strong>orium<br />

(IV). These <strong>in</strong>trusive bodies of Karoo age <strong>in</strong>truded open<br />

axial tension structures <strong>an</strong>d follow a roughly north northwest<br />

<strong>to</strong> north north-east direction. Water strikes are ma<strong>in</strong>ly<br />

related <strong>to</strong> <strong>the</strong>se directions.<br />

Four karstification periods of <strong>the</strong> dolomitic rocks of<br />

<strong>the</strong> Otavi Group have been found. The first <strong>an</strong>d oldest period<br />

of karstification is presumed <strong>to</strong> have lasted from 750 Ma <strong>to</strong><br />

650 Ma <strong>in</strong> a period of uplift <strong>an</strong>d erosion. A second<br />

karstification period <strong>in</strong>terrupted by glaciation <strong>an</strong>d sedi -<br />

mentation lasted from 450 Ma <strong>to</strong> 280 Ma. The third


karstification period occurred <strong>in</strong> early<br />

Tertiary (65 Ma). The last major phase<br />

of karst processes developed dur<strong>in</strong>g <strong>the</strong><br />

Pleis<strong>to</strong>cene approximately 34 000 <strong>to</strong><br />

14 000 years ago. These are shown <strong>in</strong><br />

<strong>the</strong> table on stratigraphic succession.<br />

The fractured dolomites are karstified<br />

near <strong>the</strong> surface over a wide area <strong>an</strong>d<br />

locally covered by soil. Deep karstification<br />

(e.g. Dragon’s Breath Cave,<br />

Harasib Cave, Otjiko<strong>to</strong> <strong>an</strong>d Gu<strong>in</strong>as<br />

lakes) <strong>an</strong>d paleo-karst (Tsumeb, Berg<br />

Aukas) only occur locally. The Hüttenberg<br />

Formation is <strong>the</strong> most highly karsti -<br />

fied dolomite unit <strong>in</strong> <strong>the</strong> Tsumeb area,<br />

especially where it is covered by rocks<br />

of low permeability of <strong>the</strong> Tschudi Formation. Experience<br />

from Tsumeb M<strong>in</strong>e provides evidence of widely vary<strong>in</strong>g<br />

tr<strong>an</strong>smissivity values that r<strong>an</strong>ge from 10 <strong>to</strong> 6 000 m 2 /d.<br />

Hydrogeology<br />

The high groundwater potential of <strong>the</strong> Otavi Mounta<strong>in</strong><br />

L<strong>an</strong>d (dark green colour on <strong>the</strong> Map) is evident <strong>in</strong> <strong>the</strong> high<br />

<strong>in</strong>flow of groundwater <strong>in</strong><strong>to</strong> <strong>the</strong> ab<strong>an</strong>doned Berg Aukas,<br />

Abenab <strong>an</strong>d Abenab West m<strong>in</strong>es <strong>an</strong>d <strong>the</strong> operat<strong>in</strong>g Kombat,<br />

Tsumeb <strong>an</strong>d Khusib Spr<strong>in</strong>gs m<strong>in</strong>es, <strong>the</strong> large perennial<br />

spr<strong>in</strong>gs such as Otavifonte<strong>in</strong> (1 Mm 3 /a), Olif<strong>an</strong>tsfonte<strong>in</strong><br />

(0.3 Mm 3 /a) <strong>an</strong>d Strydfonte<strong>in</strong> (0.1 Mm 3 /a), <strong>an</strong>d former<br />

flows from <strong>the</strong> now dry spr<strong>in</strong>gs at Grootfonte<strong>in</strong> <strong>an</strong>d Rietfonte<strong>in</strong>.<br />

The major spr<strong>in</strong>gs (depicted on <strong>the</strong> Map) are contact<br />

spr<strong>in</strong>gs bound <strong>to</strong> <strong>the</strong> contact dolomite/bedrock (Nosib or<br />

Basement) <strong>an</strong>d have a fairly const<strong>an</strong>t discharge, which accord<strong>in</strong>g<br />

<strong>to</strong> iso<strong>to</strong>pe data orig<strong>in</strong>ate from recharge at higher altitudes.<br />

The depth <strong>to</strong> groundwater is relatively shallow (20 m bgl)<br />

south of Gu<strong>in</strong>as Lake, whereas it may be more th<strong>an</strong> 100m<br />

deep below <strong>the</strong> higher altitude recharge areas north of Kombat<br />

M<strong>in</strong>e <strong>an</strong>d south of Tsumeb as <strong>in</strong>dicated by <strong>the</strong> con<strong>to</strong>urs<br />

on <strong>the</strong> Map.<br />

In <strong>the</strong> Tsumeb area, Karoo dyke systems are considered<br />

as vertical conduits (T=1200 m 2 /d) <strong>in</strong>tersect<strong>in</strong>g <strong>the</strong> entire<br />

Olif<strong>an</strong>tsfonte<strong>in</strong> Spr<strong>in</strong>g with discharge gauge<br />

multi-aquifer/aquitard system. The<br />

Tsumeb water supply wells are drilled<br />

<strong>in</strong><strong>to</strong> <strong>the</strong>se structures.<br />

The Kalahari calcretes do not form<br />

a major aquifer <strong>in</strong> <strong>the</strong> centre of <strong>the</strong><br />

Otavi Mounta<strong>in</strong> L<strong>an</strong>d. Yields of 1 <strong>an</strong>d<br />

5 m3 /h have been reported for <strong>the</strong> area<br />

of <strong>the</strong> Nosib Anticl<strong>in</strong>e, however, with<br />

<strong>in</strong>creas<strong>in</strong>g dist<strong>an</strong>ce from <strong>the</strong> dolomite<br />

outcrops it may become <strong>an</strong> import<strong>an</strong>t<br />

aquifer, especially northwards, where<br />

<strong>the</strong> calcretes of <strong>the</strong> E<strong>to</strong>sha Limes<strong>to</strong>ne<br />

Member are up <strong>to</strong> 150m thick south<br />

of Oshivelo. In <strong>the</strong> south, for example<br />

on <strong>the</strong> Farm Schwarzfelde, <strong>the</strong> calcretes<br />

have abund<strong>an</strong>t ponors (karst holes) <strong>in</strong><strong>to</strong><br />

which runoff, after heavy downpours, c<strong>an</strong> percolate rapidly<br />

with little lost <strong>to</strong> evaporation. This type of <strong>in</strong>direct groundwater<br />

recharge is signific<strong>an</strong>t for <strong>the</strong> low-ly<strong>in</strong>g parts of <strong>the</strong><br />

sou<strong>the</strong>rn forel<strong>an</strong>d.<br />

The low permeable phyllites <strong>an</strong>d quartzites of <strong>the</strong> Kombat<br />

Formation (Otavi Valley) <strong>an</strong>d <strong>the</strong> Tschudi Formation<br />

(Tsumeb area) constitute <strong>the</strong> fractured Mulden Group<br />

Aquitard (MGA) with tr<strong>an</strong>smissivity values of 3 m2 /d.<br />

From <strong>the</strong> <strong>to</strong>p down, <strong>the</strong> Otavi Dolomite Aquifer (ODA)<br />

is composed of <strong>the</strong> fractured <strong>to</strong> karstified dolomite aquifer<br />

of Hüttenberg, El<strong>an</strong>dshoek <strong>an</strong>d <strong>the</strong> upper part of <strong>the</strong><br />

Maieberg Formations (Tsumeb Subgroup), while <strong>the</strong> th<strong>in</strong>bedded<br />

limes<strong>to</strong>ne <strong>an</strong>d shale of <strong>the</strong> lower Maieberg<br />

Formations act as <strong>an</strong> aquitard. For <strong>in</strong>st<strong>an</strong>ce, north of Kombat<br />

M<strong>in</strong>e <strong>an</strong>d <strong>in</strong> <strong>the</strong> Abenab area it separates <strong>the</strong> two ab<strong>an</strong>doned<br />

m<strong>in</strong>es hydraulically. The dolomites of <strong>the</strong> El<strong>an</strong>dshoek <strong>an</strong>d<br />

Hüttenberg Formations have <strong>the</strong> highest average tr<strong>an</strong>smissivity<br />

values of 300 <strong>an</strong>d 1700 m2 /d respectively, <strong>an</strong>d are<br />

<strong>the</strong>refore, <strong>the</strong> most import<strong>an</strong>t aquifers <strong>in</strong> <strong>the</strong> Tsumeb area,<br />

especially <strong>the</strong> Hüttenberg Formation.<br />

The Chuos Formation (T


64<br />

The numerical groundwater models of <strong>the</strong> Grootfonte<strong>in</strong><br />

Karst Aquifer (GKA) <strong>an</strong>d Tsumeb Karst Aquifer (TKA)<br />

Two three-dimensional numerical groundwater flow<br />

models have been established for <strong>the</strong> GKA <strong>an</strong>d TKA, <strong>in</strong><br />

which <strong>the</strong> GKA model <strong>in</strong>cludes <strong>the</strong> sou<strong>the</strong>rnmost part of<br />

<strong>the</strong> TKA. The model areas <strong>an</strong>d <strong>the</strong> calculation results are<br />

shown <strong>in</strong> <strong>the</strong> figure “Generalised map of <strong>the</strong> Otavi Mounta<strong>in</strong><br />

L<strong>an</strong>d”. The opposite sketch outl<strong>in</strong>es <strong>the</strong> flow system of<br />

<strong>the</strong> GKA. The calculated water bal<strong>an</strong>ce figures are summarised<br />

<strong>in</strong> <strong>the</strong> table below. The GKA model simulation is<br />

for <strong>the</strong> period between 1979 <strong>an</strong>d 1997 <strong>an</strong>d is based on <strong>an</strong><br />

<strong>in</strong>itial calculated groundwater table distribution, which represents<br />

<strong>the</strong> hydraulic situation at <strong>the</strong> end of 1978,<br />

characterised by good replenishment dur<strong>in</strong>g 3-4 years of<br />

above me<strong>an</strong> ra<strong>in</strong>fall i.e. <strong>the</strong> system was relatively full. With<strong>in</strong><br />

<strong>the</strong> TKA modell<strong>in</strong>g, tr<strong>an</strong>sient long-term calibration was executed<br />

for <strong>the</strong> period 1968-1998.<br />

The values of horizontal hydraulic conductivities KH<br />

<strong>an</strong>d s<strong>to</strong>rage coefficients S, assigned <strong>to</strong> <strong>the</strong> hydrogeological<br />

units, are shown <strong>in</strong> <strong>the</strong> table <strong>an</strong>d <strong>in</strong> <strong>the</strong> schematic profile of<br />

<strong>the</strong> TDK.<br />

Aquiclude 3.<br />

5·<br />

10<br />

Aquitard 3.<br />

5·<br />

10<br />

G KA<br />

model<br />

TKA<br />

model<br />

( <strong>to</strong>p<br />

layer<br />

0-150<br />

m)<br />

K H [ m/<br />

d]<br />

S [ -]<br />

K H [ m/<br />

d]<br />

S [ -]<br />

-3 3 4·<br />

10<br />

- – –<br />

-2 -3 -2 -2 -4 -4<br />

4·<br />

10<br />

1·<br />

10<br />

- 7·<br />

10<br />

1·<br />

10<br />

- 3·<br />

10<br />

Aquifer Aquifer<br />

-1 3.<br />

5·<br />

10<br />

-2 1·<br />

10<br />

-0 -0 1·<br />

10<br />

- 7·<br />

10<br />

3 1·<br />

10<br />

- 1.<br />

5·<br />

1<br />

( Grootfonte<strong>in</strong><br />

area)<br />

0 3. 5·<br />

10<br />

- 2 2·<br />

10<br />

– –<br />

- -3<br />

0<br />

Small S values r<strong>an</strong>g<strong>in</strong>g from 1·10 -4 <strong>to</strong> 1.5·10 -3 <strong>in</strong>dicate that<br />

conf<strong>in</strong>ed groundwater conditions prevail <strong>in</strong> <strong>the</strong> TKA area.<br />

The groundwater models have assigned potential recharge<br />

fac<strong>to</strong>rs, e.g. <strong>in</strong> <strong>the</strong> TKA area 4 % (or 21 mm) for dolomite<br />

outcrops, 1.5 % (8 mm) for tr<strong>an</strong>sition zone covered by less<br />

th<strong>an</strong> 20 m thick calcretes, <strong>an</strong>d 0.25 % (1 mm) for Mulden<br />

Group. <strong>Groundwater</strong> recharge rates based on results of <strong>an</strong><br />

iso<strong>to</strong>pe study r<strong>an</strong>ge from 0 <strong>to</strong> 9 mm (0-1.7 % of <strong>the</strong> me<strong>an</strong><br />

<strong>an</strong>nual ra<strong>in</strong>fall). The calculated recharge fac<strong>to</strong>rs for <strong>the</strong> GKA<br />

area vary between 1.3 % (7 mm) <strong>an</strong>d 5 % (28 mm) of <strong>the</strong><br />

me<strong>an</strong> <strong>an</strong>nual ra<strong>in</strong>fall. As <strong>an</strong> average over 19 years, <strong>the</strong> me<strong>an</strong><br />

recharge fac<strong>to</strong>r for <strong>the</strong> dolomite outcrops of <strong>the</strong> GKA area<br />

is 1.7 % (9 mm), correspond<strong>in</strong>g <strong>to</strong> a me<strong>an</strong> recharge rate<br />

of about 18 Mm 3 /a.<br />

The discharge areas of <strong>the</strong> GKA model are spr<strong>in</strong>gs or<br />

seeps where more vegetation occurs th<strong>an</strong> <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g<br />

area, e.g. at Khusib, Olif<strong>an</strong>tsfonte<strong>in</strong>, Mariabronn <strong>an</strong>d<br />

at Br<strong>an</strong>dwag. Due <strong>to</strong> <strong>the</strong> drought, <strong>the</strong> groundwater discharge<br />

of <strong>the</strong> spr<strong>in</strong>gs <strong>an</strong>d seepage (QEXF) dropped from<br />

72.3 Mm 3 /a <strong>in</strong> 1979 <strong>to</strong> 29.5 Mm 3 /a <strong>in</strong> 1997.<br />

The groundwater outflow across <strong>the</strong> system boundaries<br />

decreases with <strong>the</strong> decreas<strong>in</strong>g hydraulic gradient. When<br />

<strong>the</strong> system was almost completely replenished <strong>in</strong> 1978,<br />

<strong>the</strong> <strong>to</strong>tal groundwater outflow (QFIXOUT) from <strong>the</strong> modelled<br />

area amounted <strong>to</strong> 31.9 Mm 3 /a (1978) decreas<strong>in</strong>g <strong>to</strong><br />

21.5 Mm 3 /a <strong>in</strong> 1997. The largest reduction occurred at<br />

<strong>the</strong> nor<strong>the</strong>rn boundary with a decrease from 16.2 Mm 3 /a<br />

<strong>in</strong> 1978 <strong>to</strong> 7.3 Mm 3 /a <strong>in</strong> 1997, while <strong>in</strong> <strong>the</strong> south it decreased<br />

from 11.2 <strong>to</strong> 8.9 Mm 3 /a <strong>an</strong>d <strong>in</strong> <strong>the</strong> west from 6.8 <strong>to</strong> 5.3<br />

Mm 3 /a. Outflow <strong>to</strong> <strong>the</strong> east <strong>an</strong>d west <strong>to</strong>wards <strong>the</strong> Platveld<br />

Kalahari Bas<strong>in</strong> is negligible.<br />

Water bal<strong>an</strong>ce of <strong>the</strong> groundwater models of <strong>the</strong> Grootfonte<strong>in</strong><br />

Karst Aquifer (GKA) <strong>an</strong>d Tsumeb Karst Aquifer (TKA)<br />

GKA model<br />

TKA<br />

model<br />

Component<br />

of<br />

water<br />

bal<strong>an</strong>ce<br />

1979<br />

3 [ Mm<br />

]<br />

1996/<br />

1997<br />

3 [ Mm<br />

]<br />

1979<br />

<strong>to</strong><br />

1997<br />

Total<br />

amount<br />

3 [ Mm<br />

]<br />

2000<br />

3 [ Mm<br />

]<br />

<strong>Groundwater</strong><br />

reserves<br />

end-1978<br />

+ 3400<br />

QINF + 12.<br />

8 + 13.<br />

3 + 370<br />

+ 33.<br />

0<br />

QFIXIN 0. 0 0. 0<br />

0 + 0.<br />

8<br />

QFIXOUT -31. 9 -21. 5 -450 -24.<br />

5<br />

QEXF -72. 3 -29. 5 -740 0.<br />

0<br />

QABS -5. 7 -10. 4 -170 -9.<br />

3<br />

STOR -97. 1 -48. 1 -990 0<br />

<strong>Groundwater</strong><br />

reserves<br />

end-1997<br />

+ 2410<br />

The 19-year (1979 <strong>to</strong> 1997) ch<strong>an</strong>ge <strong>in</strong> groundwater s<strong>to</strong>rage<br />

(STOR) <strong>to</strong>talled some 990 Mm 3 <strong>in</strong> addition <strong>to</strong> <strong>the</strong><br />

cumulated recharge (QINF) of 370 Mm 3 . Most (87 % or<br />

some 1190 Mm 3 ) were natural groundwater discharge


Fluxes of <strong>the</strong> GKA model<br />

(QEXF + QFIXOUT) <strong>an</strong>d only about 13 % or some 170 Mm 3<br />

(QABS) was abstracted, e.g. for Kombat M<strong>in</strong>e water dra<strong>in</strong>age<br />

<strong>an</strong>d domestic water supply <strong>to</strong> Grootfonte<strong>in</strong> <strong>an</strong>d Otavi. The<br />

potential groundwater reserves of some 3 400 Mm 3 s<strong>to</strong>red<br />

<strong>in</strong> <strong>the</strong> upper 150 m of <strong>the</strong> saturated dolomites <strong>in</strong> 1979, were<br />

reduced by 29 % by <strong>the</strong> end of 1997 <strong>to</strong> 2 410 Mm 3 . This<br />

resulted <strong>in</strong> a 10-30m decl<strong>in</strong>e of <strong>the</strong> groundwater table <strong>in</strong><br />

<strong>the</strong> highest central parts of <strong>the</strong> Otavi Mounta<strong>in</strong> L<strong>an</strong>d, represent<strong>in</strong>g<br />

<strong>the</strong> major recharge area of <strong>the</strong> system.<br />

The GKA modell<strong>in</strong>g results <strong>in</strong>dicate that <strong>the</strong> determ<strong>in</strong>ation<br />

of a susta<strong>in</strong>able yield <strong>an</strong>d conventional development<br />

of <strong>the</strong> GKA dolomite aquifer system us<strong>in</strong>g relatively<br />

shallow wells may not be<br />

appropriate. However, <strong>the</strong><br />

cavities formed underground<br />

represent easily<br />

accessible groundwater,<br />

which could <strong>in</strong> <strong>the</strong> short<br />

term be ab stracted dur<strong>in</strong>g<br />

prolonged periods of<br />

droughts at rates exceed<strong>in</strong>g<br />

<strong>the</strong> susta<strong>in</strong>able yield. This<br />

c<strong>an</strong> be conveyed via <strong>the</strong><br />

Eastern National Water<br />

Carrier (ENWC) <strong>to</strong> <strong>the</strong><br />

cen tral areas of <strong>the</strong> country<br />

(W<strong>in</strong>dhoek, Okah<strong>an</strong>dja,<br />

Karibib, Otjihase <strong>an</strong>d<br />

Navachab m<strong>in</strong>es) <strong>to</strong> over-<br />

come tem porary, emer -<br />

gency water shortages <strong>the</strong>re.<br />

As a result of <strong>the</strong> TKA model, <strong>the</strong> long-term susta<strong>in</strong>able<br />

ground water ab straction rate has been assessed at about<br />

4 Mm 3 /a <strong>in</strong> addition <strong>to</strong> <strong>the</strong> present groundwater abstraction.<br />

Tsumeb <strong>an</strong>d Abenab West m<strong>in</strong>es are recom mended<br />

abstraction po<strong>in</strong>ts.<br />

Apply<strong>in</strong>g <strong>an</strong> abstraction rate of 2 Mm 3 /a at both m<strong>in</strong>es<br />

<strong>an</strong>d <strong>an</strong> <strong>an</strong>nual <strong>in</strong>crease of <strong>the</strong> current abstraction by 0.75 %,<br />

water levels at Abenab West M<strong>in</strong>e will decl<strong>in</strong>e by more th<strong>an</strong><br />

100 m for average ra<strong>in</strong>fall conditions from 2001 <strong>to</strong> 2016,<br />

<strong>an</strong>d only by 10 <strong>to</strong> 20 m <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> Tsumeb M<strong>in</strong>e.<br />

Fur<strong>the</strong>r away, <strong>the</strong> water table will drop by 2 <strong>to</strong> 7 m <strong>an</strong>d<br />

25 <strong>to</strong> 40 m <strong>in</strong> <strong>the</strong> Tsumeb <strong>an</strong>d Abenab areas, respectively.<br />

A net bal<strong>an</strong>ce close <strong>to</strong> zero <strong>an</strong>d no fur<strong>the</strong>r signific<strong>an</strong>t decl<strong>in</strong>e<br />

<strong>in</strong> groundwater levels were predicted after a period of 60<br />

years, <strong>in</strong>dicat<strong>in</strong>g that steady state conditions will be reached<br />

after 2061.<br />

For short-term (3 year) emergency bulk water abstraction,<br />

up <strong>to</strong> 10 Mm 3 /a of groundwater could be abstracted<br />

from Tsumeb (7 Mm 3 /a) <strong>an</strong>d Abenab West (3 Mm 3 /a) m<strong>in</strong>es<br />

<strong>an</strong>d exported <strong>to</strong> <strong>the</strong> central areas of <strong>Namibia</strong>, provid<strong>in</strong>g that<br />

<strong>the</strong> rema<strong>in</strong><strong>in</strong>g water allocation does not exceed 5.5 Mm 3 /a.<br />

R BÄUMLE, D PLÖTHNER<br />

Schematic north-south profile of <strong>the</strong> TKA. The data labels conta<strong>in</strong> <strong>the</strong> depth related hydraulic<br />

conductivities [m/d] of <strong>the</strong> rock formations accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> 3-D model calibration.<br />

65


major lower aquifer with tr<strong>an</strong>smissivities values r<strong>an</strong>g<strong>in</strong>g from<br />

10 <strong>to</strong> 500m 2 /d. The 50 m thick shale of <strong>the</strong> lower Auros<br />

Formation acts as <strong>an</strong> aquitard, for <strong>in</strong>st<strong>an</strong>ce, <strong>in</strong> <strong>the</strong> Abenab<br />

area.<br />

The meta-sediments of <strong>the</strong> Nosib Group are considered<br />

a fractured aquitard (T m<br />

0<br />

0<br />

8<br />

> m<br />

0<br />

0<br />

8<br />

1 )<br />

t<br />

f<br />

a<br />

h<br />

S<br />

2<br />

o<br />

N<br />

(<br />

m<br />

0<br />

5<br />

7 m<br />

0<br />

8<br />

3<br />

:<br />

M<br />

W<br />

A<br />

m<br />

5<br />

1<br />

2<br />

:<br />

M<br />

A<br />

e<br />

r<br />

o<br />

f<br />

o<br />

e<br />

p<br />

y<br />

T c<br />

i<br />

d<br />

i<br />

h<br />

p<br />

l<br />

u<br />

s d<br />

e<br />

s<br />

i<br />

d<br />

i<br />

x<br />

o<br />

/<br />

c<br />

i<br />

d<br />

i<br />

h<br />

p<br />

l<br />

u<br />

s<br />

)<br />

m<br />

0<br />

6<br />

><br />

(<br />

e<br />

r<br />

o<br />

c<br />

i<br />

d<br />

i<br />

h<br />

p<br />

l<br />

u<br />

s<br />

/<br />

d<br />

e<br />

s<br />

i<br />

d<br />

i<br />

x<br />

o<br />

c<br />

i<br />

d<br />

i<br />

h<br />

p<br />

l<br />

u<br />

s<br />

,<br />

)<br />

m<br />

0<br />

0<br />

5<br />

1<br />

-<br />

0<br />

(<br />

)<br />

m<br />

0<br />

0<br />

5<br />

1<br />

><br />

(<br />

d<br />

e<br />

s<br />

i<br />

d<br />

i<br />

x<br />

o<br />

/<br />

c<br />

i<br />

d<br />

i<br />

h<br />

p<br />

l<br />

u<br />

s<br />

)<br />

m<br />

0<br />

0<br />

8<br />

-<br />

0<br />

(<br />

,<br />

)<br />

W<br />

A<br />

(<br />

c<br />

i<br />

d<br />

i<br />

h<br />

p<br />

l<br />

u<br />

s<br />

/<br />

d<br />

e<br />

s<br />

i<br />

d<br />

i<br />

x<br />

o<br />

)<br />

b<br />

a<br />

n<br />

e<br />

b<br />

A<br />

(<br />

d<br />

e<br />

s<br />

i<br />

d<br />

i<br />

x<br />

o<br />

y<br />

l<br />

n<br />

i<br />

a<br />

m<br />

y<br />

t<br />

i<br />

l<br />

a<br />

u<br />

q<br />

r<br />

e<br />

t<br />

a<br />

w<br />

e<br />

n<br />

i<br />

M<br />

-<br />

a<br />

r<br />

a<br />

p<br />

h<br />

t<br />

i<br />

w<br />

)<br />

7<br />

9<br />

9<br />

1<br />

(<br />

g<br />

n<br />

i<br />

d<br />

e<br />

e<br />

c<br />

x<br />

e<br />

s<br />

r<br />

e<br />

t<br />

e<br />

m<br />

e<br />

l<br />

b<br />

i<br />

s<br />

s<br />

i<br />

m<br />

d<br />

A<br />

.<br />

x<br />

a<br />

M<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

t<br />

n<br />

e<br />

c<br />

n<br />

o<br />

C<br />

)<br />

C<br />

A<br />

M<br />

(<br />

]<br />

s<br />

s<br />

e<br />

n<br />

d<br />

r<br />

a<br />

H<br />

l<br />

a<br />

t<br />

o<br />

T<br />

:<br />

H<br />

T<br />

*<br />

[<br />

*<br />

H<br />

T<br />

:<br />

B<br />

p<br />

u<br />

o<br />

r<br />

G<br />

.<br />

n<br />

a<br />

J<br />

n<br />

i<br />

d<br />

e<br />

l<br />

p<br />

m<br />

a<br />

s<br />

(<br />

)<br />

1<br />

0<br />

0<br />

2<br />

b<br />

P<br />

,<br />

l<br />

A<br />

:<br />

D<br />

p<br />

u<br />

o<br />

r<br />

G :<br />

D<br />

p<br />

u<br />

o<br />

r<br />

G<br />

:<br />

t<br />

f<br />

a<br />

h<br />

S<br />

1<br />

.<br />

o<br />

N<br />

O<br />

S<br />

,<br />

a<br />

C<br />

,<br />

*<br />

H<br />

T 4 n<br />

M<br />

,<br />

d<br />

C<br />

,<br />

:<br />

B<br />

p<br />

u<br />

o<br />

r<br />

G<br />

:<br />

t<br />

f<br />

a<br />

h<br />

S<br />

t<br />

e<br />

W<br />

e<br />

D<br />

;<br />

n<br />

M<br />

,<br />

b<br />

P<br />

,<br />

e<br />

F<br />

,<br />

*<br />

H<br />

T<br />

c<br />

i<br />

t<br />

s<br />

e<br />

m<br />

o<br />

d<br />

r<br />

o<br />

f<br />

d<br />

e<br />

i<br />

f<br />

i<br />

r<br />

u<br />

p<br />

(<br />

)<br />

6<br />

9<br />

9<br />

1<br />

l<br />

i<br />

t<br />

n<br />

u<br />

y<br />

l<br />

p<br />

p<br />

u<br />

s<br />

r<br />

e<br />

t<br />

a<br />

w<br />

*<br />

H<br />

T<br />

:<br />

B<br />

p<br />

u<br />

o<br />

r<br />

G :<br />

M<br />

W<br />

A<br />

g<br />

M<br />

,<br />

*<br />

H<br />

T<br />

:<br />

B<br />

p<br />

u<br />

o<br />

r<br />

G<br />

e<br />

F<br />

:<br />

D<br />

p<br />

u<br />

o<br />

r<br />

G<br />

:<br />

M<br />

A<br />

y<br />

t<br />

i<br />

v<br />

i<br />

s<br />

s<br />

i<br />

m<br />

s<br />

n<br />

a<br />

r<br />

T n<br />

/<br />

n a<br />

/<br />

n a<br />

/<br />

n m<br />

0<br />

0<br />

2<br />

o<br />

t<br />

0<br />

0<br />

1<br />

2 d<br />

/ m<br />

0<br />

2<br />

2<br />

o<br />

t<br />

0<br />

1<br />

2<br />

2 d<br />

/<br />

t<br />

n<br />

e<br />

i<br />

c<br />

i<br />

f<br />

f<br />

e<br />

o<br />

c<br />

e<br />

g<br />

a<br />

r<br />

o<br />

t<br />

S a<br />

/<br />

n a<br />

/<br />

n a<br />

/<br />

n 1<br />

0<br />

.<br />

0<br />

o<br />

t<br />

5<br />

0<br />

0<br />

.<br />

0 2<br />

1<br />

0<br />

.<br />

0<br />

o<br />

t<br />

1<br />

1<br />

0<br />

.<br />

0<br />

d<br />

l<br />

e<br />

i<br />

y<br />

e<br />

l<br />

b<br />

a<br />

n<br />

i<br />

a<br />

t<br />

s<br />

u<br />

S d<br />

e<br />

h<br />

s<br />

i<br />

l<br />

b<br />

a<br />

t<br />

s<br />

e<br />

t<br />

e<br />

y<br />

t<br />

o<br />

n d<br />

e<br />

h<br />

s<br />

i<br />

l<br />

b<br />

a<br />

t<br />

s<br />

e<br />

t<br />

e<br />

y<br />

t<br />

o<br />

n m<br />

M<br />

0<br />

.<br />

2<br />

3 a<br />

/ m<br />

M<br />

0<br />

.<br />

2<br />

3 a<br />

/ m<br />

M<br />

2<br />

:<br />

M<br />

W<br />

A<br />

3 a<br />

/<br />

r<br />

a<br />

e<br />

y<br />

e<br />

e<br />

r<br />

h<br />

T<br />

d<br />

l<br />

e<br />

i<br />

y<br />

y<br />

c<br />

n<br />

e<br />

g<br />

r<br />

e<br />

m<br />

e<br />

d<br />

e<br />

h<br />

s<br />

i<br />

l<br />

b<br />

a<br />

t<br />

s<br />

e<br />

t<br />

e<br />

y<br />

t<br />

o<br />

n d<br />

e<br />

h<br />

s<br />

i<br />

l<br />

b<br />

a<br />

t<br />

s<br />

e<br />

t<br />

e<br />

y<br />

t<br />

o<br />

n m<br />

M<br />

0<br />

.<br />

7<br />

3 a<br />

/ m<br />

M<br />

5<br />

.<br />

4<br />

3 a<br />

/<br />

m<br />

M<br />

5<br />

.<br />

6 3 t<br />

h<br />

g<br />

i<br />

t<br />

-<br />

r<br />

e<br />

t<br />

a<br />

w<br />

f<br />

i<br />

,<br />

a<br />

/<br />

d<br />

e<br />

n<br />

e<br />

p<br />

o<br />

e<br />

b<br />

l<br />

l<br />

i<br />

w<br />

s<br />

r<br />

o<br />

o<br />

d<br />

m<br />

M<br />

3<br />

:<br />

M<br />

W<br />

A<br />

3 a<br />

/<br />

d<br />

e<br />

m<br />

u<br />

s<br />

e<br />

r<br />

p<br />

e<br />

r<br />

a<br />

t<br />

h<br />

g<br />

i<br />

t<br />

-<br />

r<br />

e<br />

t<br />

a<br />

w<br />

s<br />

l<br />

e<br />

v<br />

e<br />

l<br />

l<br />

l<br />

a<br />

t<br />

a<br />

d<br />

e<br />

l<br />

l<br />

a<br />

t<br />

s<br />

n<br />

i<br />

e<br />

b<br />

o<br />

t<br />

r<br />

e<br />

m<br />

r<br />

o<br />

f<br />

r<br />

o<br />

t<br />

n<br />

e<br />

c<br />

e<br />

R<br />

e<br />

t<br />

a<br />

r<br />

e<br />

g<br />

a<br />

n<br />

i<br />

a<br />

r<br />

d<br />

)<br />

e<br />

t<br />

a<br />

r<br />

n<br />

o<br />

i<br />

t<br />

c<br />

a<br />

r<br />

t<br />

s<br />

b<br />

a<br />

(<br />

5<br />

9<br />

9<br />

1 m<br />

M<br />

3<br />

.<br />

0<br />

3 a<br />

/ 0<br />

7<br />

9<br />

1 m<br />

M<br />

0<br />

.<br />

2<br />

3 a<br />

/ 7<br />

0<br />

9<br />

1 m<br />

M<br />

7<br />

.<br />

0<br />

3 a<br />

/ m<br />

M<br />

5<br />

.<br />

4<br />

o<br />

t<br />

p<br />

u<br />

:<br />

M<br />

W<br />

A<br />

3 a<br />

/ m<br />

M<br />

5<br />

o<br />

t<br />

p<br />

u<br />

:<br />

M<br />

W<br />

A<br />

3 a<br />

/<br />

1<br />

0<br />

0<br />

2 m<br />

M<br />

9<br />

.<br />

0<br />

3 a<br />

/ 8<br />

8<br />

9<br />

1 m<br />

M<br />

0<br />

.<br />

6<br />

3 a<br />

/ 5<br />

.<br />

9<br />

o<br />

t<br />

0<br />

.<br />

6<br />

m<br />

M 3 a<br />

/<br />

r<br />

e<br />

t<br />

a<br />

w<br />

e<br />

n<br />

i<br />

m<br />

f<br />

o<br />

%<br />

0<br />

8<br />

g<br />

n<br />

i<br />

e<br />

b<br />

s<br />

i<br />

e<br />

g<br />

a<br />

n<br />

i<br />

a<br />

r<br />

d<br />

d<br />

e<br />

g<br />

r<br />

a<br />

h<br />

c<br />

e<br />

r<br />

y<br />

l<br />

l<br />

a<br />

i<br />

c<br />

i<br />

f<br />

i<br />

t<br />

r<br />

a<br />

r<br />

e<br />

f<br />

i<br />

u<br />

q<br />

a<br />

e<br />

h<br />

t<br />

o<br />

t<br />

n<br />

i<br />

-<br />

8<br />

8<br />

9<br />

1<br />

/<br />

1<br />

1<br />

0<br />

9<br />

9<br />

1<br />

/<br />

9<br />

0<br />

d<br />

e<br />

d<br />

o<br />

o<br />

l<br />

F 3<br />

9<br />

9<br />

1 m<br />

M<br />

9<br />

.<br />

5<br />

3 a<br />

/<br />

2<br />

9<br />

9<br />

1 m<br />

M<br />

7<br />

.<br />

4<br />

3 a<br />

/ 6<br />

9<br />

9<br />

1<br />

e<br />

n<br />

u<br />

J e<br />

g<br />

a<br />

n<br />

i<br />

a<br />

r<br />

d<br />

d<br />

e<br />

s<br />

a<br />

e<br />

c<br />

8<br />

9<br />

9<br />

1 m<br />

M<br />

8<br />

.<br />

8<br />

3 a<br />

/ 0<br />

0<br />

0<br />

2<br />

y<br />

l<br />

u<br />

J e<br />

g<br />

a<br />

n<br />

i<br />

a<br />

r<br />

d<br />

d<br />

e<br />

t<br />

r<br />

a<br />

t<br />

s<br />

-<br />

e<br />

r<br />

1<br />

0<br />

0<br />

2 m<br />

M<br />

3<br />

.<br />

2<br />

1<br />

3 a<br />

/ 1<br />

0<br />

0<br />

2 m<br />

M<br />

1<br />

.<br />

3<br />

3 a<br />

/


The gr<strong>an</strong>ites <strong>an</strong>d gneisses of <strong>the</strong><br />

Basement are <strong>an</strong> aquiclude at great<br />

depth, however, at shallow depth, as <strong>in</strong><br />

<strong>the</strong> Grootfonte<strong>in</strong> area <strong>an</strong>d <strong>in</strong> <strong>the</strong> Nosib<br />

Anticl<strong>in</strong>e, <strong>the</strong>y act as a fractured<br />

aquitard (T


68<br />

eighth of <strong>the</strong> <strong>to</strong>tal spr<strong>in</strong>g discharge<br />

of Otavifonte<strong>in</strong>. The<br />

<strong>to</strong>tal production of local<br />

waterworks amounts <strong>to</strong> 0.5<br />

Mm 3 /a.<br />

The Br<strong>an</strong>dwag wells<br />

form <strong>the</strong> first phase of <strong>the</strong><br />

Karstl<strong>an</strong>d scheme. These relatively<br />

shallow wells are sited<br />

along <strong>the</strong> south-eastern tip<br />

of <strong>the</strong> Otavi Valley-<br />

Uitkomst Syncl<strong>in</strong>e (I) next <strong>to</strong> <strong>the</strong> Nosib bedrock contact.<br />

Due <strong>to</strong> <strong>the</strong> prolonged dry period <strong>an</strong>d low recharge, <strong>the</strong><br />

scheme is currently dry. The Karstl<strong>an</strong>d scheme comprises<br />

some st<strong>an</strong>d-by wells east of Kombat M<strong>in</strong>e <strong>an</strong>d one well<br />

gallery of 20 st<strong>an</strong>d-by wells tapp<strong>in</strong>g <strong>the</strong> dolomite aquifer of<br />

<strong>the</strong> Harasib-Olif<strong>an</strong>tsfonte<strong>in</strong> Syncl<strong>in</strong>e (III). These are shown<br />

on <strong>the</strong> Map. Tests done <strong>in</strong> 1996 estimated a <strong>to</strong>tal yield of<br />

3 Mm 3 /a for this scheme, yet it has never been fully implemented<br />

nor l<strong>in</strong>ked <strong>to</strong> <strong>the</strong> Eastern National Water Carrier,<br />

ENWC.<br />

<strong>Groundwater</strong> abstraction at <strong>the</strong> Berg Aukas-Otjituuo<br />

scheme started <strong>in</strong> 1986. Some 0.7 Mm 3 /a from two strong<br />

wells is piped <strong>to</strong> Otjituuo <strong>to</strong> augment <strong>the</strong> local water supply<br />

. Until it closed <strong>in</strong> 1978, Berg Aukas M<strong>in</strong>e dra<strong>in</strong>ed more<br />

th<strong>an</strong> 4 Mm 3 of groundwater <strong>an</strong>nually. In 1996, <strong>the</strong> gear head<br />

of No.2 shaft was removed <strong>an</strong>d 4 strong pumps each with a<br />

capacity of 360 m 3 /h were <strong>in</strong>stalled <strong>in</strong> <strong>the</strong> shaft shown <strong>in</strong><br />

<strong>the</strong> pho<strong>to</strong>graph. In 1999, <strong>an</strong> 80-day test run at discharges<br />

vary<strong>in</strong>g from 5 <strong>to</strong> 8.5 Mm 3 /a tr<strong>an</strong>sferred 2 Mm 3 of groundwater<br />

from <strong>the</strong> m<strong>in</strong>e <strong>in</strong><strong>to</strong> <strong>the</strong> ENWC. Results showed that<br />

<strong>the</strong> long-term susta<strong>in</strong>able yield is assessed <strong>to</strong> be 2 Mm 3 /a at<br />

<strong>an</strong> expected drawdown of up <strong>to</strong> 150 m bgl, <strong>an</strong>d that should<br />

it be necessary <strong>to</strong> cope with a 3-year water emergency <strong>in</strong><br />

<strong>the</strong> central region, <strong>the</strong> yield could be <strong>in</strong>creased up <strong>to</strong> 6.5<br />

Mm 3 /a with <strong>an</strong> expected drawdown of up <strong>to</strong> 400 m bgl.<br />

Water abstraction from <strong>the</strong> Khusib Spr<strong>in</strong>gs <strong>an</strong>d Kombat<br />

m<strong>in</strong>es cont<strong>in</strong>ued between 1996 <strong>an</strong>d 2000, <strong>an</strong>d after<br />

<strong>the</strong> take-over of <strong>the</strong> m<strong>in</strong>es by Ongopolo from Tsumeb Corporation<br />

Limited, TCL, ore production recommenced <strong>in</strong><br />

April 2000. From 1995, when m<strong>in</strong><strong>in</strong>g operations at Khusib<br />

Spr<strong>in</strong>gs M<strong>in</strong>e commenced, water dra<strong>in</strong>age <strong>in</strong>creased from<br />

Otjiko<strong>to</strong> Lake, one of <strong>the</strong> Karst s<strong>in</strong>kholes <strong>in</strong> <strong>Namibia</strong><br />

0.3 Mm3 /a <strong>to</strong> 0.9 Mm3 /a <strong>in</strong><br />

2001. About 80 % of <strong>the</strong><br />

dra<strong>in</strong>ed m<strong>in</strong>e water is be<strong>in</strong>g<br />

artificially recharged <strong>in</strong><strong>to</strong> <strong>the</strong><br />

dolomite, while 20 % is used<br />

for ore dress<strong>in</strong>g <strong>an</strong>d <strong>to</strong> keep<br />

dust down. Kombat M<strong>in</strong>e<br />

<strong>in</strong>creased <strong>the</strong> m<strong>in</strong>e water<br />

dra<strong>in</strong>age rate from some 2<br />

Mm3 /a <strong>in</strong> 1970 <strong>to</strong> more th<strong>an</strong><br />

6 Mm3 /a <strong>in</strong> November 1988,<br />

when <strong>the</strong> m<strong>in</strong>e was accidentally flooded. S<strong>in</strong>ce Oc<strong>to</strong>ber 1990,<br />

when m<strong>in</strong><strong>in</strong>g operations resumed, m<strong>in</strong>e water dra<strong>in</strong>age<br />

<strong>in</strong>creased from 5.5 Mm3 /a <strong>to</strong> 12.3 Mm3 /a (1400 m3 /h on<br />

<strong>an</strong> average) <strong>in</strong> 2001. Nearly half, 5.7 Mm3 /a, of <strong>the</strong> m<strong>in</strong>e<br />

water dra<strong>in</strong>ed is exported via <strong>the</strong> ENWC, a quarter, 3.1<br />

Mm3 /a, is used for ore dress<strong>in</strong>g, process<strong>in</strong>g <strong>an</strong>d dust depression,<br />

22 % or 2.6 Mm3 /a for irrigation of <strong>the</strong> golf course <strong>an</strong>d<br />

public gardens <strong>in</strong> Kombat, <strong>an</strong>d <strong>the</strong> rema<strong>in</strong><strong>in</strong>g 0.9 Mm3 /a<br />

is supplied <strong>to</strong> two commercial farmers <strong>to</strong> grow maize. As<br />

<strong>the</strong>re is 250 ha of irrigable l<strong>an</strong>d <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of Kombat<br />

M<strong>in</strong>e, up <strong>to</strong> 4 Mm3 /a of <strong>the</strong> m<strong>in</strong>e water could be used for<br />

irrigation. Between 1998 <strong>an</strong>d 2001 <strong>an</strong> average of 2.3 Mm3 /a<br />

of Kombat M<strong>in</strong>e water supplied <strong>the</strong> Okakarara treatment<br />

pl<strong>an</strong>t from where it c<strong>an</strong> be piped fur<strong>the</strong>r <strong>to</strong> Otjituuo, as<br />

depicted on <strong>the</strong> Map. In Oc<strong>to</strong>ber 2001, OMPL <strong>an</strong>d NamWater<br />

negotiated <strong>an</strong> assured supply of 4.4 Mm3 /a from <strong>the</strong> m<strong>in</strong>e<br />

for export <strong>to</strong> <strong>the</strong> ENWC at a price of 0.35 N$/m3 .<br />

From 1921 <strong>to</strong> 1947, when still operational, Abenab M<strong>in</strong>e<br />

dra<strong>in</strong>ed 3 <strong>to</strong> 4 Mm3 /a, this <strong>in</strong>creased <strong>to</strong> 4.4 Mm3 /a <strong>in</strong> <strong>the</strong><br />

last four years of operation (1955-1958) from Abenab West<br />

M<strong>in</strong>e. <strong>Groundwater</strong> is still abstracted for irrigation purposes<br />

at a rate of 0.2 Mm3 /a.<br />

Annual dra<strong>in</strong>age from <strong>the</strong> Tsumeb M<strong>in</strong>e was between<br />

6 <strong>an</strong>d 9.5 Mm3 . In 1993, 5.9 Mm3 /a of groundwater was<br />

abstracted from <strong>the</strong> De Wet Shaft, of which 2.9 Mm3 /a was<br />

used by TCL for <strong>the</strong> ore wash<strong>in</strong>g pl<strong>an</strong>t <strong>an</strong>d smelter <strong>an</strong>d<br />

about 2.5 Mm3 /a supplied <strong>to</strong> Tsumeb Municipality. In<br />

<strong>the</strong> early 1990s, <strong>the</strong> oval-shaped cone of depression of <strong>the</strong><br />

m<strong>in</strong>e extended some 9 km east-west <strong>an</strong>d about 8 km northsouth.<br />

When m<strong>in</strong><strong>in</strong>g <strong>an</strong>d hence dra<strong>in</strong>age ceased <strong>in</strong> June 1996,<br />

Dieter Plöthner


Tsumeb M<strong>in</strong>e got flooded, <strong>an</strong>d due <strong>to</strong> <strong>the</strong> complicated karst<br />

hydrology of <strong>the</strong> m<strong>in</strong>e work<strong>in</strong>gs, <strong>the</strong> water table rose slowly<br />

up <strong>to</strong> 60 m bgl. By <strong>the</strong> end of July 2000, after <strong>the</strong> take-over<br />

of <strong>the</strong> m<strong>in</strong>e by OMPL, dra<strong>in</strong>age recommenced. The water<br />

table dropped <strong>to</strong> 240 m bgl, where it is currently ma<strong>in</strong>ta<strong>in</strong>ed.<br />

<strong>Groundwater</strong> was <strong>in</strong>itially dra<strong>in</strong>ed off at 5.3 Mm 3 /a but<br />

decreased <strong>to</strong> 3.1 Mm 3 /a <strong>in</strong> 2001. About 20 % of <strong>the</strong> m<strong>in</strong>e<br />

dra<strong>in</strong>age water is used on public gardens by <strong>the</strong> Municipality<br />

of Tsumeb <strong>an</strong>d <strong>the</strong> rest for ore dress<strong>in</strong>g <strong>an</strong>d process<strong>in</strong>g,<br />

<strong>the</strong> smelter, <strong>an</strong>d keep<strong>in</strong>g down dust at <strong>the</strong> m<strong>in</strong>e.<br />

In summary, Kombat <strong>an</strong>d Berg Aukas m<strong>in</strong>es c<strong>an</strong> supply<br />

from 6.4 Mm 3 /a <strong>to</strong> 16.5 Mm 3 /a <strong>to</strong> <strong>the</strong> ENWC, <strong>the</strong> latter<br />

only <strong>in</strong> emergencies. As soon as Tsumeb <strong>an</strong>d Abenab West<br />

m<strong>in</strong>es are l<strong>in</strong>ked <strong>to</strong> <strong>the</strong> ENWC, <strong>the</strong> water supplied by m<strong>in</strong>es<br />

could be <strong>in</strong>creased by 4 <strong>to</strong> 10 Mm 3 /a, <strong>to</strong>tall<strong>in</strong>g 10.4 <strong>to</strong><br />

26.5 Mm 3 /a.<br />

Some 90 irrigation farms rely on groundwater with<strong>in</strong> <strong>the</strong><br />

Otavi Mounta<strong>in</strong> L<strong>an</strong>d <strong>an</strong>d its forel<strong>an</strong>d, especially <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>rn Tsumeb area where 83 farms abstract groundwater<br />

<strong>to</strong> grow vegetables, maize, wheat, lucerne, cot<strong>to</strong>n, <strong>an</strong>d<br />

citrus. Although only 1100 ha or 0.1 % of <strong>the</strong> Tsumeb Karst<br />

Aquifer area is under irrigation, 5.7 Mm 3 /a or 55 % of <strong>the</strong><br />

<strong>to</strong>tal groundwater is abstracted from <strong>the</strong> TKA for irrigation.<br />

As shown <strong>in</strong> <strong>the</strong> water bal<strong>an</strong>ce of <strong>the</strong> Grootfonte<strong>in</strong> Karst<br />

Aquifer, more th<strong>an</strong> 0.3 Mm 3 /a is pumped from Otjiko<strong>to</strong><br />

<strong>an</strong>d Gu<strong>in</strong>as lakes for irrigation. The two lakes are collapsed<br />

s<strong>in</strong>kholes (dol<strong>in</strong>a) <strong>in</strong> <strong>the</strong> dolomites of <strong>the</strong> Maieberg<br />

Formation <strong>an</strong>d are <strong>the</strong> only perm<strong>an</strong>ent lakes <strong>in</strong> <strong>Namibia</strong>.<br />

The lakes have a diameter of 100 <strong>an</strong>d 140 m <strong>an</strong>d a depth of<br />

more th<strong>an</strong> 75 <strong>an</strong>d 150 m, respectively, <strong>an</strong>d provide<br />

“w<strong>in</strong>dows” <strong>to</strong> <strong>the</strong> groundwater. They are also home <strong>to</strong> one<br />

of <strong>Namibia</strong>’s rare, endemic fish species, <strong>the</strong> Otjiko<strong>to</strong> tilapia.<br />

Iso<strong>to</strong>pe data suggest that recharge <strong>to</strong> <strong>the</strong> two lakes is from<br />

altitudes from 1600 <strong>to</strong> 1900 m asl, somewhere south of<br />

Tsumeb or north of Kombat. The travel time of <strong>the</strong> ground -<br />

water from <strong>the</strong> sou<strong>the</strong>rn recharge areas <strong>to</strong> <strong>the</strong> lakes is estimated<br />

<strong>to</strong> be only 30-40 m/a. West of Gu<strong>in</strong>as Lake <strong>the</strong>re are<br />

two o<strong>the</strong>r collapsed s<strong>in</strong>kholes on <strong>the</strong> farms Hoasis <strong>an</strong>d Obab.<br />

Even though <strong>the</strong>se are dry, boreholes sunk <strong>in</strong><strong>to</strong> <strong>the</strong> fill<strong>in</strong>g<br />

of <strong>the</strong> s<strong>in</strong>kholes abstract groundwater for small-scale irrigation,<br />

lives<strong>to</strong>ck water<strong>in</strong>g <strong>an</strong>d domestic water supply.<br />

In <strong>the</strong> GKA area, <strong>the</strong>re are only 7 irrigation farms <strong>an</strong>d<br />

some 255 ha of l<strong>an</strong>d under irrigation, of which 185 ha is<br />

irrigated by Kombat M<strong>in</strong>e groundwater, 20 ha by spr<strong>in</strong>g<br />

water from Otavifonte<strong>in</strong> <strong>an</strong>d <strong>the</strong> rema<strong>in</strong><strong>in</strong>g 50 ha by groundwater<br />

abstracted via boreholes. Rietfonte<strong>in</strong> Farm, one of <strong>the</strong><br />

few dairies <strong>in</strong> <strong>the</strong> country, s<strong>to</strong>pped irrigation when Rietfonte<strong>in</strong><br />

spr<strong>in</strong>g dried up <strong>in</strong> 1989. In 2001, this large farm<br />

used 0.25 Mm3 /a of groundwater abstracted by boreholes.<br />

<strong>Groundwater</strong> use for lives<strong>to</strong>ck farm<strong>in</strong>g is <strong>the</strong> same <strong>in</strong> <strong>the</strong><br />

Tsumeb Karst Aquifer area <strong>an</strong>d Grootfonte<strong>in</strong> Karst Aquifer<br />

area, each use approximately 1 Mm3 /a.<br />

D PLÖTHNER<br />

FURTHER READING<br />

• Bäumle R, T Himmelsbach <strong>an</strong>d R Bufler. 2001.<br />

Conceptual hydrogeological models <strong>to</strong> assess <strong>the</strong><br />

groundwater resources of <strong>the</strong> heterogeneous<br />

fractured aquifers at Tsumeb (Nor<strong>the</strong>rn<br />

<strong>Namibia</strong>). In: Seiler & Wohnlich (Eds): New<br />

Approaches Characteris<strong>in</strong>g <strong>Groundwater</strong> Flow.<br />

Proceed<strong>in</strong>gs International IAH Congress,<br />

Munich.<br />

• Hedberg R M. 1979. Stratigraphy of <strong>the</strong><br />

Ovambo l<strong>an</strong>d Bas<strong>in</strong>, South West Africa. Bull.<br />

Precambri<strong>an</strong> Research Unit. University of Cape<br />

Town.<br />

• Schmidt G <strong>an</strong>d D Plöthner. 2000. Hydrogeo -<br />

logical Investigations <strong>in</strong> <strong>the</strong> Otavi Mounta<strong>in</strong><br />

L<strong>an</strong>d. In: Silio, O. et al. (Eds). <strong>Groundwater</strong>:<br />

Past Achievements <strong>an</strong>d Future Challenges.<br />

Proceed<strong>in</strong>gs International IAH Congress, Cape<br />

Town.<br />

• Schwartz MO <strong>an</strong>d D Plöthner. 1999. Removal<br />

of heavy metals from m<strong>in</strong>e water by carbonate<br />

precipitation <strong>in</strong> <strong>the</strong> Grootfonte<strong>in</strong>-Omatako<br />

C<strong>an</strong>al, <strong>Namibia</strong>. Environmental Geology, 39.<br />

Tucson.<br />

• Vogel JC <strong>an</strong>d H v<strong>an</strong> Urk. 1975. Iso<strong>to</strong>pic com -<br />

position of groundwater <strong>in</strong> semi-arid regions of<br />

sou<strong>the</strong>rn Africa. Journal of Hydrology, 25.<br />

69


70<br />

The Eastern National Water Carrier (ENWC) <strong>an</strong>d <strong>the</strong><br />

Grootfonte<strong>in</strong>-Omatako C<strong>an</strong>al<br />

The Grootfonte<strong>in</strong>-Omatako C<strong>an</strong>al<br />

was built between 1981 <strong>an</strong>d 1987. The<br />

Kombat M<strong>in</strong>e is connected <strong>to</strong> <strong>the</strong><br />

c<strong>an</strong>al via a 20 km long pipel<strong>in</strong>e. The<br />

c<strong>an</strong>al is 263 km long, of which 203 km<br />

is a parabolic, open <strong>an</strong>d concrete-l<strong>in</strong>ed<br />

c<strong>an</strong>al <strong>an</strong>d <strong>the</strong> rema<strong>in</strong>der consists of 23<br />

<strong>in</strong>verted siphons or underground<br />

pipes. The c<strong>an</strong>al has a maximum width<br />

of 3.7 m <strong>an</strong>d a maximum depth of<br />

1.65 m. It is a gravity flow c<strong>an</strong>al with<br />

a gentle slope of about 1: 3 000. When<br />

full, <strong>the</strong> flow velocity is 0.8 m/s <strong>an</strong>d<br />

<strong>the</strong> maximum capacity is 3 m 3 /s (95<br />

Mm 3 /a).<br />

The c<strong>an</strong>al passes through commercial<br />

farml<strong>an</strong>d <strong>an</strong>d for 60 km it runs parallel<br />

<strong>to</strong> <strong>the</strong> Waterberg. The c<strong>an</strong>al with<br />

its steep parabolic sides has become a<br />

death trap for frogs, snakes, <strong>to</strong>r<strong>to</strong>ises,<br />

warthogs <strong>an</strong>d several rare protected<br />

species. Up <strong>to</strong> five thous<strong>an</strong>d wild <strong>an</strong>imals<br />

drown each year, prov<strong>in</strong>g that a<br />

steep sided open c<strong>an</strong>al is not <strong>an</strong> appro-<br />

Grootfonte<strong>in</strong>-Omatako C<strong>an</strong>al under construction<br />

priate water carrier <strong>in</strong> a semiarid<br />

country with abund<strong>an</strong>t<br />

wildlife.<br />

The Grootfonte<strong>in</strong>- Oma -<br />

tako C<strong>an</strong>al, as part of <strong>the</strong><br />

ENWC, conveys ground -<br />

water from m<strong>in</strong>es <strong>in</strong> <strong>the</strong><br />

Otavi Mounta<strong>in</strong> L<strong>an</strong>d <strong>to</strong><br />

rural areas <strong>in</strong> <strong>the</strong> Okakarara<br />

District, <strong>an</strong>d <strong>to</strong> <strong>the</strong><br />

Omatako Dam from where<br />

it is fur<strong>the</strong>r distributed by<br />

pipel<strong>in</strong>es <strong>to</strong> <strong>the</strong> central areas<br />

of <strong>Namibia</strong>, <strong>in</strong>clud<strong>in</strong>g<br />

W<strong>in</strong>dhoek, Okah<strong>an</strong>dja,<br />

Karibib <strong>an</strong>d Navachab <strong>an</strong>d<br />

Otjihase m<strong>in</strong>es. See <strong>the</strong> diagrammatic<br />

layout show<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>frastructure of <strong>the</strong><br />

ENWC <strong>an</strong>d route on <strong>the</strong><br />

Map. At present, Kombat<br />

M<strong>in</strong>e, Berg Aukas M<strong>in</strong>e as a st<strong>an</strong>d-by<br />

water supply scheme, <strong>an</strong>d some st<strong>an</strong>dby<br />

wells are l<strong>in</strong>ked via pipel<strong>in</strong>es <strong>to</strong> <strong>the</strong><br />

c<strong>an</strong>al. The feasibility<br />

of l<strong>in</strong>k<strong>in</strong>g<br />

<strong>the</strong> Tsumeb M<strong>in</strong>e<br />

<strong>an</strong>d <strong>the</strong> ab<strong>an</strong>doned<br />

Abenab<br />

West M<strong>in</strong>e <strong>to</strong> <strong>the</strong><br />

c<strong>an</strong>al is under<br />

<strong>in</strong>vestigation. In<br />

good ra<strong>in</strong>fall<br />

years, <strong>the</strong> three<br />

dams l<strong>in</strong>ked by<br />

Dieter Plöthner<br />

<strong>the</strong> ENCW,<br />

Omatako Dam,<br />

Von Bach Dam<br />

Diagrammatic layout of <strong>the</strong> Eastern National Water<br />

Carrier (ENWC)<br />

<strong>an</strong>d Swakoppoort Dam, c<strong>an</strong> impound<br />

sufficient volumes of ephemeral river<br />

runoff <strong>to</strong> meet <strong>the</strong> water dem<strong>an</strong>d of<br />

central <strong>Namibia</strong>. Kombat M<strong>in</strong>e<br />

groundwater is treated at Okakarara <strong>to</strong><br />

meet <strong>the</strong> dem<strong>an</strong>ds of <strong>the</strong> <strong>to</strong>wn <strong>an</strong>d for<br />

rural water supply <strong>in</strong> <strong>the</strong> district. The<br />

<strong>in</strong>tention is <strong>to</strong> supply ground water<br />

from Kombat <strong>an</strong>d Berg Aukas m<strong>in</strong>es<br />

<strong>to</strong> central <strong>Namibia</strong> dur<strong>in</strong>g prolonged<br />

droughts, when surface water is scarce.<br />

There is a proposal <strong>to</strong> l<strong>in</strong>k <strong>the</strong> c<strong>an</strong>al<br />

via a 240 km long pipel<strong>in</strong>e <strong>to</strong> <strong>the</strong> Okav<strong>an</strong>go<br />

River, <strong>to</strong> supply <strong>the</strong> central areas<br />

of <strong>Namibia</strong>. However, <strong>the</strong> possible<br />

environmental impact of large scale<br />

water withdrawal from <strong>the</strong> river both


on <strong>the</strong> ecology of <strong>the</strong> river downstream<br />

<strong>an</strong>d on <strong>the</strong> unique wetl<strong>an</strong>ds of <strong>the</strong><br />

Okav<strong>an</strong>go Swamps, has yet <strong>to</strong> be fully<br />

assessed. The Okav<strong>an</strong>go River catchment<br />

is <strong>in</strong>ternationally shared by<br />

Angola, <strong>Namibia</strong> <strong>an</strong>d Botsw<strong>an</strong>a, thus<br />

all major developments must be agreed<br />

<strong>to</strong> by <strong>the</strong> o<strong>the</strong>r bas<strong>in</strong> states. The<br />

tripartite Okav<strong>an</strong>go Commission,<br />

OKAKOM, was created <strong>in</strong> 1994 as a<br />

forum for such debate <strong>an</strong>d <strong>an</strong><br />

Okav<strong>an</strong>go River Bas<strong>in</strong> M<strong>an</strong>agement<br />

Project is pl<strong>an</strong>ned with <strong>the</strong> f<strong>in</strong><strong>an</strong>cial<br />

assist<strong>an</strong>ce of <strong>the</strong> Global Environment<br />

Facility (GEF). A prelim<strong>in</strong>ary agreement<br />

has been signed curb<strong>in</strong>g <strong>an</strong>y<br />

signific<strong>an</strong>t developments <strong>in</strong> <strong>the</strong> catchment<br />

by <strong>an</strong>y of <strong>the</strong> States until a m<strong>an</strong>agement<br />

pl<strong>an</strong> for <strong>the</strong> Okav<strong>an</strong>go River<br />

bas<strong>in</strong> has been jo<strong>in</strong>tly established.<br />

The current strategy of <strong>the</strong> Department<br />

of Water Affairs <strong>an</strong>d NamWater<br />

is, prior <strong>to</strong> <strong>the</strong> Okav<strong>an</strong>go option, <strong>to</strong><br />

Inflow of <strong>the</strong> Grootfonte<strong>in</strong>-Omatako-C<strong>an</strong>al <strong>in</strong><strong>to</strong> <strong>the</strong> Omatako Dam<br />

Inflow of groundwater from Br<strong>an</strong>dwag <strong>in</strong><strong>to</strong> <strong>the</strong> ENWC<br />

<strong>in</strong>vestigate <strong>the</strong> feasibility of groundwater<br />

abstraction from <strong>the</strong> ab<strong>an</strong>doned<br />

m<strong>in</strong>es of Berg Aukas <strong>an</strong>d Abenab West<br />

<strong>an</strong>d <strong>the</strong> operat<strong>in</strong>g m<strong>in</strong>es at Kombat<br />

<strong>an</strong>d Tsumeb. Both options, ei<strong>the</strong>r on<br />

Dieter Plöthner<br />

a long-term susta<strong>in</strong>able yield basis or<br />

on a short-term emergency basis (allow<strong>in</strong>g<br />

higher abstraction rates for up <strong>to</strong> 3<br />

years), are be<strong>in</strong>g <strong>in</strong>vestigated. Additional<br />

groundwater for <strong>the</strong> ENWC<br />

could <strong>in</strong> future, be abstracted from<br />

st<strong>an</strong>d-by well galleries <strong>in</strong> syncl<strong>in</strong>es<br />

I <strong>an</strong>d III.<br />

D PLÖTHNER<br />

FURTHER READING<br />

• Bethune S <strong>an</strong>d EH Chivell.<br />

1985. Environmental aspects<br />

of <strong>the</strong> Eastern National<br />

Water Carrier. SWA<br />

Publications, W<strong>in</strong>dhoek.<br />

• Ravenscroft W. 1985. The<br />

Eastern National Water<br />

Carrier – Assuag<strong>in</strong>g <strong>the</strong><br />

nation’s thirst. SWA 1985<br />

Annual, SWA Publications,<br />

W<strong>in</strong>dhoek.<br />

Jürgen Kirchner<br />

71


72<br />

Nor<strong>the</strong>rn Namib <strong>an</strong>d<br />

Kaokoveld<br />

The Nor<strong>the</strong>rn Namib <strong>an</strong>d Kaokoveld groundwater region<br />

is located <strong>in</strong> north-western <strong>Namibia</strong>. The boundaries, chosen<br />

on <strong>the</strong> basis of l<strong>an</strong>dforms <strong>an</strong>d hydro geological signific<strong>an</strong>ce,<br />

co<strong>in</strong>cide more or less with <strong>the</strong> Kunene Region. Its<br />

north-eastern dolomitic mounta<strong>in</strong> ridges represent <strong>the</strong> eastern<br />

rim of <strong>the</strong> Cuvelai Bas<strong>in</strong>. In <strong>the</strong> south it is bordered<br />

by <strong>the</strong> Ugab River <strong>an</strong>d <strong>the</strong> Br<strong>an</strong>dberg.<br />

From <strong>the</strong> Ugab River northwards, <strong>the</strong> Namib is described<br />

as a rocky desert. The average ra<strong>in</strong>fall r<strong>an</strong>ges from less th<strong>an</strong><br />

50 mm/a <strong>in</strong> <strong>the</strong> west <strong>to</strong> slightly more th<strong>an</strong> 300 mm/a <strong>in</strong> <strong>the</strong><br />

east. Except for <strong>the</strong> Kunene River, all rivers are ephemeral:<br />

<strong>the</strong>se are <strong>the</strong> tributaries of <strong>the</strong> Kunene flow<strong>in</strong>g north, e.g.<br />

Otj<strong>in</strong>j<strong>an</strong>ge, Omuhongo <strong>an</strong>d Ondo<strong>to</strong>, <strong>an</strong>d <strong>the</strong> westwardflow<strong>in</strong>g<br />

ephemeral rivers (from north <strong>to</strong> south), Nadas,<br />

Sechomib, Khumib, Hoarisib, Ho<strong>an</strong>ib, Uniab, Koigab, Huab<br />

<strong>an</strong>d Ugab. Most of <strong>the</strong> l<strong>an</strong>d is state protected or communal<br />

area. Commercial farml<strong>an</strong>ds are present <strong>in</strong> <strong>the</strong> Khorixas District.<br />

Most of <strong>the</strong> Namib areas are hills <strong>an</strong>d valleys while <strong>the</strong><br />

Kaokoveld fur<strong>the</strong>r north is rugged mounta<strong>in</strong> terra<strong>in</strong>. The<br />

escarpment separates <strong>the</strong> Skele<strong>to</strong>n Coast coastal pla<strong>in</strong> <strong>in</strong> <strong>the</strong><br />

west from <strong>the</strong> mounta<strong>in</strong>ous areas <strong>in</strong> <strong>the</strong> east. Prom<strong>in</strong>ent<br />

l<strong>an</strong>dmarks are <strong>the</strong> Baynes <strong>an</strong>d Hartm<strong>an</strong>n’s Mounta<strong>in</strong>s <strong>in</strong><br />

<strong>the</strong> north, <strong>an</strong>d <strong>the</strong> Etendeka table mounta<strong>in</strong> l<strong>an</strong>dscape <strong>in</strong><br />

Epupa Falls on <strong>the</strong> Kunene River<br />

Shirley Bethune<br />

<strong>the</strong> south-west. East of Khorixas are <strong>the</strong> Ugab terraces with<br />

<strong>the</strong> famous F<strong>in</strong>gerklip.<br />

The nor<strong>the</strong>rn part of <strong>the</strong> area is populated by <strong>the</strong> Himba<br />

<strong>an</strong>d <strong>the</strong> sou<strong>the</strong>rn part by Damara people. Both are s<strong>to</strong>ck<br />

farmers keep<strong>in</strong>g cattle, goats <strong>an</strong>d sheep. The adm<strong>in</strong>istrative<br />

centres of <strong>the</strong> Kunene North <strong>an</strong>d South regions are Opuwo<br />

<strong>an</strong>d Khorixas respectively. Kam<strong>an</strong>jab, a <strong>to</strong>wn located 100 km<br />

north of Khorixas, serves <strong>the</strong> local commercial farm<strong>in</strong>g<br />

community.<br />

Geology<br />

Gr<strong>an</strong>itic <strong>an</strong>d gneissic rock types cover vast areas <strong>in</strong> <strong>the</strong><br />

Kaokoveld. Gr<strong>an</strong>ites, gneiss <strong>an</strong>d old volc<strong>an</strong>ic rocks are<br />

roughly located <strong>in</strong> a tri<strong>an</strong>gle between Marienfluss, Swartbooisdrif<br />

<strong>an</strong>d Sesfonte<strong>in</strong>. Metamorphic rocks <strong>in</strong>clud<strong>in</strong>g marble<br />

<strong>an</strong>d quartzitic b<strong>an</strong>ds occur <strong>in</strong> <strong>the</strong> western part of <strong>the</strong><br />

Kaokoveld. They form a strip between <strong>the</strong> Hartm<strong>an</strong>n’s<br />

Mounta<strong>in</strong>s <strong>an</strong>d <strong>the</strong> coast that goes all <strong>the</strong> way down <strong>to</strong><br />

<strong>the</strong> Uniab River.<br />

Mounta<strong>in</strong> r<strong>an</strong>ges of carbonate rock types (dolomites <strong>an</strong>d<br />

limes<strong>to</strong>nes of <strong>the</strong> Otavi Group) that c<strong>an</strong> be related <strong>to</strong> <strong>the</strong><br />

Otavi Mounta<strong>in</strong> L<strong>an</strong>d, form <strong>the</strong> eastern edge of <strong>the</strong> area,<br />

grad<strong>in</strong>g <strong>to</strong>wards <strong>the</strong> north <strong>in</strong><strong>to</strong> outcrops of quartzitic s<strong>an</strong>ds<strong>to</strong>ne<br />

represent<strong>in</strong>g <strong>the</strong> Nosib Group. The Baynes Mounta<strong>in</strong>s<br />

<strong>in</strong> <strong>the</strong> far north are also dolomitic <strong>an</strong>d quartzitic rocks<br />

of <strong>the</strong> Otavi <strong>an</strong>d Nosib groups.<br />

Volc<strong>an</strong>ic rocks of <strong>the</strong> Etendeka Formation crop out<br />

between Sesfonte<strong>in</strong> <strong>an</strong>d <strong>the</strong> Huab River. Some smaller units<br />

are present <strong>in</strong> <strong>the</strong> area south of Orupembe. These volc<strong>an</strong>ic<br />

rocks build <strong>the</strong> typical table mounta<strong>in</strong> l<strong>an</strong>dscape of Damara -<br />

l<strong>an</strong>d. Underly<strong>in</strong>g shale <strong>an</strong>d muds<strong>to</strong>ne of <strong>the</strong> Dwyka<br />

Formation are present <strong>in</strong> <strong>the</strong> area west <strong>an</strong>d east of Orupembe,<br />

<strong>in</strong> <strong>the</strong> Opuwo area, west of Sesfonte<strong>in</strong> <strong>an</strong>d at Ruac<strong>an</strong>a. The<br />

most recent rocks are calcretes (<strong>in</strong> <strong>the</strong> area of Khorixas, Fr<strong>an</strong>sfonte<strong>in</strong><br />

<strong>an</strong>d Sesfonte<strong>in</strong>) as well as alluvial deposits occurr<strong>in</strong>g<br />

locally <strong>in</strong> <strong>the</strong> ephemeral river beds.<br />

As far as tec<strong>to</strong>nic structures are concerned, <strong>the</strong> most well<br />

known ones are <strong>the</strong> Sesfonte<strong>in</strong> Thrust <strong>an</strong>d <strong>the</strong> Purros<br />

L<strong>in</strong>eament. The Sesfonte<strong>in</strong> Thrust represents <strong>the</strong> contact<br />

between <strong>the</strong> Otavi Dolomites <strong>an</strong>d metamorphosed rocks,<br />

represented by phyllites of <strong>the</strong> Mulden Group. This contact<br />

zone gave rise <strong>to</strong> <strong>the</strong> spr<strong>in</strong>gs found at Sesfonte<strong>in</strong>. The <strong>to</strong>po-


graphical location of <strong>the</strong> contact, on <strong>to</strong>p of a hill, makes it<br />

impossible <strong>to</strong> <strong>in</strong>tersect by boreholes. The Purros L<strong>in</strong>eament<br />

has been <strong>in</strong>vestigated hydrogeologically but is not productive,<br />

despite some good yield<strong>in</strong>g boreholes drilled on <strong>the</strong><br />

l<strong>in</strong>eament.<br />

Hydrogeological features<br />

<strong>an</strong>d utilisation of<br />

groundwater<br />

The region generally has a<br />

low groundwater potential.<br />

The area with aquifer potential,<br />

more or less reflects <strong>the</strong><br />

ra<strong>in</strong>fall distribution, decreas<strong>in</strong>g<br />

westwards. Know ledge<br />

of <strong>the</strong> aquifers <strong>in</strong> this area is<br />

sparse, due <strong>to</strong> <strong>the</strong> low number<br />

of boreholes <strong>an</strong>d few<br />

government <strong>in</strong>vestigations<br />

on groundwater.<br />

Spr<strong>in</strong>g east of Kaoko Otavi<br />

The area is well known<br />

for its numerous spr<strong>in</strong>gs that provide water for wildlife <strong>an</strong>d<br />

<strong>to</strong> villages. Small-scale irrigation schemes are <strong>in</strong> operation<br />

at some of <strong>the</strong> higher yield<strong>in</strong>g spr<strong>in</strong>gs, like Warm quelle,<br />

Kaoko-Otavi <strong>an</strong>d Sesfonte<strong>in</strong>. There are also a number of<br />

<strong>the</strong>rmal spr<strong>in</strong>gs <strong>in</strong> <strong>the</strong> area, e.g. Warmquelle, Ongongo,<br />

Monte Carlo <strong>an</strong>d spr<strong>in</strong>gs at Ok<strong>an</strong>gwati. O<strong>the</strong>r well-known<br />

spr<strong>in</strong>gs are Fr<strong>an</strong>sfonte<strong>in</strong>, Ga<strong>in</strong>atseb, Palmwag, Sarusas <strong>an</strong>d<br />

Orupembe. The Sarusas spr<strong>in</strong>g, located <strong>in</strong> <strong>the</strong> lower reaches<br />

of <strong>the</strong> Khumib River, provides dr<strong>in</strong>k<strong>in</strong>g water <strong>to</strong> wildlife <strong>in</strong><br />

<strong>the</strong> Skele<strong>to</strong>n Coast Park.<br />

Recharge from ra<strong>in</strong>fall is <strong>an</strong> import<strong>an</strong>t parameter determ<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> groundwater potential, but <strong>the</strong> degree of<br />

metamorphism effects <strong>the</strong> groundwater potential <strong>to</strong>o. The<br />

groundwater potential of rocks decreases, as <strong>the</strong> degree of<br />

metamorphism <strong>in</strong>creases. Crystall<strong>in</strong>e rocks, such as <strong>the</strong><br />

various gr<strong>an</strong>ites <strong>an</strong>d gneisses that occur <strong>in</strong> <strong>the</strong> area, normally<br />

exhibit a very low tendency <strong>to</strong> s<strong>to</strong>re water. Unfor tunately,<br />

as <strong>in</strong>dicated by <strong>the</strong> lithology, most of <strong>the</strong> Kaokoveld is under -<br />

la<strong>in</strong> by rock that is ei<strong>the</strong>r gr<strong>an</strong>itic, gneissic or meta morphosed.<br />

Therefore, <strong>the</strong> dark brown colours on <strong>the</strong> Map, represent -<br />

<strong>in</strong>g aquifers of very low potential, prevail <strong>in</strong> a tri<strong>an</strong>gle between<br />

Swartbooisdrif, Kunene River mouth <strong>an</strong>d <strong>the</strong> Uniab River<br />

mouth. Drill<strong>in</strong>g targets <strong>in</strong> <strong>the</strong>se hard rock areas are ma<strong>in</strong>ly<br />

fractured zones <strong>an</strong>d faults, but <strong>the</strong> success rate <strong>an</strong>d yields<br />

for <strong>the</strong>se rock types are generally low. This c<strong>an</strong> be considered<br />

as one of <strong>the</strong> most difficult areas <strong>to</strong> drill for water.<br />

The area surround<strong>in</strong>g Ok<strong>an</strong>gwati is more promis<strong>in</strong>g due <strong>to</strong><br />

well-developed fractures <strong>an</strong>d<br />

faults that give rise <strong>to</strong> hot<br />

water spr<strong>in</strong>gs.<br />

Ano<strong>the</strong>r zone of crystall<strong>in</strong>e<br />

rocks, classified as gr<strong>an</strong>ites,<br />

gneisses <strong>an</strong>d old volc<strong>an</strong>ic<br />

rocks, underlie a more or less<br />

tri<strong>an</strong>gular area between<br />

Otjovas<strong>an</strong>do, Outjo <strong>an</strong>d <strong>the</strong><br />

confluence of <strong>the</strong> Huab <strong>an</strong>d<br />

Aba Huab rivers.<br />

In geological terms this is<br />

known as <strong>the</strong> Kam<strong>an</strong>jab<br />

Inlier <strong>an</strong>d <strong>the</strong> Khoabendus<br />

Formation. The ground -<br />

water potential of this rock unit is generally low, <strong>to</strong> locally<br />

moderate; it improves as one goes fur<strong>the</strong>r east, <strong>in</strong> <strong>the</strong> direction<br />

of <strong>in</strong>creas<strong>in</strong>g precipitation. Pump-tests done on boreholes<br />

<strong>in</strong> <strong>the</strong> Kam<strong>an</strong>jab area, however, illustrate that recharge is<br />

still limited <strong>an</strong>d does not occur very often <strong>in</strong> <strong>the</strong> western<br />

parts of this zone, <strong>an</strong> area of mostly commercial farml<strong>an</strong>ds.<br />

Kam<strong>an</strong>jab is a <strong>to</strong>wn that has outgrown its ground water<br />

potential. The rocks of <strong>the</strong> area around Kam<strong>an</strong>jab (metasediments<br />

<strong>an</strong>d gr<strong>an</strong>ites of <strong>the</strong> Huab Complex overla<strong>in</strong> by<br />

volc<strong>an</strong>ic rocks <strong>an</strong>d meta-sediments of <strong>the</strong> Khoabendus<br />

Group) have very little groundwater potential. A wellfield<br />

(42) <strong>to</strong> supply <strong>the</strong> <strong>to</strong>wn is clustered around a small earth<br />

dam that fails <strong>to</strong> provide signific<strong>an</strong>t recharge. Additional<br />

boreholes drilled <strong>in</strong> <strong>the</strong> volc<strong>an</strong>ic rocks at <strong>the</strong> airfield on<br />

<strong>the</strong> farm Kam<strong>an</strong>jab Nord have similar low yields <strong>an</strong>d limited<br />

reserves. Recently, a new wellfield was <strong>in</strong>stalled on <strong>the</strong> farm<br />

Kalkr<strong>an</strong>d East east of Kam<strong>an</strong>jab <strong>in</strong> calcrete- covered Huab<br />

Complex, <strong>an</strong>d dolomites of <strong>the</strong> Otavi Group north-east<br />

of Kam<strong>an</strong>jab were also <strong>in</strong>vestigated as potential groundwater<br />

supply sources.<br />

O<strong>the</strong>r small water supply schemes <strong>in</strong> crystall<strong>in</strong>e rocks are<br />

Gwendal Madec<br />

73


74<br />

for <strong>the</strong> schools at Anker <strong>an</strong>d<br />

Erwee. Anker (6), a school<br />

<strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn Br<strong>an</strong>dberg<br />

area is supplied with water<br />

from three boreholes drilled<br />

on fractures <strong>in</strong> quartzite <strong>an</strong>d<br />

gr<strong>an</strong>ite of <strong>the</strong> Huab Complex.<br />

The water quality has<br />

deteriorated from Group B<br />

<strong>to</strong> C due <strong>to</strong> over-abstraction.<br />

Erwee (26) was established<br />

on <strong>the</strong> farm Grootberg west<br />

of Kam<strong>an</strong>jab <strong>in</strong> <strong>an</strong> area<br />

Skele<strong>to</strong>n Coast, Khumib River: Sarusas spr<strong>in</strong>g near Wilderness<br />

Rest Camp<br />

underla<strong>in</strong> by gr<strong>an</strong>ite <strong>an</strong>d meta-sediments of <strong>the</strong> Huab Complex.<br />

The low s<strong>to</strong>rage capacity of <strong>the</strong> rocks comb<strong>in</strong>ed with<br />

erratic recharge <strong>an</strong>d high consumption soon led <strong>to</strong> overabstraction<br />

of <strong>the</strong> aquifer.<br />

The carbonate rocks (limes<strong>to</strong>nes <strong>an</strong>d dolomites) of <strong>the</strong><br />

Otavi Group, located <strong>in</strong> <strong>the</strong> north-east of <strong>the</strong> area have<br />

moderate potential <strong>an</strong>d are <strong>in</strong>dicated by a light green colour<br />

on <strong>the</strong> Map. Never<strong>the</strong>less, where <strong>in</strong> contact with o<strong>the</strong>r rock<br />

types, particularly <strong>the</strong> non-porous s<strong>an</strong>ds<strong>to</strong>ne, conglomer -<br />

ate <strong>an</strong>d quartzites of <strong>the</strong> Nosib <strong>an</strong>d Mulden Groups, wea<strong>the</strong>r<strong>in</strong>g<br />

is enh<strong>an</strong>ced by karstification processes <strong>an</strong>d higher<br />

yields c<strong>an</strong> be expected. These contact areas are <strong>in</strong>dicated by<br />

dark green l<strong>in</strong>es on <strong>the</strong> Map.<br />

The water supply scheme of Sesfonte<strong>in</strong> (93) owes its<br />

orig<strong>in</strong> <strong>an</strong>d name <strong>to</strong> <strong>the</strong> six founta<strong>in</strong>s along <strong>the</strong> contact zone<br />

between dolomites of <strong>the</strong> Tsumeb Subgroup dolomite<br />

aquifers <strong>an</strong>d <strong>the</strong> underly<strong>in</strong>g less permeable phyllites of <strong>the</strong><br />

Mulden Group (both Damara Sequence). A fort was built<br />

<strong>in</strong> this favourable place <strong>in</strong> colonial times. As <strong>the</strong> <strong>to</strong>wn<br />

exp<strong>an</strong>ded, <strong>the</strong> water supply from <strong>the</strong> founta<strong>in</strong>s was supple -<br />

mented by boreholes, which <strong>in</strong> turn reduced <strong>the</strong> flow from<br />

<strong>the</strong> founta<strong>in</strong>s. The yield of <strong>the</strong> water scheme is currently<br />

<strong>in</strong>sufficient <strong>to</strong> meet <strong>the</strong> grow<strong>in</strong>g dem<strong>an</strong>d.<br />

Ano<strong>the</strong>r th<strong>in</strong> b<strong>an</strong>d of Otavi dolomites <strong>an</strong>d limes<strong>to</strong>nes<br />

extends all <strong>the</strong> way from <strong>the</strong> Otavi Mounta<strong>in</strong> L<strong>an</strong>d <strong>to</strong> <strong>the</strong><br />

Fr<strong>an</strong>sfonte<strong>in</strong> area. The sou<strong>the</strong>rn contact of this dolomite<br />

ridge is a good drill<strong>in</strong>g target for establish<strong>in</strong>g productive<br />

boreholes (<strong>in</strong>dicated as dark green) but <strong>the</strong> nor<strong>the</strong>rn contact<br />

is less productive. Fr<strong>an</strong>sfonte<strong>in</strong> owes its orig<strong>in</strong> <strong>to</strong> spr<strong>in</strong>gs<br />

Jürgen Kirchner<br />

issu<strong>in</strong>g from <strong>the</strong> dolomites.<br />

The spr<strong>in</strong>gs are however not<br />

used for hu m<strong>an</strong> consumption.<br />

In stead ground water is<br />

supplied from boreholes on<br />

fractured dolomite for <strong>the</strong><br />

Fr<strong>an</strong>sfonte<strong>in</strong> water supply<br />

scheme (27).<br />

The Khorixas water supply<br />

scheme (47) is similar.<br />

Ground water is pumped 30<br />

km away from Braunfels<br />

where high-yield<strong>in</strong>g bore-<br />

holes are drilled <strong>in</strong><strong>to</strong> calcretes underla<strong>in</strong> by fractured dolomite<br />

of <strong>the</strong> Otavi Group.<br />

The Ga<strong>in</strong>atseb spr<strong>in</strong>g yield<strong>in</strong>g between 80-100 m 3 /h also<br />

forms part of this scheme <strong>an</strong>d contributes <strong>to</strong> <strong>the</strong> water supply<br />

of Khorixas, a sprawl<strong>in</strong>g <strong>to</strong>wn with <strong>an</strong> uncommonly high<br />

water dem<strong>an</strong>d. O<strong>the</strong>r thick groundwater calcrete deposits<br />

<strong>in</strong> <strong>the</strong> Khorixas area, known as <strong>the</strong> Ugab terraces, are dra<strong>in</strong>ed<br />

by <strong>the</strong> Ugab River itself <strong>an</strong>d conta<strong>in</strong> little groundwater.<br />

Muds<strong>to</strong>nes <strong>an</strong>d shales of <strong>the</strong> Chuos Formation are found<br />

between <strong>the</strong> Otavi Group dolomites. The groundwater potential<br />

of this unit is very limited but <strong>the</strong> dolomite <strong>in</strong> contact<br />

with <strong>the</strong> Chuos is karstified at <strong>the</strong> contact pla<strong>in</strong>s <strong>an</strong>d provides<br />

high-yield<strong>in</strong>g boreholes. High concentrations of iron<br />

are associated with <strong>the</strong> groundwater <strong>in</strong> <strong>the</strong> Chuos Formation.<br />

The groundwater potential of <strong>the</strong> shale <strong>an</strong>d muds<strong>to</strong>ne<br />

deposits belong<strong>in</strong>g <strong>to</strong> <strong>the</strong> Dwyka is generally very limited.<br />

Where <strong>the</strong> Dwyka sediments have been deposited <strong>in</strong> deep<br />

<strong>in</strong>cised glacial valleys, <strong>the</strong> potential is better as illustrated by<br />

<strong>the</strong> Opuwo wellfield <strong>an</strong>d at Ruac<strong>an</strong>a. Most of <strong>the</strong>se betteryield<strong>in</strong>g<br />

boreholes have been drilled on <strong>the</strong> sides of <strong>the</strong>se deep<br />

valleys, but sometimes give water quality problems.<br />

The water supply scheme of Opuwo (76) comes from<br />

a Dwyka shale aquifer, known as <strong>the</strong> north-western wellfield,<br />

<strong>an</strong>d from a s<strong>an</strong>ds<strong>to</strong>ne <strong>an</strong>d shale aquifer of <strong>the</strong> sou<strong>the</strong>astern<br />

wellfield. Yields of <strong>the</strong> s<strong>an</strong>ds<strong>to</strong>ne aquifer are low but<br />

that from <strong>the</strong> north-west wellfield exceed 15 m 3 /h, but<br />

<strong>the</strong> water quality falls <strong>in</strong> Group C <strong>an</strong>d D.<br />

Little is yet known about <strong>the</strong> groundwater potential of<br />

<strong>the</strong> young volc<strong>an</strong>ic rocks of <strong>the</strong> Etendeka Formation. As


numerous spr<strong>in</strong>gs issue from <strong>the</strong>se rocks all over <strong>the</strong> area,<br />

<strong>the</strong> groundwater potential is expected <strong>to</strong> be higher th<strong>an</strong> that<br />

of <strong>the</strong> metamorphic <strong>an</strong>d gr<strong>an</strong>itic rocks. Most of <strong>the</strong> Etendeka<br />

is however located <strong>in</strong> <strong>the</strong> far west, where direct recharge from<br />

ra<strong>in</strong>fall only occurs <strong>in</strong>frequently. The water supply scheme<br />

of <strong>the</strong> Bergsig (13) settlement <strong>an</strong>d school obta<strong>in</strong>s its water<br />

from fractured basalt of <strong>the</strong> Cretaceous Etendeka Formation.<br />

The s<strong>to</strong>red reserves are limited <strong>an</strong>d recharge is low.<br />

In contrast, where boreholes <strong>an</strong>d wells have been sunk <strong>in</strong><br />

<strong>the</strong> eastern, higher ra<strong>in</strong>fall area, <strong>the</strong> yields are signific<strong>an</strong>tly<br />

higher. Some of <strong>the</strong> most exclusive wilderness resorts, such<br />

as Etendeka Mounta<strong>in</strong> Camp, rely on <strong>the</strong>se spr<strong>in</strong>gs <strong>an</strong>d are<br />

appropriately m<strong>an</strong>aged <strong>to</strong> keep <strong>the</strong> water consumption <strong>to</strong><br />

<strong>the</strong> m<strong>in</strong>imum.<br />

In <strong>the</strong> ephemeral rivers, alluvial groundwater is <strong>in</strong> m<strong>an</strong>y<br />

cases tapped by boreholes <strong>an</strong>d h<strong>an</strong>d-dug wells. It provides<br />

<strong>an</strong> import<strong>an</strong>t groundwater resource, especially <strong>in</strong> <strong>the</strong> western<br />

half of <strong>the</strong> area. Boreholes drilled <strong>in</strong> bedrock nearby are also<br />

susta<strong>in</strong>ed by alluvial groundwater. The groundwater potential<br />

of <strong>the</strong>se dra<strong>in</strong>age l<strong>in</strong>es is considered far better th<strong>an</strong> <strong>the</strong><br />

surround<strong>in</strong>g rock. This is <strong>in</strong>dicated by light blue on <strong>the</strong><br />

Map. To improve <strong>the</strong> susta<strong>in</strong>ability of boreholes drilled <strong>in</strong><br />

poor productivity areas, it is common practise <strong>to</strong> artificially<br />

recharge <strong>the</strong> groundwater bodies us<strong>in</strong>g small-scale dams<br />

(ground swells or s<strong>an</strong>d dams) built <strong>in</strong> <strong>the</strong> riverbed.<br />

The camp at Terrace Bay is supplied with water from <strong>the</strong><br />

alluvial aquifer <strong>in</strong> <strong>the</strong> Uniab River, 20 km <strong>to</strong> <strong>the</strong> south. The<br />

river flows <strong>in</strong>frequently but when it floods it c<strong>an</strong> destroy <strong>the</strong><br />

production boreholes. The water quality varies from Group<br />

A-D depend<strong>in</strong>g on recharge, as <strong>the</strong> sal<strong>in</strong>ity <strong>in</strong>creases with<br />

time, due <strong>to</strong> evaporation.<br />

The entire area is dependent on groundwater resources<br />

for domestic purposes <strong>an</strong>d s<strong>to</strong>ck water<strong>in</strong>g. S<strong>in</strong>ce communal<br />

farml<strong>an</strong>d occupies most of <strong>the</strong> area, <strong>the</strong> Direc<strong>to</strong>rate of<br />

Rural Water Supply is responsible for most of <strong>the</strong> water supplied<br />

<strong>to</strong> <strong>the</strong>se farms. Water supply schemes operated by<br />

NamWater provide groundwater <strong>to</strong> <strong>the</strong> urb<strong>an</strong> centres of<br />

Khorixas, Opuwo, <strong>an</strong>d Kam<strong>an</strong>jab, as well as <strong>to</strong> some of <strong>the</strong><br />

smaller villages such as Anker, Bergsig, Erwee <strong>an</strong>d Fr<strong>an</strong>sfonte<strong>in</strong>.<br />

P BOTHA, A VAN WYK<br />

The Br<strong>an</strong>dberg, Erongo<br />

<strong>an</strong>d Waterberg Area<br />

The Br<strong>an</strong>dberg, Erongo <strong>an</strong>d Waterberg groundwater area<br />

<strong>in</strong>cludes <strong>the</strong> Waterberg <strong>in</strong> <strong>the</strong> north-east <strong>an</strong>d stretches down<br />

<strong>to</strong> <strong>the</strong> Atl<strong>an</strong>tic coast <strong>in</strong> <strong>the</strong> south-west. It covers most of <strong>the</strong><br />

western part of <strong>the</strong> Otjozondjupa Region <strong>an</strong>d <strong>the</strong> nor<strong>the</strong>rn<br />

Erongo Region. Otjiwarongo <strong>an</strong>d Okah<strong>an</strong>dja are situated<br />

on <strong>the</strong> eastern edge of <strong>the</strong> area. The Waterberg Plateau Park<br />

run by <strong>Namibia</strong> Wildlife Resorts is a major <strong>to</strong>urist attraction<br />

dependent on groundwater with<strong>in</strong> this area.<br />

Most of <strong>the</strong> area is more th<strong>an</strong> 1300 m above me<strong>an</strong> sea<br />

level. Westwards, with<strong>in</strong> <strong>an</strong> approximately 100 km-wide<br />

zone, <strong>the</strong> l<strong>an</strong>d surface drops <strong>to</strong> sea level. The eastern portion<br />

of <strong>the</strong> area is of relatively flat <strong>to</strong>pography with dispersed<br />

<strong>in</strong>selbergs like <strong>the</strong> tw<strong>in</strong> Omatako peaks, <strong>the</strong> Paresis <strong>an</strong>d<br />

Erongo mounta<strong>in</strong>s. The Waterberg <strong>an</strong>d Mount Etjo are flat<br />

plateau-type mounta<strong>in</strong>s. Towards <strong>the</strong> west, this old surface<br />

is characterised by more mounta<strong>in</strong>ous terra<strong>in</strong> with regular,<br />

generally westward-flow<strong>in</strong>g rivers. While <strong>the</strong> Omatako<br />

Omuramba dra<strong>in</strong>s <strong>to</strong>wards <strong>the</strong> east <strong>an</strong>d f<strong>in</strong>ally <strong>to</strong> <strong>the</strong> nor<strong>the</strong>ast,<br />

<strong>the</strong> Ugab <strong>an</strong>d several smaller rivers dra<strong>in</strong> <strong>to</strong>wards <strong>the</strong><br />

west coast. Annual average ra<strong>in</strong>fall de creases from a high<br />

of more th<strong>an</strong> 400 mm <strong>in</strong> <strong>the</strong><br />

east <strong>to</strong> below 50 mm west<br />

of <strong>the</strong> escarpment.<br />

Geology<br />

The area is situated <strong>in</strong> <strong>the</strong><br />

centre of <strong>the</strong> Damara<br />

trough. Classical geosyncl<strong>in</strong>e<br />

sedimentation produced a<br />

thick pile of ill-sorted sediments,<br />

which form <strong>the</strong><br />

Ugab <strong>an</strong>d Khomas subgroups<br />

of <strong>the</strong> Swakop<br />

Group (Damara Sequence).<br />

On <strong>the</strong> platform edges of<br />

<strong>the</strong> trough chiefly calcareous<br />

sediments were<br />

deposited. Both rock suites<br />

Jürgen Kirchner<br />

Otjosongom<strong>in</strong>go (Kle<strong>in</strong>er Waterberg)<br />

75


76<br />

were subsequently folded <strong>an</strong>d metamorphosed, <strong>an</strong>d gr<strong>an</strong>itic<br />

<strong>in</strong>trusion <strong>to</strong>ok place. B<strong>an</strong>ds of marble <strong>an</strong>d quartzite <strong>in</strong> <strong>the</strong>se<br />

o<strong>the</strong>rwise phyllitic metamorphic rocks are of hydrogeological<br />

signific<strong>an</strong>ce. The youngest <strong>in</strong>trusive rocks <strong>in</strong> <strong>the</strong> area<br />

are complexes of post-Karoo age like <strong>the</strong> Br<strong>an</strong>dberg, Messum<br />

Crater <strong>in</strong> <strong>the</strong> Goboboseb Mounta<strong>in</strong>s, Paresis Mounta<strong>in</strong><br />

<strong>an</strong>d scattered smaller outcrops.<br />

Major north-east strik<strong>in</strong>g faults <strong>an</strong>d thrusts, <strong>an</strong>d northstrik<strong>in</strong>g<br />

faults form <strong>the</strong> present outcrop boundary of younger<br />

rocks ma<strong>in</strong>ly represented by aeoli<strong>an</strong> s<strong>an</strong>ds<strong>to</strong>nes of <strong>the</strong> Etjo<br />

Formation at <strong>the</strong> Waterberg <strong>an</strong>d Mount Etjo. These s<strong>an</strong>ds<strong>to</strong>nes<br />

overlie <strong>the</strong> argillaceous sediments of <strong>the</strong> Om<strong>in</strong>gonde<br />

Formation, which dom<strong>in</strong>ate <strong>the</strong> geology between <strong>the</strong> farms<br />

Ohakaue <strong>in</strong> <strong>the</strong> north <strong>an</strong>d Vrede <strong>in</strong> <strong>the</strong> south. To <strong>the</strong> west<br />

of <strong>the</strong> Otjiwarongo-Omaruru tar road, <strong>the</strong>se young sedimentary<br />

rocks are absent, except for some outcrop of Karoo<br />

west of <strong>the</strong> Br<strong>an</strong>dberg. Two bodies of older lavas <strong>an</strong>d associated<br />

pyroclastics occur south-east of Khorixas, while basalt<br />

flows of Karoo age form <strong>the</strong> Goboboseb Mounta<strong>in</strong>s.<br />

Hydrogeology<br />

In <strong>the</strong> eastern part of <strong>the</strong> area, <strong>the</strong> Waterberg Plateau<br />

forms a major hydrogeological structure. Here, Etjo s<strong>an</strong>ds<strong>to</strong>ne<br />

rests with <strong>an</strong> unconformity on <strong>the</strong> underly<strong>in</strong>g Om<strong>in</strong>gonde<br />

argillite, giv<strong>in</strong>g rise <strong>to</strong> a series of contact founta<strong>in</strong>s<br />

that dra<strong>in</strong> water from <strong>the</strong> porous s<strong>an</strong>ds<strong>to</strong>ne. Ow<strong>in</strong>g <strong>to</strong> <strong>the</strong><br />

general dip of <strong>the</strong> contact pl<strong>an</strong>e, spr<strong>in</strong>gs emerge on <strong>the</strong> sou<strong>the</strong>rn<br />

slope of <strong>the</strong> Waterberg <strong>an</strong>d <strong>the</strong> nor<strong>the</strong>rn edge of <strong>the</strong><br />

Spr<strong>in</strong>g at Bernabé de la Bat, Waterberg<br />

Jürgen Kirchner<br />

Kle<strong>in</strong> Waterberg. Although this gives <strong>the</strong> impression of <strong>an</strong><br />

abund<strong>an</strong>ce of groundwater, this area generally has only moderate<br />

<strong>to</strong> poor groundwater potential. The spr<strong>in</strong>gs collect<br />

groundwater over a large area of s<strong>an</strong>ds<strong>to</strong>ne outcrop <strong>an</strong>d concentrate<br />

<strong>the</strong> flow along a shallow contact zone. The <strong>to</strong>urist<br />

camp of Bernabé de la Bat receives spr<strong>in</strong>g water from <strong>the</strong>se<br />

spr<strong>in</strong>gs discharg<strong>in</strong>g some 3 m 3 /h. The outflow is captured<br />

<strong>in</strong> a pit, <strong>an</strong>d two thirds of <strong>the</strong> spr<strong>in</strong>g water is used by <strong>the</strong><br />

resort while one third goes <strong>to</strong> a nearby farm house, leav<strong>in</strong>g<br />

none <strong>to</strong> susta<strong>in</strong> what was once a productive wetl<strong>an</strong>d.<br />

The Om<strong>in</strong>gonde Formation generally has low groundwater<br />

potential ow<strong>in</strong>g <strong>to</strong> <strong>the</strong> argillaceous character of <strong>the</strong><br />

rocks. Locally though, especially at contact zones <strong>to</strong>wards<br />

<strong>in</strong>trusive dolerites, this c<strong>an</strong> improve <strong>to</strong> moderate potential.<br />

Faults c<strong>an</strong> also be good targets for exploration. A water<br />

scheme on <strong>the</strong> Om<strong>in</strong>gonde Formation was established at<br />

<strong>the</strong> Omatako Dam (70) <strong>to</strong> supply operations personnel.<br />

The low-yield<strong>in</strong>g boreholes supply Group B-D water. At<br />

<strong>the</strong> former Osire (78) police station, now a refugee camp,<br />

water is found <strong>in</strong> <strong>the</strong> Om<strong>in</strong>gonde Formation, which is overla<strong>in</strong><br />

by Kalahari sediments. The high water dem<strong>an</strong>d due<br />

<strong>to</strong> <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g number of refugees is deplet<strong>in</strong>g <strong>the</strong><br />

resources.<br />

The groundwater potential of fractured aquifers <strong>in</strong> <strong>the</strong><br />

Swakop Group of <strong>the</strong> Damara Sequence is generally low.<br />

However, <strong>the</strong> carbonates (marbles <strong>an</strong>d limes<strong>to</strong>nes) are of<br />

moderate potential <strong>an</strong>d at properly selected targets like<br />

fracture zones <strong>an</strong>d karstified contact zones, even high yields<br />

c<strong>an</strong> be found. This depends on <strong>the</strong> amount of ra<strong>in</strong>fall <strong>an</strong>d<br />

associated wea<strong>the</strong>r<strong>in</strong>g <strong>an</strong>d recharge. The most signific<strong>an</strong>t<br />

aquifer presently utilised is <strong>the</strong> marble aquifer north <strong>an</strong>d<br />

north-east of Otjiwarongo (82). The water supply scheme<br />

relies on a fractured <strong>an</strong>d slightly karstified marble b<strong>an</strong>d of<br />

<strong>the</strong> Karibib Formation, which allows medium <strong>to</strong> high pump<strong>in</strong>g<br />

rates <strong>an</strong>d supplies Group B water. The number of boreholes<br />

was <strong>in</strong>creased <strong>to</strong> over 20 <strong>to</strong> keep up with <strong>the</strong> dem<strong>an</strong>d,<br />

<strong>an</strong>d <strong>the</strong> scheme is spread over <strong>an</strong> area of 15 x 30 km.<br />

The water supply scheme of Kalkfeld (40) is situated<br />

between Omaruru <strong>an</strong>d Otjiwarongo <strong>in</strong> <strong>an</strong> area underla<strong>in</strong><br />

by meta-sediments <strong>an</strong>d gr<strong>an</strong>ites of <strong>the</strong> Damara Sequence that<br />

have a low groundwater potential. A small dam was built <strong>to</strong><br />

provide additional recharge <strong>to</strong> boreholes <strong>an</strong>d a well. Some


production boreholes were drilled on fractures <strong>in</strong>tersect<strong>in</strong>g<br />

marble b<strong>an</strong>ds, but <strong>the</strong>ir yields were low <strong>an</strong>d <strong>the</strong> capacity of<br />

<strong>the</strong> water scheme is still lagg<strong>in</strong>g beh<strong>in</strong>d <strong>the</strong> dem<strong>an</strong>d. At<br />

Hochfeld (38), a small rural centre north-east of Okah<strong>an</strong>dja,<br />

<strong>the</strong> groundwater from <strong>the</strong> two production boreholes is ma<strong>in</strong>ly<br />

used for <strong>the</strong> police station. The geology, undifferentiated<br />

Damara Sequence, is obscured by a surficial calcrete layer.<br />

There is <strong>an</strong> ephemeral p<strong>an</strong> nearby that appears <strong>to</strong> provide sufficient<br />

recharge of good quality water.<br />

The <strong>in</strong>trusives, gr<strong>an</strong>ites <strong>an</strong>d lavas, <strong>in</strong>herently display poor<br />

water bear<strong>in</strong>g characteristics. Locally, especially along<br />

riverbeds, drill sites c<strong>an</strong> be determ<strong>in</strong>ed quite successfully,<br />

but <strong>the</strong> reserves are mostly limited. F BOCKMÜHL<br />

FURTHER READING<br />

• Truswell JF. 1977. The Geological Evolution of<br />

South Africa. Cape Town (Purnell & Sons),<br />

South Africa.<br />

• Miller R McG (Ed). 1983. Evolution of <strong>the</strong><br />

Damara Orogen, Special Publication No. 11. The<br />

Geo lo gical Society of South Africa.<br />

Central Namib-W<strong>in</strong>dhoek<br />

Area<br />

The Central Namib-W<strong>in</strong>dhoek region extends from<br />

W<strong>in</strong>dhoek <strong>in</strong> <strong>the</strong> east <strong>to</strong> <strong>the</strong> Atl<strong>an</strong>tic Oce<strong>an</strong> <strong>in</strong> <strong>the</strong> west. The<br />

Ugab <strong>an</strong>d Kuiseb rivers form <strong>the</strong> nor<strong>the</strong>rn <strong>an</strong>d sou<strong>the</strong>rn<br />

boundaries.<br />

The most import<strong>an</strong>t <strong>to</strong>wns are W<strong>in</strong>dhoek, Walvis Bay<br />

<strong>an</strong>d Swakopmund. Henties Bay is a <strong>to</strong>urist centre at <strong>the</strong><br />

mouth of <strong>the</strong> Omaruru River north of Swakopmund. Fur<strong>the</strong>r<br />

<strong>in</strong>l<strong>an</strong>d are Uis, a former t<strong>in</strong> m<strong>in</strong>e, Okombahe <strong>an</strong>d Omaruru.<br />

A village exists at <strong>the</strong> Spitzkoppe <strong>an</strong>d a school settlement at<br />

Tubussis. Several <strong>to</strong>wns are situated <strong>in</strong> <strong>the</strong> catchment of <strong>the</strong><br />

Swakop <strong>an</strong>d Kh<strong>an</strong> rivers: Okah<strong>an</strong>dja, Otjimb<strong>in</strong>gwe, Karibib,<br />

Usakos <strong>an</strong>d Ar<strong>an</strong>dis as well as <strong>the</strong> Röss<strong>in</strong>g ur<strong>an</strong>ium m<strong>in</strong>e.<br />

On <strong>the</strong> Kuiseb River upstream of Walvis Bay are several Topnaar<br />

settlements <strong>an</strong>d <strong>the</strong> desert research station at Gobabeb.<br />

W<strong>in</strong>dhoek is <strong>the</strong> adm<strong>in</strong>istrative <strong>an</strong>d <strong>in</strong>dustrial centre<br />

of <strong>the</strong> country <strong>an</strong>d <strong>the</strong> only <strong>to</strong>wn with more th<strong>an</strong> 200 000<br />

<strong>in</strong>habi t<strong>an</strong>ts. The ma<strong>in</strong> economic activities <strong>in</strong> <strong>the</strong> central <strong>an</strong>d<br />

coastal area are light <strong>in</strong>dustry, farm<strong>in</strong>g, fish<strong>in</strong>g, m<strong>in</strong><strong>in</strong>g <strong>an</strong>d<br />

<strong>to</strong>urism. Cattle are raised <strong>in</strong> <strong>the</strong> W<strong>in</strong>dhoek, Okah<strong>an</strong>dja <strong>an</strong>d<br />

Omaruru districts. There is some small-scale irrigated agriculture<br />

on <strong>the</strong> b<strong>an</strong>ks of some rivers <strong>an</strong>d extensive small s<strong>to</strong>ck<br />

farm<strong>in</strong>g alongside <strong>the</strong>se ephemeral rivercourses <strong>an</strong>d on<br />

<strong>the</strong> edge of <strong>the</strong> Namib Desert.<br />

Geomorphology<br />

W<strong>in</strong>dhoek is situated <strong>in</strong> a valley surrounded by <strong>the</strong> Auas,<br />

Eros <strong>an</strong>d Otjihavera mounta<strong>in</strong>s, which form <strong>the</strong> country’s<br />

central watershed from where large river systems radiate <strong>in</strong><br />

all directions. The Swakop <strong>an</strong>d Kuiseb rivers flow <strong>to</strong> <strong>the</strong> north<br />

<strong>an</strong>d west, while <strong>the</strong> O<strong>an</strong>ob dra<strong>in</strong>s <strong>to</strong> <strong>the</strong> south <strong>an</strong>d <strong>the</strong> Nossob<br />

<strong>an</strong>d Olif<strong>an</strong>ts <strong>to</strong> <strong>the</strong> east. The W<strong>in</strong>dhoek valley is a geological<br />

graben structure bounded by north-south strik<strong>in</strong>g fault<br />

systems <strong>in</strong> <strong>the</strong> east <strong>an</strong>d west.<br />

The Khomas Hochl<strong>an</strong>d is a deeply dissected mounta<strong>in</strong>l<strong>an</strong>d<br />

of <strong>in</strong>termediate elevation, where <strong>the</strong> geomorphology is<br />

closely related <strong>to</strong> <strong>the</strong> underly<strong>in</strong>g geology. The fracture pattern<br />

of <strong>the</strong> Kuiseb schist determ<strong>in</strong>es <strong>the</strong> direction of <strong>the</strong><br />

dra<strong>in</strong>age system. The area has a th<strong>in</strong> soil cover <strong>an</strong>d supports<br />

a thornbush sav<strong>an</strong>na, which is ideal for cattle r<strong>an</strong>ch<strong>in</strong>g.<br />

West-flow<strong>in</strong>g rivers have carved deep gorges (e.g. Kuiseb<br />

c<strong>an</strong>yon) across <strong>the</strong> Khomas Hochl<strong>an</strong>d, especially where <strong>the</strong>y<br />

break through <strong>the</strong> Great Escarpment.<br />

The central part of <strong>the</strong> Namib Desert is characterised by<br />

gravel pla<strong>in</strong>s <strong>an</strong>d rocky outcrops. The dune field along <strong>the</strong><br />

coast between Swakopmund <strong>an</strong>d Walvis Bay is <strong>an</strong> extension<br />

of <strong>the</strong> Namib s<strong>an</strong>d sea. Morphologically, <strong>the</strong> Central Namib<br />

is a steeply <strong>in</strong>cl<strong>in</strong>ed pla<strong>in</strong>, ris<strong>in</strong>g from sea level <strong>to</strong> 1000 m <strong>in</strong><br />

less th<strong>an</strong> 100 km. There is a conspicuous gap <strong>in</strong> <strong>the</strong> Great<br />

Escarpment <strong>in</strong> this area <strong>an</strong>d <strong>in</strong> its place are isolated mounta<strong>in</strong>s<br />

<strong>an</strong>d <strong>in</strong>selbergs like <strong>the</strong> Erongo, Spitz koppe <strong>an</strong>d Br<strong>an</strong>dberg.<br />

Soils are absent on rocky slopes, which are often covered<br />

with wea<strong>the</strong>red material, while <strong>the</strong> soils of <strong>the</strong> Namib gravel<br />

pla<strong>in</strong>s are generally rich <strong>in</strong> gypsum. Calcretes cover a large part<br />

of <strong>the</strong> tr<strong>an</strong>sition zone between desert <strong>an</strong>d sav<strong>an</strong>na.<br />

Geology<br />

The geology of <strong>the</strong> central region is dom<strong>in</strong>ated by <strong>the</strong><br />

77


78<br />

Damara Sequence. This sequence underlies most of central<br />

<strong>an</strong>d nor<strong>the</strong>rn <strong>Namibia</strong>. The basal arenitic succession of <strong>the</strong><br />

Nosib Group was laid down between 850 <strong>an</strong>d 700 million<br />

years (Ma) ago. Widespread carbonate deposition followed<br />

(Swakop Group) <strong>an</strong>d <strong>in</strong>terbedded mica <strong>an</strong>d graphite schist,<br />

quartzite, massflow deposits, lavas <strong>an</strong>d iron formation po<strong>in</strong>t<br />

<strong>to</strong> fairly variable depositional conditions south of a stable<br />

platform where only carbonates occur (Otavi Group, see<br />

Otavi Mounta<strong>in</strong> L<strong>an</strong>d or Karstl<strong>an</strong>d). Near <strong>the</strong> sou<strong>the</strong>rn marg<strong>in</strong><br />

of <strong>the</strong> Damara orogen deep-water f<strong>an</strong>s of <strong>the</strong> Auas Formation<br />

were deposited. These rocks are overla<strong>in</strong> by thick<br />

schists of <strong>the</strong> Kuiseb Formation, which conta<strong>in</strong>s a narrow<br />

350 km long zone of <strong>in</strong>terbedded oce<strong>an</strong>ic amphibolites, <strong>the</strong><br />

Matchless Member. The latter often conta<strong>in</strong>s massive sulphide<br />

orebodies (e.g. at Otjihase <strong>an</strong>d Matchless m<strong>in</strong>es).<br />

Deformation, apparently as a consequence of cont<strong>in</strong>ental<br />

collision some 650 Ma ago, was accomp<strong>an</strong>ied by syntec<strong>to</strong>nic<br />

<strong>in</strong>trusion of serpent<strong>in</strong>ites along <strong>the</strong> sou<strong>the</strong>rn marg<strong>in</strong><br />

<strong>an</strong>d syn- <strong>to</strong> post-tec<strong>to</strong>nic gr<strong>an</strong>ites. Alaskite (a type of<br />

pegmatitic gr<strong>an</strong>ite) emplaced at deep stratigraphic levels<br />

conta<strong>in</strong>s ur<strong>an</strong>ium m<strong>in</strong>eralisation at <strong>the</strong> Röss<strong>in</strong>g M<strong>in</strong>e. T<strong>in</strong>bear<strong>in</strong>g<br />

pegmatites occur at higher levels <strong>in</strong> <strong>the</strong> Uis area.<br />

Pegmatites c<strong>an</strong> also carry lithium, beryl, t<strong>an</strong>talite <strong>an</strong>d gems<strong>to</strong>nes<br />

(Karibib, Usakos <strong>an</strong>d Spitzkoppe). Hydro<strong>the</strong>rmal<br />

t<strong>in</strong>, tungsten, base metal <strong>an</strong>d gold m<strong>in</strong>eralisation occur at<br />

m<strong>an</strong>y places, for <strong>in</strong>st<strong>an</strong>ce at <strong>the</strong> Br<strong>an</strong>dberg West <strong>an</strong>d<br />

Navachab m<strong>in</strong>es.<br />

There is a large gap <strong>in</strong> <strong>the</strong> geological his<strong>to</strong>ry of <strong>the</strong> central<br />

area after <strong>the</strong> Damara orogenesis. Sediments of <strong>the</strong> Karoo<br />

Sequence were deposited <strong>an</strong>d largely eroded afterwards, except<br />

for some remn<strong>an</strong>ts preserved under volc<strong>an</strong>ic rocks. In <strong>the</strong><br />

early Cretaceous, <strong>the</strong> cont<strong>in</strong>ental break up of South America<br />

<strong>an</strong>d Africa caused widespread volc<strong>an</strong>ic activity. From 180<br />

<strong>to</strong> 120 Ma ago, basaltic lava erupted from deep-seated fissures<br />

<strong>an</strong>d covered large parts of <strong>Namibia</strong>. Erosion has removed<br />

most of <strong>the</strong>se sheet basalts, but <strong>the</strong>ir feeder ch<strong>an</strong>nels are still<br />

present <strong>in</strong> <strong>the</strong> form of dolerite dykes (dolerite is a coarsegra<strong>in</strong>ed<br />

basalt). The NNE strik<strong>in</strong>g dykes are found throughout<br />

<strong>the</strong> Namib Desert. An example of <strong>the</strong> orig<strong>in</strong>al sheet basalts<br />

is <strong>the</strong> Etendeka Plateau north of Swakopmund.<br />

The basaltic volc<strong>an</strong>ism <strong>in</strong> <strong>the</strong> central Namib was<br />

accomp<strong>an</strong>ied by partial melt<strong>in</strong>g of Damara Sequence meta-<br />

An overview of <strong>the</strong><br />

W<strong>in</strong>dhoek city water<br />

supply<br />

W<strong>in</strong>dhoek owes its existence <strong>to</strong> <strong>the</strong> presence<br />

of spr<strong>in</strong>gs, which provided <strong>an</strong> ample supply of<br />

water when <strong>the</strong> area was first settled. The map<br />

below shows <strong>the</strong> position of spr<strong>in</strong>gs <strong>an</strong>d <strong>the</strong><br />

W<strong>in</strong>dhoek aquifer. The mostly <strong>the</strong>rmal spr<strong>in</strong>gs<br />

emerged from deep-seated faults <strong>in</strong> quartzites that<br />

form <strong>the</strong> ma<strong>in</strong> aquifer. The spr<strong>in</strong>g water conta<strong>in</strong>ed<br />

traces of hydrogen sulphide <strong>an</strong>d high concentrations<br />

of salts (890 mg/L <strong>to</strong>tal dissolved solids,<br />

TDS).<br />

Map of W<strong>in</strong>dhoek city <strong>an</strong>d aquifer<br />

The spr<strong>in</strong>gs dried up when pump<strong>in</strong>g of groundwater<br />

from boreholes started <strong>in</strong> <strong>the</strong> 1920s. The<br />

wellfield currently consists of approximately 50<br />

boreholes <strong>an</strong>d contributes about 10 % of <strong>the</strong> city’s<br />

<strong>to</strong>tal water supply. Ano<strong>the</strong>r 10 % is provided by<br />

wastewater reclamation, but most of <strong>the</strong> <strong>to</strong>wn’s<br />

water comes from a surface water supply scheme<br />

consist<strong>in</strong>g of three <strong>in</strong>terconnected dams. The table<br />

shows <strong>the</strong> supply capa city of W<strong>in</strong>dhoek’s water<br />

sources. The current water use of 20 Mm 3 /a<br />

matches <strong>the</strong> supply <strong>an</strong>d <strong>the</strong> only spare capacity<br />

is provided by wastewater treatment at <strong>the</strong><br />

Gore<strong>an</strong>gab water reclamation pl<strong>an</strong>t. This pl<strong>an</strong>t<br />

was built <strong>in</strong> 1968 <strong>an</strong>d upgraded from 8000 m 3 /day


<strong>to</strong> 21000 m3 /day <strong>in</strong> 2000. W<strong>in</strong>dhoek<br />

was one of <strong>the</strong> first cities <strong>in</strong> <strong>the</strong> world<br />

<strong>to</strong> <strong>in</strong>troduce direct recycl<strong>in</strong>g of effluent<br />

for dr<strong>in</strong>k<strong>in</strong>g purposes. Purified<br />

effluent is also provided <strong>to</strong> consumers<br />

for l<strong>an</strong>dscape garden<strong>in</strong>g.<br />

Source Supply capacity<br />

(Mm3 /a)<br />

Von Bach,<br />

Swakoppoort <strong>an</strong>d<br />

Omatako dams 17.0<br />

Avis & Gore<strong>an</strong>gab dams 1.1<br />

W<strong>in</strong>dhoek wellfield 1.9<br />

Total 20.0<br />

The his<strong>to</strong>ry of W<strong>in</strong>dhoek’s water<br />

supply highlights <strong>the</strong> efforts required<br />

<strong>to</strong> susta<strong>in</strong> a population growth centre<br />

<strong>in</strong> <strong>an</strong> arid country like <strong>Namibia</strong>. When<br />

local sources like spr<strong>in</strong>gs, boreholes,<br />

Source: SCANDIA Consult & INTERCONSULT<br />

W<strong>in</strong>dhoek’s his<strong>to</strong>rical water consumption<br />

surface water (Avis <strong>an</strong>d Gore<strong>an</strong>gab<br />

dams) <strong>an</strong>d even treated wastewater<br />

became <strong>in</strong>sufficient <strong>to</strong> meet <strong>the</strong> ever<br />

<strong>in</strong>creas<strong>in</strong>g dem<strong>an</strong>d, additional sources,<br />

had <strong>to</strong> be found fur<strong>the</strong>r <strong>an</strong>d fur<strong>the</strong>r<br />

from W<strong>in</strong>dhoek. The Von Bach <strong>an</strong>d<br />

Swakoppoort dams were built on <strong>the</strong><br />

Swakop River near Okah<strong>an</strong>dja, while<br />

<strong>the</strong> Omatako Dam is over 150 km<br />

away. Later <strong>the</strong> option of supply<strong>in</strong>g<br />

water from <strong>the</strong> Otavi Mounta<strong>in</strong> L<strong>an</strong>d<br />

near Grootfonte<strong>in</strong> was added (see Eastern<br />

National Water Carrier-ENWC),<br />

<strong>an</strong>d a possible future proposal <strong>to</strong> secure<br />

<strong>the</strong> capital’s water supply would be a<br />

pipel<strong>in</strong>e l<strong>in</strong>k<strong>in</strong>g <strong>the</strong> Okav<strong>an</strong>go River<br />

<strong>to</strong> <strong>the</strong> ENWC.<br />

All <strong>the</strong>se developments <strong>to</strong>ok place<br />

dur<strong>in</strong>g a time when water authorities<br />

pursued a policy of unlimited water<br />

supply at low cost <strong>to</strong> <strong>the</strong> consumer.<br />

This policy was first revised <strong>in</strong> <strong>the</strong><br />

1990s when efforts were made <strong>to</strong> curb<br />

waste <strong>an</strong>d limit supply <strong>to</strong> a “reasonable”<br />

dem<strong>an</strong>d. The W<strong>in</strong>dhoek muni -<br />

cipality <strong>in</strong>troduced water dem<strong>an</strong>d<br />

m<strong>an</strong>agement <strong>in</strong> 1994.<br />

The strategy con centrates on ch<strong>an</strong>g<strong>in</strong>g<br />

consumer habits by <strong>in</strong>creas<strong>in</strong>g public<br />

awareness on <strong>the</strong> import<strong>an</strong>ce of water<br />

sav<strong>in</strong>g <strong>an</strong>d <strong>the</strong> implementation of a<br />

block tariff system with a steeply ris<strong>in</strong>g<br />

water cost with <strong>in</strong>creas<strong>in</strong>g consumption.<br />

Some o<strong>the</strong>r measures <strong>in</strong> clude <strong>the</strong> reduction<br />

of re sidential plot sizes, implementation<br />

of legislation <strong>to</strong> address water<br />

conservation <strong>in</strong> W<strong>in</strong>dhoek, im proved<br />

ma<strong>in</strong>ten<strong>an</strong>ce <strong>an</strong>d technical measures <strong>to</strong><br />

reduce leaks. This led <strong>to</strong> a water sav<strong>in</strong>g<br />

of 1.2 Mm 3 <strong>in</strong> 1999.<br />

79


80<br />

The success of water dem<strong>an</strong>d<br />

m<strong>an</strong>age ment shows a remarkable<br />

reduction <strong>in</strong> <strong>the</strong> water consumption <strong>in</strong><br />

<strong>the</strong> late 1990s. In 1997, <strong>the</strong> <strong>to</strong>tal water<br />

use was equivalent <strong>to</strong> that of 1990,<br />

despite a 45 % population <strong>in</strong> crease.<br />

If W<strong>in</strong>dhoek susta<strong>in</strong>s water dem<strong>an</strong>d<br />

m<strong>an</strong>agement successfully, sav<strong>in</strong>gs of up<br />

<strong>to</strong> 18 Mm 3 c<strong>an</strong> be expected <strong>in</strong> 2010<br />

compared <strong>to</strong> <strong>the</strong> unrestricted water<br />

dem<strong>an</strong>d. This would delay <strong>the</strong> need for<br />

a pipel<strong>in</strong>e scheme from <strong>the</strong> Okav<strong>an</strong>go<br />

River <strong>an</strong>d allow time for <strong>an</strong> ecological<br />

impact study.<br />

A new system of artificially recharg<strong>in</strong>g<br />

<strong>the</strong> W<strong>in</strong>dhoek aquifer has recently<br />

been tested. Treated water from Von<br />

Bach Dam is pumped <strong>in</strong><strong>to</strong> <strong>the</strong> W<strong>in</strong>dhoek<br />

production boreholes <strong>an</strong>d s<strong>to</strong>red<br />

underground <strong>to</strong> reduce water losses from<br />

Source: J Kirchner<br />

Production <strong>an</strong>d water levels <strong>in</strong> <strong>the</strong> W<strong>in</strong>dhoek aquifer<br />

evaporation. M<strong>an</strong>y years of ab straction<br />

from <strong>the</strong> wellfield have lowered <strong>the</strong> water<br />

table, creat<strong>in</strong>g enough open pore space<br />

<strong>to</strong> allow <strong>in</strong>filtration of up <strong>to</strong> 50 Mm3 of<br />

water when <strong>the</strong> dams are sufficiently<br />

full. This water c<strong>an</strong> be recovered when<br />

water shortages occur. Once this scheme<br />

becomes operational, <strong>the</strong> W<strong>in</strong>dhoek<br />

aquifer will play <strong>an</strong> import<strong>an</strong>t role <strong>in</strong><br />

secur<strong>in</strong>g <strong>the</strong> city’s water supply, but will<br />

have <strong>to</strong> be conscientiously guarded<br />

aga<strong>in</strong>st pollution.<br />

Currently <strong>the</strong> most vulnerable part<br />

of <strong>the</strong> aquifer is threatened by resi den -<br />

tial <strong>an</strong>d <strong>in</strong>dustrial development.<br />

Effluents from textile <strong>in</strong>dustries for <strong>in</strong> -<br />

st<strong>an</strong>ce, c<strong>an</strong> cause extremely serious,<br />

often irrever sible groundwater<br />

pollution.<br />

J KIRCHNER, A VAN WYK<br />

FURTHER READING<br />

• v<strong>an</strong> der Merwe BF. 2000.<br />

Implementation of <strong>in</strong>tegrated<br />

water resource m<strong>an</strong>agement<br />

<strong>in</strong> W<strong>in</strong>dhoek, <strong>Namibia</strong>.<br />

Proceed<strong>in</strong>gs 4th Biennial<br />

Congress, Africa Div.<br />

International Ass. Hydraul.<br />

Eng<strong>in</strong>eer<strong>in</strong>g <strong>an</strong>d Research.<br />

W<strong>in</strong>dhoek. <strong>Namibia</strong>.<br />

• Murray E C <strong>an</strong>d G Tredoux.<br />

2000. Enh<strong>an</strong>c<strong>in</strong>g <strong>the</strong><br />

reliability of W<strong>in</strong>dhoek’s<br />

water resources through<br />

artificial groundwater<br />

recharge. Proceed<strong>in</strong>gs 4th Biennial Congress, Africa<br />

Div. International Ass.<br />

Hydraul. Eng<strong>in</strong>eer<strong>in</strong>g <strong>an</strong>d<br />

Research. W<strong>in</strong>dhoek.<br />

<strong>Namibia</strong>.


morphites, which produced gr<strong>an</strong>itic or gr<strong>an</strong>odioritic rocks.<br />

These <strong>in</strong>trusions formed r<strong>in</strong>g complexes such as <strong>the</strong> Erongo<br />

Mounta<strong>in</strong>s, Spitzkoppe <strong>an</strong>d Br<strong>an</strong>dberg. The Erongo is a<br />

composite magmatic complex consist<strong>in</strong>g of a lower basalt<br />

layer (part of <strong>the</strong> sheet basalts) overla<strong>in</strong> by gr<strong>an</strong>o dioritic/<br />

rhyolitic volc<strong>an</strong>ics <strong>an</strong>d <strong>in</strong>truded by younger Erongo gr<strong>an</strong>ite.<br />

The gr<strong>an</strong>ites of <strong>the</strong> Erongo, Br<strong>an</strong>dberg <strong>an</strong>d Spitzkoppe<br />

<strong>in</strong> truded <strong>in</strong><strong>to</strong> <strong>the</strong> earth crust, but later erosion removed <strong>the</strong><br />

sur round<strong>in</strong>g rocks <strong>an</strong>d left <strong>the</strong> harder gr<strong>an</strong>ites <strong>to</strong>wer<strong>in</strong>g over<br />

<strong>the</strong> pla<strong>in</strong>s. The Namib was uplifted rapidly by epirogenic<br />

forces <strong>an</strong>d subjected <strong>to</strong> considerable erosion (possibly 2-3<br />

km) <strong>in</strong> <strong>the</strong> early Cretaceous (120-100 Ma ago).<br />

The erosion phase was term<strong>in</strong>ated by a ch<strong>an</strong>ge <strong>in</strong> climate<br />

from humid <strong>to</strong> arid. The oldest Tertiary sediments are<br />

reddish, semi-consolidated, s<strong>an</strong>ds<strong>to</strong>nes of <strong>the</strong> Tsondab<br />

Formation that were orig<strong>in</strong>ally w<strong>in</strong>dblown dune-s<strong>an</strong>ds. A<br />

slightly wetter climate caused <strong>the</strong> deposition of conglomerates<br />

<strong>an</strong>d gravels <strong>in</strong> <strong>the</strong> broad valleys of precursors <strong>to</strong> <strong>the</strong><br />

present west-flow<strong>in</strong>g rivers. This formation is known as<br />

Karpfenkliff conglomerate <strong>in</strong> <strong>the</strong> Kuiseb valley.<br />

Both Tsondab S<strong>an</strong>ds<strong>to</strong>ne <strong>an</strong>d <strong>the</strong> younger gravels are<br />

capped by pedogenic calcretes, which were formed dur<strong>in</strong>g<br />

a long period of semi-arid climate <strong>an</strong>d tec<strong>to</strong>nic stability. A<br />

renewed uplift<strong>in</strong>g phase <strong>in</strong> <strong>the</strong> late Tertiary caused <strong>the</strong> <strong>in</strong>cision<br />

of <strong>the</strong> major rivers <strong>in</strong> <strong>the</strong> Namib. The Oswater<br />

conglomerate was formed <strong>in</strong> <strong>the</strong> newly <strong>in</strong>cised Kuiseb<br />

c<strong>an</strong>yon.<br />

Periods of erosion <strong>an</strong>d sedimentation under vary<strong>in</strong>g<br />

climatic conditions created terraces with remn<strong>an</strong>ts of gravel,<br />

s<strong>an</strong>d or silt deposits throughout <strong>the</strong> late Tertiary <strong>an</strong>d<br />

Pleis<strong>to</strong>cene. Short-lived wetter <strong>in</strong>tervals gave rise <strong>to</strong> local<br />

p<strong>an</strong> carbonates <strong>an</strong>d spr<strong>in</strong>g tufa deposits.<br />

Hydrogeology<br />

The fact that most <strong>to</strong>wns <strong>in</strong> <strong>the</strong> western Central Region<br />

are situated on or near rivers is a reflection of ground water<br />

availability <strong>in</strong> <strong>the</strong> area. Sufficient water for larger settle ments<br />

c<strong>an</strong> only be obta<strong>in</strong>ed by surface water s<strong>to</strong>rage <strong>in</strong> dams or<br />

from alluvial aquifers, while <strong>the</strong> potential of bedrock aquifers<br />

is very limited. This is partly due <strong>to</strong> <strong>the</strong> low ra<strong>in</strong>fall <strong>an</strong>d lack<br />

of recharge, <strong>an</strong>d partly <strong>to</strong> <strong>the</strong> generally unfavourable aquifer<br />

properties of Damara Sequence rocks.<br />

Only <strong>the</strong> quartzite aquifer <strong>in</strong> <strong>the</strong> W<strong>in</strong>dhoek area c<strong>an</strong><br />

be classified as high yield<strong>in</strong>g. The W<strong>in</strong>dhoek aquifer is developed<br />

<strong>in</strong> <strong>an</strong> area that exhibits numerous north <strong>to</strong> north-west<br />

strik<strong>in</strong>g faults <strong>an</strong>d extensive jo<strong>in</strong>t<strong>in</strong>g. The high yields of <strong>the</strong><br />

Auas quartzites are due <strong>to</strong> secondary porosity derived from<br />

brittle deformation, while <strong>the</strong> <strong>in</strong>terbedded schist layers were<br />

more susceptible <strong>to</strong> plastic deformation. The primary porosity<br />

<strong>an</strong>d hydraulic conductivity of both quartzite <strong>an</strong>d schist<br />

are negligible. The faults associated with <strong>the</strong> development<br />

of <strong>the</strong> W<strong>in</strong>dhoek graben are generally north-south subvertical<br />

tension faults. They form <strong>the</strong> major water conduc<strong>to</strong>rs <strong>in</strong> <strong>the</strong><br />

W<strong>in</strong>dhoek area <strong>an</strong>d extend as a zone of moderate potential<br />

northward <strong>to</strong>wards Okah<strong>an</strong>dja. Equally moderate yields<br />

are found <strong>in</strong> <strong>the</strong> Auas quartzites south-west <strong>an</strong>d nor<strong>the</strong>ast<br />

of W<strong>in</strong>dhoek.<br />

The W<strong>in</strong>dhoek aquifer is recharged ma<strong>in</strong>ly by direct <strong>in</strong>filtration<br />

of ra<strong>in</strong>water over areas of quartzite outcrop. In areas<br />

underla<strong>in</strong> by schist, direct recharge is possible along fault<br />

zones. The presence of strong flows of hot water <strong>in</strong> fault<br />

zones some 3 <strong>to</strong> 4 km north of <strong>the</strong> ma<strong>in</strong> quartzite outcrop<br />

area <strong>in</strong>dicates deep groundwater circulation. The me<strong>an</strong> age<br />

of water pumped from W<strong>in</strong>dhoek boreholes is approximately<br />

12 000 years. Boreholes close <strong>to</strong> <strong>the</strong> Avis Dam receive<br />

<strong>in</strong>direct recharge when <strong>the</strong> dam conta<strong>in</strong>s water (see Box on<br />

“An overview of <strong>the</strong> W<strong>in</strong>dhoek city water supply”).<br />

The Khomas Hochl<strong>an</strong>d situated between <strong>the</strong> Kuiseb <strong>an</strong>d<br />

Swakop rivers is underla<strong>in</strong> by mica schist with occasional<br />

quartzite <strong>in</strong>tercalations. Higher ra<strong>in</strong>fall east of W<strong>in</strong>dhoek<br />

leads <strong>to</strong> enh<strong>an</strong>ced chemical wea<strong>the</strong>r<strong>in</strong>g of <strong>the</strong> schist <strong>an</strong>d<br />

thus less recharge, while jo<strong>in</strong>ts <strong>an</strong>d fractures <strong>in</strong> <strong>the</strong> Khomas<br />

Highl<strong>an</strong>d tend <strong>to</strong> be open. The prevail<strong>in</strong>g fracture directions<br />

are north-south, north-west <strong>an</strong>d north-east. Me<strong>an</strong> borehole<br />

yields of about 2.4 m 3 /h are encountered east of W<strong>in</strong>dhoek,<br />

9 m 3 /h <strong>in</strong> W<strong>in</strong>dhoek <strong>an</strong>d 2.9 m 3 /h fur<strong>the</strong>r west. Borehole<br />

success rates <strong>an</strong>d yields decrease <strong>to</strong>wards <strong>the</strong> Namib.<br />

Ma<strong>in</strong> targets for geological site selection are steeply<br />

dipp<strong>in</strong>g north-south trend<strong>in</strong>g fractures <strong>an</strong>d jo<strong>in</strong>t zones, if<br />

possible <strong>in</strong> competent rocks, although feldspathic quartzites<br />

should be avoided. Farm dams <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity have a noticeable<br />

<strong>in</strong>fluence on borehole yields as long as <strong>the</strong>y conta<strong>in</strong><br />

water. Thus it is st<strong>an</strong>dard practice <strong>to</strong> site boreholes near dams<br />

<strong>to</strong> render <strong>the</strong> supply more reliable. Marble b<strong>an</strong>ds also have<br />

81


82<br />

a comparatively good yield potential. Near Okah<strong>an</strong>dja, subvertical<br />

pegmatite dykes parallel <strong>to</strong> <strong>the</strong> strike of <strong>the</strong> mica<br />

schist are preferred drill<strong>in</strong>g targets. Borehole sites should be<br />

selected <strong>to</strong> <strong>in</strong>tersect <strong>the</strong>se structures <strong>an</strong>d contacts between<br />

15 <strong>an</strong>d 35 m below <strong>the</strong> water level, higher up <strong>an</strong>d lower<br />

down, borehole yields tend <strong>to</strong> decrease. The small water<br />

scheme at Ovi<strong>to</strong><strong>to</strong> near Okah<strong>an</strong>dja draws water from <strong>an</strong><br />

aquifer <strong>in</strong> fractured Kuiseb schist. Its orig<strong>in</strong>al <strong>in</strong>termediate<br />

yield has decreased due <strong>to</strong> over-abstraction <strong>an</strong>d lack of<br />

recharge.<br />

Moderate yields are also encountered <strong>in</strong> <strong>the</strong> marble <strong>an</strong>d<br />

schist aquifers around Karibib <strong>an</strong>d <strong>the</strong> calcrete aquifer <strong>in</strong><br />

<strong>the</strong> Kr<strong>an</strong>zberg area at Usakos. But while <strong>the</strong> marbles supply<br />

<strong>the</strong> much larger <strong>to</strong>wn of Otjiwarongo fur<strong>the</strong>r north, <strong>the</strong><br />

recharge at Karibib is <strong>in</strong>sufficient <strong>to</strong> ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> required<br />

yields, <strong>an</strong>d <strong>the</strong> water supply <strong>to</strong> <strong>the</strong> <strong>to</strong>wn <strong>an</strong>d Navachab gold<br />

m<strong>in</strong>e is augmented by <strong>the</strong> Swakoppoort Dam.<br />

O<strong>the</strong>r bedrock aquifers <strong>in</strong> <strong>the</strong> eastern part of <strong>the</strong> Namib,<br />

e.g. <strong>in</strong> <strong>the</strong> former Damaral<strong>an</strong>d, are barely able <strong>to</strong> supply<br />

enough water for s<strong>to</strong>ck water<strong>in</strong>g. A large number of dry<br />

boreholes were drilled <strong>in</strong> this area. The yield potential is<br />

generally low, but locally moderate. Yields decrease <strong>to</strong> very<br />

low <strong>an</strong>d limited <strong>in</strong> <strong>the</strong> Namib. <strong>Groundwater</strong> <strong>in</strong> fractured<br />

aquifers between <strong>the</strong> coast <strong>an</strong>d 20-150 km <strong>in</strong>l<strong>an</strong>d is mostly<br />

sal<strong>in</strong>e as <strong>in</strong>dicated by or<strong>an</strong>ge hatch<strong>in</strong>g on <strong>the</strong> Map. Fractured<br />

aquifers with <strong>in</strong>adequate yields are used at <strong>the</strong> Spitzkoppe<br />

(94) <strong>an</strong>d Tubussis (101) water supply schemes. The<br />

Spitzkoppe is a popular <strong>to</strong>urist attraction <strong>in</strong> <strong>the</strong> Erongo<br />

Region. The mounta<strong>in</strong> consists of gr<strong>an</strong>ite <strong>in</strong>truded <strong>in</strong><strong>to</strong><br />

meta-sediments of <strong>the</strong> Swakop Group. A settlement established<br />

at <strong>the</strong> foot of <strong>the</strong> mounta<strong>in</strong> depends ma<strong>in</strong>ly on <strong>to</strong>urism<br />

<strong>an</strong>d some small s<strong>to</strong>ck farm<strong>in</strong>g. The water scheme’s boreholes<br />

are sited on fractures <strong>in</strong>tersect<strong>in</strong>g <strong>the</strong> small Spitzkoppe<br />

River. Their yields are low, recharge is erratic <strong>an</strong>d its absence<br />

leads <strong>to</strong> poor water quality of Group C-D. A treatment pl<strong>an</strong>t<br />

<strong>to</strong> improve water for domestic consump tion has recently<br />

been built.<br />

The westward-flow<strong>in</strong>g rivers are life-susta<strong>in</strong><strong>in</strong>g oases <strong>in</strong><br />

<strong>the</strong> Namib Desert. The s<strong>an</strong>d, gravel <strong>an</strong>d silt deposits <strong>in</strong><br />

<strong>the</strong> riverbeds are usually 10-30 m thick <strong>an</strong>d have moderate<br />

<strong>to</strong> high yields. On <strong>the</strong> Map <strong>the</strong> alluvial aquifers are <strong>in</strong>dicated<br />

by light <strong>an</strong>d dark blue l<strong>in</strong>es slightly wider th<strong>an</strong> <strong>the</strong> riverbeds.<br />

Care should be taken that <strong>the</strong>se aquifers are not depleted,<br />

as a certa<strong>in</strong> degree of irreversible compaction of <strong>the</strong> alluvium<br />

may result <strong>in</strong> loss of open pore space. Irregular ra<strong>in</strong>fall events<br />

produce f<strong>in</strong>e sediments that are tr<strong>an</strong>sported dur<strong>in</strong>g <strong>in</strong>termittent<br />

floods <strong>an</strong>d deposited <strong>in</strong> layers <strong>an</strong>d lenses throughout<br />

<strong>the</strong> alluvial riverbeds. These clayey layers, once saturated,<br />

c<strong>an</strong> act as a barrier, prevent<strong>in</strong>g water from reach<strong>in</strong>g <strong>the</strong> lower<br />

portions of <strong>the</strong> aquifer dur<strong>in</strong>g flood events. The follow<strong>in</strong>g<br />

text describes <strong>the</strong> rivers from north <strong>to</strong> south <strong>an</strong>d gives details<br />

on <strong>the</strong> associated water supply schemes.<br />

Ugab River: There is very little development on <strong>the</strong> lower<br />

Ugab River <strong>an</strong>d <strong>the</strong> only water scheme <strong>in</strong> <strong>the</strong> area is at<br />

Anichab (5), <strong>an</strong> educational centre with schools <strong>an</strong>d hostels.<br />

The alluvium <strong>in</strong> <strong>the</strong> river is shallow (10-15 m) <strong>an</strong>d very<br />

dependent on regular recharge. The Ugab used <strong>to</strong> flow most<br />

years, but <strong>in</strong>creas<strong>in</strong>g water use <strong>in</strong> <strong>the</strong> upper catchment has<br />

reduced <strong>the</strong> number <strong>an</strong>d volume of floods pass<strong>in</strong>g Anichab.<br />

The alluvial aquifer at Nei-Neis<br />

Wilhelm Struckmeier


Omaruru River: Omaruru is one of <strong>the</strong> municipalities<br />

that run <strong>the</strong>ir own water supply scheme. All ground water<br />

for <strong>the</strong> <strong>to</strong>wn as well as for extensive private irrigation schemes<br />

on smallhold<strong>in</strong>gs east of <strong>the</strong> <strong>to</strong>wn, is pumped from <strong>the</strong><br />

extended alluvial pla<strong>in</strong> of <strong>the</strong> Omaruru River. The strip of<br />

l<strong>an</strong>d along <strong>the</strong> river between <strong>the</strong> Etjo Mounta<strong>in</strong>s <strong>an</strong>d<br />

The Omaruru Delta (Omdel) scheme<br />

This import<strong>an</strong>t water scheme (72)<br />

is located <strong>in</strong> <strong>the</strong> Omaruru Delta<br />

(Omdel) north-east of Henties Bay. In<br />

this area, a precursor of <strong>the</strong> Omaruru<br />

River has <strong>in</strong>cised paleoch<strong>an</strong>nels up <strong>to</strong><br />

120 m deep, which were later filled<br />

with sediments. The Omdel wellfield<br />

of 33 boreholes was developed <strong>in</strong> <strong>the</strong><br />

late 1970s <strong>to</strong> augment coastal supplies<br />

from <strong>the</strong> Kuiseb River wellfield due <strong>to</strong><br />

grow<strong>in</strong>g water dem<strong>an</strong>d <strong>in</strong> <strong>the</strong> region.<br />

The aquifer is found <strong>in</strong> <strong>the</strong> deeply<br />

<strong>in</strong>cised ma<strong>in</strong> ch<strong>an</strong>nel, which is fl<strong>an</strong>ked<br />

by <strong>the</strong> sou<strong>the</strong>rn elevated ch<strong>an</strong>nel <strong>an</strong>d<br />

nor<strong>the</strong>rn elevated ch<strong>an</strong>nel as well as<br />

nor<strong>the</strong>rn ch<strong>an</strong>nel system. The water <strong>in</strong><br />

<strong>the</strong> ma<strong>in</strong> ch<strong>an</strong>nel is fresh <strong>to</strong> slightly<br />

brackish, while both elevated <strong>an</strong>d<br />

nor<strong>the</strong>rn elevated ch<strong>an</strong>nels conta<strong>in</strong><br />

older sal<strong>in</strong>e ground water.<br />

The alluvium consists of a lower<br />

succession of coarse s<strong>an</strong>d <strong>an</strong>d gravel<br />

overla<strong>in</strong> by a semi-conf<strong>in</strong><strong>in</strong>g unit of<br />

Source: S Müller<br />

Cross-section of <strong>the</strong> Omdel Dam scheme<br />

calcareous silt <strong>to</strong> f<strong>in</strong>e s<strong>an</strong>d, which is<br />

<strong>to</strong>pped by <strong>an</strong>o<strong>the</strong>r s<strong>an</strong>d <strong>an</strong>d gravel<br />

layer. The lower coarse unit is <strong>the</strong> ma<strong>in</strong><br />

water source <strong>an</strong>d heavy abstraction has<br />

drawn <strong>the</strong> water table down below <strong>the</strong><br />

f<strong>in</strong>e layer. The last signific<strong>an</strong>t recharge<br />

event occurred <strong>in</strong> 1985.<br />

The Omdel Dam <strong>an</strong>d artificial<br />

recharge scheme was built <strong>to</strong> <strong>in</strong>crease<br />

<strong>the</strong> susta<strong>in</strong>able yield of <strong>the</strong> aquifer from<br />

4.5 <strong>to</strong> 8.2 Mm 3 /a. The Omdel Dam<br />

was completed <strong>in</strong> 1994 <strong>an</strong>d has a<br />

capacity of 40 Mm 3 . Its purpose is <strong>to</strong><br />

catch floodwater, which is released<br />

downstream of <strong>the</strong> dam wall after <strong>the</strong><br />

silt has settled out. The clear water flows<br />

6 km as surface flow <strong>to</strong> <strong>an</strong> <strong>in</strong>filtration<br />

bas<strong>in</strong>. The water <strong>in</strong>filtrates down <strong>to</strong> <strong>the</strong><br />

aquifer where it is protected from evaporation<br />

<strong>an</strong>d available for abstraction<br />

from <strong>the</strong> exist<strong>in</strong>g production boreholes.<br />

Okombahe is a water control area where water quotas are<br />

allocated <strong>to</strong> users by <strong>the</strong> Department of Water Affairs accord<strong>in</strong>g<br />

<strong>to</strong> a permit system.<br />

Fur<strong>the</strong>r downstream at Okombahe, a dolerite dyke cuts<br />

across <strong>the</strong> Omaruru River form<strong>in</strong>g a barrier that forces<br />

groundwater <strong>to</strong> <strong>the</strong> surface. A wellfield is situated upstream<br />

S MÜLLER<br />

Die<strong>the</strong>r Plöthner<br />

Wilhelm Struckmeier<br />

The Omdel Dam<br />

The Omdel <strong>in</strong>filtration bas<strong>in</strong><br />

83


84<br />

of <strong>the</strong> barrier on 10-20m<br />

thick alluvium with very<br />

high yields <strong>an</strong>d regular<br />

recharge. The alluvial aquifer<br />

at Nei-Neis (62) is used <strong>to</strong><br />

supply <strong>the</strong> <strong>to</strong>wn of Uis<br />

30 km north-west, where a<br />

t<strong>in</strong> m<strong>in</strong>e was <strong>in</strong> operation<br />

until <strong>the</strong> early 1990s. The<br />

wellfield consists of 10 boreholes<br />

spread out over several<br />

kilometres.<br />

While <strong>the</strong> Omaruru<br />

River flows almost every year<br />

at Omaruru <strong>an</strong>d Okombahe, floods become less frequent<br />

fur<strong>the</strong>r downstream due <strong>to</strong> <strong>in</strong>filtration losses. The susta<strong>in</strong>able<br />

yield of <strong>the</strong> aquifer was at times <strong>in</strong>sufficient for <strong>the</strong><br />

m<strong>in</strong>e’s dem<strong>an</strong>d, but is more th<strong>an</strong> adequate for <strong>the</strong> presently<br />

reduced consumption rates.<br />

Swakop River: The Swakop <strong>an</strong>d its tributary, <strong>the</strong> Kh<strong>an</strong><br />

River, supply groundwater <strong>to</strong> several <strong>to</strong>wns <strong>in</strong> <strong>the</strong> central<br />

area. Okah<strong>an</strong>dja obta<strong>in</strong>ed water from a tributary of <strong>the</strong><br />

Swakop, <strong>the</strong> Okah<strong>an</strong>dja River, <strong>in</strong> <strong>the</strong> past, but switched<br />

<strong>to</strong> surface water supply from <strong>the</strong> Von Bach Dam <strong>in</strong> <strong>the</strong><br />

1970s. Otjimb<strong>in</strong>gwe (80) used spr<strong>in</strong>gs <strong>an</strong>d shallow wells <strong>in</strong><br />

<strong>the</strong> Swakop River dur<strong>in</strong>g colonial times. The water supply<br />

situation ch<strong>an</strong>ged drastically after <strong>the</strong> construction of <strong>the</strong><br />

Von Bach <strong>an</strong>d Swakoppoort dams upstream of Otjim b<strong>in</strong>gwe.<br />

Floods were much reduced <strong>in</strong> frequency <strong>an</strong>d volume, so that<br />

recharge <strong>to</strong> <strong>the</strong> borehole scheme was sometimes <strong>in</strong>sufficient<br />

<strong>to</strong> meet <strong>the</strong> dem<strong>an</strong>d. As <strong>the</strong> Swakop River enters <strong>the</strong> Namib<br />

Desert, its groundwater becomes gradually more sal<strong>in</strong>e <strong>an</strong>d<br />

generally unsuitable for hum<strong>an</strong> consumption. Consequently<br />

Swakopmund’s water supply comes from <strong>the</strong> Central Namib<br />

water supply scheme (see Box on “The Kuiseb dune area<br />

<strong>in</strong>vestigation”).<br />

The wellfield at Spes Bona (44) on <strong>the</strong> Kh<strong>an</strong> River 20<br />

km north of Karibib is un usual because <strong>the</strong> production<br />

boreholes draw water from both alluvium <strong>an</strong>d underly<strong>in</strong>g<br />

highly fractured <strong>an</strong>d wea<strong>the</strong>red bedrock (mostly limes<strong>to</strong>ne<br />

<strong>an</strong>d shale of <strong>the</strong> Damara Sequence). The water scheme<br />

was mothballed when Karibib was l<strong>in</strong>ked by pipel<strong>in</strong>e <strong>to</strong> <strong>the</strong><br />

The Kuiseb River forms <strong>the</strong> boundary<br />

Swakoppoort Dam. Usakos<br />

obta<strong>in</strong>s groundwater from<br />

<strong>the</strong> Kh<strong>an</strong> River <strong>an</strong>d its tributary,<br />

<strong>the</strong> Aroab River (also<br />

called Kr<strong>an</strong>zberg River).<br />

There are two large-diameter<br />

wells <strong>in</strong> <strong>the</strong> Kh<strong>an</strong> River<br />

<strong>an</strong>d several boreholes on <strong>an</strong><br />

extensive calcrete terrace<br />

recharged by <strong>the</strong> Aroab<br />

River. The groundwater <strong>in</strong><br />

<strong>the</strong> Kh<strong>an</strong> River becomes<br />

brackish downstream of<br />

Usakos. It is used at <strong>the</strong><br />

Röss<strong>in</strong>g ur<strong>an</strong>ium m<strong>in</strong>e for <strong>in</strong>dustrial purposes, reduc<strong>in</strong>g<br />

<strong>the</strong> m<strong>in</strong>e’s reli<strong>an</strong>ce on freshwater from <strong>the</strong> Kuiseb <strong>an</strong>d<br />

Omdel aquifers.<br />

Kuiseb River: The Kuiseb River forms <strong>the</strong> boundary<br />

between <strong>the</strong> gravel pla<strong>in</strong>s of <strong>the</strong> Central Namib <strong>an</strong>d <strong>the</strong><br />

sou<strong>the</strong>rn Namib s<strong>an</strong>d sea. Gobabeb, a desert research station<br />

on <strong>the</strong> lower Kuiseb River, currently receives freshwater<br />

by water t<strong>an</strong>ker. Boreholes placed on <strong>the</strong> b<strong>an</strong>ks of <strong>the</strong> river<br />

supply a mixture of Kuiseb water <strong>an</strong>d sal<strong>in</strong>e water<br />

discharg<strong>in</strong>g from <strong>the</strong> desert. Between Gobabeb <strong>an</strong>d <strong>the</strong><br />

water supply schemes near Walvis Bay, several Topnaar<br />

settlements abstract groundwater from dug wells <strong>in</strong> <strong>the</strong><br />

Kuiseb River.<br />

The alluvial aquifer <strong>in</strong> <strong>the</strong> lower part of <strong>the</strong> Kuiseb River<br />

at Rooib<strong>an</strong>k (52) has been used s<strong>in</strong>ce 1923 <strong>to</strong> supply water<br />

<strong>to</strong> Walvis Bay. In 1966, <strong>the</strong> Rooib<strong>an</strong>k B Area was developed<br />

<strong>an</strong>d <strong>in</strong> 1992 <strong>an</strong> additional wellfield at Dorop South,<br />

closer <strong>to</strong> <strong>the</strong> coast, came <strong>in</strong><strong>to</strong> operation. Ano<strong>the</strong>r wellfield<br />

was established at Swartb<strong>an</strong>k upstream of Rooib<strong>an</strong>k <strong>in</strong> 1974<br />

<strong>to</strong> supply Swakopmund <strong>an</strong>d Röss<strong>in</strong>g M<strong>in</strong>e. In addition<br />

<strong>to</strong> 53 boreholes <strong>in</strong> <strong>the</strong> Kuiseb wellfields, <strong>the</strong>re is one largediameter,<br />

horizontal filter well (Fehlm<strong>an</strong>n well).<br />

The alluvium <strong>in</strong> <strong>the</strong> Kuiseb River is 15-20 m thick.<br />

Its relatively high permeability allows high pump<strong>in</strong>g rates<br />

<strong>an</strong>d quick recharge <strong>in</strong> case of floods. The susta<strong>in</strong>able yield<br />

of <strong>the</strong> aquifer was however over- estimated <strong>in</strong> <strong>the</strong> 1970s as<br />

11 Mm3 /a. This figure was revised <strong>to</strong> a more realistic 4.5<br />

Mm3 /a <strong>in</strong> <strong>the</strong> 1990s.<br />

Wyn<strong>an</strong>d du Plessis


Source: S Müller<br />

Central Namib water supply scheme<br />

Walvis Bay, Swakopmund, Röss<strong>in</strong>g<br />

M<strong>in</strong>e <strong>an</strong>d Henties Bay obta<strong>in</strong> freshwater<br />

from <strong>the</strong> Central Namib Water<br />

Supply Scheme based at Swakopmund.<br />

The scheme is run by NamWater <strong>an</strong>d<br />

draws groundwater from wellfields <strong>in</strong><br />

<strong>the</strong> Omaruru <strong>an</strong>d Kuiseb rivers, which<br />

are <strong>the</strong> nearest sources of potable water.<br />

Well fields <strong>an</strong>d pipel<strong>in</strong>e network of <strong>the</strong><br />

coastal area<br />

In <strong>the</strong> past Swakopmund <strong>an</strong>d Röss<strong>in</strong>g<br />

were supplied from <strong>the</strong> Kuiseb River,<br />

but <strong>in</strong> 1979 <strong>the</strong> Omdel scheme was<br />

added <strong>to</strong> augment <strong>the</strong> re sources. The<br />

Source: S Müller<br />

The his<strong>to</strong>rical water consumption of <strong>the</strong> coastal area s<strong>in</strong>ce 1970<br />

map shows <strong>the</strong> well fields <strong>an</strong>d pipe -<br />

l<strong>in</strong>e network.<br />

The his<strong>to</strong>rical water consumption<br />

of <strong>the</strong> coastal area s<strong>in</strong>ce 1970 is shown<br />

<strong>in</strong> <strong>the</strong> graph below. While Swa kop -<br />

mund’s water de m<strong>an</strong>d has <strong>in</strong>creased<br />

from 1-2.5 Mm3 /a <strong>an</strong>d Walvis Bay’s<br />

from 3-5 Mm3 /a, Röss<strong>in</strong>g M<strong>in</strong>e (RUL)<br />

has reduced its water consumption<br />

from 10 <strong>to</strong> 2-3 Mm3 /a after <strong>the</strong> implementation<br />

of water recycl<strong>in</strong>g (75 % of<br />

<strong>the</strong> <strong>to</strong>tal water used) <strong>an</strong>d augmentation<br />

of supplies with brackish water<br />

from <strong>the</strong> Kh<strong>an</strong> River (3 %) <strong>in</strong> 1980.<br />

The m<strong>in</strong>e’s freshwater dem<strong>an</strong>d is currently<br />

only about 2 Mm3 /a (22 %).<br />

S MÜLLER<br />

Dieter Plöthner<br />

The Kuiseb dune<br />

area <strong>in</strong>vestigation<br />

The geophysical <strong>in</strong>vestigation of <strong>the</strong><br />

area under <strong>the</strong> dunes south of <strong>the</strong><br />

Kuiseb River traced <strong>the</strong> ch<strong>an</strong>nels<br />

created by <strong>the</strong> Kuiseb River while gradually<br />

shift<strong>in</strong>g its course northwards.<br />

The river mouth was previously at<br />

S<strong>an</strong>dwich Harbour where freshwater<br />

The dunes south of <strong>the</strong> Kuiseb River<br />

spr<strong>in</strong>gs still occur <strong>to</strong>day. The area was<br />

studied as a potential water source for<br />

Walvis Bay <strong>an</strong>d although <strong>the</strong> aquifer<br />

characteristics, recharge <strong>an</strong>d quality<br />

may be poor, promis<strong>in</strong>g targets for<br />

exp<strong>an</strong>d<strong>in</strong>g <strong>the</strong> wellfield were identified.<br />

Access <strong>in</strong> some cases rema<strong>in</strong>s a<br />

problem.<br />

FURTHER READING<br />

• Schmidt G <strong>an</strong>d D Plöthner.<br />

1999. Abschätzung der<br />

Grundwasservorräte im Flußund<br />

Dünengebiet des<br />

unteren Kuiseb, <strong>Namibia</strong>.<br />

Zeitschrift für <strong>an</strong>gew<strong>an</strong>dte<br />

Geologie, 45. H<strong>an</strong>nover.<br />

85


86<br />

Hochfeld-Dordabis-Gobabis<br />

Area<br />

The Hochfeld-Dordabis-Gobabis groundwater area<br />

stretches from east of W<strong>in</strong>dhoek <strong>to</strong> <strong>the</strong> eastern border of<br />

<strong>Namibia</strong>. It ma<strong>in</strong>ly <strong>in</strong>cludes s<strong>an</strong>dveld between <strong>the</strong> Kalahari<br />

bas<strong>in</strong>s of nor<strong>the</strong>rn Omaheke-Epukiro <strong>an</strong>d <strong>the</strong> Stampriet<br />

artesi<strong>an</strong> bas<strong>in</strong>. The <strong>Namibia</strong>n section of <strong>the</strong> Tr<strong>an</strong>s- Kalahari<br />

Highway connects W<strong>in</strong>dhoek with <strong>to</strong>wns <strong>an</strong>d villages like<br />

Seeis, Witvlei, Gobabis <strong>an</strong>d <strong>the</strong> Buitepos border post.<br />

The eastern Khomas Region, up <strong>to</strong> <strong>the</strong> Hosea Kutako<br />

International Airport, is mounta<strong>in</strong>ous, dra<strong>in</strong>ed <strong>in</strong> <strong>an</strong> easterly<br />

<strong>an</strong>d south-easterly direction by <strong>the</strong> ephemeral Seeis, White<br />

Nossob <strong>an</strong>d Black Nossob rivers that orig<strong>in</strong>ate <strong>in</strong> <strong>the</strong> highl<strong>an</strong>ds<br />

<strong>to</strong> <strong>the</strong> east of W<strong>in</strong>dhoek <strong>an</strong>d Okah<strong>an</strong>dja. The area<br />

is characterised by tree sav<strong>an</strong>na <strong>an</strong>d rich grassl<strong>an</strong>ds, which<br />

support a thriv<strong>in</strong>g cattle <strong>in</strong>dustry.<br />

Geology<br />

This area has a complex geology <strong>an</strong>d structure. The oldest<br />

rocks are Mokoli<strong>an</strong> <strong>in</strong>trusives. O<strong>the</strong>r pre-Damara meta -<br />

morphic <strong>an</strong>d <strong>in</strong>trusive formations belong <strong>to</strong> <strong>the</strong> S<strong>in</strong>clair <strong>an</strong>d<br />

Rehoboth sequences as well as <strong>the</strong> Abbabis <strong>an</strong>d Hohewarte<br />

Metamorphic Complexes. Damara Sequence however predom<strong>in</strong>ates<br />

<strong>in</strong> <strong>the</strong> area <strong>an</strong>d consists mostly of Khomas rocks<br />

with Kuiseb Formation quartz-biotite schists, <strong>in</strong>terbedded<br />

marble, amphibolite (Matchless Suite) <strong>an</strong>d amphibolite<br />

schists. The Hakos Group shows similar lithologies with<br />

notable exception of <strong>the</strong> Auas <strong>an</strong>d Otjivero quartzites <strong>an</strong>d<br />

Corona marbles at <strong>the</strong> base of <strong>the</strong> group. The Nosib Group<br />

ma<strong>in</strong>ly consists of arenitic rocks like s<strong>an</strong>ds<strong>to</strong>nes, quartzites,<br />

conglomerates <strong>an</strong>d subord<strong>in</strong>ate schists. The eastern half<br />

of <strong>the</strong> area is dom<strong>in</strong>ated by rocks belong<strong>in</strong>g <strong>to</strong> <strong>the</strong> Nosib<br />

Group, with outcrops of Nama Group sedimentary rocks<br />

fill<strong>in</strong>g syncl<strong>in</strong>es.<br />

Hydrogeology<br />

Both alluvial <strong>an</strong>d fractured aquifers occur <strong>in</strong> <strong>the</strong> area east<br />

of W<strong>in</strong>dhoek. Alluvial aquifers are found along <strong>the</strong> riverbeds<br />

of <strong>the</strong> Seeis River <strong>an</strong>d along most of <strong>the</strong> course of <strong>the</strong> White<br />

Nossob. The Seeis water supply scheme (92) provides <strong>the</strong><br />

local police station with water <strong>an</strong>d was later exp<strong>an</strong>ded <strong>to</strong><br />

also supply <strong>the</strong> Hosea Kutako International Airport, 10 km<br />

<strong>to</strong> <strong>the</strong> west. The alluvium although only 10-15 m thick,<br />

allows ra<strong>the</strong>r high abstraction rates. This moderate potential,<br />

porous aquifer is easily <strong>an</strong>d regularly recharged by frequent<br />

floods <strong>in</strong> <strong>the</strong> Seeis River. The Seeis wellfield supplements<br />

<strong>the</strong> Ondekaremba water scheme (74) established<br />

<strong>to</strong> supply <strong>the</strong> <strong>in</strong>ternational airport. The boreholes at<br />

Ondekaremba are on a fractured marble <strong>an</strong>d quartzite aquifer<br />

of <strong>the</strong> Auas Formation (Khomas Subgroup) re charged by<br />

<strong>the</strong> Seeis River.<br />

Farms along <strong>the</strong> White Nossob River used <strong>to</strong> have a plentiful<br />

water supply from <strong>the</strong> alluvial aquifer. This ch<strong>an</strong>ged drastically<br />

after <strong>the</strong> construction of <strong>the</strong> Otjivero Dam. The aquifer<br />

immediately downstream of <strong>the</strong> dam wall is now practically<br />

dry due <strong>to</strong> a lack of recharge. Upstream of <strong>the</strong> dam, water is<br />

still abstracted from high-yield<strong>in</strong>g wells <strong>an</strong>d boreholes.<br />

The Otjivero Dam ma<strong>in</strong> wall under construction<br />

A porous aquifer exists north-east of Gobabis where<br />

Kalahari sediments overlie quartzites. Correctly sited drill<strong>in</strong>g<br />

targets c<strong>an</strong> tap a comb<strong>in</strong>ation of primary porous <strong>an</strong>d<br />

secondary fractured aquifers.<br />

Most of <strong>the</strong> groundwater bas<strong>in</strong> is underla<strong>in</strong> by ei<strong>the</strong>r<br />

schist or s<strong>an</strong>ds<strong>to</strong>ne/quartzite, which have <strong>in</strong>herently differ -<br />

ent water bear<strong>in</strong>g characteristics. Generally, groundwater <strong>in</strong><br />

<strong>the</strong>se fractured aquifers is hosted <strong>in</strong> faults <strong>an</strong>d o<strong>the</strong>r secondary<br />

structures, more prevalent <strong>in</strong> competent rocks like s<strong>an</strong>ds<strong>to</strong>ne<br />

<strong>an</strong>d quartzite. In addition, schist wea<strong>the</strong>rs faster leav<strong>in</strong>g<br />

a clayey residue <strong>in</strong> faults <strong>an</strong>d fractures. As wea<strong>the</strong>r<strong>in</strong>g<br />

DWA Archive


progresses from <strong>the</strong> surface downwards, wea<strong>the</strong>red fault<br />

zones at <strong>the</strong> surface are poor aquifers, but deeper <strong>in</strong>tersection<br />

of faults c<strong>an</strong> result <strong>in</strong> higher yields. For example on <strong>the</strong><br />

farms Apex <strong>an</strong>d Aurora, on <strong>the</strong> road between Omitara <strong>an</strong>d<br />

Ste<strong>in</strong>hausen, water strikes at 60 m <strong>an</strong>d 120 m below <strong>the</strong><br />

ground level had yields of over 10m 3 /h.<br />

Select<strong>in</strong>g drill sites for such deep <strong>in</strong>tersections is however<br />

difficult as <strong>the</strong> structures are usually narrow <strong>an</strong>d <strong>the</strong><br />

(mostly steep) dip of <strong>the</strong> fractures is difficult <strong>to</strong> determ<strong>in</strong>e<br />

accurately. In <strong>the</strong> quartzitic s<strong>an</strong>ds<strong>to</strong>ne terra<strong>in</strong>, select<strong>in</strong>g<br />

drill<strong>in</strong>g targets is not as difficult, provided that <strong>the</strong><br />

geohydrological conditions are correctly <strong>in</strong>terpreted <strong>an</strong>d <strong>the</strong><br />

appropriate geophysical <strong>in</strong>vestigations are conducted. This<br />

was proven by a recent <strong>in</strong>vestigation <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of Gobabis<br />

(see Box on “Gobabis water supply”).<br />

The water scheme for <strong>the</strong> village of Witvlei (104) draws<br />

water from fractured limes<strong>to</strong>ne of <strong>the</strong> Kamtsas Formation<br />

(Damara Sequence) along <strong>the</strong> White Nossob River. The<br />

river provides recharge ensur<strong>in</strong>g a plentiful groundwater<br />

supply. Fur<strong>the</strong>r east of Gobabis three small water supply<br />

schemes are situated on slightly fractured low- yield<strong>in</strong>g<br />

quartzite aquifers of <strong>the</strong> Kamtsas formation: Ernst Meyer<br />

Gobabis water<br />

supply<br />

Orig<strong>in</strong>ally Gobabis (32) obta<strong>in</strong>ed<br />

water from boreholes with<strong>in</strong> <strong>the</strong><br />

<strong>to</strong>wn <strong>an</strong>d <strong>to</strong>wnl<strong>an</strong>ds. Later <strong>the</strong><br />

scheme was extended <strong>to</strong> <strong>the</strong> Witvlei<br />

area <strong>an</strong>d <strong>the</strong> White Nossob.<br />

More recently <strong>the</strong> Otjivero Dam<br />

was constructed <strong>to</strong> assure a more<br />

perm<strong>an</strong>ent water supply for Gobabis.<br />

The borehole schemes at South Station<br />

<strong>an</strong>d Grünental were <strong>the</strong>n rested. Due<br />

<strong>to</strong> <strong>in</strong>consistent ra<strong>in</strong>fall, however, <strong>the</strong><br />

dam was dry for several seasons <strong>in</strong> <strong>the</strong><br />

early 1990s <strong>an</strong>d a hydrogeological<br />

<strong>in</strong>vestigation for additional boreholes<br />

started <strong>in</strong> 1995. The old boreholes were<br />

also re- evaluated <strong>an</strong>d follow<strong>in</strong>g a<br />

detailed <strong>in</strong>vesti gation a new wellfield<br />

of eight boreholes was established<br />

north-east of <strong>the</strong> <strong>to</strong>wn, close <strong>to</strong> <strong>the</strong><br />

Black Nossob River. Fractured aquifers<br />

were identified <strong>in</strong> <strong>the</strong> basement <strong>an</strong>d<br />

porous aquifers <strong>in</strong> saturated Kalahari<br />

sediments. These c<strong>an</strong> form a comb<strong>in</strong>ed<br />

aquifer system <strong>in</strong> some places.<br />

The geology <strong>in</strong> <strong>the</strong> Gobabis area is<br />

made up of Kamtsas quartzite (Damara<br />

Sequence) <strong>an</strong>d sediments of <strong>the</strong> Kuibis<br />

Subgroup (Nama Group), locally<br />

overla<strong>in</strong> by tillite <strong>an</strong>d shale of <strong>the</strong><br />

Dwyka Formation (Karoo Se quence).<br />

school (25), Buitepos border post (18) <strong>an</strong>d Rietfonte<strong>in</strong> (86).<br />

The latter scheme supplies a number of farm<strong>in</strong>g communities<br />

along <strong>the</strong> Rietfonte<strong>in</strong> River near <strong>the</strong> Botsw<strong>an</strong><strong>an</strong> border (ENE<br />

of Gobabis). The borehole yields are low <strong>to</strong> moderate <strong>an</strong>d<br />

<strong>in</strong>sufficient <strong>to</strong> meet <strong>the</strong> ris<strong>in</strong>g dem<strong>an</strong>d. Over-abstraction<br />

has caused a ch<strong>an</strong>ge <strong>in</strong> water quality from Group B <strong>to</strong> C.<br />

Ano<strong>the</strong>r water scheme on Damara Sequence rocks is<br />

Oamites (65) north of Rehoboth, formerly a m<strong>in</strong>e, now<br />

used as <strong>an</strong> army camp. The aquifer is fractured marble of<br />

<strong>the</strong> Swakop Subgroup. There is one strong production<br />

borehole at <strong>the</strong> camp <strong>an</strong>d two on <strong>the</strong> farm Nauaspoort alongside<br />

<strong>the</strong> Usip River.<br />

The meta-sediments of <strong>the</strong> Rehoboth Sequence are<br />

generally low-yield<strong>in</strong>g aquifers, e. g. at Kwakwas (53), a<br />

small water scheme north-west of Rehoboth where w<strong>in</strong>d<br />

pumps are used <strong>to</strong> abstract small volumes of groundwater.<br />

Yet locally, moderate yields are found <strong>in</strong> fractured quartzites<br />

of <strong>the</strong> Rehoboth Sequence, for <strong>in</strong>st<strong>an</strong>ce at Dordabis (22)<br />

south-east of W<strong>in</strong>dhoek. The boreholes receive recharge<br />

from <strong>the</strong> Skaap River. Recently <strong>the</strong> scheme was extended<br />

by two new boreholes <strong>to</strong> meet <strong>the</strong> ris<strong>in</strong>g dem<strong>an</strong>d.<br />

An <strong>in</strong>terest<strong>in</strong>g situation exists on <strong>the</strong> farms Ow<strong>in</strong>gi,<br />

The fractured aquifers tapped by <strong>the</strong><br />

various wellfields have moderate <strong>to</strong> high<br />

yields <strong>an</strong>d receive fairly regular recharge.<br />

Drill<strong>in</strong>g targets were selected geo -<br />

physically, employ<strong>in</strong>g electrical re sis -<br />

tivity <strong>an</strong>d electromagnetic methods.<br />

Drill<strong>in</strong>g results proved <strong>the</strong> value of<br />

appropriate scientific <strong>in</strong>vestigation<br />

methods. Thirty-six boreholes were<br />

drilled of which 61% had yields of over<br />

10 m3 /h, 10 produced less th<strong>an</strong> 10 m3 /h<br />

(28 %) <strong>an</strong>d only 4 were dry (11 %).<br />

Consider<strong>in</strong>g previous water shortages<br />

<strong>an</strong>d <strong>the</strong> prevail<strong>in</strong>g drought this<br />

<strong>in</strong>vestigation was highly successful.<br />

F BOCKMÜHL<br />

87


88<br />

Conell<strong>an</strong> <strong>an</strong>d a portion of <strong>the</strong> farm Tokat, some 60 km north<br />

of Gobabis. A gravelly <strong>an</strong>d calcareous porous Kalahari aquifer<br />

overlies basement consist<strong>in</strong>g of undifferentiated sedimentary,<br />

volc<strong>an</strong>ic <strong>an</strong>d metamorphic rocks of <strong>the</strong> Eskadron Formation,<br />

S<strong>in</strong>clair Sequence. Farmers <strong>in</strong> <strong>the</strong> area regularly<br />

report that if boreholes are drilled “<strong>to</strong>o deeply”, <strong>the</strong> water<br />

from <strong>the</strong> upper aquifer dra<strong>in</strong>s away <strong>in</strong><strong>to</strong> <strong>the</strong> lower formations.<br />

This is <strong>in</strong>ferred from a rush<strong>in</strong>g sound likened <strong>to</strong> flow<strong>in</strong>g<br />

water <strong>in</strong> <strong>the</strong> borehole.<br />

A possible expl<strong>an</strong>ation for this phenomenon was found<br />

when borehole WW35206 was drilled <strong>in</strong> this area under<br />

professional supervision. A blow test yield of 7.6 m 3 /h was<br />

recorded <strong>in</strong> <strong>the</strong> Kalahari aquifer. This yield drastically<br />

<strong>in</strong>creased <strong>to</strong> over 100 m 3 /h when aquifers <strong>in</strong> <strong>the</strong> basement<br />

were <strong>in</strong>tersected. After drill<strong>in</strong>g, <strong>the</strong> water level <strong>in</strong> this borehole<br />

is 0.15 m below surface, much higher th<strong>an</strong> <strong>the</strong> normal<br />

Kalahari aquifer water levels. This <strong>in</strong>dicates that <strong>the</strong> basement<br />

aquifer is under pressure <strong>an</strong>d thus at least sub-artesi<strong>an</strong>.<br />

With effective seal<strong>in</strong>g of <strong>the</strong> Kalahari aquifer, proper<br />

artesi<strong>an</strong> conditions are likely. As with m<strong>an</strong>y aquifers under<br />

pressure, gas release takes place once <strong>the</strong> conf<strong>in</strong><strong>in</strong>g horizon<br />

has been punctured. This gives rise <strong>to</strong> a rush<strong>in</strong>g sound, which<br />

could expla<strong>in</strong> <strong>the</strong> farmer’s observation of water “dra<strong>in</strong><strong>in</strong>g<br />

away”. F BOCKMÜHL<br />

Stampriet Artesi<strong>an</strong> Bas<strong>in</strong><br />

The Stampriet Subterr<strong>an</strong>e<strong>an</strong> Water Control Area, as def<strong>in</strong>ed<br />

by law <strong>in</strong> <strong>the</strong> Artesi<strong>an</strong> Water Control Ord<strong>in</strong><strong>an</strong>ce of 1955, lies<br />

<strong>in</strong> <strong>the</strong> south-eastern part of <strong>Namibia</strong> roughly bet ween 23°<br />

<strong>an</strong>d 26°S; 17°30’ <strong>an</strong>d 20°E, <strong>the</strong> Botsw<strong>an</strong><strong>an</strong> border.<br />

Its nor<strong>the</strong>rn boundary is def<strong>in</strong>ed by sub-outcrops of<br />

Karoo strata. In <strong>the</strong> north-west <strong>an</strong> arbitrary marg<strong>in</strong> (follow<strong>in</strong>g<br />

<strong>the</strong> railway l<strong>in</strong>e) del<strong>in</strong>eates <strong>the</strong> area where s<strong>an</strong>ds<strong>to</strong>nes with<br />

artesi<strong>an</strong> groundwater might still be encountered under<br />

<strong>the</strong> Kalkr<strong>an</strong>d Basalt. In <strong>the</strong> west <strong>the</strong> bas<strong>in</strong> is limited by<br />

<strong>the</strong> escarpment of <strong>the</strong> Weissr<strong>an</strong>d Plateau that rests on Nama<br />

Group sediments. The sou<strong>the</strong>rn boundary is a l<strong>in</strong>e south of<br />

which no (sub)artesi<strong>an</strong> conditions exist. Eastwards <strong>the</strong> Stamp -<br />

riet Artesi<strong>an</strong> Bas<strong>in</strong> extends some limited dist<strong>an</strong>ce beyond<br />

<strong>the</strong> <strong>Namibia</strong>n border <strong>in</strong><strong>to</strong> Botsw<strong>an</strong>a <strong>an</strong>d South Africa.<br />

Geography <strong>an</strong>d geomorphology<br />

In <strong>the</strong> west, <strong>the</strong> Stampriet Artesi<strong>an</strong> Bas<strong>in</strong> is bounded<br />

by <strong>the</strong> Weissr<strong>an</strong>d, a surface limes<strong>to</strong>ne plateau that rises 80m<br />

above <strong>the</strong> Fish River pla<strong>in</strong>. A dune field commences west<br />

of <strong>the</strong> Auob River <strong>an</strong>d stretches eastwards <strong>to</strong> beyond <strong>the</strong><br />

Nossob River. These stationary longitud<strong>in</strong>al dunes are nearly<br />

parallel <strong>to</strong> <strong>the</strong> river system <strong>an</strong>d about 10 <strong>to</strong> 15 m high.<br />

The grass covered dune valleys <strong>in</strong> between are several hundred<br />

metres wide. In <strong>the</strong> north a gradual tr<strong>an</strong>sition <strong>to</strong> comparatively<br />

mono<strong>to</strong>nous s<strong>an</strong>d or calcrete pla<strong>in</strong>s is followed<br />

by <strong>the</strong> first north north-east trend<strong>in</strong>g quartzite ridges of <strong>the</strong><br />

central highl<strong>an</strong>d.<br />

The area receives between 150 <strong>an</strong>d 250 mm of ra<strong>in</strong> per<br />

<strong>an</strong>num. Potential evaporation is as high as 3 800 mm <strong>in</strong> <strong>the</strong><br />

south-eastern part of <strong>the</strong> bas<strong>in</strong>, <strong>an</strong>d <strong>in</strong> normal years little<br />

or no local runoff is generated. The Auob River below Stamp -<br />

riet <strong>an</strong>d <strong>the</strong> Nossob River from Leonardville <strong>to</strong> Ar<strong>an</strong>os,<br />

Mukorob shale, between Nossob <strong>an</strong>d Auob<br />

are evidence of a much wetter climate <strong>in</strong> <strong>the</strong> past. The valleys<br />

are several hundred metres wide <strong>an</strong>d sometimes <strong>in</strong>cised more<br />

th<strong>an</strong> 50 m <strong>in</strong><strong>to</strong> <strong>the</strong> Kalahari. The present rivercourses are<br />

generally little more th<strong>an</strong> 10 m-wide <strong>an</strong>d only about 1.5 m<br />

deep <strong>in</strong> occasional gullies. The Auob River is cut off from<br />

its upper tributaries by a dune field east of Kalkr<strong>an</strong>d that<br />

blocks <strong>the</strong> O<strong>an</strong>ob <strong>an</strong>d Skaap rivers. Downstream of <strong>the</strong><br />

Auob <strong>an</strong>d Nossob confluence with <strong>the</strong> Molopo River, recent<br />

Jürgen Kirchner


Previous <strong>an</strong>d<br />

recent <strong>in</strong>vesti -<br />

gations<br />

In <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> 20 th century<br />

Dr H Lotz <strong>an</strong>d Dr P R<strong>an</strong>ge were<br />

<strong>the</strong> first geologists responsible for<br />

<strong>the</strong> Germ<strong>an</strong> Governmental Drill<strong>in</strong>g<br />

Section develop<strong>in</strong>g groundwater<br />

resources <strong>in</strong> sou<strong>the</strong>rn <strong>Namibia</strong>.<br />

R<strong>an</strong>ge recognised <strong>the</strong> artesi<strong>an</strong> conditions<br />

<strong>in</strong> <strong>the</strong> Stampriet Artesi<strong>an</strong> Bas<strong>in</strong><br />

<strong>in</strong> 1906 when he sited a number of<br />

boreholes <strong>in</strong> <strong>the</strong> Auob <strong>an</strong>d Nossob valleys.<br />

His publications on <strong>the</strong> results of<br />

his hydrogeological <strong>in</strong>vestigations <strong>in</strong><br />

<strong>the</strong> area <strong>in</strong>clude detailed drill<strong>in</strong>g records<br />

of <strong>the</strong> hundreds of holes drilled by<br />

Bohrkolonne Süd, <strong>an</strong>d a wide-r<strong>an</strong>ge of<br />

geological issues, <strong>in</strong>clud<strong>in</strong>g a resumé<br />

of <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs of <strong>the</strong> early explorers.<br />

Soon after World War I, <strong>the</strong> <strong>the</strong>n<br />

P R<strong>an</strong>ge produced <strong>the</strong> first geological map of <strong>the</strong><br />

artesi<strong>an</strong> bas<strong>in</strong> <strong>in</strong> 1914<br />

Irrigation Department of <strong>the</strong> South<br />

West Africa Adm<strong>in</strong>istration, launched<br />

<strong>an</strong> extensive drill<strong>in</strong>g program <strong>in</strong> <strong>the</strong><br />

area <strong>to</strong> develop new farml<strong>an</strong>d for war<br />

veter<strong>an</strong>s, a process that was repeated<br />

(here <strong>an</strong>d <strong>in</strong> o<strong>the</strong>r parts of <strong>Namibia</strong>)<br />

after World War II. Borehole logs of<br />

<strong>the</strong>se holes are filed under <strong>the</strong> borehole<br />

completion forms of <strong>the</strong> Department<br />

of Water Affairs (DWA). Some of <strong>the</strong><br />

old <strong>in</strong>formation is kept <strong>in</strong> <strong>the</strong> Geohydrology<br />

library of <strong>the</strong> DWA. The<br />

wealth of archive documents s<strong>to</strong>red <strong>in</strong><br />

<strong>the</strong> National Archives is difficult <strong>to</strong><br />

access.<br />

After World War II, <strong>the</strong> SWA<br />

Adm<strong>in</strong>istration employed Dr Henno<br />

Mart<strong>in</strong> as Head of <strong>the</strong> Geological<br />

Survey. Under his supervision groundwater<br />

exploration <strong>to</strong>ok place <strong>in</strong> <strong>the</strong> still<br />

undeveloped parts of <strong>the</strong> Stampriet<br />

Bas<strong>in</strong>. Borehole completion forms of<br />

holes sited <strong>an</strong>d described by him form<br />

<strong>the</strong> basis of <strong>the</strong> knowledge<br />

of <strong>the</strong> Bas<strong>in</strong>. Mart<strong>in</strong> drew<br />

a large number of crosssections<br />

based on <strong>the</strong>se logs,<br />

most of <strong>the</strong>m for <strong>the</strong> Coal<br />

Commission Report that<br />

looked <strong>in</strong><strong>to</strong> <strong>the</strong> coal- bear<strong>in</strong>g<br />

properties of <strong>the</strong> Karoo<br />

Sequence.<br />

Dur<strong>in</strong>g 1965, <strong>the</strong> Committee<br />

for Water Research of <strong>the</strong><br />

SWA Adm<strong>in</strong>istration identified<br />

<strong>an</strong> area east of<br />

Kalkr<strong>an</strong>d as a problem area,<br />

due <strong>to</strong> <strong>the</strong> sal<strong>in</strong>e groundwater<br />

<strong>an</strong>d <strong>the</strong> Regional<br />

Office of <strong>the</strong> CSIR <strong>in</strong> W<strong>in</strong>d-<br />

hoek was commissioned <strong>to</strong><br />

<strong>in</strong>vestigate <strong>the</strong> ground water<br />

quality <strong>the</strong>re. This was <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g<br />

of <strong>the</strong> Water Quality Map Project.<br />

Over a period of 12 years (1969-1981)<br />

nearly 30 000 groundwater samples<br />

from boreholes, wells <strong>an</strong>d spr<strong>in</strong>gs were<br />

collected <strong>in</strong> <strong>the</strong> country <strong>an</strong>d <strong>an</strong>alysed.<br />

Information about <strong>the</strong> farms, <strong>the</strong> boreholes<br />

<strong>an</strong>d on water-related health<br />

aspects was also ga<strong>the</strong>red. The results<br />

were presented <strong>in</strong> 25 reports <strong>an</strong>d f<strong>in</strong>ally<br />

consolidated <strong>in</strong> four maps show<strong>in</strong>g <strong>the</strong><br />

<strong>to</strong>tal dissolved solids, sulphate, nitrate<br />

<strong>an</strong>d fluoride concentrations at a scale<br />

of 1:1000 000. At <strong>the</strong> same time, <strong>the</strong><br />

Geological Survey <strong>in</strong>vestigated <strong>the</strong> geology<br />

<strong>an</strong>d was responsible for <strong>the</strong> hydrogeological<br />

assessment of drill<strong>in</strong>g applications<br />

<strong>in</strong> <strong>the</strong> Stampriet Artesi<strong>an</strong> Bas<strong>in</strong>,<br />

<strong>an</strong>d collected iso<strong>to</strong>pic data. Stratigraphic<br />

<strong>in</strong>formation is conta<strong>in</strong>ed <strong>in</strong><br />

reports that deal with exploration boreholes<br />

drilled for petroleum (<strong>to</strong> a depth<br />

of 1000 m <strong>in</strong> 1965) <strong>an</strong>d coal exploration<br />

(dur<strong>in</strong>g <strong>the</strong> 1980s).<br />

Dur<strong>in</strong>g <strong>the</strong> second half of <strong>the</strong><br />

seventies, <strong>the</strong> Geohydrology department<br />

of <strong>the</strong> DWA became respon sible<br />

for <strong>the</strong> Stampriet Artesi<strong>an</strong> Bas<strong>in</strong>. In <strong>the</strong><br />

eighties, <strong>the</strong>y conducted detailed <strong>in</strong>vestigations<br />

<strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn <strong>an</strong>d northwestern<br />

parts of <strong>the</strong> bas<strong>in</strong> <strong>an</strong>d started<br />

collect<strong>in</strong>g abstraction data. A major<br />

development project, <strong>in</strong> cooperation<br />

with <strong>the</strong> Jap<strong>an</strong>ese Government that<br />

aims at establish<strong>in</strong>g a groundwater<br />

m<strong>an</strong>agement pl<strong>an</strong> <strong>to</strong> optimally utilise<br />

<strong>the</strong> groundwater resources of <strong>the</strong> bas<strong>in</strong><br />

is nearly complete. Concurrently <strong>the</strong><br />

International A<strong>to</strong>mic Energy Agency<br />

is fund<strong>in</strong>g <strong>an</strong> <strong>in</strong>vestigation of recharge<br />

<strong>in</strong><strong>to</strong> <strong>the</strong> bas<strong>in</strong>.<br />

89


90<br />

dune fields cut off <strong>the</strong> Molopo from<br />

<strong>the</strong> Or<strong>an</strong>ge River.<br />

Economic activities <strong>in</strong> <strong>the</strong> area<br />

concentrate on s<strong>to</strong>ck farm<strong>in</strong>g, predom<strong>in</strong><strong>an</strong>tly<br />

karakul breed<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

past, now diversified <strong>to</strong> <strong>in</strong>clude sheep,<br />

cattle <strong>an</strong>d ostrich farm<strong>in</strong>g. In recent<br />

years, irrigation farm<strong>in</strong>g <strong>in</strong>creased as electrifi cation improved.<br />

Longitud<strong>in</strong>al dunes after heavy ra<strong>in</strong>s<br />

Geology <strong>an</strong>d hydrogeology<br />

There is a comparatively good underst<strong>an</strong>d<strong>in</strong>g of <strong>the</strong><br />

geology <strong>an</strong>d hydrogeology of this aquifer system <strong>in</strong> <strong>Namibia</strong>.<br />

<strong>Groundwater</strong> occurs <strong>in</strong> <strong>the</strong> Nossob <strong>an</strong>d Auob s<strong>an</strong>ds<strong>to</strong>nes of<br />

<strong>the</strong> Ecca Group (lower Karoo Sequence), which are divided<br />

by shale layers <strong>an</strong>d overla<strong>in</strong> by Rietmond shale <strong>an</strong>d s<strong>an</strong>ds<strong>to</strong>ne.<br />

Younger Kalkr<strong>an</strong>d Basalt occurs <strong>in</strong> <strong>the</strong> north-west <strong>an</strong>d<br />

Kalahari Sequence deposits. Predom<strong>in</strong><strong>an</strong>tly calcrete <strong>an</strong>d dune<br />

s<strong>an</strong>d, cover virtually <strong>the</strong> entire surface of <strong>the</strong> Stampriet Artesi<strong>an</strong><br />

Bas<strong>in</strong>. Several spr<strong>in</strong>gs are located <strong>in</strong> <strong>the</strong> eastern outcrop<br />

area of <strong>the</strong> basalt. The Karoo succession rests unconformably<br />

on Kamtsas Formation <strong>in</strong> <strong>the</strong> north <strong>an</strong>d north-west <strong>an</strong>d<br />

on Nama Group rocks <strong>in</strong> <strong>the</strong> rema<strong>in</strong>der of <strong>the</strong> bas<strong>in</strong>. Sediment<br />

tr<strong>an</strong>sport came from <strong>the</strong> north-east. The s<strong>an</strong>ds<strong>to</strong>nes,<br />

<strong>in</strong> particular, were deposited <strong>in</strong> a deltaic environment. The<br />

dip of <strong>the</strong> Karoo formations is slightly <strong>to</strong>wards <strong>the</strong> sou<strong>the</strong>ast<br />

(about 3 degrees) <strong>an</strong>d <strong>the</strong> groundwater flow generally<br />

follows that direction.<br />

Before <strong>the</strong> deposition of <strong>the</strong> Kalahari layers, a major river<br />

system entered <strong>Namibia</strong> at about 24° S <strong>an</strong>d 20°E. This river<br />

flowed <strong>in</strong> a south-westerly direction, turn<strong>in</strong>g east of Gochas<br />

<strong>to</strong>wards <strong>the</strong> Mata Mata area at <strong>the</strong> South Afric<strong>an</strong> border.<br />

A major tributary from <strong>the</strong> north jo<strong>in</strong>ed <strong>the</strong> ma<strong>in</strong> river at<br />

about 24° 45’S <strong>an</strong>d just east of 19°E. This river system cut<br />

deeply <strong>in</strong><strong>to</strong> <strong>the</strong> Karoo Sequence, <strong>in</strong> places right down <strong>to</strong> <strong>the</strong><br />

base of <strong>the</strong> Auob. Along <strong>the</strong> nor<strong>the</strong>rn <strong>an</strong>d western boundary<br />

of <strong>the</strong> bas<strong>in</strong> <strong>the</strong> Kalahari cover is th<strong>in</strong> with calcrete or<br />

dune-s<strong>an</strong>d at <strong>the</strong> surface. South-eastwards it reaches a thickness<br />

of 150 m, but <strong>in</strong> <strong>the</strong> pre- Kalahari river mentioned it c<strong>an</strong><br />

exceed 250 m <strong>in</strong> thickness. In <strong>the</strong> central parts <strong>the</strong> Kalahari<br />

consists ma<strong>in</strong>ly of f<strong>in</strong>e s<strong>an</strong>d, silt <strong>an</strong>d clayey deposits. Consequently,<br />

with low ra<strong>in</strong>fall, high potential evaporation <strong>an</strong>d<br />

no runoff outside <strong>the</strong> Auob <strong>an</strong>d Nossob valley, salts accu-<br />

mulate <strong>in</strong> <strong>the</strong> Kalahari <strong>an</strong>d <strong>the</strong> groundwater<br />

quality deteriorates <strong>in</strong> a sou<strong>the</strong>asterly<br />

direction. Because <strong>the</strong> conf<strong>in</strong><strong>in</strong>g<br />

layers <strong>an</strong>d <strong>the</strong> Auob aquifer are<br />

largely removed <strong>in</strong> <strong>the</strong> pre- Kalahari valley,<br />

<strong>the</strong> quality of <strong>the</strong> groundwater <strong>in</strong><br />

<strong>the</strong> Auob aquifer is also affected sou<strong>the</strong>ast<br />

of that valley <strong>an</strong>d that part of <strong>the</strong> Stampriet Artesi<strong>an</strong><br />

Bas<strong>in</strong> is called <strong>the</strong> “Saltblock”.<br />

<strong>Groundwater</strong> occurs <strong>in</strong> <strong>the</strong> Kalahari layers, <strong>in</strong> Kalkr<strong>an</strong>d<br />

Basalt <strong>in</strong> <strong>the</strong> north-west, <strong>an</strong>d <strong>in</strong> <strong>the</strong> Pr<strong>in</strong>ce Albert Formation<br />

of <strong>the</strong> Karoo Sequence. Not all aquifers occur everywhere<br />

<strong>an</strong>d <strong>the</strong> use of <strong>the</strong> aquifers is determ<strong>in</strong>ed by water quality,<br />

depth <strong>to</strong> <strong>the</strong> aquifer, <strong>an</strong>d <strong>the</strong>ir yields. <strong>Namibia</strong>, Botsw<strong>an</strong>a<br />

<strong>an</strong>d South Africa share <strong>the</strong> artesi<strong>an</strong> aquifers although <strong>the</strong>y<br />

are predom<strong>in</strong><strong>an</strong>tly used <strong>in</strong> <strong>Namibia</strong> where <strong>the</strong>y are recharged.<br />

Few people live along <strong>the</strong> Botsw<strong>an</strong><strong>an</strong> border <strong>an</strong>d little drill<strong>in</strong>g<br />

<strong>an</strong>d groundwater exploration has been done. The sou<strong>the</strong>rn<br />

part of <strong>the</strong> Stampriet Artesi<strong>an</strong> Bas<strong>in</strong> borders <strong>the</strong> South<br />

Afric<strong>an</strong> Kalahari National Game Park <strong>an</strong>d <strong>the</strong> Gordonia District.<br />

In Gordonia, <strong>the</strong> water quality of <strong>the</strong> Karoo aquifers<br />

appears <strong>to</strong> be as poor as <strong>in</strong> <strong>the</strong> Saltblock <strong>in</strong> <strong>Namibia</strong>.<br />

The Auob <strong>an</strong>d <strong>the</strong> Nossob aquifers are conf<strong>in</strong>ed <strong>an</strong>d freeflow<strong>in</strong>g<br />

(artesi<strong>an</strong>) <strong>in</strong> <strong>the</strong> Auob valley at <strong>an</strong>d downstream<br />

of Stampriet <strong>an</strong>d <strong>in</strong> <strong>the</strong> Nossob valley around Leonardville.<br />

Elsewhere sub-artesi<strong>an</strong> conditions prevail, that is, <strong>the</strong> water<br />

<strong>in</strong> <strong>the</strong> aquifer is conf<strong>in</strong>ed, but <strong>the</strong> pressure is not sufficient<br />

for <strong>the</strong> water <strong>to</strong> rise above <strong>the</strong> surface.<br />

Jürgen Kirchner<br />

Hoach<strong>an</strong>as founta<strong>in</strong> with monument for <strong>the</strong> dog that found <strong>the</strong><br />

water<br />

Jürgen Kirchner


Fac<strong>to</strong>rs such as climatic variations <strong>an</strong>d <strong>the</strong> construc -<br />

tion of large s<strong>to</strong>rage dams <strong>in</strong> river net works up stream of <strong>the</strong><br />

aquifers, which have <strong>the</strong> effect of cutt<strong>in</strong>g off large floods<br />

that would o<strong>the</strong>r wise feed <strong>the</strong> Stamp riet Artesi<strong>an</strong> Bas<strong>in</strong><br />

system, make it difficult <strong>to</strong> qu<strong>an</strong>tify this resource.<br />

The recharge mech<strong>an</strong>isms of <strong>the</strong> aquifers are better unders<strong>to</strong>od.<br />

A recent<br />

satellite image<br />

<strong>in</strong>terpretation of<br />

<strong>the</strong> area, done for<br />

<strong>the</strong> purposes of<br />

<strong>the</strong> Hydrogeological<br />

Map by a<br />

<strong>BGR</strong> expert,<br />

detected “s<strong>in</strong>kholes”<br />

with<strong>in</strong> <strong>the</strong><br />

Kalahari.<br />

These are small,<br />

shallow depressions<br />

caused by<br />

Water level recorder near Stampriet<br />

high above ground measur<strong>in</strong>g <strong>the</strong> artesi<strong>an</strong><br />

water level<br />

dissolution of calcrete<br />

where local<br />

runoff is concentrated<br />

<strong>an</strong>d fed <strong>in</strong><strong>to</strong><br />

permeable layers or structures below. From here <strong>the</strong> water<br />

reaches <strong>the</strong> artesi<strong>an</strong> aquifers below. Such s<strong>in</strong>khole areas exist<br />

<strong>in</strong> <strong>the</strong> north-west, west <strong>an</strong>d south-west of <strong>the</strong> bas<strong>in</strong>.<br />

First <strong>in</strong>dications are that <strong>the</strong> artesi<strong>an</strong> aquifers are recharged<br />

here dur<strong>in</strong>g years with abnormally high ra<strong>in</strong>fall. With<strong>in</strong><br />

weeks after heavy ra<strong>in</strong>fall events, <strong>the</strong> water level <strong>in</strong> boreholes<br />

sunk <strong>in</strong><strong>to</strong> <strong>the</strong> conf<strong>in</strong><strong>in</strong>g layers of <strong>the</strong> aquifer some 50 km<br />

from <strong>the</strong> recharge area, beg<strong>in</strong>s ris<strong>in</strong>g. The water <strong>in</strong> <strong>the</strong> artesi<strong>an</strong><br />

aquifers has almost no, or only a very weak iso<strong>to</strong>pic<br />

evaporation signal. In contrast, a noticeable proportion of<br />

<strong>the</strong> ra<strong>in</strong> that falls on <strong>the</strong> s<strong>an</strong>dy Kalahari surface elsewhere,<br />

evaporates <strong>an</strong>d <strong>the</strong> groundwater <strong>in</strong> <strong>the</strong> Kalahari layers of <strong>the</strong><br />

central parts of <strong>the</strong> bas<strong>in</strong> has a def<strong>in</strong>ite evaporation signal.<br />

These recharge <strong>in</strong>vestigations are cont<strong>in</strong>u<strong>in</strong>g.<br />

Utilisation of <strong>Groundwater</strong><br />

Presently water <strong>in</strong> <strong>the</strong> area is used for s<strong>to</strong>ck water<strong>in</strong>g <strong>an</strong>d<br />

<strong>in</strong>creas<strong>in</strong>gly for irrigation purposes. Although irrigation has<br />

economic adv<strong>an</strong>tages such as creat<strong>in</strong>g job opportunities, <strong>the</strong><br />

Wilhelm Struckmeier<br />

g r o u n d w a t e r<br />

resources are limited<br />

<strong>an</strong>d need <strong>to</strong><br />

be protected. The<br />

modell<strong>in</strong>g results<br />

of <strong>the</strong> current<br />

development project<br />

<strong>in</strong>dicate that<br />

<strong>the</strong> resource is<br />

over-utilised <strong>an</strong>d<br />

a 30 % reduction<br />

L<strong>an</strong>dsat Thematic Mapper<br />

Satellite image show<strong>in</strong>g small s<strong>in</strong>kholes <strong>in</strong><br />

<strong>the</strong> calcrete<br />

<strong>in</strong> abstraction is necessary. Less wasteful irrigation methods,<br />

reduced eva poration from reservoirs <strong>an</strong>d dr<strong>in</strong>k<strong>in</strong>g troughs,<br />

<strong>an</strong>d reduction of o<strong>the</strong>r losses will result <strong>in</strong> sufficient sav<strong>in</strong>gs,<br />

<strong>in</strong> o<strong>the</strong>r words, water dem<strong>an</strong>d m<strong>an</strong>agement needs <strong>to</strong> be<br />

implemented here.<br />

Most of <strong>the</strong> water supply schemes <strong>in</strong> <strong>the</strong> Stampriet Artesi<strong>an</strong><br />

Bas<strong>in</strong> extract groundwater from <strong>the</strong> Auob aquifer, only<br />

Koës uses <strong>the</strong> Nossob aquifer. The subartesi<strong>an</strong> boreholes at<br />

Am<strong>in</strong>uis (3) have ma<strong>in</strong>ta<strong>in</strong>ed high yields s<strong>in</strong>ce <strong>in</strong>stallation,<br />

but boreholes on <strong>the</strong> same aquifer at Onderombapa school<br />

(75) north of Am<strong>in</strong>uis <strong>an</strong>d Kriess school (51) on <strong>the</strong><br />

Weissr<strong>an</strong>d east of Gibeon, have comparatively low yields.<br />

Over-abstraction causes large drawdowns <strong>in</strong> <strong>the</strong> low <strong>to</strong><br />

moderate-yield<strong>in</strong>g boreholes of <strong>the</strong> Leonardville (54) water<br />

scheme. At Ar<strong>an</strong>os (7) supply problems are experienced from<br />

time <strong>to</strong> time even though <strong>the</strong> aquifer c<strong>an</strong> provide sufficient<br />

Irrigation from groundwater produces green from oases <strong>in</strong> <strong>the</strong><br />

Stampriet Artesi<strong>an</strong> Bas<strong>in</strong><br />

Jürgen Kirchner<br />

91


92<br />

water of a good quality. Very f<strong>in</strong>e s<strong>an</strong>d enters through <strong>the</strong><br />

borehole screens at higher pump<strong>in</strong>g rates <strong>an</strong>d leads <strong>to</strong> operational<br />

problems <strong>an</strong>d silt<strong>in</strong>g up of boreholes.<br />

The Auob aquifer at Gochas (34) is overla<strong>in</strong> by approximately<br />

150 m of Kalahari sediments, which conta<strong>in</strong> poor<br />

quality water. Boreholes <strong>in</strong> <strong>to</strong>wn were contam<strong>in</strong>ated with<br />

Kalahari water <strong>an</strong>d a wellfield was established 10 km <strong>to</strong> <strong>the</strong><br />

north on <strong>the</strong> farm Urikuribis, where water of Group A quality<br />

is found. The Auob aquifer is artesi<strong>an</strong> at Stamp riet (95), a<br />

village founded by missionaries who used <strong>the</strong> free-flow<strong>in</strong>g<br />

groundwater for garden irrigation. At Koës (48), a village<br />

north-east of Keetm<strong>an</strong>shoop near <strong>the</strong> edge of <strong>the</strong> Saltblock,<br />

<strong>the</strong> subartesi<strong>an</strong> boreholes draw water from <strong>the</strong> Nossob s<strong>an</strong>ds<strong>to</strong>ne.<br />

J KIRCHNER<br />

FURTHER READING<br />

• Huyser D J. 1982. Chemise Kwaliteit v<strong>an</strong> die<br />

Ondergrondse Waters <strong>in</strong> Suidwes-Afrika/Namibie.<br />

Vol. 1-3. Department v<strong>an</strong> Waterwese, Suidwes-<br />

Afrika, W<strong>in</strong>dhoek.<br />

• Jap<strong>an</strong> International Co-operation Agency. 2000.<br />

The Study on <strong>the</strong> <strong>Groundwater</strong> Potential Evalua -<br />

tion <strong>an</strong>d M<strong>an</strong>agement Pl<strong>an</strong> <strong>in</strong> <strong>the</strong> South-east<br />

Kalahari (Stampriet) Artesi<strong>an</strong> Bas<strong>in</strong> <strong>in</strong> <strong>the</strong><br />

Republic of <strong>Namibia</strong>. Interim Report. Tokyo.<br />

• R<strong>an</strong>ge P. 1914. Das artesische Becken <strong>in</strong> der Süd -<br />

kalahari. Deutsches Kolonial Blatt 8. Berl<strong>in</strong>.<br />

Fish River - Aroab Bas<strong>in</strong><br />

Much of <strong>the</strong> area east of <strong>the</strong> Namib s<strong>an</strong>d sea between<br />

Mariental <strong>in</strong> <strong>the</strong> north <strong>an</strong>d Ariamsvlei <strong>in</strong> <strong>the</strong> south is underla<strong>in</strong><br />

by sedimentary rocks of <strong>the</strong> Nama Group <strong>an</strong>d thus<br />

forms <strong>the</strong> large hydrogeological unit of <strong>the</strong> Fish River Bas<strong>in</strong><br />

<strong>an</strong>d <strong>the</strong> Keetm<strong>an</strong>shoop-Aroab area.<br />

The largest <strong>to</strong>wn <strong>an</strong>d regional centre, Keetm<strong>an</strong>shoop,<br />

has a surface water scheme fed from Naute Dam. Smaller<br />

<strong>to</strong>wns like Aroab, Maltahöhe, Kalkr<strong>an</strong>d, Gibeon, Berseba<br />

<strong>an</strong>d Beth<strong>an</strong>ien rely on groundwater extracted from aquifers<br />

<strong>in</strong> Nama sediments. The l<strong>an</strong>dscape is extremely barren <strong>an</strong>d<br />

rocky with little soil cover. The vegetation consists of dwarf<br />

shrubs with some trees <strong>in</strong> riverbeds. The ma<strong>in</strong> economic<br />

activities <strong>in</strong> <strong>the</strong> area are small s<strong>to</strong>ck farm<strong>in</strong>g <strong>an</strong>d <strong>to</strong>urism.<br />

Geology <strong>an</strong>d geomorphology<br />

Due <strong>to</strong> <strong>the</strong>ir predom<strong>in</strong><strong>an</strong>tly horizontal bedd<strong>in</strong>g, rocks<br />

of <strong>the</strong> Nama Group tend <strong>to</strong> wea<strong>the</strong>r <strong>an</strong>d erode <strong>in</strong> layers,<br />

result<strong>in</strong>g <strong>in</strong> flat pla<strong>in</strong>s, with major dra<strong>in</strong>ages form<strong>in</strong>g c<strong>an</strong>yons<br />

<strong>an</strong>d gorges. Erosion produces rock fragments or clay-size<br />

particles <strong>an</strong>d rivers accumulate very little s<strong>an</strong>dy alluvium.<br />

The western boundary of <strong>the</strong> Nama Group is clearly def<strong>in</strong>ed<br />

as <strong>the</strong> major escarpment adjacent <strong>to</strong> <strong>the</strong> Schwarzr<strong>an</strong>d, while<br />

<strong>to</strong> <strong>the</strong> east, <strong>the</strong> escarpment of <strong>the</strong> Weissr<strong>an</strong>d, made up by<br />

younger deposits of <strong>the</strong> Stampriet bas<strong>in</strong>, forms <strong>the</strong> natural<br />

boundary.<br />

The Nama Group is subdivided as follows:<br />

Group<br />

Nama<br />

Sub-<br />

group<br />

Fish<br />

River<br />

Schwarz-<br />

r<strong>an</strong>d<br />

Kuibis<br />

Formation Lithology<br />

Red<br />

shale<br />

Gross<br />

Aub<br />

greenish.<br />

Nababis<br />

Breckhorn<br />

S<strong>to</strong>ckdale<br />

<strong>an</strong>d<br />

red<br />

Red<br />

shale<br />

<strong>an</strong>d<br />

red<br />

locally<br />

greenish.<br />

s<strong>an</strong>ds<strong>to</strong>ne,<br />

locally<br />

urple<br />

s<strong>an</strong>ds<strong>to</strong>ne,<br />

The lower part of <strong>the</strong> Nama Group was deposited <strong>in</strong> a<br />

shallow <strong>to</strong> moderately deep sea, divided <strong>in</strong><strong>to</strong> two embay-<br />

<strong>to</strong><br />

Red<br />

<strong>to</strong><br />

purple<br />

quartzitic<br />

s<strong>an</strong>ds<strong>to</strong>ne<br />

<strong>an</strong>d<br />

some<br />

subord<strong>in</strong>ate<br />

red<br />

shale.<br />

p<br />

Basal<br />

red<br />

<strong>to</strong><br />

purple<br />

coarse<br />

gra<strong>in</strong>ed<br />

quartzitic<br />

s<strong>an</strong>ds<strong>to</strong>ne<br />

with<br />

th<strong>in</strong><br />

conglomerate<br />

layer.<br />

Red<br />

friable<br />

s<strong>an</strong>ds<strong>to</strong>ne,<br />

shale.<br />

V ergesig<br />

Green<br />

shale<br />

with<br />

green<br />

<strong>an</strong>d<br />

red<br />

s<strong>an</strong>ds<strong>to</strong>ne.<br />

Nomtsas<br />

Urusis<br />

Nudaus<br />

Zaris<br />

Dabis<br />

Reddish<br />

shale<br />

<strong>an</strong>d<br />

reddish<br />

s<strong>an</strong>ds<strong>to</strong>ne,<br />

becom<strong>in</strong>g<br />

green<br />

south<br />

of<br />

Maltahöhe,<br />

with<br />

basal<br />

coarse<br />

conglomerate<br />

<strong>in</strong><br />

m<strong>an</strong>y<br />

places,<br />

limes<strong>to</strong>ne<br />

<strong>to</strong>wards<br />

<strong>the</strong><br />

south-west.<br />

Greenish<br />

shale<br />

<strong>an</strong>d<br />

greenish<br />

s<strong>an</strong>ds<strong>to</strong>ne<br />

( <strong>in</strong><br />

<strong>the</strong><br />

north)<br />

, with<br />

dark<br />

blue<br />

limes<strong>to</strong>ne<br />

<strong>an</strong>d<br />

black<br />

limes<strong>to</strong>ne<br />

<strong>in</strong>ter-layered<br />

<strong>an</strong>d<br />

<strong>in</strong>tercalated<br />

( <strong>in</strong><br />

<strong>the</strong><br />

south)<br />

.<br />

Green<br />

shale<br />

<strong>an</strong>d<br />

greenish<br />

s<strong>an</strong>ds<strong>to</strong>ne,<br />

grey<br />

<strong>to</strong><br />

greenish<br />

quartzite.<br />

Bluish-green<br />

shale,<br />

s<strong>an</strong>ds<strong>to</strong>ne,<br />

p<strong>in</strong>k<br />

<strong>an</strong>d<br />

grey<br />

<strong>to</strong><br />

black<br />

limes<strong>to</strong>ne.<br />

Grey<br />

<strong>to</strong><br />

white<br />

quartzite,<br />

some<br />

grey<br />

dolomitic<br />

limes<strong>to</strong>ne,<br />

grey<br />

<strong>to</strong><br />

greenish<br />

quartzite.


ments by <strong>the</strong> easterly trend<strong>in</strong>g Osis ridge, result<strong>in</strong>g <strong>in</strong> a facies<br />

differentiation between north <strong>an</strong>d south <strong>in</strong> <strong>the</strong> Kuibis Subgroup.<br />

With <strong>in</strong>creased thickness of sedimentation, <strong>the</strong> upper<br />

part of <strong>the</strong> Schwarzr<strong>an</strong>d Subgroup <strong>an</strong>d <strong>the</strong> over ly<strong>in</strong>g Fish<br />

River Subgroup were little affected by facies ch<strong>an</strong>ges. The<br />

sedimentation of <strong>the</strong> Kuibis Subgroup <strong>to</strong>ok place <strong>in</strong> <strong>the</strong> late<br />

Cambri<strong>an</strong> Era, <strong>an</strong>d all <strong>the</strong> rocks of <strong>the</strong> Nama are older th<strong>an</strong><br />

450 million years (Ma). All units of <strong>the</strong> lower Nama Group<br />

th<strong>in</strong> eastwards <strong>an</strong>d m<strong>an</strong>y p<strong>in</strong>ch out, e.g. <strong>the</strong> Kuibis Subgroup<br />

is reduced <strong>to</strong> <strong>the</strong> K<strong>an</strong>ies Quartzite Member east of<br />

<strong>the</strong> Karas Mounta<strong>in</strong>s.<br />

Major tec<strong>to</strong>nic uplift affected <strong>the</strong> Nama at <strong>the</strong> end of <strong>the</strong><br />

Schwarzr<strong>an</strong>d deposition. Dips, <strong>in</strong> general, are very shallow<br />

<strong>to</strong> <strong>the</strong> east, except where fold<strong>in</strong>g has taken place <strong>an</strong>d <strong>in</strong> areas<br />

where dom<strong>in</strong>g has resulted <strong>in</strong> locally shallow dips, radially<br />

away from <strong>the</strong> dome, e. g. <strong>in</strong> <strong>the</strong> Ubiams-Vleiveld area. The<br />

Nama Group rocks rest unconformably on older basement.<br />

Over most of <strong>the</strong> outcrop area <strong>the</strong> Nama is not folded, however,<br />

<strong>in</strong>tensely folded Nama sediments are found between<br />

Gobabis <strong>an</strong>d <strong>the</strong> Sossusvlei area. Faults generally, but not<br />

always, strike <strong>in</strong> a nor<strong>the</strong>rly direction <strong>an</strong>d have been mapped<br />

quite frequently across <strong>the</strong> entire outcrop area. Extensive<br />

swarms of jo<strong>in</strong>ts appear throughout <strong>the</strong> Fish River Subgroup.<br />

Hydrogeology<br />

Rock types of <strong>the</strong> Nama Group are <strong>in</strong>herently imperm e -<br />

able with little or no primary porosity. <strong>Groundwater</strong> is hosted<br />

Drill site selected on a north-strik<strong>in</strong>g, west-dipp<strong>in</strong>g fault <strong>in</strong> Nababis<br />

Formation s<strong>an</strong>ds<strong>to</strong>ne<br />

Fr<strong>an</strong>k Bockmühl<br />

<strong>in</strong> secondary features like faults <strong>an</strong>d jo<strong>in</strong>ts <strong>in</strong> sedimentary<br />

rocks of clastic orig<strong>in</strong> (s<strong>an</strong>ds<strong>to</strong>ne, quartzite <strong>an</strong>d shale) <strong>an</strong>d<br />

<strong>in</strong> solution features <strong>in</strong> limes<strong>to</strong>nes <strong>an</strong>d dolomites. In <strong>the</strong><br />

Hardap <strong>an</strong>d Karas regions water levels are generally shallow<br />

<strong>in</strong> <strong>the</strong> east, close <strong>to</strong> <strong>the</strong> course of <strong>the</strong> Fish River, but become<br />

progressively deeper <strong>to</strong>wards <strong>the</strong> escarpment <strong>in</strong> <strong>the</strong> west,<br />

where water levels deeper th<strong>an</strong> 200 m are recorded. Drill<strong>in</strong>g<br />

targets are mostly tec<strong>to</strong>nic features such as faults <strong>an</strong>d jo<strong>in</strong>ts.<br />

These targets c<strong>an</strong> be located by geological surveys,<br />

especially with <strong>the</strong> help of aerial pho<strong>to</strong>graphy. Detailed fieldwork<br />

is essential <strong>in</strong> locat<strong>in</strong>g <strong>an</strong>d identify<strong>in</strong>g <strong>the</strong> dip of faults<br />

<strong>an</strong>d <strong>to</strong> appropriately determ<strong>in</strong>e <strong>the</strong> optimal site for drill<strong>in</strong>g.<br />

(On <strong>the</strong> pho<strong>to</strong> <strong>the</strong> dip of <strong>the</strong> fault c<strong>an</strong> be clearly recognised<br />

from up-turned fractured s<strong>an</strong>ds<strong>to</strong>ne, especially <strong>in</strong> <strong>the</strong> <strong>to</strong>p<br />

right h<strong>an</strong>d corner.)<br />

Faults c<strong>an</strong><br />

be risky drill<strong>in</strong>g<br />

targets. Collapse<br />

at several depths<br />

re quires that<br />

bore holes be<br />

drilled at various<br />

diameters <strong>to</strong> <strong>in</strong> -<br />

stall successively<br />

smaller dia meters<br />

of cas<strong>in</strong>g (“telescop<strong>in</strong>g”).<br />

Jo<strong>in</strong>t<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

Fish River Sub-<br />

Fr<strong>an</strong>k Bockmühl<br />

North-strik<strong>in</strong>g east-dipp<strong>in</strong>g fault,<br />

s<strong>an</strong>ds<strong>to</strong>ne, Nababis Formation. Farm<br />

Aneis, along District road No 1075<br />

group is quite often only recognised dur<strong>in</strong>g a field survey.<br />

These structures are mostly vertical <strong>to</strong> sub-vertical, <strong>an</strong>d once<br />

identified, drill<strong>in</strong>g sites c<strong>an</strong> be placed quite accurately. Jo<strong>in</strong>ts<br />

are often discernible by a l<strong>in</strong>ear “<strong>an</strong>ticl<strong>in</strong>al” feature. A narrow<br />

b<strong>an</strong>d of upturned shale <strong>an</strong>d/or s<strong>an</strong>ds<strong>to</strong>ne with<strong>in</strong> o<strong>the</strong>rwise<br />

horizontally bedded layers is probably a result of<br />

swell<strong>in</strong>g of <strong>the</strong> more argillaceous horizons due <strong>to</strong> percolation<br />

of groundwater <strong>an</strong>d <strong>in</strong>filtration of ra<strong>in</strong>water along<br />

<strong>the</strong> strike of <strong>the</strong> jo<strong>in</strong>t.<br />

The various formations of <strong>the</strong> Fish River Subgroup have<br />

different hydrogeological properties. In <strong>the</strong> younger Gross<br />

Aub Formation water tables are shallow <strong>an</strong>d drill<strong>in</strong>g targets<br />

c<strong>an</strong> be selected geologically with good success. A high success<br />

93


94<br />

Source: TS Kock<br />

Drillsite placed on a jo<strong>in</strong>t <strong>in</strong> <strong>the</strong> Breckhorn Formation, <strong>in</strong>tercalated<br />

s<strong>an</strong>ds<strong>to</strong>ne <strong>an</strong>d shale<br />

rate c<strong>an</strong> be achieved <strong>in</strong> <strong>the</strong> Nababis Formation with careful<br />

selection of drill<strong>in</strong>g sites. Water levels are generally deeper<br />

th<strong>an</strong> <strong>in</strong> <strong>the</strong> Gross Aub Formation. In <strong>the</strong> older Breck horn<br />

<strong>an</strong>d S<strong>to</strong>ckdale formations, up <strong>to</strong> 30 % of <strong>the</strong> recorded boreholes<br />

were dry, due <strong>to</strong> <strong>the</strong> deeper water table <strong>an</strong>d result<strong>an</strong>t<br />

difficulty <strong>in</strong> accurately determ<strong>in</strong><strong>in</strong>g a drill<strong>in</strong>g site. With more<br />

precise fieldwork, <strong>the</strong> probability of <strong>in</strong>tersect<strong>in</strong>g ground -<br />

water on suitable structures should <strong>in</strong> crease. In <strong>the</strong><br />

Schwarzr<strong>an</strong>d <strong>an</strong>d<br />

<strong>the</strong> Kuibis sub -<br />

groups, drill<strong>in</strong>g<br />

sites should be<br />

selec ted on tec<strong>to</strong>nic<br />

structures or<br />

contacts bet ween<br />

lime s<strong>to</strong>nes <strong>an</strong>d<br />

clastic rocks.<br />

The water quality<br />

<strong>in</strong> <strong>the</strong> Fish River<br />

“Ma<strong>an</strong>haar” features may <strong>in</strong>dicate good<br />

drill sites<br />

Group is <strong>in</strong> general<br />

acceptable,<br />

even though high<br />

nitrate concentrations c<strong>an</strong> occur. Increased nitrate concentrations<br />

are almost always a result of contam<strong>in</strong>ation due <strong>to</strong><br />

hum<strong>an</strong> <strong>an</strong>d lives<strong>to</strong>ck activities close <strong>to</strong> <strong>the</strong> boreholes. This<br />

type of pollution is irreversible, but new boreholes c<strong>an</strong> be<br />

protected by keep<strong>in</strong>g people, <strong>the</strong>ir sewerage systems <strong>an</strong>d lives<strong>to</strong>ck<br />

pens fur<strong>the</strong>r away.<br />

<strong>Groundwater</strong> use<br />

Fr<strong>an</strong>k Bockmühl<br />

The production boreholes at Ariamsvlei (8), a border<br />

post between <strong>Namibia</strong> <strong>an</strong>d South Africa, were drilled <strong>in</strong><strong>to</strong><br />

fractured s<strong>an</strong>ds<strong>to</strong>ne <strong>an</strong>d shale of <strong>the</strong> Schwarzr<strong>an</strong>d Subgroup.<br />

These rocks are weak aquifers that receive only limited<br />

recharge due <strong>to</strong> <strong>the</strong> low ra<strong>in</strong>fall <strong>in</strong> this area. The water is<br />

very hard <strong>an</strong>d of Group B-C quality.<br />

Amas is a farm 20 km north-east of Karasburg (43),<br />

on which a prom<strong>in</strong>ent fault <strong>in</strong> quartzitic s<strong>an</strong>ds<strong>to</strong>ne of <strong>the</strong><br />

Kuibis Subgroup along <strong>the</strong> Ham River gives rise <strong>to</strong> a strong<br />

perm<strong>an</strong>ent founta<strong>in</strong>. The river provides regular recharge <strong>to</strong><br />

<strong>the</strong> fault zone. In 1985, boreholes were drilled <strong>to</strong> determ<strong>in</strong>e<br />

whe<strong>the</strong>r <strong>the</strong> aquifer had sufficient groundwater <strong>to</strong> augment<br />

<strong>the</strong> supply <strong>to</strong> Karasburg. A long-term pump<strong>in</strong>g test<br />

conducted <strong>in</strong> 1993 <strong>in</strong>dicated a production potential of up<br />

<strong>to</strong> 100 000 m 3 /a.<br />

The effect of tec<strong>to</strong>nics on <strong>the</strong> yield potential becomes<br />

clear when <strong>the</strong> schemes at Berseba (14) <strong>an</strong>d Ga<strong>in</strong>achas (29)<br />

are compared. Both are situated at <strong>the</strong> foot of <strong>the</strong> ext<strong>in</strong>ct<br />

Brukkaros crater <strong>an</strong>d underla<strong>in</strong> by shale <strong>an</strong>d s<strong>an</strong>ds<strong>to</strong>ne of<br />

<strong>the</strong> Fish River Subgroup. The Brukkaros extrusion has fractured<br />

<strong>the</strong> Nama sediments at Berseba <strong>an</strong>d created major<br />

water bear<strong>in</strong>g zones. The production boreholes draw from<br />

<strong>an</strong> extensive aquifer <strong>an</strong>d provide much more water th<strong>an</strong> <strong>the</strong><br />

scheme at Ga<strong>in</strong>achas where <strong>the</strong> absence of large fracture<br />

zones results <strong>in</strong> very low yields.<br />

The same pr<strong>in</strong>ciple applies <strong>to</strong> <strong>the</strong> Kuibis <strong>an</strong>d Schwarzr<strong>an</strong>d<br />

Subgroups. The domestic water supply for Beth<strong>an</strong>ien (15)<br />

comes from a fracture <strong>in</strong> s<strong>an</strong>ds<strong>to</strong>ne, limes<strong>to</strong>ne <strong>an</strong>d shale<br />

of <strong>the</strong> above subgroups, cutt<strong>in</strong>g across <strong>the</strong> Konkiep River<br />

north of <strong>the</strong> <strong>to</strong>wn. Beth<strong>an</strong>ien must be <strong>the</strong> only <strong>to</strong>wn <strong>in</strong><br />

<strong>Namibia</strong> <strong>to</strong> compla<strong>in</strong> about <strong>an</strong> excess of groundwater. In<br />

<strong>the</strong> past, m<strong>an</strong>y <strong>in</strong>habit<strong>an</strong>ts used private boreholes <strong>to</strong> water<br />

<strong>the</strong>ir gardens <strong>an</strong>d <strong>the</strong> soil became waterlogged. Yet, <strong>the</strong> Kosis<br />

school (50) situated south-east of Beth<strong>an</strong>ien obta<strong>in</strong>s <strong>in</strong>sufficient<br />

water from <strong>the</strong> slightly fractured s<strong>an</strong>ds<strong>to</strong>ne <strong>an</strong>d shale<br />

of <strong>the</strong> Schwarzr<strong>an</strong>d Subgroup.<br />

Even though Gibeon (30) lies on <strong>the</strong> Fish River, <strong>the</strong>re<br />

is no groundwater of suitable quality <strong>to</strong> supply <strong>the</strong> <strong>to</strong>wn.<br />

Boreholes <strong>in</strong> <strong>to</strong>wn were used <strong>in</strong> <strong>the</strong> past, but had very high<br />

salt concentrations (TDS 2 000-8 000 mg/L). The closest,<br />

suitable, supply source of sufficient volume <strong>an</strong>d quality was<br />

found on <strong>the</strong> farm Orab 40 km north of Gibeon. Very high-


Aroab water<br />

supply scheme (9)<br />

The village of Aroab is situated<br />

some 165 km east of Keetm<strong>an</strong>shoop<br />

<strong>in</strong> <strong>an</strong> area underla<strong>in</strong> by s<strong>an</strong>ds<strong>to</strong>ne<br />

with subord<strong>in</strong>ate shale layers of <strong>the</strong><br />

Nababis Formation, Fish River Subgroup.<br />

These rocks are covered by calcrete<br />

of <strong>the</strong> Kalahari Sequence north of <strong>the</strong><br />

village <strong>an</strong>d Quaternary s<strong>an</strong>d dunes <strong>in</strong><br />

<strong>the</strong> east. Boreholes <strong>in</strong> <strong>the</strong> s<strong>an</strong>d-covered<br />

area east of <strong>the</strong> village have high nitrate<br />

yield<strong>in</strong>g boreholes were drilled on a fracture cross<strong>in</strong>g <strong>the</strong><br />

Fish River that extends northwards as part of a fracture<br />

system underneath Hardap Dam. There is thus always abund<strong>an</strong>t<br />

recharge from surface water. Similar <strong>to</strong> Gibeon, Malta -<br />

höhe (55) obta<strong>in</strong>ed groundwater from boreholes <strong>in</strong> <strong>the</strong><br />

Hutup River <strong>in</strong> <strong>the</strong> past. When <strong>the</strong>se became <strong>in</strong>sufficient,<br />

a new wellfield was established <strong>in</strong> a tributary north of <strong>the</strong><br />

<strong>to</strong>wn. The area around Maltahöhe is characterised by shale<br />

<strong>an</strong>d s<strong>an</strong>ds<strong>to</strong>ne of <strong>the</strong> S<strong>to</strong>ckdale Formation, which belongs<br />

<strong>to</strong> <strong>the</strong> Fish River Subgroup. The groundwater potential of<br />

<strong>the</strong>se rocks is generally low, but high yields are obta<strong>in</strong>ed<br />

on extended fracture zones like <strong>the</strong> one at Maltahöhe.<br />

Kalkr<strong>an</strong>d (41) lies halfway between Rehoboth <strong>an</strong>d Marien -<br />

tal on a plateau of Karoo basalt (Kalkr<strong>an</strong>d Formation). The<br />

basalt itself conta<strong>in</strong>s groundwater of poor quality <strong>an</strong>d<br />

Kalkr<strong>an</strong>d’s water supply is obta<strong>in</strong>ed from boreholes on<br />

<strong>the</strong> farm Gurus approximately 20 km <strong>to</strong> <strong>the</strong> south, where<br />

<strong>the</strong> basalt is underla<strong>in</strong> by s<strong>an</strong>ds<strong>to</strong>ne <strong>an</strong>d shale of <strong>the</strong> Fish<br />

River Subgroup. High-yield<strong>in</strong>g boreholes were drilled on a<br />

fracture system that crosses <strong>the</strong> Fish River <strong>an</strong>d receives<br />

regular recharge. The water scheme at Schlip (91), a rural<br />

centre west of Kalkr<strong>an</strong>d, with a fast grow<strong>in</strong>g water dem<strong>an</strong>d,<br />

draws groundwater from fractured Nama Group sediments.<br />

The orig<strong>in</strong>al boreholes were drilled on limes<strong>to</strong>ne <strong>an</strong>d<br />

shale of <strong>the</strong> Kuibis Subgroup, while a new wellfield was<br />

concentrations, because ra<strong>in</strong>water<br />

washes <strong>an</strong>imal waste <strong>in</strong><strong>to</strong> <strong>the</strong> p<strong>an</strong>s, <strong>the</strong><br />

nitrates dissolve <strong>an</strong>d <strong>in</strong>filtrate <strong>in</strong><strong>to</strong> <strong>the</strong><br />

groundwater. Boreholes <strong>in</strong> <strong>the</strong> area<br />

where <strong>the</strong> Nababis Formation is not covered<br />

are all of good quality.<br />

The old exist<strong>in</strong>g production boreholes<br />

were located close <strong>to</strong> <strong>the</strong> village<br />

of Aroab on <strong>the</strong> watershed. These boreholes<br />

had a his<strong>to</strong>ry of decl<strong>in</strong><strong>in</strong>g yields<br />

<strong>an</strong>d nitrate contam<strong>in</strong>ation. Dur<strong>in</strong>g<br />

1986 new boreholes with better water<br />

quality were drilled south of Aroab.<br />

Drill sites were selected on jo<strong>in</strong>ts <strong>an</strong>d<br />

on <strong>the</strong> K<strong>an</strong>nenberg fault, a prom<strong>in</strong>ent<br />

west-strik<strong>in</strong>g feature on <strong>the</strong> farms K<strong>an</strong>nenberg,<br />

Koertzebeb <strong>an</strong>d Nobees, after<br />

a detailed hydrogeological <strong>in</strong>vestigation.<br />

The groundwater gradient <strong>in</strong> <strong>the</strong><br />

area is from north <strong>to</strong> south. <strong>Groundwater</strong><br />

thus dra<strong>in</strong>s away from Aroab <strong>an</strong>d<br />

accumulates <strong>in</strong> <strong>the</strong> K<strong>an</strong>nenberg fault,<br />

which acts as a conduit. With <strong>in</strong>creas<strong>in</strong>g<br />

dist<strong>an</strong>ce from <strong>the</strong> exist<strong>in</strong>g pump<strong>in</strong>g<br />

scheme, yields of <strong>the</strong> new boreholes<br />

<strong>in</strong>creased drastically from 5 <strong>to</strong> 50 m 3 /h.<br />

The results of <strong>the</strong> 1986 work clearly<br />

<strong>in</strong>dicate <strong>the</strong> value of de tailed hydrogeological<br />

<strong>in</strong>vestigations, preced<strong>in</strong>g all<br />

major drill<strong>in</strong>g exercises.<br />

located on quartzite <strong>an</strong>d s<strong>an</strong>ds<strong>to</strong>ne of <strong>the</strong> Schwarzr<strong>an</strong>d Subgroup.<br />

The upper aquifer is unconf<strong>in</strong>ed, but <strong>the</strong> lower<br />

Schwarzr<strong>an</strong>d aquifer is conf<strong>in</strong>ed by a shale layer. The yields<br />

are moderate <strong>to</strong> high (5-35 m3 /h), <strong>an</strong>d <strong>the</strong> water quality<br />

is Group A-B.<br />

Tses (98) is a mission station between Mariental <strong>an</strong>d<br />

Keetm<strong>an</strong>s hoop that has grown <strong>in</strong><strong>to</strong> a fairly large settlement<br />

despite limited water resources. The geology consists of<br />

Dwyka shale (Nama Group), which is generally a weak<br />

aquifer. Boreholes of moderate yield were drilled on fractures<br />

cross<strong>in</strong>g rivercourses. Several new boreholes have recently<br />

been added <strong>to</strong> <strong>the</strong> scheme. The water quality has deteriorated<br />

due <strong>to</strong> over-abstraction <strong>an</strong>d lack of recharge.<br />

F BOCKMÜHL<br />

FURTHER READING<br />

• Germs G J B. 1972. The Stratigraphy <strong>an</strong>d<br />

Palaeon<strong>to</strong>logy of <strong>the</strong> Lower Nama Group,<br />

South West Africa: Bull. Precambri<strong>an</strong> Research<br />

Unit, University of Cape Town.<br />

• South Afric<strong>an</strong> Committee for Stratigraphy<br />

(SACS): Stratigraphy of South Africa, H<strong>an</strong>dbook<br />

8. 1980.<br />

95


96<br />

Sou<strong>the</strong>rn Namib <strong>an</strong>d<br />

Naukluft<br />

The Namib s<strong>an</strong>d sea <strong>an</strong>d Sperrgebiet, formerly known<br />

as Diamond Areas 1 <strong>an</strong>d 2, extend along <strong>the</strong> sou<strong>the</strong>rn coast<br />

of <strong>Namibia</strong>. Bordered by <strong>the</strong> natural boundaries of <strong>the</strong> Kuiseb<br />

River, Atl<strong>an</strong>tic Oce<strong>an</strong> <strong>an</strong>d Or<strong>an</strong>ge River <strong>to</strong> <strong>the</strong> north, west<br />

<strong>an</strong>d south, <strong>the</strong> eastern boundary was drawn parallel <strong>to</strong> <strong>the</strong><br />

coast 100 km <strong>in</strong>l<strong>an</strong>d. The Namib s<strong>an</strong>d sea between <strong>the</strong><br />

Kuiseb River <strong>an</strong>d <strong>the</strong> Aus-Lüderitz road forms part of <strong>the</strong><br />

Namib-Naukluft Park, except for a small coastal strip between<br />

Lüderitz <strong>an</strong>d Gibraltar Rock, which is part of <strong>the</strong> Sperrgebiet.<br />

The Naukluft Mounta<strong>in</strong> massif <strong>in</strong> <strong>the</strong> north-east<br />

has been <strong>in</strong>cluded <strong>in</strong> this chapter because most of <strong>the</strong><br />

dra<strong>in</strong>age is directed <strong>to</strong>wards <strong>the</strong> Namib s<strong>an</strong>d sea. The area<br />

between Lüderitz <strong>an</strong>d Or<strong>an</strong>jemund is still dedicated <strong>to</strong> diamond<br />

m<strong>in</strong><strong>in</strong>g <strong>an</strong>d closed <strong>to</strong> <strong>the</strong> public.<br />

Or<strong>an</strong>jemund <strong>an</strong>d Lüderitz, both at <strong>the</strong> coast, are <strong>the</strong> only<br />

<strong>to</strong>wns <strong>in</strong> <strong>the</strong> area. The <strong>to</strong>urist camp at Sesriem <strong>an</strong>d <strong>the</strong><br />

village of Aus are situated on <strong>the</strong> eastern boundary. The<br />

Namib s<strong>an</strong>d sea is <strong>an</strong> extremely arid zone with erratic ra<strong>in</strong>fall<br />

<strong>in</strong> <strong>the</strong> summer season, while <strong>the</strong> Sperrgebiet receives<br />

sporadic w<strong>in</strong>ter ra<strong>in</strong>fall. The only perm<strong>an</strong>ent water <strong>in</strong> this<br />

region is <strong>the</strong> Or<strong>an</strong>ge River, which supplies water <strong>to</strong> <strong>to</strong>wns<br />

<strong>an</strong>d m<strong>in</strong>es (Or<strong>an</strong>jemund, Rosh P<strong>in</strong>ah) as well as agricultural<br />

<strong>an</strong>d <strong>to</strong>urism projects.<br />

Small s<strong>to</strong>ck farm<strong>in</strong>g is practised on farms east of <strong>the</strong> desert,<br />

but most of <strong>the</strong> development <strong>in</strong> <strong>the</strong> area is derived from m<strong>in</strong><strong>in</strong>g.<br />

Diamonds are <strong>the</strong> target of <strong>the</strong> NAMDEB m<strong>in</strong>es on <strong>the</strong><br />

coast <strong>an</strong>d on <strong>the</strong> b<strong>an</strong>ks of <strong>the</strong> Or<strong>an</strong>ge River. Diamonds are<br />

dredged <strong>in</strong> several offshore concession areas. A lead-z<strong>in</strong>c<br />

deposit is m<strong>in</strong>ed at Rosh P<strong>in</strong>ah, <strong>an</strong>d a new z<strong>in</strong>c m<strong>in</strong>e is be<strong>in</strong>g<br />

developed at Skorpion close <strong>to</strong> Rosh P<strong>in</strong>ah.<br />

Geology <strong>an</strong>d geomorphology<br />

The Naukluft Mounta<strong>in</strong> area dom<strong>in</strong><strong>an</strong>tly consists of fractured<br />

<strong>an</strong>d karstified dolomites <strong>an</strong>d limes<strong>to</strong>nes of <strong>the</strong> Damara<br />

Sequence represent<strong>in</strong>g a so-called nappe complex. The<br />

nappes, tec<strong>to</strong>nically ra<strong>the</strong>r complex features, have been overthrown<br />

on <strong>the</strong> older, low permeable Schwarzr<strong>an</strong>d <strong>an</strong>d<br />

Schwarzkalk layers of <strong>the</strong> Nama Sequence.<br />

The Namib s<strong>an</strong>d sea displays most of <strong>the</strong> dune types that<br />

c<strong>an</strong> be found <strong>in</strong> <strong>the</strong> world, r<strong>an</strong>g<strong>in</strong>g from simple barch<strong>an</strong><br />

through compound tr<strong>an</strong>sverse <strong>an</strong>d complex l<strong>in</strong>ear <strong>to</strong> huge<br />

star dune forms. The dunes are <strong>in</strong>terspersed with <strong>in</strong>selbergs<br />

<strong>an</strong>d low mounta<strong>in</strong> r<strong>an</strong>ges. The older dunes are reddish <strong>an</strong>d<br />

semi-stabilised, while <strong>the</strong> younger mobile dunes are light<br />

coloured.<br />

The Sperrgebiet lacks extensive dune areas <strong>an</strong>d is<br />

dom<strong>in</strong>ated by mounta<strong>in</strong>s, <strong>in</strong>selbergs, gravel pla<strong>in</strong>s, ephemeral<br />

watercourses <strong>an</strong>d bedrock-floored valleys shaped by a harsh<br />

w<strong>in</strong>d regime. Fossil soils from <strong>an</strong>cient l<strong>an</strong>d surfaces are<br />

preserved as silcrete <strong>an</strong>d calcrete caps on hills <strong>an</strong>d pla<strong>in</strong>s.<br />

Soils are poorly developed <strong>in</strong> <strong>the</strong> Sperrgebiet, gypsum profiles<br />

on stable gravel pla<strong>in</strong>s be<strong>in</strong>g <strong>the</strong> most common type.<br />

While <strong>the</strong> geology of <strong>the</strong> Namib s<strong>an</strong>d sea is hidden under<br />

a shroud of s<strong>an</strong>d dunes <strong>an</strong>d only glimpsed <strong>in</strong> isolated out -<br />

crops, <strong>the</strong> Sperrgebiet provides good exposures of <strong>the</strong> geological<br />

record dat<strong>in</strong>g back some 1500 million years (Ma).<br />

The oldest rocks <strong>in</strong> <strong>the</strong> area are gneisses of <strong>the</strong> Namaqual<strong>an</strong>d<br />

Metamorphic Complex that c<strong>an</strong> be found <strong>in</strong> <strong>the</strong><br />

Lüderitz area <strong>an</strong>d along <strong>the</strong> eastern boundary, e.g. at Aus.<br />

The next period of rock formation occurred some 900 <strong>to</strong><br />

500 Ma ago <strong>an</strong>d resulted <strong>in</strong> sedimentary <strong>an</strong>d associated volc<strong>an</strong>ic<br />

rocks, known as <strong>the</strong> Gariep Group. The Gariep Group<br />

corresponds <strong>to</strong> <strong>the</strong> Damara Sequence <strong>in</strong> <strong>the</strong> Khomas<br />

Hochl<strong>an</strong>d. Base metal m<strong>in</strong>eralisation occurs <strong>in</strong> Gariep rocks<br />

at Rosh P<strong>in</strong>ah. In contrast, <strong>the</strong> Nama Group rocks <strong>in</strong> <strong>the</strong><br />

Sperrgebiet are relatively undeformed limes<strong>to</strong>nes that accumulated<br />

some 550-500 Million years ago <strong>in</strong> a shallow mar<strong>in</strong>e<br />

bas<strong>in</strong>.<br />

Follow<strong>in</strong>g <strong>the</strong> deposition of <strong>the</strong> Gariep <strong>an</strong>d Nama groups,<br />

<strong>the</strong>re was a considerable time break of some 350-400 million<br />

years. There is no record of <strong>the</strong> Karoo Sequence <strong>in</strong> <strong>the</strong> Sperr -<br />

gebiet. The break up of <strong>the</strong> old cont<strong>in</strong>ent compris<strong>in</strong>g South<br />

America <strong>an</strong>d Africa about 130 Ma ago gave rise <strong>to</strong> several<br />

volc<strong>an</strong>ic complexes <strong>in</strong> <strong>the</strong> central Sperrgebiet. As <strong>the</strong> South<br />

Atl<strong>an</strong>tic Oce<strong>an</strong> opened, extensive erosion formed <strong>the</strong> Great<br />

Escarpment <strong>an</strong>d filled <strong>the</strong> offshore Or<strong>an</strong>ge Bas<strong>in</strong> with more<br />

th<strong>an</strong> 4 km of sediments dur<strong>in</strong>g much of <strong>the</strong> Cretaceous<br />

period (120- 65 Ma).<br />

Towards <strong>the</strong> end of <strong>the</strong> Cretaceous, cont<strong>in</strong>ental erosion<br />

w<strong>an</strong>ed <strong>an</strong>d remn<strong>an</strong>ts of l<strong>an</strong>d surfaces were preserved as


silcrete-capped hills. Dur<strong>in</strong>g<br />

<strong>the</strong> Tertiary, which lasted<br />

from 65-2 Ma ago, <strong>the</strong> climate<br />

became gradually more<br />

arid. The geo logical record<br />

of this period <strong>in</strong>cludes fluvial<br />

<strong>an</strong>d sheetwash deposits<br />

(gravel, s<strong>an</strong>d <strong>an</strong>d clay),<br />

w<strong>in</strong>dblown s<strong>an</strong>d (fossil<br />

dunes) <strong>an</strong>d calcretes. The<br />

earliest Tertiary sediments<br />

are <strong>the</strong> Blaubock gravels <strong>in</strong><br />

<strong>the</strong> central Sperr gebiet. The<br />

rivers deposit<strong>in</strong>g <strong>the</strong>se gravels carried large trees from a nearby<br />

h<strong>in</strong>terl<strong>an</strong>d that <strong>to</strong>day is devoid of such vegetation. Green<br />

<strong>an</strong>d red fossil-bear<strong>in</strong>g cont<strong>in</strong>ental sediments are found <strong>in</strong><br />

a number of valleys <strong>an</strong>d depressions, e.g. <strong>in</strong> <strong>the</strong> Koichab<br />

River area. These sediments were laid down <strong>in</strong> shallow<br />

streams <strong>an</strong>d floodpla<strong>in</strong>s whose catchments appear <strong>to</strong> have<br />

fallen mostly with<strong>in</strong> <strong>the</strong> Sperrgebiet.<br />

Dur<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g drier phase, reddish s<strong>an</strong>d dunes of<br />

<strong>the</strong> Tsondab S<strong>an</strong>ds<strong>to</strong>ne Formation were deposited. These<br />

slightly consolidated s<strong>an</strong>ds<strong>to</strong>nes are found from south of<br />

<strong>the</strong> Kuiseb River <strong>to</strong> <strong>the</strong> Or<strong>an</strong>ge River. In <strong>the</strong> central Sperr -<br />

gebiet, coarse gravel conglomerates overlie <strong>the</strong> red s<strong>an</strong>ds<strong>to</strong>nes,<br />

<strong>in</strong>dicat<strong>in</strong>g a ch<strong>an</strong>ge <strong>to</strong> wetter conditions. Ra<strong>in</strong>fall<br />

with<strong>in</strong> <strong>the</strong> Sperrgebiet probably <strong>in</strong>creased <strong>to</strong> several hundred<br />

millimetres per year, generat<strong>in</strong>g runoff that tr<strong>an</strong>sported gravels<br />

from mounta<strong>in</strong>s <strong>an</strong>d <strong>in</strong>selbergs without <strong>in</strong>cis<strong>in</strong>g deeply<br />

<strong>in</strong><strong>to</strong> <strong>the</strong> underly<strong>in</strong>g s<strong>an</strong>ds<strong>to</strong>nes. The Gemsboktal <strong>an</strong>d Arrisdrift<br />

gravels of <strong>the</strong> Sperrgebiet correspond <strong>to</strong> <strong>the</strong> Karpfenkliff<br />

gravels <strong>in</strong> <strong>the</strong> Kuiseb valley.<br />

Dur<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g semi-arid phase, erosion dim<strong>in</strong>ished<br />

<strong>an</strong>d calcareous soils formed on stable surfaces. These soils<br />

are <strong>to</strong>day exposed as extensive calcrete surfaces that cover<br />

most of <strong>the</strong> pla<strong>in</strong>s <strong>an</strong>d valleys of <strong>the</strong> Namib <strong>an</strong>d Sperr gebiet.<br />

In <strong>the</strong> late Tertiary, drier conditions were probably <strong>in</strong>stigated<br />

by <strong>the</strong> full development of <strong>the</strong> Benguela cold water up -<br />

well<strong>in</strong>g system between 10-7 Ma ago. The accumulation<br />

of w<strong>in</strong>d-blown deposits of <strong>the</strong> Sossus S<strong>an</strong>d Formation form<strong>in</strong>g<br />

<strong>the</strong> Namib s<strong>an</strong>d sea beg<strong>an</strong> dur<strong>in</strong>g this time. The Sperr -<br />

gebiet is a l<strong>in</strong>k between major components of a massive <strong>an</strong>d<br />

Sossusvlei, where <strong>the</strong> Tsauchab River disappears<br />

long-lived sediment tr<strong>an</strong>sport<br />

system. This sys tem<br />

tr<strong>an</strong>sports eroded material<br />

from <strong>the</strong> <strong>in</strong>terior of sou<strong>the</strong>rn<br />

Africa <strong>in</strong><strong>to</strong> <strong>the</strong> Atl<strong>an</strong>tic<br />

Oce<strong>an</strong>, up along <strong>the</strong> West<br />

Coast, <strong>an</strong>d back <strong>in</strong><strong>to</strong> <strong>the</strong><br />

Namib Desert. Diamonds<br />

were carried along with o<strong>the</strong>r<br />

sediments <strong>an</strong>d concentrated<br />

<strong>in</strong> one of <strong>the</strong> richest sedimentary<br />

deposits <strong>in</strong> <strong>the</strong><br />

world.<br />

The arid climate of <strong>the</strong> Namib has, over <strong>the</strong> last several<br />

million years, been <strong>in</strong>terrupted by short-lived wetter <strong>in</strong>tervals.<br />

Wet periods occurred <strong>in</strong> <strong>the</strong> Namib dur<strong>in</strong>g <strong>the</strong> Ice Ages<br />

of <strong>the</strong> Pleis<strong>to</strong>cene. Dur<strong>in</strong>g <strong>the</strong>se phases, ra<strong>in</strong>fall was sufficient<br />

<strong>to</strong> susta<strong>in</strong> shallow p<strong>an</strong>s long enough <strong>to</strong> precipitate<br />

lime, <strong>in</strong> some places as travert<strong>in</strong>e. These were used by S<strong>to</strong>ne<br />

Age people, as shown by <strong>the</strong> artefacts <strong>the</strong>y left beh<strong>in</strong>d.<br />

Wyn<strong>an</strong>d du Plessis<br />

Hydrogeology<br />

The carbonate rocks of <strong>the</strong> Naukluft are heavily karstified.<br />

Numerous spr<strong>in</strong>gs <strong>an</strong>d waterfalls are fed by this huge karst<br />

groundwater body which may be described as a natural<br />

lysimeter discharg<strong>in</strong>g above <strong>the</strong> low permeable sediments<br />

of <strong>the</strong> Nama Sequence. Also tufa or travert<strong>in</strong>e formations<br />

are typical for <strong>the</strong> Naukluft. Although some drill<strong>in</strong>g was<br />

done <strong>in</strong> <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> last century, very little is known<br />

about <strong>the</strong> qu<strong>an</strong>tity, quality, <strong>an</strong>d utilisation of <strong>the</strong> groundwater<br />

of <strong>the</strong> Naukluft.<br />

Limited water availability <strong>in</strong> <strong>the</strong> Namib Desert presents<br />

<strong>the</strong> s<strong>in</strong>gle largest constra<strong>in</strong>t on development. Me<strong>an</strong><br />

ra<strong>in</strong>fall is less th<strong>an</strong> 100 mm per year, me<strong>an</strong><strong>in</strong>g that sufficient<br />

ra<strong>in</strong> <strong>to</strong> recharge <strong>the</strong> aquifers only falls <strong>in</strong> some years.<br />

The occurrence of exploitable groundwater resources<br />

<strong>in</strong> <strong>the</strong> Namib Desert is closely l<strong>in</strong>ked <strong>to</strong> <strong>the</strong> existence of alluvial<br />

aquifers created by perennial, ephemeral or even fossil<br />

rivers. The only abund<strong>an</strong>t source of groundwater <strong>in</strong> <strong>the</strong><br />

Sperrgebiet is <strong>the</strong> alluvial aquifer along <strong>the</strong> Or<strong>an</strong>ge River,<br />

which provides a secure supply <strong>to</strong> Or<strong>an</strong>jemund. The<br />

ephemeral Kuiseb River along <strong>the</strong> nor<strong>the</strong>rn boundary of <strong>the</strong><br />

97


98<br />

Namib s<strong>an</strong>d sea supplies<br />

groundwater <strong>to</strong> Walvis Bay<br />

as described earlier <strong>in</strong> this<br />

chapter.<br />

The westward-flow<strong>in</strong>g<br />

endoreic rivers that term<strong>in</strong>ate<br />

aga<strong>in</strong>st <strong>the</strong> Namib s<strong>an</strong>d sea<br />

<strong>to</strong>day flowed <strong>in</strong><strong>to</strong> <strong>the</strong><br />

Atl<strong>an</strong>tic Oce<strong>an</strong> dur<strong>in</strong>g phases<br />

of wetter climate <strong>in</strong> <strong>the</strong> past.<br />

Source: S Müller<br />

Examples of <strong>the</strong>se are <strong>the</strong> Tsondab, Tsauchab <strong>an</strong>d Koichab<br />

rivers. Sediments laid down by <strong>the</strong>se rivers are found underneath<br />

<strong>the</strong> dunes <strong>in</strong> former riverbeds, called paleo- ch<strong>an</strong>nels.<br />

Under present conditions, surface water <strong>in</strong>filtrates <strong>in</strong> <strong>the</strong> upper<br />

reaches <strong>an</strong>d flows as groundwater <strong>in</strong> <strong>the</strong> paleo- ch<strong>an</strong>nels,<br />

discharg<strong>in</strong>g <strong>in</strong><strong>to</strong> <strong>the</strong> oce<strong>an</strong>. Some of this groundwater emerges<br />

<strong>in</strong> small freshwater spr<strong>in</strong>gs along <strong>the</strong> coast. The more prom<strong>in</strong>ent<br />

ones are at S<strong>an</strong>dwich Harbour (paleo-ch<strong>an</strong>nel of <strong>the</strong><br />

Kuiseb River), Meob (Tsauchab River paleo-ch<strong>an</strong>nel) <strong>an</strong>d<br />

Anigab north of Lüderitz (Koichab River paleo-ch<strong>an</strong>nel).<br />

Tsondab <strong>an</strong>d Tsauchab Rivers: The alluvium of <strong>the</strong><br />

Tsondab <strong>an</strong>d Tsauchab at <strong>the</strong> foot of <strong>the</strong> escarpment shows<br />

a moderate yield, which is quite remarkable <strong>in</strong> this arid area.<br />

Both rivers provide water <strong>to</strong> <strong>to</strong>urist establishments. At<br />

Sesriem, <strong>the</strong> Tsauchab River is deeply <strong>in</strong>cised <strong>in</strong><strong>to</strong> a thick<br />

calcrete layer <strong>an</strong>d water c<strong>an</strong> be found almost perm<strong>an</strong>ently<br />

<strong>in</strong> a spr<strong>in</strong>g at <strong>the</strong> head of <strong>the</strong> c<strong>an</strong>yon.<br />

Koichab River: The water supply <strong>to</strong> Lüderitz is based<br />

on fossil water reserves <strong>in</strong> <strong>the</strong> Koichab paleo-ch<strong>an</strong>nel. The<br />

Koichab wellfield (49) is situated 100 km north-east of<br />

Lüderitz at <strong>the</strong> foot of a massive dune formation up <strong>to</strong> 200m<br />

high. The Koichab area was proposed as early as 1914 as <strong>the</strong><br />

most suitable source of water supply for <strong>the</strong> grow <strong>in</strong>g <strong>to</strong>wn<br />

of Lüderitz, however a water supply scheme was only established<br />

<strong>in</strong> 1968.<br />

A section of <strong>the</strong> area shows <strong>the</strong> recent dunes of <strong>the</strong> Namib<br />

s<strong>an</strong>d sea underla<strong>in</strong> by fossil dunes of <strong>the</strong> Tsondab S<strong>an</strong>ds<strong>to</strong>ne<br />

Formation, nei<strong>the</strong>r of which conta<strong>in</strong>s groundwater. Under<br />

<strong>the</strong> Tsondab, or directly under <strong>the</strong> recent dunes, are Tertiary<br />

sheetwash deposits, locally referred <strong>to</strong> as Koichab beds<br />

that consist of a mixture of clay s<strong>an</strong>d <strong>an</strong>d gravel. Occasional<br />

layers of cle<strong>an</strong> s<strong>an</strong>d <strong>an</strong>d gravel are good aquifers with yields<br />

Cross-section <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn Namib from <strong>the</strong> Schwarzr<strong>an</strong>d <strong>to</strong> <strong>the</strong><br />

Atl<strong>an</strong>tic Oce<strong>an</strong><br />

of 5-50 m 3 /h, while <strong>the</strong> predom<strong>in</strong><strong>an</strong>t<br />

clay <strong>an</strong>d silt layers<br />

are aquitards.<br />

The Koichab wellfield covers<br />

<strong>an</strong> area of 20 x 3 km 2 with <strong>an</strong><br />

average aquifer thickness of<br />

50 m <strong>an</strong>d water level at 16 m.<br />

Radio carbon <strong>an</strong>alyses show<br />

that <strong>the</strong> groundwater <strong>in</strong> <strong>the</strong><br />

Koichab River aquifer is fossil<br />

water some 5 000 -7000 years old. It is of Group A quality<br />

<strong>an</strong>d one of <strong>the</strong> best waters found <strong>in</strong> <strong>Namibia</strong>. Moni<strong>to</strong>r<strong>in</strong>g<br />

of <strong>the</strong> water levels <strong>in</strong>dicates that no direct recharge reaches <strong>the</strong><br />

wellfield due <strong>to</strong> <strong>the</strong> low average ra<strong>in</strong>fall of 80 mm/a <strong>an</strong>d <strong>the</strong><br />

presence of clay layers cover<strong>in</strong>g <strong>the</strong> aquifer. There might be<br />

recharge <strong>in</strong> <strong>the</strong> upper reaches of <strong>the</strong> Koichab valley orig<strong>in</strong>at<strong>in</strong>g<br />

from <strong>the</strong> Neisip River. Recharge <strong>to</strong> <strong>the</strong> Neisip area of<br />

2 Mm 3 /a was estimated, but iso<strong>to</strong>pe <strong>an</strong>alyses <strong>in</strong>dicate a flow<br />

velocity <strong>to</strong> <strong>the</strong> wellfield of only 13 m/a. The slow decl<strong>in</strong>e of<br />

<strong>the</strong> water table <strong>in</strong> <strong>the</strong> wellfield shows that depletion of <strong>the</strong><br />

resources occurs, despite <strong>in</strong>frequent recharge. It is estimated<br />

that <strong>the</strong> s<strong>to</strong>red reserves <strong>in</strong> <strong>the</strong> <strong>in</strong>vestigated part of <strong>the</strong> Koichab<br />

paleo-ch<strong>an</strong>nel are 1600 Mm 3 .<br />

The Koichab paleo-ch<strong>an</strong>nel discharges small volumes of<br />

freshwater <strong>in</strong> seepages at Anigab on <strong>the</strong> coast north of<br />

Lüderitz. This aquifer was <strong>in</strong>vestigated <strong>in</strong> <strong>the</strong> 1960s as <strong>an</strong><br />

alternative water source for <strong>the</strong> <strong>to</strong>wn, but <strong>the</strong> qu<strong>an</strong>tity<br />

<strong>an</strong>d quality were <strong>in</strong>sufficient.<br />

Well <strong>in</strong> <strong>the</strong> Koichab P<strong>an</strong><br />

Dieter Plöthner


Emergency<br />

graz<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

Sperrgebiet<br />

From <strong>the</strong> 1950s <strong>to</strong> <strong>the</strong> early 1980s,<br />

areas of grassl<strong>an</strong>d <strong>in</strong> <strong>the</strong> eastern Sperr -<br />

gebiet <strong>an</strong>d <strong>the</strong> Koichab area north of<br />

Aus were used for emergency graz<strong>in</strong>g.<br />

Evidently <strong>the</strong> Kaukausib Founta<strong>in</strong><br />

<strong>an</strong>d waterholes <strong>in</strong> <strong>the</strong> Koichab River<br />

were used for water<strong>in</strong>g lives<strong>to</strong>ck until<br />

<strong>the</strong> late 1950s. This was apparently not<br />

for emergency graz<strong>in</strong>g but as a water<strong>in</strong>g<br />

s<strong>to</strong>p for lives<strong>to</strong>ck driven from <strong>the</strong><br />

<strong>in</strong>terior <strong>to</strong> Lüderitz or Or<strong>an</strong>jemund for<br />

slaughter.<br />

Sperrgebiet, waterhole near Koakasib<br />

<strong>Groundwater</strong> resources <strong>in</strong> fractured bedrock aquifers<br />

of <strong>the</strong> Namib <strong>an</strong>d <strong>the</strong> Sperrgebiet are very limited <strong>an</strong>d, if<br />

exploited, extraction easily exceeds recharge. The <strong>to</strong>wn of<br />

Aus situated among hills of Namaqual<strong>an</strong>d gr<strong>an</strong>ite-gneiss on<br />

<strong>the</strong> border of <strong>the</strong> Namib Desert is <strong>an</strong> example of a <strong>to</strong>wn<br />

whose development is restricted by <strong>in</strong>sufficient water<br />

resources (10). The average <strong>an</strong>nual ra<strong>in</strong>fall of below 100 mm<br />

provides little groundwater recharge. Local aquifers of limited<br />

extent are found <strong>in</strong> fracture zones, but <strong>the</strong> borehole yields<br />

are low (1-5 m3 /h). Dozens of mostly dry boreholes were<br />

drilled <strong>in</strong> <strong>an</strong>d around <strong>the</strong> <strong>to</strong>wn <strong>to</strong> augment <strong>the</strong> water supply,<br />

until it became clear that no signific<strong>an</strong>t new resources could<br />

be found <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity.<br />

Very few aquifers are found <strong>in</strong> <strong>the</strong> western part of <strong>the</strong><br />

Sperrgebiet. In <strong>the</strong> early 1900s, boreholes were drilled <strong>in</strong><br />

Gariep dolomite at Grillenthal <strong>to</strong> supply <strong>the</strong> m<strong>in</strong>e at Elisabeth<br />

Bay, but o<strong>the</strong>r diamond m<strong>in</strong>es had <strong>to</strong> br<strong>in</strong>g <strong>the</strong>ir water <strong>in</strong><br />

barrels from Lüderitz. The number of boreholes <strong>an</strong>d kilometres<br />

of pipel<strong>in</strong>e required <strong>to</strong> support even short-term emergency<br />

graz<strong>in</strong>g <strong>in</strong> <strong>the</strong> eastern part of <strong>the</strong> Namib are testimony<br />

<strong>to</strong> <strong>the</strong> scarcity of groundwater <strong>in</strong> this area.<br />

S MÜLLER<br />

In 1951, drought-stricken farmers<br />

<strong>in</strong> sou<strong>the</strong>rn <strong>Namibia</strong> requested that all<br />

<strong>the</strong> l<strong>an</strong>d of pas<strong>to</strong>ral value <strong>in</strong>side <strong>the</strong><br />

Sperrgebiet be made available <strong>to</strong> graze<br />

<strong>the</strong>ir lives<strong>to</strong>ck. In response, boreholes<br />

were drilled <strong>an</strong>d a 16 km-wide strip of<br />

l<strong>an</strong>d runn<strong>in</strong>g along <strong>the</strong> eastern fence<br />

was allocated for graz<strong>in</strong>g. Drill<strong>in</strong>g<br />

records of <strong>the</strong>se boreholes show <strong>the</strong> lim-<br />

FURTHER READING<br />

ited potential of <strong>the</strong> aquifers.<br />

M<strong>an</strong>y boreholes were dry or<br />

had very low yields just sufficient<br />

for s<strong>to</strong>ck water<strong>in</strong>g.<br />

Between 30 000 <strong>an</strong>d 60 000<br />

sheep were kept <strong>in</strong> <strong>the</strong> area,<br />

which was subsequently<br />

widened by 8 km <strong>in</strong> 1955.<br />

Emergency graz<strong>in</strong>g was aga<strong>in</strong><br />

permitted <strong>in</strong> <strong>the</strong> mid-1960s <strong>an</strong>d dur<strong>in</strong>g<br />

<strong>the</strong> severe drought of 1981-82. It was<br />

stipulated that graz<strong>in</strong>g was <strong>to</strong> be made<br />

available only <strong>to</strong> those farmers whose<br />

own graz<strong>in</strong>g was completely depleted<br />

<strong>an</strong>d who did not have access <strong>to</strong> o<strong>the</strong>r<br />

fodder.<br />

Kev<strong>in</strong> Roberts<br />

• Hellwig DHR. 1968. Water resources of <strong>the</strong><br />

Namib Desert between Lüderitzbucht <strong>an</strong>d Walvis<br />

Bay (a prelim<strong>in</strong>ary <strong>in</strong>vestigation). South-west-<br />

Afric<strong>an</strong> Regional Labora<strong>to</strong>ry, National Institute<br />

for Water Resources, CSIR, W<strong>in</strong>dhoek.<br />

• Pallett J (Ed). 1995. The Sperrgebiet – <strong>Namibia</strong>’s<br />

Least Known Wilderness. DRFN <strong>an</strong>d NAMDEB,<br />

W<strong>in</strong>dhoek, <strong>Namibia</strong>.<br />

• R<strong>an</strong>ge P. 1915. Ergebnisse von Bohrungen <strong>in</strong><br />

Deutsch-Südwest-Afrika. Beiträge zur geologi -<br />

schen Erforschung der Deutschen Schutz gebiete<br />

11, Berl<strong>in</strong>.<br />

• Ward J C. 1987. The Cenozoic Succession <strong>in</strong> <strong>the</strong><br />

Kuiseb Valley, Central Namib Desert. Memoir<br />

Geol. Survey South West Africa/<strong>Namibia</strong> 9,<br />

W<strong>in</strong>dhoek.<br />

• Ward JD. 1990. Towards <strong>an</strong> Age for <strong>the</strong> Namib.<br />

Namib Ecology 25 Years of Namib Research,<br />

Tr<strong>an</strong>svaal Museum Monograph 7, Pre<strong>to</strong>ria.<br />

99


100<br />

Karas Basement<br />

The greater portion of <strong>the</strong> area is <strong>an</strong> erosion pla<strong>in</strong> slop<strong>in</strong>g<br />

south <strong>to</strong>wards <strong>the</strong> Or<strong>an</strong>ge River where it becomes highly<br />

dissected. In <strong>the</strong> east, <strong>an</strong>d <strong>to</strong> a lesser degree <strong>in</strong> <strong>the</strong> north, <strong>an</strong><br />

escarpment formed by overly<strong>in</strong>g Nama sedi ments def<strong>in</strong>es<br />

<strong>the</strong> borders of <strong>the</strong> area under discussion.<br />

The western <strong>an</strong>d south-western areas are mounta<strong>in</strong>ous.<br />

Dra<strong>in</strong>age is normally dendritic from <strong>the</strong> north <strong>to</strong>wards<br />

<strong>the</strong> Or<strong>an</strong>ge River. The dom<strong>in</strong><strong>an</strong>t ephemeral river is <strong>the</strong> Fish<br />

River with its deep c<strong>an</strong>yon <strong>in</strong> <strong>the</strong> Ai-Ais Nature Reserve.<br />

Smaller rivers are <strong>the</strong> Ka<strong>in</strong>ab, Ham <strong>an</strong>d Udabis <strong>in</strong> <strong>the</strong> east,<br />

<strong>an</strong>d <strong>the</strong> Velloor <strong>an</strong>d Hom rivers <strong>in</strong> <strong>the</strong> central portion. The<br />

Haib, Aniegamoep <strong>an</strong>d Gamkab rivers expose basement<br />

<strong>to</strong>wards <strong>the</strong> west.<br />

Karasburg is <strong>the</strong> only <strong>to</strong>wn <strong>in</strong> <strong>the</strong> area, while small villages<br />

exist at Grünau <strong>an</strong>d Warmbad. The Karas Region is <strong>an</strong> arid<br />

zone with low <strong>an</strong>d erratic ra<strong>in</strong>fall of about 50-100 mm/a,<br />

which c<strong>an</strong> occur <strong>in</strong> <strong>the</strong> summer <strong>an</strong>d w<strong>in</strong>ter seasons. A sixtyseven<br />

year me<strong>an</strong> for Karasburg of 123 mm/a was calculated<br />

<strong>in</strong> 1990. The only perm<strong>an</strong>ent water is <strong>the</strong> Or<strong>an</strong>ge River,<br />

which is used for <strong>an</strong> agricultural project at Aussenkehr. The<br />

area is sparsely populated because farms must be extremely<br />

large <strong>to</strong> be economic. Most activities focus on small s<strong>to</strong>ck<br />

farm<strong>in</strong>g <strong>an</strong>d <strong>to</strong>urism.<br />

Geology<br />

Basement outcrops <strong>in</strong> this groundwater bas<strong>in</strong> are of<br />

Mokoli<strong>an</strong> age (1200 <strong>to</strong> 2 000 Ma) <strong>an</strong>d are divided <strong>in</strong><strong>to</strong><br />

Old Germ<strong>an</strong> fort at Warmbad<br />

Fr<strong>an</strong>k Bockmühl<br />

<strong>the</strong> Haib Group <strong>an</strong>d Vioolsdrif Gr<strong>an</strong>ite Suite Complex<br />

<strong>in</strong> <strong>the</strong> west <strong>an</strong>d south-west, <strong>an</strong>d <strong>the</strong> Namaqua Metamorphic<br />

Complex <strong>in</strong> <strong>the</strong> eastern <strong>an</strong>d north-eastern areas. Intrusive<br />

rocks like gr<strong>an</strong>ite, augengneiss, gabbro, norite <strong>an</strong>d<br />

pegmatite are generally younger th<strong>an</strong> <strong>the</strong> meta-sedimentary<br />

<strong>an</strong>d meta- volc<strong>an</strong>ic rocks. Widespread outcrops of<br />

Mokoli<strong>an</strong> basement rocks occur from south of Karasburg<br />

<strong>to</strong> <strong>the</strong> Or<strong>an</strong>ge River. Warmbad is centrally situated <strong>in</strong><br />

this area. Ano<strong>the</strong>r basement outcrop is found from 20°E<br />

<strong>to</strong> south of Rosh P<strong>in</strong>ah along <strong>the</strong> Or<strong>an</strong>ge River. An area<br />

stretch<strong>in</strong>g generally north-east from <strong>the</strong> sou<strong>the</strong>rn boundary<br />

of <strong>the</strong> Ai-Ais Nature Reserve through <strong>the</strong> Grünau-<br />

Holoogberg area <strong>to</strong>wards <strong>the</strong> Karas mounta<strong>in</strong>s is also largely<br />

underla<strong>in</strong> by basement.<br />

The basement rocks were exposed <strong>to</strong> erosion <strong>an</strong>d wea<strong>the</strong>r<strong>in</strong>g<br />

for up <strong>to</strong> 600 Ma, dur<strong>in</strong>g which a paleo-l<strong>an</strong>dscape<br />

was formed. Dur<strong>in</strong>g <strong>the</strong> late <strong>Namibia</strong>n (± 650 Ma) <strong>to</strong> Cambri<strong>an</strong><br />

Period (± 500 Ma), <strong>the</strong> basement rocks were partially<br />

covered by sedimentary rocks of <strong>the</strong> Nama Group, which<br />

<strong>in</strong> turn were partially covered by Karoo-age sediments (Carboniferous<br />

<strong>to</strong> Permi<strong>an</strong> 345 <strong>to</strong> 230 Ma). Post-Karoo dolerites<br />

of Jurassic age <strong>in</strong>truded <strong>in</strong><strong>to</strong> <strong>the</strong> Karoo sediments. The<br />

younger horizons were subsequently eroded re-expos<strong>in</strong>g<br />

<strong>the</strong> basement. Erosion started <strong>in</strong> <strong>the</strong> south <strong>an</strong>d presently<br />

has reached <strong>the</strong> area south of Karasburg, where deeply<br />

<strong>in</strong>cised rivers like <strong>the</strong> Hom open w<strong>in</strong>dows of basement.<br />

The youngest unconsolidated sediments of Quaternary age<br />

are found south-east of Warmbad over ly<strong>in</strong>g rocks of <strong>the</strong><br />

Namaqua Metamorphic Complex.<br />

Major regional north-west strik<strong>in</strong>g faults have displaced<br />

<strong>the</strong> Haib Group <strong>an</strong>d Vioolsdrif Gr<strong>an</strong>ite Suite Complex<br />

aga<strong>in</strong>st <strong>the</strong> Namaqua Metamorphic Complex. A second<br />

regional fault l<strong>in</strong>e strikes from <strong>the</strong> farm Hakiedoorn at <strong>the</strong><br />

Or<strong>an</strong>ge River north-east <strong>in</strong> <strong>the</strong> direction of Warmbad <strong>to</strong><br />

<strong>the</strong> farm Norechab. Abund<strong>an</strong>t smaller faults have been<br />

mapped, <strong>in</strong>dicat<strong>in</strong>g no preferential direction of strike.<br />

Hydrogeology<br />

Very limited volumes of groundwater are available <strong>in</strong> <strong>the</strong><br />

basement rocks of <strong>the</strong> sou<strong>the</strong>rn Karas Region, s<strong>in</strong>ce <strong>the</strong>re<br />

are no productive aquifers. Lack of recharge <strong>an</strong>d poor groundwater<br />

quality <strong>in</strong> most areas fur<strong>the</strong>r aggravates <strong>the</strong> situation.


The area has long been <strong>in</strong>habited, as <strong>the</strong> abund<strong>an</strong>ce of old<br />

h<strong>an</strong>d-dug wells <strong>in</strong>dicates. Most wells are situated along rivercourses<br />

<strong>in</strong> shallow alluvium <strong>an</strong>d deeply wea<strong>the</strong>red ch<strong>an</strong>nels<br />

<strong>an</strong>d bas<strong>in</strong>s. Wells <strong>in</strong> <strong>the</strong> Warmbad area were mostly dug<br />

before 1930. Very few boreholes were drilled before 1920,<br />

<strong>an</strong>d <strong>the</strong>se also mostly close <strong>to</strong> rivercourses. Artesi<strong>an</strong> boreholes<br />

were drilled on <strong>the</strong> farm Nieuwefonte<strong>in</strong> Ost east of<br />

Karasburg. Natural founta<strong>in</strong>s occur predom<strong>in</strong><strong>an</strong>tly <strong>in</strong><br />

riverbeds. At Warmbad, a <strong>the</strong>rmal spr<strong>in</strong>g is fault controlled<br />

(±34° C), <strong>an</strong>d at Tzamab-Gründorn, some 3 kilometres<br />

north of Hamab station <strong>an</strong>o<strong>the</strong>r warm spr<strong>in</strong>g is associated<br />

with <strong>an</strong> <strong>in</strong>lier of gneiss. The most well known hot water<br />

spr<strong>in</strong>g is found at Ai-Ais, a popular <strong>to</strong>urist resort on <strong>the</strong> Fish<br />

River. The temperature of <strong>the</strong> spr<strong>in</strong>g water is 66.5° C. It<br />

emerges from a fracture zone <strong>in</strong> gr<strong>an</strong>ite <strong>an</strong>d gneiss.<br />

Ai-Ais hot spr<strong>in</strong>g eye<br />

Exploration for groundwater should be concentrated<br />

along faults, <strong>an</strong>d where possible close <strong>to</strong> river beds, <strong>in</strong> order<br />

<strong>to</strong> facilitate <strong>an</strong>d enh<strong>an</strong>ce recharge. Wea<strong>the</strong>red <strong>an</strong>d decomposed<br />

zones with<strong>in</strong> <strong>the</strong> gr<strong>an</strong>itic terra<strong>in</strong> close <strong>to</strong> riverbeds<br />

might be promis<strong>in</strong>g targets. Geological <strong>in</strong>vesti gations <strong>an</strong>d<br />

geophysical methods <strong>to</strong> determ<strong>in</strong>e drill<strong>in</strong>g sites are essential<br />

<strong>in</strong> maximis<strong>in</strong>g success rates. Electromagnetic surveys as<br />

well as electrical resistivity sound<strong>in</strong>g <strong>an</strong>d profil<strong>in</strong>g arrays<br />

have been successfully employed.<br />

The only detailed survey of boreholes <strong>an</strong>d wells <strong>in</strong> this<br />

area has been conducted by <strong>the</strong> CSIR <strong>in</strong> 1969. Dur<strong>in</strong>g this<br />

survey, water samples were collected from 338 boreholes,<br />

Wilhelm Struckmeier<br />

Drill site WW 33768 selected geologically <strong>to</strong> <strong>in</strong>tersect a partly<br />

silicified, faulted contact (ridge <strong>in</strong> background) form<strong>in</strong>g <strong>an</strong> eastsouth-east<br />

trend<strong>in</strong>g feature (Borehole drilled <strong>to</strong> 100 m depth,<br />

waterstrike at 61 m, blowtest yield 2.89 m 3 /h, RWL 53.38 mbgl,<br />

Group B).<br />

wells <strong>an</strong>d artesi<strong>an</strong> boreholes. There were 445 dry boreholes<br />

recorded, but it is presumed that only a part of <strong>the</strong>se were<br />

found. Dry boreholes are signific<strong>an</strong>tly located mostly on, or<br />

close <strong>to</strong>, <strong>the</strong> watershed between <strong>the</strong> Hom <strong>an</strong>d Ham rivers.<br />

The depth of boreholes was generally under 130 m, with <strong>the</strong><br />

majority be<strong>in</strong>g shallower th<strong>an</strong> 50 m. Water levels dur<strong>in</strong>g <strong>the</strong><br />

CSIR survey were mostly shallower th<strong>an</strong> 30 m. Yields below<br />

2.3 m 3 /h were recorded for 63 % of <strong>the</strong> non-dry boreholes,<br />

while only 16 % had yields over 5.4 m 3 /h.<br />

Nearly 80 % of all <strong>the</strong> water sources surveyed were unsuitable<br />

for hum<strong>an</strong> consumption, ma<strong>in</strong>ly due <strong>to</strong> high<br />

concentrations of fluoride <strong>an</strong>d nitrate <strong>an</strong>d <strong>to</strong> a lesser degree<br />

sulphate. Only 20 % of <strong>the</strong> water sources <strong>an</strong>alysed proved<br />

unsuitable for lives<strong>to</strong>ck water<strong>in</strong>g, <strong>in</strong> this case due <strong>to</strong> high<br />

sulphate contents.<br />

The water supply situation at Grünau (35) <strong>an</strong>d Warmbad<br />

Fault controlled dra<strong>in</strong>age ch<strong>an</strong>nel enh<strong>an</strong>c<strong>in</strong>g recharge <strong>in</strong><br />

decomposed gr<strong>an</strong>ites<br />

Fr<strong>an</strong>k Bockmühl<br />

Fr<strong>an</strong>k Bockmühl<br />

101


102<br />

Paleoproterozoic rocks at <strong>the</strong> Or<strong>an</strong>ge River<br />

(103) is typical for areas underla<strong>in</strong> by gr<strong>an</strong>ite-gneiss of <strong>the</strong><br />

Namaqual<strong>an</strong>d Complex. <strong>Groundwater</strong> around Grünau<br />

occurs <strong>in</strong> fracture zones recharged by small rivers <strong>an</strong>d on<br />

contact zones of younger dolerite dykes. The ground water<br />

potential is low <strong>an</strong>d <strong>the</strong> available resources are far from<br />

sufficient <strong>to</strong> meet <strong>the</strong> dem<strong>an</strong>d. The groundwater flow direction<br />

is north-west <strong>to</strong> south-east. Water of Group B-C quality<br />

is found north-west of <strong>the</strong> village, but gradually <strong>in</strong>creas<strong>in</strong>g<br />

sal<strong>in</strong>ity <strong>an</strong>d fluoride concentration make <strong>the</strong> ground water<br />

non-potable at Grünau <strong>an</strong>d fur<strong>the</strong>r <strong>to</strong> <strong>the</strong> south-east.<br />

Warmbad was established by missionaries <strong>an</strong>d was <strong>the</strong><br />

capital of <strong>the</strong> south until this role was taken over by Karasburg.<br />

The <strong>to</strong>wn is on <strong>the</strong> Hom River downstream of <strong>the</strong><br />

Dreihuk Dam. The Namaqual<strong>an</strong>d gr<strong>an</strong>ite-gneiss along<br />

<strong>the</strong> riverbed is deeply fractured <strong>an</strong>d conta<strong>in</strong>s highly<br />

m<strong>in</strong>eralised water of Group C-D quality. The fluoride concentration<br />

is often <strong>to</strong>o high for hum<strong>an</strong> consumption <strong>an</strong>d<br />

water treat ment was considered <strong>in</strong> <strong>the</strong> past.<br />

F BOCKMÜHL<br />

FURTHER READING<br />

• Haugh<strong>to</strong>n S H <strong>an</strong>d H F Frommurze. 1936.<br />

The Geology of <strong>the</strong> Warmbad District, S.W. A.,<br />

Department of M<strong>in</strong>es, S.W. A., Memoir No. II.<br />

• Tredoux G. 1970. Waterkaart v<strong>an</strong> die<br />

ondergrondse waters <strong>in</strong> Suidwes-Afrika met<br />

spesifieke verwys<strong>in</strong>g na die benutt<strong>in</strong>gswaarde v<strong>an</strong><br />

die waters. Intensiewe opname v<strong>an</strong> waterbronne<br />

<strong>in</strong> die gebied om Warmbad. CSIR.<br />

Projeknommer 905, Kodenommer 6321/9905.<br />

• South Afric<strong>an</strong> Committee for Stratigraphy<br />

(SACS). 1980. Stratigraphy of South Africa,<br />

H<strong>an</strong>dbook 8.<br />

Gabi Schneider


Karasburg water<br />

supply <strong>an</strong>d<br />

Dreihuk Dam<br />

Karasburg (43) experienced re cur -<br />

rent water supply problems until <strong>the</strong><br />

Dreihuk Dam was built <strong>to</strong> supply <strong>the</strong><br />

<strong>to</strong>wn with surface water.<br />

Until now <strong>the</strong> dam has never completely<br />

filled up, but at least helped<br />

by supply<strong>in</strong>g some additional water<br />

from <strong>the</strong> seepage well as described<br />

below. Karasburg is situated on Dwyka<br />

shale <strong>an</strong>d tillite of <strong>the</strong> Karoo Sequence,<br />

which are <strong>in</strong>truded by dolerite dykes.<br />

One such dyke forms <strong>the</strong> base of <strong>the</strong><br />

dam wall of <strong>the</strong> Bondels Dam. It acts<br />

Water seep<strong>in</strong>g through <strong>the</strong> dam wall of <strong>the</strong> Dreihuk Dam<br />

as <strong>an</strong> underground weir damm<strong>in</strong>g up<br />

groundwater <strong>in</strong> <strong>the</strong> fractured shale<br />

aquifer, on which <strong>the</strong> Bondels wellfield<br />

is located. High yields of 10-30 m 3 /h<br />

are obta<strong>in</strong>ed from <strong>the</strong>se boreholes,<br />

while older boreholes on less fractured<br />

rocks <strong>in</strong> <strong>to</strong>wn have very low yields. A<br />

potential additional<br />

wellfield<br />

for Karasburg<br />

was <strong>in</strong>vestigated<br />

on <strong>the</strong> farm<br />

Amas 20 km<br />

north-east of<br />

Karasburg. This<br />

area is underla<strong>in</strong><br />

by Nama sediments<br />

<strong>an</strong>d thus<br />

described <strong>in</strong><br />

“Nama Bas<strong>in</strong>”. Dreihuk Dam<br />

In 1977 <strong>the</strong><br />

Dreihuk Dam was built across <strong>the</strong><br />

deeply <strong>in</strong>cised valley of <strong>the</strong> Hom River,<br />

16 km south-west of Karasburg. The<br />

site was geologically evaluated <strong>an</strong>d<br />

found unsuitable, because prior <strong>to</strong> <strong>the</strong><br />

sedimentation of <strong>the</strong> Karoo shale, <strong>the</strong><br />

palaeo-surface was exposed <strong>to</strong> wea<strong>the</strong>r<strong>in</strong>g<br />

<strong>an</strong>d <strong>the</strong> wea<strong>the</strong>red surface was<br />

not eroded later, but is still present<br />

underneath <strong>the</strong> rema<strong>in</strong><strong>in</strong>g cover of<br />

Karoo rocks. The deeply <strong>in</strong>cised Hom<br />

DWA Archive<br />

River cuts through <strong>the</strong> Karoo <strong>an</strong>d<br />

exposes <strong>the</strong> wea<strong>the</strong>red zone, which c<strong>an</strong><br />

be several metres thick. When <strong>the</strong>re<br />

is water <strong>in</strong> <strong>the</strong> dam <strong>the</strong> wea<strong>the</strong>red zone<br />

becomes tr<strong>an</strong>smissive <strong>an</strong>d water from<br />

<strong>the</strong> dam bas<strong>in</strong> seeps through <strong>to</strong> <strong>the</strong><br />

downstream side of <strong>the</strong> dam wall. A<br />

dra<strong>in</strong>age pipe <strong>an</strong>d sump (pit) <strong>in</strong> <strong>the</strong><br />

eastern side of <strong>the</strong> dam wall were constructed<br />

<strong>to</strong> collect seepage <strong>an</strong>d this<br />

water contributes signific<strong>an</strong>tly <strong>to</strong> Karasburg’s<br />

supply, about 60 000 <strong>to</strong><br />

190 000 m3 /a depend<strong>in</strong>g on <strong>the</strong> water<br />

level <strong>in</strong> <strong>the</strong> dam. The pit c<strong>an</strong> also be<br />

used for Gabis mission (28), which<br />

<strong>in</strong> <strong>the</strong> past relied entirely on two boreholes<br />

drilled <strong>in</strong><strong>to</strong> <strong>the</strong> wea<strong>the</strong>red zone<br />

downstream of <strong>the</strong> dam.<br />

The water quality at Dreihuk is<br />

generally poor as long as <strong>the</strong>re is no<br />

<strong>in</strong>flow <strong>in</strong><strong>to</strong> <strong>the</strong> dam. High concentrations<br />

of sulphate, chloride <strong>an</strong>d<br />

sodium result <strong>in</strong> Group D water. After<br />

<strong>in</strong>flow, <strong>the</strong> water quality of <strong>the</strong> dra<strong>in</strong>age<br />

pipe <strong>an</strong>d pit temporarily deteriorates<br />

due <strong>to</strong> a flush<strong>in</strong>g effect, but it improves<br />

some time later <strong>to</strong> Group B quality.<br />

F BOCKMÜHL<br />

DWA Archive<br />

103


104<br />

The <strong>Groundwater</strong> Map


Wyn<strong>an</strong>d du Plessis<br />

105


106<br />

Data <strong>an</strong>d use of<br />

<strong>the</strong> Map<br />

This chapter describes <strong>the</strong> technical<br />

way <strong>in</strong> which <strong>the</strong> data used for <strong>the</strong> Map<br />

were collected, created, <strong>in</strong>terpreted <strong>an</strong>d<br />

f<strong>in</strong>ally prepared. A basic dist<strong>in</strong>ction<br />

is made between data serv<strong>in</strong>g as <strong>to</strong>pographical background<br />

<strong>in</strong>formation, <strong>an</strong>d <strong>the</strong> <strong>the</strong>matic data layers which were constructed,<br />

calculated or derived from various sources. The<br />

problems <strong>in</strong> <strong>the</strong> creation of <strong>the</strong> <strong>to</strong>pographical base data were<br />

ma<strong>in</strong>ly due <strong>to</strong> <strong>in</strong>complete, <strong>in</strong>accurate or non- documented<br />

data sets. The creation of <strong>the</strong> <strong>the</strong>matic data <strong>the</strong>mes, relied<br />

on <strong>the</strong> geological, hydrogeological <strong>an</strong>d hydrological data of<br />

variable quality captured over <strong>the</strong> past decades <strong>an</strong>d necessitated<br />

a huge effort <strong>to</strong> search, collect, correct <strong>an</strong>d validate<br />

<strong>the</strong> data. Never<strong>the</strong>less, this process of prepar<strong>in</strong>g coherent<br />

<strong>an</strong>d good quality data for <strong>the</strong> Hydrogeological Map has<br />

resulted <strong>in</strong> <strong>the</strong> most up <strong>to</strong> date, accurate <strong>an</strong>d complete data<br />

sets on ground- <strong>an</strong>d surface water <strong>in</strong> digital form yet <strong>in</strong><br />

<strong>the</strong> MAWRD.<br />

It must be clearly stated, that <strong>the</strong> data collected for <strong>the</strong><br />

Hydrogeological Map of <strong>Namibia</strong> Project (HYMNAM) was<br />

first <strong>an</strong>d foremost geared at establish<strong>in</strong>g a national, country-wide<br />

map at a scale of 1:1000 000, with 10 milli metres<br />

on <strong>the</strong> Map equal <strong>to</strong> 10 kilometres <strong>in</strong> reality. This focus<br />

on a country-wide overview map <strong>an</strong>d <strong>the</strong> time frame of only<br />

two years has me<strong>an</strong>t that <strong>the</strong> <strong>in</strong>formation on <strong>the</strong> Map is<br />

<strong>in</strong>adequate <strong>to</strong> allow zoom<strong>in</strong>g <strong>in</strong> <strong>an</strong>d enlarg<strong>in</strong>g. More detailed,<br />

high-resolution data on geology, boreholes <strong>an</strong>d groundwater<br />

might be available for certa<strong>in</strong> regions of <strong>the</strong> country<br />

<strong>in</strong> <strong>the</strong> databases of GSN, DWA <strong>an</strong>d Nam Water, but c<strong>an</strong>not<br />

be derived from <strong>the</strong> HYMNAM data sets.<br />

In addition, it must be spelled out clearly that site-specific<br />

projects such as <strong>the</strong> correct sit<strong>in</strong>g of boreholes or dump sites<br />

require sound, site-specific professional <strong>in</strong>vestigations. The<br />

<strong>in</strong>formation presented on <strong>the</strong> Map at 1:1000 000 scale, is<br />

by far <strong>to</strong>o general <strong>an</strong>d c<strong>an</strong> only be used as orientation for<br />

<strong>the</strong> site-specific follow-up studies. The results of <strong>the</strong> detailed<br />

<strong>in</strong>vestigations should be used <strong>to</strong> improve <strong>the</strong> HYMNAM<br />

data sets <strong>in</strong> <strong>the</strong> future.<br />

Topographical base data<br />

When <strong>the</strong> Hydrogeological Map of<br />

<strong>Namibia</strong> Project (HYMNAM) was<br />

<strong>in</strong>itiated, it was assumed that <strong>the</strong> <strong>to</strong>pographic<br />

base data for <strong>the</strong> Map were<br />

readily available <strong>in</strong> <strong>the</strong> country. In fact,<br />

it soon became apparent, that <strong>the</strong> accessibility<br />

of digital data of good quality<br />

<strong>an</strong>d reliability was, <strong>an</strong>d still is, one of <strong>the</strong> major challenges<br />

<strong>in</strong> <strong>Namibia</strong>. Ano<strong>the</strong>r challenge faced throughout <strong>the</strong> datacaptur<strong>in</strong>g<br />

period was that exist<strong>in</strong>g data sets were of a poor<br />

quality or occurred <strong>in</strong> str<strong>an</strong>ge electronic formats lack<strong>in</strong>g <strong>an</strong>y<br />

documentation. This made it very difficult <strong>to</strong> collect <strong>the</strong><br />

data <strong>an</strong>d tr<strong>an</strong>sform it <strong>in</strong><strong>to</strong> a consistent <strong>an</strong>d correct coverage.<br />

The first step was <strong>to</strong> implement a geographical reference<br />

system <strong>to</strong> be used throughout <strong>the</strong> Map project. Tak<strong>in</strong>g <strong>in</strong><strong>to</strong><br />

account <strong>the</strong> reference systems for exist<strong>in</strong>g data, <strong>the</strong> follow<strong>in</strong>g<br />

projection was chosen:<br />

Type Albers<br />

Equal<br />

Area<br />

Units Metres<br />

Spheroid Bessel<br />

1841<br />

1st st<strong>an</strong>dard<br />

parallel<br />

-26<br />

00<br />

00<br />

2nd st<strong>an</strong>dard<br />

parallel<br />

-20<br />

00<br />

00<br />

Central meridi<strong>an</strong><br />

18<br />

30<br />

00<br />

Latitude of<br />

orig<strong>in</strong><br />

-22<br />

00<br />

00<br />

False east<strong>in</strong>g<br />

( metres)<br />

0<br />

False north<strong>in</strong>g<br />

( metres)<br />

0<br />

As <strong>the</strong> HYMNAM Project <strong>an</strong>d <strong>the</strong> Hydrogeological Map<br />

depended greatly on a reliable <strong>to</strong>pographical database, <strong>the</strong><br />

creation of this was considered <strong>the</strong> first import<strong>an</strong>t step <strong>to</strong><br />

ensure that all new <strong>the</strong>matic data fit <strong>to</strong>ge<strong>the</strong>r geographically<br />

<strong>an</strong>d logically. The data sets represent<strong>in</strong>g <strong>the</strong> <strong>to</strong>pographical<br />

background displayed on <strong>the</strong> Map were collected or prepared<br />

as shown <strong>in</strong> <strong>the</strong> next table.<br />

Numerous corrections were applied <strong>to</strong> <strong>the</strong> dra<strong>in</strong>age<br />

pattern because it is both a <strong>to</strong>pographic <strong>an</strong>d a water-related<br />

feature. The most accurate <strong>an</strong>d complete data set available<br />

was <strong>the</strong> Map created by <strong>the</strong> M<strong>in</strong>istry of Environment<br />

<strong>an</strong>d Tourism (MET) based on <strong>the</strong> Digital Chart of <strong>the</strong> World,<br />

which is publicly available <strong>an</strong>d compiled from various data<br />

sources. Error corrections <strong>an</strong>d completions were necessary<br />

at certa<strong>in</strong> places. For this, <strong>to</strong>pographical maps at scale


Data sets represent<strong>in</strong>g <strong>the</strong> <strong>to</strong>pographical background<br />

N<br />

ational<br />

Data Set<br />

Source,<br />

Preparation<br />

b<br />

order<br />

Regional<br />

boundaries<br />

Nature<br />

conservation<br />

areas<br />

Towns<br />

Provided<br />

by<br />

<strong>the</strong><br />

GSN;<br />

coast<br />

l<strong>in</strong>e<br />

<strong>an</strong>d<br />

<strong>the</strong><br />

rivers<br />

form<strong>in</strong>g<br />

<strong>the</strong><br />

nor<strong>the</strong>rn<br />

<strong>an</strong>d<br />

sou<strong>the</strong>rn<br />

boundary<br />

were<br />

re-digitised<br />

based<br />

on<br />

<strong>the</strong><br />

Topo<br />

sheets<br />

1:<br />

250<br />

000<br />

as<br />

well<br />

as<br />

satellite<br />

images<br />

Provided<br />

by<br />

<strong>the</strong><br />

Roads<br />

Authority<br />

( S Thekie,<br />

J v<strong>an</strong><br />

Rensburg)<br />

Provided<br />

by<br />

MET<br />

( H Kolberg)<br />

Provided<br />

by<br />

<strong>the</strong><br />

Roads<br />

Authority<br />

( S Thekie,<br />

J v<strong>an</strong><br />

Rensburg)<br />

Roads<br />

Provided<br />

by<br />

<strong>the</strong><br />

Roads<br />

Authority<br />

( S Thekie,<br />

U Truemper)<br />

Railways Provided<br />

by<br />

GSN<br />

P owerl<strong>in</strong>es<br />

Provided<br />

by<br />

NamPower<br />

( U von<br />

Seydlitz)<br />

M<strong>in</strong>es Provided<br />

by<br />

GSN<br />

Pipel<strong>in</strong>es <strong>an</strong>d<br />

c<strong>an</strong>als<br />

Provided<br />

by<br />

MET/<br />

NNEP<br />

<strong>an</strong>d<br />

NamWater<br />

Basic<br />

data<br />

provided<br />

by<br />

MET;<br />

corrections<br />

applied<br />

by<br />

Rivers<br />

DWA<br />

based<br />

on<br />

Topo<br />

sheets<br />

1:<br />

250<br />

000<br />

<strong>an</strong>d<br />

satellite<br />

images<br />

Osh<strong>an</strong>as,<br />

Swamps,<br />

DCW<br />

database;<br />

corrections<br />

applied<br />

by<br />

DWA<br />

based<br />

Lakes/<br />

Reservoirs,<br />

P<strong>an</strong>s<br />

on<br />

Topo<br />

sheets<br />

1:<br />

250<br />

000<br />

<strong>an</strong>d<br />

satellite<br />

images<br />

Catchment areas<br />

Digitised<br />

from<br />

maps<br />

of<br />

DWA<br />

Dams<br />

Spr<strong>in</strong>gs<br />

Digitised<br />

on<br />

<strong>the</strong><br />

base<br />

of<br />

<strong>in</strong>formation<br />

from<br />

NamWater<br />

Digitised<br />

based<br />

on<br />

<strong>in</strong>formation<br />

from<br />

<strong>the</strong><br />

national<br />

groundwater<br />

database;<br />

<strong>in</strong>formation<br />

ga<strong>the</strong>red<br />

from<br />

exist<strong>in</strong>g<br />

maps,<br />

reports<br />

<strong>an</strong>d<br />

field<br />

visits<br />

1:250 000, dra<strong>in</strong>age data sets of published <strong>an</strong>d draft geological<br />

maps at scale 1:250 000, <strong>an</strong>d f<strong>in</strong>ally, a set of LAND-<br />

SAT Thematic Mapper satellite images were used <strong>to</strong> rectify<br />

<strong>an</strong>d update <strong>the</strong> dra<strong>in</strong>age pattern. The result is <strong>the</strong> most<br />

reliable data set on dra<strong>in</strong>age <strong>in</strong> <strong>Namibia</strong>, applicable <strong>to</strong> <strong>the</strong><br />

national scale of 1:1000 000, yet errors may be still considerable,<br />

as high as 3 mm on <strong>the</strong> Map or 3 km <strong>in</strong> reality.<br />

The second data set <strong>to</strong> receive attention was <strong>the</strong> country<br />

border. To show <strong>the</strong> <strong>to</strong>tal terri<strong>to</strong>ry of <strong>Namibia</strong> <strong>in</strong> <strong>the</strong> correct<br />

<strong>to</strong>pographic position, a new country border data set <strong>in</strong>clud<strong>in</strong>g<br />

<strong>the</strong> Caprivi Strip had <strong>to</strong> be developed. The country border<br />

was checked us<strong>in</strong>g exist<strong>in</strong>g maps at scale 1:250000, a number<br />

of geodetic po<strong>in</strong>ts along <strong>the</strong> border <strong>to</strong> Angola, Botsw<strong>an</strong>a<br />

<strong>an</strong>d Zambia as well as <strong>the</strong> LANDSAT TM satellite images.<br />

Few ch<strong>an</strong>ges were necessary for <strong>the</strong> good-quality data<br />

sets such as <strong>the</strong> roads <strong>an</strong>d <strong>to</strong>wns that had been recently<br />

surveyed by <strong>the</strong> Roads Authority. For o<strong>the</strong>r data sets, no fur<strong>the</strong>r<br />

<strong>in</strong>formation was available <strong>to</strong> improve <strong>the</strong> accuracy nor<br />

was it possible <strong>to</strong> rectify <strong>in</strong> <strong>the</strong> time available, nor with<strong>in</strong><br />

<strong>the</strong> budgetary constra<strong>in</strong>ts of <strong>the</strong> project.<br />

Preparation of <strong>the</strong> <strong>the</strong>matic data layers<br />

In <strong>the</strong> Caprivi Strip, <strong>the</strong> old country border (red l<strong>in</strong>e) had <strong>to</strong> be<br />

subst<strong>an</strong>tially corrected (yellow l<strong>in</strong>e) us<strong>in</strong>g satellite imagery; <strong>the</strong><br />

deviation exceeded 10 km<br />

The <strong>the</strong>matic data layers displayed on <strong>the</strong> Map were compiled<br />

<strong>an</strong>d derived us<strong>in</strong>g data from various sources, <strong>an</strong>alogue<br />

as well as digital. In addition, <strong>the</strong> knowledge <strong>an</strong>d expertise<br />

of experts work<strong>in</strong>g <strong>in</strong> <strong>the</strong> fields of groundwater <strong>an</strong>d /or<br />

geology <strong>in</strong> <strong>Namibia</strong> were mobilised <strong>to</strong> extract <strong>the</strong> pert<strong>in</strong>ent<br />

<strong>in</strong>formation from <strong>the</strong> exist<strong>in</strong>g data. The table below shows<br />

<strong>the</strong> <strong>the</strong>matic data layers <strong>to</strong>ge<strong>the</strong>r with <strong>the</strong> sources of <strong>in</strong>formation<br />

used for <strong>the</strong>ir construction:<br />

The most import<strong>an</strong>t source of data, for <strong>the</strong> compila-<br />

Data Set<br />

Source<br />

Derived<br />

from<br />

<strong>the</strong><br />

geological<br />

map<br />

1:<br />

1000000,<br />

from<br />

Lithology<br />

satellite<br />

images,<br />

borehole<br />

completion<br />

reports<br />

as<br />

well<br />

as<br />

from<br />

knowledge<br />

of<br />

local<br />

consult<strong>an</strong>ts<br />

Geological faults<br />

Provided<br />

by<br />

GSN<br />

Aquifer<br />

productivity<br />

<strong>Groundwater</strong><br />

divides<br />

<strong>Groundwater</strong><br />

flow<br />

directions<br />

Depth<br />

<strong>to</strong><br />

groundwater<br />

table<br />

from<br />

surface<br />

Surface<br />

water<br />

Areas<br />

of<br />

sal<strong>in</strong>e<br />

groundwater<br />

divides<br />

Areas<br />

with<br />

poor<br />

groundwater<br />

quality<br />

Areas<br />

of<br />

artesi<strong>an</strong><br />

<strong>an</strong>d<br />

sub-artesi<strong>an</strong><br />

water<br />

<strong>Groundwater</strong><br />

control<br />

areas<br />

Derived<br />

from<br />

<strong>in</strong>formation<br />

<strong>in</strong><br />

<strong>the</strong><br />

national<br />

groundwater<br />

database<br />

of<br />

DWA,<br />

borehole<br />

completion<br />

reports<br />

<strong>an</strong>d<br />

from<br />

knowledge<br />

of<br />

local<br />

consult<strong>an</strong>ts<br />

Derived<br />

from<br />

<strong>in</strong>formation<br />

<strong>in</strong><br />

<strong>the</strong><br />

national<br />

groundwater<br />

database<br />

Derived<br />

from<br />

<strong>in</strong>formation<br />

<strong>in</strong><br />

<strong>the</strong><br />

groundwater<br />

database<br />

Derived<br />

from<br />

<strong>in</strong>formation<br />

<strong>in</strong><br />

<strong>the</strong><br />

groundwater<br />

database<br />

<strong>an</strong>d<br />

boreh<br />

reports<br />

n<br />

ational<br />

national<br />

ole<br />

completion<br />

Derived<br />

from<br />

<strong>the</strong><br />

data<br />

layers<br />

of<br />

<strong>the</strong><br />

rivers<br />

<strong>an</strong>d<br />

<strong>the</strong><br />

digital<br />

terra<strong>in</strong><br />

model<br />

provided<br />

by<br />

<strong>the</strong><br />

USGS<br />

( GTOPO30)<br />

Derived<br />

from<br />

<strong>in</strong>formation<br />

<strong>in</strong><br />

<strong>the</strong><br />

national<br />

groundwater<br />

database,<br />

<strong>the</strong><br />

CSIR<br />

hydrochemical<br />

maps<br />

as<br />

well<br />

as<br />

from<br />

knowledge<br />

of<br />

local<br />

consult<strong>an</strong>ts<br />

Derived<br />

from<br />

<strong>in</strong>formation<br />

<strong>in</strong><br />

<strong>the</strong><br />

national<br />

groundwater<br />

database,<br />

<strong>the</strong><br />

CSIR<br />

hydrochemical<br />

maps<br />

as<br />

well<br />

as<br />

from<br />

knowledge<br />

of<br />

local<br />

consult<strong>an</strong>ts<br />

Digitised<br />

from<br />

documentation<br />

of<br />

DWA<br />

<strong>an</strong>d<br />

knowledge<br />

of<br />

local<br />

consult<strong>an</strong>ts<br />

Digitised<br />

from<br />

maps<br />

of<br />

DWA<br />

<strong>Groundwater</strong><br />

irrigation<br />

Digitised<br />

based<br />

on<br />

<strong>in</strong>formation<br />

from<br />

<strong>the</strong><br />

Division:<br />

schemes<br />

Agricultural<br />

Eng<strong>in</strong>eer<strong>in</strong>g<br />

of<br />

<strong>the</strong><br />

MAWRD<br />

<strong>Groundwater</strong><br />

supply<br />

schemes<br />

Digitised<br />

based<br />

on<br />

<strong>in</strong>formation<br />

from<br />

NamWater<br />

L<strong>an</strong>dsat Thematic Mapper<br />

107


108<br />

tion of <strong>the</strong> <strong>the</strong>matic data layers related <strong>to</strong> groundwater, was<br />

<strong>the</strong> groundwater database operated by DWA. The second<br />

ma<strong>in</strong> <strong>the</strong>matic layer display<strong>in</strong>g <strong>the</strong> lithological units is largely<br />

based on <strong>the</strong> exist<strong>in</strong>g geological map of <strong>the</strong> Geological Survey<br />

of <strong>Namibia</strong> at a scale of 1:1000 000.<br />

Lithology layer<br />

The preparation of <strong>the</strong> <strong>the</strong>matic data set on <strong>the</strong> lithological<br />

layer <strong>to</strong>ok place <strong>in</strong> several steps. As a start<strong>in</strong>g po<strong>in</strong>t,<br />

<strong>the</strong> units on <strong>the</strong> 1:1000 000 Geological Map were arr<strong>an</strong>ged<br />

accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> rock types (lithology), because <strong>the</strong> type of<br />

rock determ<strong>in</strong>es <strong>the</strong> groundwater flow <strong>in</strong> it. Be<strong>in</strong>g of m<strong>in</strong>or<br />

import<strong>an</strong>ce, <strong>the</strong> age <strong>an</strong>d stratigraphical position were not<br />

taken <strong>in</strong><strong>to</strong> consideration. A legend describ<strong>in</strong>g <strong>the</strong> different<br />

rock types was created. This differentiation was gradually<br />

ref<strong>in</strong>ed <strong>an</strong>d f<strong>in</strong>alised, us<strong>in</strong>g detailed documentation <strong>an</strong>d <strong>the</strong><br />

expertise of local geologists. F<strong>in</strong>ally, <strong>the</strong> 164 units outl<strong>in</strong>ed<br />

on <strong>the</strong> geological map were reduced <strong>to</strong> <strong>the</strong> 12 units conta<strong>in</strong>ed<br />

<strong>in</strong> <strong>the</strong> lithological data layer.<br />

The area covered by each of <strong>the</strong>se large lithological units<br />

is shown <strong>in</strong> <strong>the</strong> bar graph. Almost half of <strong>the</strong> country (48 %)<br />

is covered by unconsolidated deposits such as gravel, s<strong>an</strong>d<br />

<strong>an</strong>d silt, while 24 % are sedimentary hard rocks (limes<strong>to</strong>ne,<br />

dolomite, s<strong>an</strong>ds<strong>to</strong>ne, muds<strong>to</strong>ne, shale), 12% metamor phosed<br />

sedimentary rocks, 4 % young volc<strong>an</strong>ic rocks, <strong>an</strong>d 12 % basement<br />

rocks, br<strong>in</strong>g<strong>in</strong>g <strong>the</strong> percentage of hard rock areas <strong>in</strong><br />

which groundwater exploration is difficult, <strong>to</strong> 52 %.<br />

Aquifer productivity<br />

Area covered by <strong>the</strong> lithology units used on <strong>the</strong> Map<br />

The current groundwater database s<strong>to</strong>res <strong>in</strong>formation on<br />

positions, construction details, depth <strong>to</strong> water level <strong>an</strong>d<br />

yields from about 48 000 boreholes. Problems encountered<br />

<strong>in</strong>cluded miss<strong>in</strong>g values <strong>an</strong>d wrong entries, due <strong>to</strong> <strong>the</strong> his<strong>to</strong>rical<br />

development of <strong>the</strong> database. It started as <strong>an</strong><br />

application <strong>in</strong> a UNIX environment, was converted <strong>in</strong><strong>to</strong><br />

a dBase file <strong>an</strong>d f<strong>in</strong>ally <strong>in</strong><strong>to</strong> a MS-ACCESS database. This<br />

caused m<strong>an</strong>y errors due <strong>to</strong> lost tables, mixed up data sets<br />

<strong>an</strong>d destroyed relationships between various tables. Now,<br />

DWA <strong>to</strong>ge<strong>the</strong>r with NamWater is develop<strong>in</strong>g a new database<br />

application (GROWAS) which will be ready by <strong>the</strong> end<br />

of 2001.<br />

Never<strong>the</strong>less, <strong>the</strong> content of <strong>the</strong> database proved very<br />

useful <strong>an</strong>d <strong>the</strong> <strong>in</strong>fluence of errors was m<strong>in</strong>imised by <strong>the</strong> large<br />

volume of <strong>in</strong>formation available <strong>an</strong>d <strong>the</strong> small scale of <strong>the</strong><br />

Map, scale 1:1000 000. The number of boreholes, <strong>an</strong>d thus<br />

<strong>the</strong> reliability of <strong>in</strong>formation is shown on <strong>the</strong> <strong>in</strong>set map<br />

“Density of borehole <strong>in</strong>formation” on <strong>the</strong> ma<strong>in</strong> Map. This<br />

is reflected here <strong>in</strong> <strong>the</strong> graph show<strong>in</strong>g <strong>the</strong> number of boreholes<br />

recorded <strong>in</strong> <strong>the</strong> database, per lithological unit of <strong>the</strong><br />

Map.<br />

The two graphs clearly <strong>in</strong>dicate <strong>the</strong> correlation between<br />

Boreholes drilled <strong>in</strong> <strong>the</strong> lithological units<br />

<strong>the</strong> size of <strong>the</strong> area covered by <strong>the</strong> various lithological units<br />

<strong>an</strong>d <strong>the</strong> number of boreholes drilled. Surpris<strong>in</strong>gly, no unit<br />

st<strong>an</strong>ds out as a prom<strong>in</strong>ent aquifer with a high number of<br />

boreholes. Instead, <strong>the</strong> distribution of population <strong>an</strong>d <strong>the</strong><br />

dem<strong>an</strong>d for groundwater are decisive criteria for <strong>the</strong> number


of boreholes <strong>in</strong> various parts of <strong>the</strong> country. Therefore, it is<br />

necessary <strong>to</strong> <strong>an</strong>alyse <strong>the</strong> distribution of borehole yields <strong>to</strong><br />

be able <strong>to</strong> del<strong>in</strong>eate aquifers, aquitards <strong>an</strong>d aquicludes.<br />

The wealth of borehole completion reports was used <strong>to</strong><br />

confirm <strong>an</strong>d amend <strong>the</strong> <strong>in</strong>formation extracted from <strong>the</strong> database.<br />

These hardcopy documents are filled once a borehole is<br />

drilled. There are about 21 000 borehole completion reports<br />

<strong>in</strong> <strong>the</strong> files of DWA <strong>an</strong>d NamWater. These reports comprise<br />

<strong>in</strong>formation about <strong>the</strong> borehole design, <strong>the</strong> <strong>in</strong>itial yield<br />

dur<strong>in</strong>g pump<strong>in</strong>g tests <strong>an</strong>d <strong>the</strong> lithological units encountered.<br />

In <strong>the</strong> compilation of <strong>the</strong> Map, only reports provid<strong>in</strong>g solid<br />

<strong>an</strong>d complete <strong>in</strong>formation were used. A limited number of<br />

representative boreholes with a detailed lithological description<br />

<strong>an</strong>d complete data sets on depth, yield <strong>an</strong>d groundwater<br />

quality, were selected as reference bore holes <strong>an</strong>d are displayed<br />

on <strong>the</strong> Map (see Annex 4 “Comparison of selected<br />

guidel<strong>in</strong>e values for dr<strong>in</strong>k<strong>in</strong>g water quality”).<br />

Reports from previous groundwater projects available <strong>in</strong><br />

NamWater <strong>an</strong>d DWA were scrut<strong>in</strong>ised <strong>an</strong>d checked <strong>to</strong> obta<strong>in</strong><br />

complete <strong>an</strong>d consistent data. Useful ones were selected <strong>an</strong>d<br />

<strong>the</strong> <strong>in</strong>formation regard<strong>in</strong>g groundwater potential, quality <strong>an</strong>d<br />

use, as well as o<strong>the</strong>r import<strong>an</strong>t hydrogeological details were<br />

extracted for <strong>the</strong> Map. This <strong>in</strong>formation was used <strong>to</strong> confirm<br />

or adjust <strong>the</strong> <strong>in</strong>formation derived from <strong>the</strong> database <strong>an</strong>d<br />

<strong>the</strong> completion reports.<br />

Us<strong>in</strong>g this <strong>in</strong>formation, <strong>the</strong> second import<strong>an</strong>t layer, <strong>the</strong><br />

aquifer productivity data set, was created step by step. Firstly,<br />

<strong>the</strong> yield figures s<strong>to</strong>red <strong>in</strong> <strong>the</strong> groundwater database were<br />

<strong>an</strong>alysed <strong>an</strong>d spatially <strong>in</strong>terpolated. The follow<strong>in</strong>g categories<br />

were chosen, after discussion with local experts:<br />

These yield figures <strong>an</strong>d <strong>the</strong> aquifer type derived from a<br />

3 Yield<br />

<strong>in</strong><br />

m / h<br />

Hum<strong>an</strong><br />

activities<br />

possible<br />

< 0.<br />

5 Only<br />

emergency<br />

water<br />

supply<br />

or<br />

very<br />

small<br />

lives<strong>to</strong>ck<br />

0. 5 – 3 Small<br />

settlements<br />

with<br />

small<br />

s<strong>to</strong>ck<br />

units<br />

3 – 15<br />

> 15<br />

Farm<strong>in</strong>g/<br />

settlements<br />

with<br />

a certa<strong>in</strong><br />

amount<br />

of<br />

large<br />

s<strong>to</strong>ck<br />

units<br />

Farm<strong>in</strong>g/<br />

settlements<br />

with<br />

large<br />

s<strong>to</strong>ck<br />

units,<br />

municipal<br />

water<br />

supplies<br />

<strong>an</strong>d<br />

irrigation<br />

generalisation of <strong>the</strong> lithological layer, whe<strong>the</strong>r porous, unconsolidated<br />

deposits or fractured hard rocks, made it possible<br />

<strong>to</strong> map <strong>the</strong> country accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> International Legend<br />

for Hydrogeological Maps, recommended by <strong>the</strong> Inter national<br />

Association of Hydrogeologists (IAH) <strong>an</strong>d UNESCO<br />

(Struck meier & Margat 1995). This legend uses a colour<br />

scheme that subdivides <strong>the</strong> rock bodies <strong>in</strong><strong>to</strong> aquifers <strong>an</strong>d<br />

non-aquifers (aquitards <strong>an</strong>d aquicludes). The latter are shown<br />

<strong>in</strong> two shades of brown, while <strong>the</strong> aquifers are fur<strong>the</strong>r split<br />

<strong>in</strong><strong>to</strong> porous or fractured. This dist<strong>in</strong>ction is useful, because<br />

<strong>the</strong>y have fundamentally different flow characteris tics <strong>an</strong>d<br />

thus groundwater <strong>in</strong>vestigation <strong>an</strong>d exploitation also differs.<br />

Porous aquifers are shown <strong>in</strong> blue <strong>an</strong>d fractured aquifers <strong>in</strong><br />

green. Two shades of <strong>the</strong>se colours are used <strong>to</strong> reflect <strong>the</strong> productivity.<br />

Dark blue <strong>an</strong>d dark green represent aquifers with<br />

high potential (yields generally above 15m 3 /h), while light<br />

blue or green <strong>in</strong>dicate aquifers with moderate potential (yields<br />

generally between 3 <strong>an</strong>d 15m 3 /h).<br />

The results of this data <strong>an</strong>alysis exercise were discussed<br />

with <strong>the</strong> local groundwater consult<strong>an</strong>ts. They provided <strong>in</strong>put<br />

based on <strong>the</strong>ir experience <strong>an</strong>d specialist knowledge of certa<strong>in</strong><br />

areas of <strong>the</strong> country. Their <strong>in</strong>put was all <strong>the</strong> more v aluable,<br />

because few records exist about unsuccessful boreholes <strong>an</strong>d<br />

thus <strong>the</strong> aquifer potential concluded from <strong>the</strong> database <strong>an</strong>d<br />

o<strong>the</strong>r records was seriously overestimated <strong>in</strong> some areas. This<br />

could be corrected by those with local experience.<br />

The o<strong>the</strong>r groundwater related data sets were established<br />

<strong>in</strong> much <strong>the</strong> same way. Firstly, <strong>the</strong> data available <strong>in</strong> <strong>the</strong> data -<br />

base were <strong>an</strong>alysed <strong>an</strong>d <strong>the</strong> results pr<strong>in</strong>ted on <strong>the</strong> Map. Then,<br />

local groundwater consult<strong>an</strong>ts were solicited <strong>to</strong> rectify <strong>an</strong>d<br />

adjust those results. This multiple-step exercise, comb<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>formation of different sources, evaluat<strong>in</strong>g it, discuss<strong>in</strong>g it<br />

<strong>an</strong>d ref<strong>in</strong><strong>in</strong>g it, f<strong>in</strong>ally created <strong>the</strong> best picture of <strong>the</strong><br />

hydrogeological situation <strong>in</strong> <strong>the</strong> country. Involv<strong>in</strong>g local<br />

hydrogeologists <strong>in</strong> this project also guar<strong>an</strong>teed that <strong>the</strong><br />

experience <strong>an</strong>d <strong>in</strong>tuitive expert know ledge of <strong>in</strong>dividuals,<br />

not captured <strong>in</strong> <strong>an</strong>y database nor documented, was harnessed<br />

for <strong>the</strong> Map.<br />

Inset maps<br />

There are five <strong>in</strong>set maps <strong>an</strong>d three geological cross<br />

sections on <strong>the</strong> Map. These provide complementary <strong>in</strong>formation<br />

that, <strong>to</strong> reta<strong>in</strong> clarity <strong>an</strong>d legibility, could not be presented<br />

on <strong>the</strong> ma<strong>in</strong> Map.<br />

In <strong>the</strong> <strong>in</strong>set map “Ra<strong>in</strong>fall <strong>an</strong>d ma<strong>in</strong> catchments <strong>in</strong> South-<br />

109


110<br />

ern Africa”, at a scale of<br />

1:10 000 000, <strong>the</strong> major<br />

rivers <strong>an</strong>d <strong>the</strong>ir catchment<br />

bas<strong>in</strong>s are shown <strong>to</strong>ge<strong>the</strong>r<br />

with <strong>the</strong> ra<strong>in</strong>fall distribution<br />

<strong>in</strong> sou<strong>the</strong>rn Africa, south of<br />

12° latitude. It clearly<br />

demon strates that <strong>Namibia</strong><br />

shares most of <strong>the</strong> surface<br />

water catchments with neighbour<strong>in</strong>g countries <strong>an</strong>d lies <strong>in</strong><br />

<strong>an</strong> area of very low ra<strong>in</strong>fall. The data for this <strong>in</strong>set map<br />

orig<strong>in</strong>ated from <strong>the</strong> data set of <strong>the</strong> “SADC Water Resource<br />

Database” <strong>an</strong>d from Arnestr<strong>an</strong>d & H<strong>an</strong>sen, 1993; published<br />

<strong>in</strong> Pallett 1997, amended <strong>an</strong>d revised on <strong>the</strong> basis of up <strong>to</strong><br />

date <strong>Namibia</strong>n sources.<br />

The <strong>in</strong>sert map “Altitude of ground surface”, at a scale of<br />

1:6 000 000, shows altitude <strong>in</strong>tervals <strong>in</strong> metres above me<strong>an</strong><br />

sea level. These con<strong>to</strong>ur l<strong>in</strong>es were <strong>in</strong>terpolated from <strong>the</strong> digital<br />

terra<strong>in</strong> model GTOPO30 provided by <strong>the</strong> US Geological<br />

Survey. This terra<strong>in</strong> model was developed us<strong>in</strong>g several data<br />

sources. The lateral grid size is about 900 m. The accuracy<br />

of <strong>the</strong> height <strong>in</strong>formation depends heavily on <strong>the</strong> data source<br />

used for a specific area <strong>an</strong>d c<strong>an</strong> be as low as ±80 m. Obvious<br />

errors <strong>in</strong> <strong>the</strong> data set have been corrected on <strong>the</strong> basis<br />

of <strong>to</strong>pographic maps at scale 1:250 000.<br />

The <strong>in</strong>set map “<strong>Groundwater</strong> quality”, at a scale of<br />

1:6 000 000, shows <strong>the</strong> TDS (<strong>to</strong>tal dissolved solids) values<br />

<strong>in</strong> boreholes throughout <strong>the</strong> country. The classification is<br />

accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> <strong>Namibia</strong>n Guidel<strong>in</strong>es (Annex 4), which<br />

classifies water accord<strong>in</strong>g <strong>to</strong> quality criteria as Groups A (excellent<br />

quality water), B (good quality water), C (low risk water)<br />

<strong>an</strong>d D (high risk water, unsuitable for hum<strong>an</strong> consumption).<br />

The <strong>in</strong>sert map “Density of borehole <strong>in</strong>formation”, at a<br />

scale of 1:6000 000, was created by calculat<strong>in</strong>g <strong>the</strong> numbers<br />

of boreholes exist<strong>in</strong>g <strong>in</strong> <strong>the</strong> database per <strong>to</strong>pographical map<br />

sheet at 1:50000. The <strong>in</strong>formation shown on this map <strong>to</strong> -<br />

ge<strong>the</strong>r with <strong>the</strong> figures provide a good <strong>in</strong>dication about<br />

<strong>the</strong> reliability of <strong>in</strong>formation, i.e. where <strong>in</strong> <strong>the</strong> country enough<br />

knowledge about <strong>the</strong> hydrogeological situation is available,<br />

<strong>an</strong>d where <strong>in</strong>formation is lack<strong>in</strong>g.<br />

The <strong>in</strong>set map “Vulnerability of groundwater re sources”,<br />

at 1:6000 000 scale, out l<strong>in</strong>es <strong>the</strong> vulnerability of ground-<br />

water resources <strong>to</strong> pollution.<br />

The risk of ground water pollution<br />

from <strong>the</strong> surface<br />

ma<strong>in</strong>ly depends on <strong>the</strong> depth<br />

<strong>to</strong> <strong>the</strong> water table, <strong>the</strong> type<br />

of <strong>the</strong> underly<strong>in</strong>g aquifer<br />

(porous or fractured), <strong>the</strong><br />

flow <strong>in</strong> <strong>the</strong> aquifers, <strong>an</strong>d <strong>the</strong><br />

amount of ra<strong>in</strong>fall <strong>in</strong> <strong>the</strong><br />

recharge area. The vulnerability map <strong>the</strong>refore <strong>in</strong>tegrates<br />

depth <strong>to</strong> groundwater, aquifer type, predom<strong>in</strong><strong>an</strong>t flow <strong>an</strong>d<br />

recharge from ra<strong>in</strong>fall, takes <strong>the</strong>se variables <strong>in</strong><strong>to</strong> account <strong>in</strong><br />

a simple rat<strong>in</strong>g system, <strong>an</strong>d shows where proper protection<br />

of aquifers from pollution is essential.<br />

The Map <strong>in</strong>cludes three cross-sections of import<strong>an</strong>t multilayered<br />

aquifer systems <strong>in</strong> <strong>the</strong> country. The upper two <strong>in</strong>tersect<br />

<strong>the</strong> Stampriet Artesi<strong>an</strong> Bas<strong>in</strong> <strong>an</strong>d <strong>the</strong> bot<strong>to</strong>m one <strong>in</strong>tersects<br />

<strong>the</strong> karstified Otavi Mounta<strong>in</strong> L<strong>an</strong>d area <strong>an</strong>d <strong>the</strong> adjacent<br />

areas <strong>to</strong> <strong>the</strong> north-west <strong>an</strong>d south-east. These cross-sections<br />

emphasise <strong>the</strong> vertical dimension <strong>an</strong>d highlight <strong>the</strong> fact that<br />

groundwater flow systems are 3-dimensional <strong>in</strong> reality. This<br />

is difficult <strong>to</strong> portray <strong>in</strong> <strong>the</strong> 2-dimensions available for a map.<br />

Sound <strong>in</strong>terpretation of a hydrogeological map requires a const<strong>an</strong>t<br />

awareness of <strong>the</strong> third dimension.<br />

Claudia du Plessis<br />

Use of <strong>the</strong> Map<br />

The purpose of <strong>the</strong> Map is <strong>to</strong> provide <strong>the</strong> public as well<br />

as decision makers <strong>in</strong> <strong>the</strong> government <strong>an</strong>d <strong>the</strong> private sec<strong>to</strong>r,<br />

with accurate <strong>in</strong>formation on <strong>the</strong> occurrence, utilisation <strong>an</strong>d<br />

vulnerability of groundwater resources <strong>in</strong> <strong>the</strong> country. Ideally,<br />

it must provide <strong>an</strong>swers <strong>to</strong> questions ask<strong>in</strong>g “where”, “what”<br />

<strong>an</strong>d “how much”. Due <strong>to</strong> <strong>the</strong> small scale of 1:1000 000 of<br />

<strong>the</strong> Map, it provides <strong>an</strong> overview for pl<strong>an</strong>n<strong>in</strong>g of new groundwater-related<br />

projects. For <strong>in</strong>st<strong>an</strong>ce, it c<strong>an</strong> assist <strong>in</strong> rough<br />

pl<strong>an</strong>n<strong>in</strong>g of environmentally sound new settlements, <strong>in</strong>dustrial<br />

sites, <strong>an</strong>d water abstraction schemes. It c<strong>an</strong> also be used<br />

as a strategic document for national development pl<strong>an</strong>s. It<br />

helps identify areas <strong>in</strong> which ground water know ledge is as<br />

yet <strong>in</strong>sufficient, <strong>an</strong>d where fur<strong>the</strong>r <strong>in</strong>vestigative studies should<br />

be undertaken. For a hydrogeological specialist it delivers<br />

basic <strong>in</strong>formation about work <strong>to</strong> be carried out for a ground-


water exploration project (e.g. sit<strong>in</strong>g methods), <strong>an</strong>d gives <strong>an</strong><br />

<strong>in</strong>dication about expected success rates for drill<strong>in</strong>g new boreholes<br />

<strong>in</strong> certa<strong>in</strong> areas. It def<strong>in</strong>itely c<strong>an</strong>not be used <strong>to</strong> exactly<br />

locate new boreholes, s<strong>in</strong>ce <strong>the</strong> scale is much <strong>to</strong>o small <strong>an</strong>d<br />

<strong>the</strong> resolution <strong>an</strong>d accuracy of <strong>the</strong> <strong>in</strong>formation used <strong>to</strong> compile<br />

<strong>the</strong> Map is <strong>in</strong>sufficient.<br />

The International Legend allows <strong>the</strong> Map <strong>to</strong> be read <strong>in</strong><br />

two different ways, from a dist<strong>an</strong>ce <strong>an</strong>d close up. From a<br />

dist<strong>an</strong>ce of several metres, <strong>the</strong> overview of <strong>the</strong> Map area c<strong>an</strong><br />

be grasped <strong>an</strong>d <strong>the</strong> distribution of aquifers, aquitards <strong>an</strong>d<br />

aquicludes easily seen. For those w<strong>an</strong>t<strong>in</strong>g more detailed<br />

<strong>in</strong>formation, e.g. on <strong>the</strong> use of groundwater, <strong>the</strong>re is, on<br />

closer scrut<strong>in</strong>y, a wealth of symbols <strong>in</strong>dicat<strong>in</strong>g water supply<br />

<strong>an</strong>d irrigation schemes, spr<strong>in</strong>gs, boreholes <strong>an</strong>d water control<br />

areas.<br />

In particular, emphasis is placed on show<strong>in</strong>g data charac -<br />

ter is<strong>in</strong>g <strong>the</strong> groundwater flow systems. Spr<strong>in</strong>gs are natural<br />

outflow areas <strong>an</strong>d may susta<strong>in</strong> import<strong>an</strong>t wetl<strong>an</strong>ds. The way<br />

groundwater supplies <strong>the</strong>se spr<strong>in</strong>gs is shown, where sufficiently<br />

known, by arrows <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> flow direction. In<br />

most of <strong>the</strong> country, particularly <strong>in</strong> <strong>the</strong> western mounta<strong>in</strong>ous<br />

areas, <strong>the</strong> boundaries of large, regional groundwater<br />

flow systems co<strong>in</strong>cide with <strong>the</strong> boundaries of surface<br />

water catchments, <strong>an</strong>d <strong>the</strong> groundwater divides are not<br />

shown. Where <strong>the</strong>y are known <strong>to</strong> differ from <strong>the</strong> catchment<br />

boundaries, groundwater divides are shown as a l<strong>in</strong>e of purple<br />

circles. They c<strong>an</strong> be used <strong>to</strong> del<strong>in</strong>eate <strong>the</strong> groundwater<br />

flow systems with<strong>in</strong> uniform hydrogeological units.<br />

A wealth of m<strong>an</strong>-made features that affect <strong>the</strong> natural<br />

groundwater systems is shown <strong>in</strong> red on <strong>the</strong> Map. All sites<br />

where groundwater is abstracted <strong>in</strong> appreciable qu<strong>an</strong>tities,<br />

such as water supply <strong>an</strong>d irrigation schemes us<strong>in</strong>g groundwater<br />

are depicted. In <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong>se abstraction po<strong>in</strong>ts,<br />

groundwater levels may be lowered locally or regionally.<br />

Inter-bas<strong>in</strong> tr<strong>an</strong>sfers from one catchment or groundwater<br />

bas<strong>in</strong> <strong>to</strong> <strong>an</strong>o<strong>the</strong>r are represented on <strong>the</strong> Map, because this<br />

<strong>in</strong>formation is import<strong>an</strong>t for water bal<strong>an</strong>ce calculations. For<br />

<strong>in</strong>st<strong>an</strong>ce, <strong>in</strong> <strong>the</strong> north <strong>an</strong>d <strong>in</strong> <strong>the</strong> W<strong>in</strong>dhoek area, appreciable<br />

amounts of water are imported <strong>in</strong><strong>to</strong> <strong>the</strong>se groundwater bas<strong>in</strong>s<br />

via c<strong>an</strong>als <strong>an</strong>d pipel<strong>in</strong>es.<br />

Information on water quality is only considered if <strong>the</strong><br />

groundwater is unfit for hum<strong>an</strong> consumption because of<br />

high concentrations of <strong>to</strong>tal dissolved solids, i.e. exceed<strong>in</strong>g<br />

2 600 mg/L. More detailed <strong>in</strong>formation on chemical<br />

parameters c<strong>an</strong> be found on <strong>the</strong> set of groundwater quality<br />

maps published <strong>in</strong> 1982 (Huyser et al. 1982).<br />

The <strong>in</strong>set maps, at even smaller scales, serve only as a rough<br />

overview of <strong>the</strong> <strong>the</strong>me displayed, but provide additional background<br />

<strong>in</strong>formation <strong>to</strong> underst<strong>an</strong>d <strong>an</strong>d comple ment <strong>the</strong> features<br />

shown on <strong>the</strong> ma<strong>in</strong> Map. For example, <strong>the</strong> Map show<strong>in</strong>g<br />

<strong>the</strong> borehole density <strong>in</strong> <strong>the</strong> country reflects <strong>the</strong> reliability<br />

of <strong>the</strong> productivity data <strong>in</strong> certa<strong>in</strong> areas. Obviously, <strong>in</strong> areas<br />

with a low borehole density, <strong>the</strong> productivity <strong>in</strong>formation<br />

is based on fewer records <strong>an</strong>d is thus less accurate.<br />

F<strong>in</strong>ally, <strong>the</strong> Map user is referred <strong>to</strong> <strong>the</strong> <strong>in</strong>formation pro vided<br />

<strong>in</strong> this book “<strong>Groundwater</strong> <strong>in</strong> <strong>Namibia</strong> – <strong>an</strong> expl<strong>an</strong>a tion <strong>to</strong><br />

<strong>the</strong> Hydrogeological Map”. It conta<strong>in</strong>s a wealth of useful<br />

complementary <strong>in</strong>formation on <strong>the</strong> natural environ ment,<br />

rocks <strong>an</strong>d groundwater, <strong>an</strong>d <strong>in</strong>cludes aspects of groundwater<br />

use <strong>an</strong>d protection pert<strong>in</strong>ent <strong>to</strong> <strong>Namibia</strong>.<br />

H STRUB, W STRUCKMEIER<br />

FURTHER READING<br />

• Goetze H D. 1982. Chemise Kwaliteit v<strong>an</strong> die<br />

Ondergrondse Waters <strong>in</strong> Suidwes-Afrika/<br />

Namibie. Vol. 4. Department v<strong>an</strong> Waterwese,<br />

Suidwes-Afrika, W<strong>in</strong>dhoek.<br />

• Huyser D J. 1982. Chemise Kwaliteit v<strong>an</strong> die<br />

Ondergrondse Waters <strong>in</strong> Suidwes-Afrika/<br />

Namibie. Vol. 1-3. Department v<strong>an</strong> Waterwese,<br />

Suidwes-Afrika, W<strong>in</strong>dhoek.<br />

• Pallet J (Ed) 1997. Shar<strong>in</strong>g Water <strong>in</strong> Sou<strong>the</strong>rn<br />

Africa. Desert Research Foundation of <strong>Namibia</strong>.<br />

W<strong>in</strong>dhoek.<br />

• Struckmeier W <strong>an</strong>d J Margat. 1995.<br />

Hydrogeological Maps. A Guide <strong>an</strong>d a St<strong>an</strong>dard<br />

Legend. International Contributions <strong>to</strong><br />

Hydrogeology, 17. H<strong>an</strong>nover.<br />

• Verheust L <strong>an</strong>d G Johnson. 1998. The SADC<br />

Water Resource Database: Contents, Data<br />

structure <strong>an</strong>d User Interface. ALCOM Work<strong>in</strong>g<br />

Paper No 14. ALCOM/FAO, Harare.<br />

111


112<br />

Bibliography<br />

Anhaeusser CR & Maske S. (Eds). 1986. M<strong>in</strong>eral Deposits of Sou<strong>the</strong>rn<br />

Africa. Vols. I & II: Joh<strong>an</strong>nesburg (Geol. Society South Africa).<br />

Atlas of <strong>Namibia</strong> (<strong>in</strong> pr<strong>in</strong>t): M<strong>in</strong>istry of Environment <strong>an</strong>d Tourism.<br />

Direc<strong>to</strong>rate of Environmental Affairs. W<strong>in</strong>dhoek.<br />

Barnard P. 1998. Biological Diversity <strong>in</strong> <strong>Namibia</strong>, a country wide<br />

study. <strong>Namibia</strong>n National Biodiversity Task Force. W<strong>in</strong>dhoek.<br />

Ber<strong>the</strong>lot RM, Edwards KA & Najjar IM. 1989. Assessment of <strong>the</strong><br />

Water Resources Sec<strong>to</strong>r <strong>in</strong> <strong>Namibia</strong>. UNDP Base Studies on F<strong>in</strong><strong>an</strong>cial,<br />

Economic <strong>an</strong>d Social Aspects for <strong>the</strong> Arr<strong>an</strong>gements for Independence<br />

<strong>in</strong> <strong>Namibia</strong>, mission report. W<strong>in</strong>dhoek.<br />

Besler H. 1991. Der Namib-Erg: älteste Wüste oder älteste Dünen?<br />

Geomethodica, 16.<br />

Bethune S & Puz A. 1984. Literature survey: Water quality ch<strong>an</strong>ges<br />

dur<strong>in</strong>g <strong>the</strong> long dist<strong>an</strong>ce tr<strong>an</strong>sfer of water <strong>in</strong> pipel<strong>in</strong>es <strong>an</strong>d c<strong>an</strong>als<br />

with special reference <strong>to</strong> <strong>the</strong> Eastern National Water Carrier.<br />

Internal report DWA no. 85/8; W<strong>in</strong>dhoek.<br />

Bibliography of <strong>Namibia</strong>n Earth Science. 1991. Vol. 2 [Publications<br />

from 1981 <strong>to</strong> 1986]. W<strong>in</strong>dhoek (Geol. Survey).<br />

Bibliography of South West Afric<strong>an</strong>/<strong>Namibia</strong>n Earth Science. 1983.<br />

Vol. 1 [Publications <strong>to</strong> <strong>the</strong> end of 1980]. W<strong>in</strong>dhoek (Geological<br />

Survey).<br />

Bittner A. 1999. Database for fur<strong>the</strong>r decisions regard<strong>in</strong>g <strong>the</strong> necessity<br />

<strong>an</strong>d feasibility of future geophysical <strong>an</strong>d hydrogeological <strong>in</strong>vestigations<br />

<strong>in</strong> <strong>the</strong> study areas Oshivelo, Eastern Caprivi <strong>an</strong>d Eastern<br />

Tsumkwe-Otj<strong>in</strong>ene (North-Eastern <strong>Namibia</strong>). Unpublished<br />

report submitted <strong>to</strong> <strong>the</strong> Bundes<strong>an</strong>stalt für Geowissenschaften und<br />

Rohs<strong>to</strong>ffe (<strong>BGR</strong>), H<strong>an</strong>nover, <strong>an</strong>d <strong>the</strong> Department of Water Affairs<br />

(DWA). W<strong>in</strong>dhoek.<br />

Blümel WD. 1991. Kalkkrusten - Ihre genetischen Beziehungen zu<br />

Bodenbildung und äolischer Sedimentation. Geomethodica.<br />

Botha BJV & Botha PJ. 1979. The Nosib Group along <strong>the</strong> lower<br />

reaches of <strong>the</strong> Omaruru River, South West Africa. Tr<strong>an</strong>s. Geol.<br />

Soc. South Africa, 82.<br />

Bremner JM. 1984. The coastl<strong>in</strong>e of <strong>Namibia</strong>. Jo<strong>in</strong>t Geol. Surv. Univ.<br />

Cape Town Mar. Geosci. Group Techn. Rep., 15.<br />

Buch M. 1993. Känozoischer Klima- und Umweltw<strong>an</strong>del <strong>in</strong> E<strong>to</strong>scha/<br />

Nord-<strong>Namibia</strong> - Untersuchungen zur Klimasensibilität und Geomorphodynamik<br />

e<strong>in</strong>es semi-ariden L<strong>an</strong>dschaftsraumes im<br />

südlichen Afrika. Unpublished habil. <strong>the</strong>sis Regensburg University.<br />

Regensburg.<br />

Cashm<strong>an</strong> AC. 1994. Drought m<strong>an</strong>agement <strong>in</strong> <strong>Namibia</strong> 1992/93 with<br />

special reference <strong>to</strong> water supply <strong>an</strong>d <strong>the</strong> use of public awareness<br />

campaigns. In: Gieske & Gould J. (Eds): Proc. Integrated<br />

Water Resources M<strong>an</strong>agement Workshop 1994, 17-18 March,<br />

K<strong>an</strong>ye-Gaborone.<br />

CAWMP - Central Area Water Master Pl<strong>an</strong>: Phase 1. 1993. Summary<br />

Report. Vol. 1-11. Republic of <strong>Namibia</strong>, M<strong>in</strong>istry of Agriculture,<br />

Water <strong>an</strong>d Rural Development, Department of Water Affairs,<br />

Gesellschaft für Technische Zusammenarbeit GmbH (GTZ),<br />

Consult<strong>in</strong>g Eng<strong>in</strong>eers Salzgitter (CES), Lund Consult<strong>in</strong>g<br />

Eng<strong>in</strong>eers (LCE), W<strong>in</strong>dhoek Consult<strong>in</strong>g Eng<strong>in</strong>eers (WCE).<br />

W<strong>in</strong>dhoek.<br />

CAWMP - Central Area Water Master Pl<strong>an</strong>: Interim Phase. 1995.<br />

Vol. 1: System Analysis; Vol. 2: Terms of Reference. Republic of<br />

<strong>Namibia</strong>, M<strong>in</strong>istry of Agriculture, Water <strong>an</strong>d Rural Development,<br />

Department of Water Affairs, Gesellschaft für Technische Zusam-<br />

menarbeit GmbH (GTZ), Consult<strong>in</strong>g Eng<strong>in</strong>eers Salzgitter (CES),<br />

Lund Consult<strong>in</strong>g Eng<strong>in</strong>eers (LCE), W<strong>in</strong>dhoek Consult<strong>in</strong>g Eng<strong>in</strong>eers<br />

(WCE). W<strong>in</strong>dhoek.<br />

Chivell EH & Mostert A. 1991. Karst - Central Area: Ra<strong>in</strong>fall<br />

Comparison. Unpublished DWA report, W<strong>in</strong>dhoek.<br />

Chivell EH & Crerar SE. 1992. Unit runoff map for <strong>Namibia</strong>. Unpublished<br />

DWA report, W<strong>in</strong>dhoek.<br />

Clay<strong>to</strong>n AJ. 1973. Die Tr<strong>in</strong>kwassergew<strong>in</strong>nung aus gere<strong>in</strong>igtem<br />

Abwasser <strong>in</strong> W<strong>in</strong>dhoek. Wasserwirtschaft, 63.<br />

Colv<strong>in</strong> C. 1994. The Hydrogeology of <strong>the</strong> W<strong>in</strong>dhoek aquifer, <strong>Namibia</strong>.<br />

Unpubl. M.Sc. <strong>the</strong>sis Univ. Coll. London. London.<br />

Crerar SE & Church JT. 1988. Evaporation map for <strong>Namibia</strong>. Unpublished<br />

DWA report. W<strong>in</strong>dhoek.<br />

Cunnigham T, Hubbard D, K<strong>in</strong>ah<strong>an</strong> J, Kreike E, Marsh A, Seely<br />

M & Stuart-Williams V. 1992. Osh<strong>an</strong>as - Susta<strong>in</strong><strong>in</strong>g people,<br />

environment <strong>an</strong>d development <strong>in</strong> Central Owambo, <strong>Namibia</strong>.<br />

W<strong>in</strong>dhoek (Typopr<strong>in</strong>t).<br />

De Beer JH & Blume J. 1985. Geophysical <strong>an</strong>d hydrogeological <strong>in</strong>vestigations<br />

of <strong>the</strong> groundwater resources of Western Hererol<strong>an</strong>d,<br />

South West Africa/<strong>Namibia</strong>. Tr<strong>an</strong>s. geol. Society S. Africa, 88.<br />

Department of Water Affairs. 1982. South West Africa/<strong>Namibia</strong> -<br />

<strong>Groundwater</strong> Quality Map, Scale 1:1000 000, 4 sheets: Total Dissolved<br />

Solids, Sulphate, Nitrate <strong>an</strong>d Fluoride. W<strong>in</strong>dhoek (Department<br />

of Water Affairs).<br />

Department of Water Affairs. 1991. Guidel<strong>in</strong>es for <strong>the</strong> evaluation<br />

of dr<strong>in</strong>k<strong>in</strong>g water for hum<strong>an</strong> consumption with reference <strong>to</strong> <strong>the</strong><br />

chemical, physical <strong>an</strong>d bacteriological quality. W<strong>in</strong>dhoek.<br />

Desert Research Foundation of <strong>Namibia</strong>. 1994. Underst<strong>an</strong>d<strong>in</strong>g <strong>the</strong><br />

Osh<strong>an</strong>a environment - Euvoko Lyosh<strong>an</strong>a Nomudh<strong>in</strong>goloko. W<strong>in</strong>dhoek<br />

(Gamsberg MacMill<strong>an</strong> Publishers).<br />

Dierkes K. 1996. Hydrogeological Investigations at <strong>the</strong> Sou<strong>the</strong>rn<br />

Marg<strong>in</strong> of <strong>the</strong> E<strong>to</strong>sha-Kalahari Bas<strong>in</strong>/<strong>Namibia</strong>. Unpub. Diploma<br />

<strong>the</strong>sis, University of Regensburg. Regensburg.<br />

Diester-Haas L, He<strong>in</strong>e K, Ro<strong>the</strong> P & Schrader H. 1988. Late Quater -<br />

nary his<strong>to</strong>ry of cont<strong>in</strong>ental climate <strong>an</strong>d <strong>the</strong> Benguela Current<br />

off South West Africa. - Palaeogrography, Palaeo clima<strong>to</strong>logy,<br />

Palaeoecology, 68.<br />

D<strong>in</strong>gle RV & Hendey Q B. 1984. Late Mesozoic <strong>an</strong>d Tertiary sediment<br />

supply <strong>to</strong> <strong>the</strong> eastern Cape bas<strong>in</strong> (SE Atl<strong>an</strong>tic) <strong>an</strong>d palaeodra<strong>in</strong>age<br />

systems <strong>in</strong> southwestern Africa. Mar<strong>in</strong>e Geol., 56.<br />

D<strong>in</strong>gle RV. 1992/93. Structural <strong>an</strong>d sedimentary development of <strong>the</strong><br />

cont<strong>in</strong>ental marg<strong>in</strong> off southwestern Africa. Communs. Geological<br />

Survey, <strong>Namibia</strong>, 8. W<strong>in</strong>dhoek.<br />

Driscoll FG. 1987. <strong>Groundwater</strong> <strong>an</strong>d Wells. 2nd ed. St. Paul,<br />

M<strong>in</strong>nesota (Johnson Divison).<br />

Fisch M. 1987. Die Hydrographie des Kav<strong>an</strong>goflusses. Journal SWA<br />

Wissenschaftliche Gesellschaft, XLI. W<strong>in</strong>dhoek.<br />

Freeze R A & Cherry JA. 1979. <strong>Groundwater</strong>. London (Prentice-Hall).<br />

Fr<strong>in</strong>dt M & Crerar SE. 1991. OMDEL DAM - An appropriate<br />

Solution. <strong>Namibia</strong>n Eng., 4. W<strong>in</strong>dhoek.<br />

Frommurze HF. 1931. Flow<strong>in</strong>g boreholes <strong>in</strong> <strong>the</strong> Rehoboth, Gibeon<br />

<strong>an</strong>d Gobabis Districts, South West Africa. Tr<strong>an</strong>s. geol. Society<br />

South Africa, 34.


Geological Map of <strong>Namibia</strong>. 1980. Geological Survey W<strong>in</strong>dhoek<br />

(Government Pr<strong>in</strong>ter).<br />

Geological Survey of <strong>Namibia</strong>. 1982. The Geology of <strong>Namibia</strong>. W<strong>in</strong>dhoek.<br />

Geological Survey of <strong>Namibia</strong>. 1994. Geological Map of <strong>Namibia</strong>,<br />

1:250 000 Geological Series, W<strong>in</strong>dhoek.<br />

Gevers TW. 1932. The hot spr<strong>in</strong>gs of W<strong>in</strong>dhoek, S.W. Africa. Tr<strong>an</strong>s.<br />

Geol. Society South Africa, XXXV.<br />

Gevers TW, Hart O. & Mart<strong>in</strong> H. 1963. Thermal waters along <strong>the</strong><br />

Swakop River, South West Africa. Tr<strong>an</strong>s. Geol. Society South<br />

Africa, 66.<br />

Geyh MA & Plöthner D. 1995. <strong>Groundwater</strong> iso<strong>to</strong>pe study <strong>in</strong> <strong>the</strong><br />

Omaruru River delta aquifer, central Namib Desert, <strong>Namibia</strong>.<br />

Application of Tracers <strong>in</strong> Arid Zones (Proceed<strong>in</strong>gs of <strong>the</strong> Vienna<br />

Symposium, August 1994; IAHS Publication No. 232.<br />

GKW Consult - Bicon - Parkm<strong>an</strong>. 1996. Water supply <strong>to</strong> <strong>the</strong> Central<br />

Namib Area of <strong>Namibia</strong> - Feasibility Study. Unpublished F<strong>in</strong>al<br />

Report (Vol. 1) <strong>to</strong> DWA <strong>an</strong>d KfW, Summary Report. W<strong>in</strong>dhoek.<br />

Goetze HD. (Ed) 1982. Chemiese Kwaliteit v<strong>an</strong> de Grondwater <strong>in</strong><br />

Suidwes-Afrika/Namibië (met spesifieke Verwys<strong>in</strong>g na die Benutt<strong>in</strong>gswaarde<br />

v<strong>an</strong> de Water). Vol. 4. Benaderde Geografiese Posisies<br />

v<strong>an</strong> de Waterbronne; 26 maps; Pre<strong>to</strong>ria, W<strong>in</strong>dhoek (DWA).<br />

Government of <strong>the</strong> Republic of <strong>Namibia</strong>. 1995. First National<br />

Development Pl<strong>an</strong> (NDP 1) Vol. 1-2. 1995 / 1996-1999/2000.<br />

W<strong>in</strong>d hoek (National Pl<strong>an</strong>n<strong>in</strong>g Commission).<br />

Griebel EG, Kloot RW & Schneeweiss R. 1995. Development of<br />

water m<strong>an</strong>agement at Röss<strong>in</strong>g m<strong>in</strong>e <strong>in</strong> hyper-arid area <strong>an</strong>d environmental<br />

<strong>an</strong>d f<strong>in</strong><strong>an</strong>cial benefits. Proc. Afric<strong>an</strong> M<strong>in</strong><strong>in</strong>g '95<br />

conference, 7-9 June 1995, W<strong>in</strong>dhoek.<br />

<strong>Groundwater</strong> Consult<strong>in</strong>g Services. 1993. Owambo Drought Relief<br />

Report.W<strong>in</strong>dhoek.<br />

Grünert N. 2000. <strong>Namibia</strong> - Fasc<strong>in</strong>ation of Geology. W<strong>in</strong>dhoek/<br />

Gött<strong>in</strong>gen. (K Hess Publ.).<br />

Halbach AJ. 2000. <strong>Namibia</strong>. Wirtschaft, Politik, Gesellschaft nach<br />

zehn Jahren Unabhängigkeit. Nam. Wissenschaftliche Gesellschaft,<br />

W<strong>in</strong>dhoek, München.<br />

Hae<strong>to</strong>n THE, Talma AS & Vogel JC. 1983. Orig<strong>in</strong> <strong>an</strong>d his<strong>to</strong>ry of<br />

nitrate <strong>in</strong> conf<strong>in</strong>ed groundwater <strong>in</strong> <strong>the</strong> western Kalahari. Journal<br />

of Hydrology, 66.<br />

Hedberg RM. 1979. Stratigraphy of <strong>the</strong> Owambol<strong>an</strong>d Bas<strong>in</strong>, South<br />

West Africa. Bull. Precambri<strong>an</strong> Research Unit, University of Cape<br />

Town, 24. [PhD <strong>the</strong>sis Univ. Cape Town].<br />

He<strong>in</strong>e K. 1992. On <strong>the</strong> ages of humid Late Quaternary phases <strong>in</strong><br />

sou<strong>the</strong>rn Afric<strong>an</strong> arid areas (<strong>Namibia</strong>, Botsw<strong>an</strong>a). Palaeoecol. Afr.,<br />

23.<br />

Hellwig DHR. 1988. Challeng<strong>in</strong>g <strong>the</strong> Namib Dune Sea. Journal Limnol.<br />

Society South Africa, 14.<br />

Heyns P. 1991. Perspective on Water Affairs. Unpublished DWA<br />

report. W<strong>in</strong>dhoek.<br />

Heyns P. 1992. <strong>Namibia</strong>'s water resources: A new approach needed.<br />

<strong>Namibia</strong> Rev., 1.<br />

Heyns P. 1992. Water <strong>in</strong> <strong>the</strong> Desert S<strong>an</strong>ds. <strong>Namibia</strong> Yearbook, 2.<br />

W<strong>in</strong>dhoek.<br />

Heyns PS, Montgomery J & Seely MK. 1998. <strong>Namibia</strong>’s Water, A<br />

Descicion Maker’s Guide. DRFN <strong>an</strong>d DWA. W<strong>in</strong>dhoek, <strong>Namibia</strong>.<br />

Hoad N. 1990. Water Supply <strong>in</strong> a Desert Environment. In: Environ -<br />

mental Implications of Prospect<strong>in</strong>g <strong>an</strong>d M<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> Namib.<br />

A Sem<strong>in</strong>ar presented by Geol. Soc. <strong>Namibia</strong> & Desert Ecol.<br />

Res. Unit <strong>Namibia</strong>. W<strong>in</strong>dhoek (Geol. Survey <strong>Namibia</strong>).<br />

Hoffm<strong>an</strong>n JRH. 1979. Die chemiese samestell<strong>in</strong>g v<strong>an</strong> warm water -<br />

bronne <strong>in</strong> Suid- en Suidwes-Afrika. Spesiale verslag no. WAT 56;<br />

NIWN/WNNR.<br />

Höverm<strong>an</strong>n J. 1978. Formen und Formung <strong>in</strong> der Pränamib (Flächen-<br />

Namib). Z. Geomorph. N.F., 30.<br />

Hugo PJ, Schalk KEL. & Barnes S-J. 1983. Bibliography of South<br />

West Afric<strong>an</strong>/<strong>Namibia</strong>n Earth Science. Vol. 1. W<strong>in</strong>dhoek (Geol.<br />

Survey). [Publications <strong>to</strong> <strong>the</strong> end of 1980]<br />

Huyser DJ. (Ed). 1982. Chemiese Kwaliteit v<strong>an</strong> de Grondwater <strong>in</strong><br />

Suidwes-Afrika/Namibië (met spesifieke Verwys<strong>in</strong>g na die Benutt<strong>in</strong>gswaarde<br />

v<strong>an</strong> de Water). Vol. 1-3. Pre<strong>to</strong>ria, W<strong>in</strong>dhoek (DWA).<br />

Irish J, Mart<strong>in</strong>i JEJ & Marais JCE. 1991. Cave Investigations <strong>in</strong><br />

<strong>Namibia</strong> III: Some 1991 SWAKNO Results. Bull. South Africa.<br />

Spel. Association, 32.<br />

Jackson JA. (Ed). 1997. Glossary of Geology. Fourth Edition. Americ<strong>an</strong><br />

Geol. Institute. Alex<strong>an</strong>dria, VA.<br />

Jacobson PJ, Jacobson KM & Seely MK. 1995. Ephemeral Rivers<br />

<strong>an</strong>d <strong>the</strong>ir Catchments: Susta<strong>in</strong><strong>in</strong>g People <strong>an</strong>d Development <strong>in</strong><br />

Western <strong>Namibia</strong>. W<strong>in</strong>dhoek (Desert Research Foundation of<br />

<strong>Namibia</strong>).<br />

Jaeger F & Waibel F. 1920. Beiträge zur L<strong>an</strong>deskunde von Südwestafrika.<br />

Mitteilungen aus den deutschen Schutzgebieten,<br />

Ergänzungsheft, 14. Berl<strong>in</strong>.<br />

Kehrberg S. 1993. Koichab-Lüderitz Regional Water Scheme - results<br />

of <strong>the</strong> 1992/93 geohydrological <strong>in</strong>vestigation. Unpublished DWA<br />

report. W<strong>in</strong>dhoek.<br />

Kent LE. 1949. The <strong>the</strong>rmal waters of <strong>the</strong> Union of South Africa <strong>an</strong>d<br />

South West Africa. Tr<strong>an</strong>s. Geol. Society South Africa, 52.<br />

Kirchner J. 1981. An updated evaluation of <strong>the</strong> W<strong>in</strong>dhoek <strong>Groundwater</strong><br />

Resources. Unpublished report, DWA. W<strong>in</strong>dhoek.<br />

Kok TS. 1964. The occurrence <strong>an</strong>d location of groundwater <strong>in</strong> South<br />

West Africa. Unpubl. PhD <strong>the</strong>sis Cape Town, Univ. of Cape Town.<br />

Korn H & Mart<strong>in</strong> H. 1957. The Pleis<strong>to</strong>cene <strong>in</strong> South-West Africa.<br />

In: Clark J D. (Ed). 1957. Proc. 3rd P<strong>an</strong> Afric<strong>an</strong> Congress on Prehis<strong>to</strong>ry,<br />

Liv<strong>in</strong>gs<strong>to</strong>ne, 1955.<br />

Krusem<strong>an</strong> GP & de Ridder NA. 1991. Analysis <strong>an</strong>d Evaluation of<br />

Pump<strong>in</strong>g Test Data. Repr<strong>in</strong>ted 2nd ed. Wagen<strong>in</strong>gen (Internat.<br />

Institute for L<strong>an</strong>d Reclamation <strong>an</strong>d Improvement/ILRI).<br />

L<strong>an</strong>caster J, L<strong>an</strong>caster N & Seely MK. 1984. The climate of <strong>the</strong> central<br />

Namib. Madoqua, 14.<br />

L<strong>an</strong>caster N. 1989. The Namib S<strong>an</strong>d Sea - Dune forms, processes<br />

<strong>an</strong>d sediments. Rotterdam, Brookfield (Balkema).<br />

Lau B & Stern C. 1990. <strong>Namibia</strong>n Water Resources <strong>an</strong>d <strong>the</strong>ir M<strong>an</strong>age -<br />

ment - A prelim<strong>an</strong>ay His<strong>to</strong>ry. Archeia, No 15. W<strong>in</strong>dhoek.<br />

L<strong>in</strong>deque M & Archibald TJ. 1991. Seasonal wetl<strong>an</strong>ds <strong>in</strong> Owambo<br />

<strong>an</strong>d <strong>the</strong> E<strong>to</strong>sha National Park. Madoqua, 17.<br />

Littm<strong>an</strong>n T. 1989. Climatic ch<strong>an</strong>ge <strong>in</strong> Africa dur<strong>in</strong>g <strong>the</strong> Last Glacial:<br />

113


114<br />

Facts <strong>an</strong>d problems. Palaeoecol. Afr., 20.<br />

Lück AH. 1999. Water m<strong>an</strong>agement pl<strong>an</strong>n<strong>in</strong>g <strong>in</strong> arid regions of Southwest<br />

Africa - Supply problems <strong>an</strong>d future prospects <strong>in</strong> <strong>the</strong> catchment<br />

area of <strong>the</strong> Omaruru River, <strong>Namibia</strong>. Natural Resources <strong>an</strong>d<br />

Development, 49/50. Tüb<strong>in</strong>gen (Institute for Scientific Cooperation).<br />

Maritz P. 1993. The National Water Supply <strong>an</strong>d S<strong>an</strong>itation Sec<strong>to</strong>r<br />

Policy of <strong>the</strong> Government of <strong>Namibia</strong>. Unpublished DWA draft<br />

report W<strong>in</strong>dhoek.<br />

Marker ME. 1982. Aspects of Namib geomorphology: A dol<strong>in</strong>e karst.<br />

Palaeoecol. Afr., 15.<br />

Marsh AC & Seely MK. 1992. Osh<strong>an</strong>as: Susta<strong>in</strong><strong>in</strong>g people,<br />

environment <strong>an</strong>d development <strong>in</strong> central Owambo, <strong>Namibia</strong>.<br />

W<strong>in</strong>dhoek (Typopr<strong>in</strong>t).<br />

Mart<strong>in</strong> H. 1961. Hydrology <strong>an</strong>d water bal<strong>an</strong>ce of some regions covered<br />

by Kalahari s<strong>an</strong>ds <strong>in</strong> South-West Africa. In: Inter-Afric<strong>an</strong> Conference<br />

on Hydrology (Nairobi) CCTA Publ. No. 66.<br />

Mart<strong>in</strong> H. 1962. Das artesische Becken der Südkalahari. Wissensch.<br />

Forschung <strong>in</strong> SWA, 1. W<strong>in</strong>dhoek (SWA Scientific Society).<br />

Mart<strong>in</strong> H. 1963. Geological map of South West Africa, 1:1000 000.<br />

W<strong>in</strong>dhoek, Pre<strong>to</strong>ria (Government Pr<strong>in</strong>ter).<br />

Mart<strong>in</strong> H. 1965. The Precambri<strong>an</strong> geology of South West Africa <strong>an</strong>d<br />

Namaqual<strong>an</strong>d. Precambri<strong>an</strong> Research Unit. Cape Town. University<br />

of Cape Town.<br />

Mart<strong>in</strong> H. 1981. The late Palaeozoic Gondw<strong>an</strong>a glaciation.<br />

Geologische Rundschau, 70.<br />

Mart<strong>in</strong>i JEJ, Irish J & Marais JCE. 1990. Les grottes du Sud Quest<br />

Afrique/Namibie. Spelunca, 38.<br />

Mendelsohn J & Roberts C. 1998. An environmental profile <strong>an</strong>d atlas<br />

of Caprivi. (Gamsberg Macmill<strong>an</strong>), W<strong>in</strong>dhoek.<br />

Mendelsohn J, El Obeid S & Roberts C. 2000. A profile of northcentral<br />

<strong>Namibia</strong>. (Gamsberg Macmill<strong>an</strong>), W<strong>in</strong>dhoek.<br />

Mendelsohn J & El Obeid S. 2001. A prelim<strong>an</strong>ary profile of <strong>the</strong><br />

Kav<strong>an</strong>go Region <strong>in</strong> <strong>Namibia</strong>. <strong>Namibia</strong> Nature Foundation.<br />

W<strong>in</strong>dhoek, <strong>Namibia</strong>.<br />

Miller R McG. 2000. The Owambo Bas<strong>in</strong> of Nor<strong>the</strong>rn <strong>Namibia</strong>. In:<br />

Selley RC (Ed.) Sedimentary Bas<strong>in</strong>s of <strong>the</strong> World: Africa. Amsterdam<br />

(Elsevier).<br />

Miller R McG & Grote W. 1988. Geological map of <strong>the</strong> Damara<br />

Orogen, 1:500 000, W<strong>in</strong>dhoek (Geological Survey).<br />

Miller R McG. 1983. Evolution of <strong>the</strong> Damara Orogen of South West<br />

Africa/<strong>Namibia</strong>. Special Publication, Geology Society South Africa,<br />

11.<br />

M<strong>in</strong>istry of M<strong>in</strong>es <strong>an</strong>d Energy, Geological Survey 1992. The M<strong>in</strong>eral<br />

Resources of <strong>Namibia</strong>. W<strong>in</strong>dhoek.<br />

Momper JA. 1982. The E<strong>to</strong>sha Bas<strong>in</strong> re-exam<strong>in</strong>ed. Oil & Gas J., 5.<br />

Nawrowski J & Tordiffe E. 1993. Investigation for Artificial Recharge<br />

<strong>to</strong> <strong>the</strong> OMDEL Aquifer, <strong>Namibia</strong>. Africa Needs Ground Water -<br />

An International Ground Water Convention 6-8 Sept. 1993,<br />

conv. paper, Vol. II. Joh<strong>an</strong>nesburg.<br />

Offenborn G. 1999. Hydrogeological <strong>in</strong>vestigation <strong>in</strong> <strong>the</strong> Omaruru<br />

“Delta” (OMDEL) Aquifer North of Swakopmund, Namib<br />

Desert, <strong>Namibia</strong> (Hydrochemistry, iso<strong>to</strong>pe hydrology, aerogeo-<br />

physics). Unpublished Diploma <strong>the</strong>sis, Technical University of<br />

H<strong>an</strong>nover.<br />

Office of <strong>the</strong> Prime M<strong>in</strong>ister. 1992. Act No. 33 of 1992: M<strong>in</strong>erals<br />

(Prospect<strong>in</strong>g <strong>an</strong>d M<strong>in</strong><strong>in</strong>g) Act. Government Gazette of <strong>the</strong> Republic<br />

of <strong>Namibia</strong>, 564. W<strong>in</strong>dhoek.<br />

Pallett J. (Ed). 1995. The Sperrgebiet - <strong>Namibia</strong>’s Least Known Wilderness,<br />

An Environmental Profile of <strong>the</strong> Sperrgebiet or Diamont<br />

Area 1, <strong>in</strong> South-Western <strong>Namibia</strong>. - W<strong>in</strong>dhoek (Desert Research<br />

Foundation of <strong>Namibia</strong> <strong>an</strong>d NAMDEB Diamond Corporation<br />

Ltd.).<br />

Pallett J. (Ed). 1997. Shar<strong>in</strong>g Water <strong>in</strong> Sou<strong>the</strong>rn Africa. W<strong>in</strong>dhoek<br />

(Desert Research Foundation of <strong>Namibia</strong>).<br />

Passarge S. 1904. Die Kalahari. - Versuch e<strong>in</strong>er physisch-geographischen<br />

Darstellung der S<strong>an</strong>dfelder des südafrik<strong>an</strong>ischen Beckens. Textb<strong>an</strong>d<br />

+ Kartenb<strong>an</strong>d. Berl<strong>in</strong> (Dietrich Reimer Verlag).<br />

Penrith M J. 1978. Otjiko<strong>to</strong> Lake. South West Africa Annual 1978.<br />

Du Plessis NP & Bethune S. 1992. Report on <strong>the</strong> <strong>in</strong>vestigation<br />

<strong>in</strong><strong>to</strong> <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> Grootfonte<strong>in</strong>-Omatako C<strong>an</strong>al on wild<br />

<strong>an</strong>imals <strong>an</strong>d methods <strong>to</strong> prevent identified problems. Unpublished<br />

DWA report, W<strong>in</strong>dhoek.<br />

Plöthner D. 1998. <strong>Namibia</strong>: Zusammenarbeit mit dem Department<br />

of Water Affairs (DWA) bei der Grundwassererkundung. Zeit -<br />

schrift für Angew<strong>an</strong>dte Geologie, 44.<br />

R<strong>an</strong>ge P. 1914. Das artesische Becken <strong>in</strong> der Südkalahari. Dt. kolon.<br />

Blatt, 8.<br />

R<strong>an</strong>ge P. 1915. Ergebnisse von Bohrungen <strong>in</strong> Deutsch-Südwest-Afrika.<br />

Beiträge z. geologischen Erforschung der dt. Schutz gebiete, 11.<br />

Berl<strong>in</strong> (Königl. Geol. L<strong>an</strong>des<strong>an</strong>stalt).<br />

R<strong>an</strong>ge P. 1943. Zur Wasserwirtschaft <strong>in</strong> Deutsch-Südwestafrika.<br />

Beiträge z. Kolonialforschung, V: 135-147.<br />

Ravenscroft W. 1985. The Eastern National Water Carrier - Assuag<strong>in</strong>g<br />

<strong>the</strong> nation’s thirst. SWA Annual 1985. SWA Publications;<br />

W<strong>in</strong>dhoek.<br />

Rust U & Vogel JC. 1988. Late Quaternary environmental ch<strong>an</strong>ges<br />

<strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn Namib Desert as evidenced by fluvial l<strong>an</strong>dforms.<br />

Palaeoecol. Afr., 19: 127-137.<br />

Rust U. 1984. Geomorphic evidence of Quaternary environmental<br />

ch<strong>an</strong>ges <strong>in</strong> E<strong>to</strong>sha, South West Africa/<strong>Namibia</strong>. In: Vogel, J.C.<br />

(Ed). Late Ca<strong>in</strong>ozoic Palaeoclimates of <strong>the</strong> Sou<strong>the</strong>rn Hemisphere.<br />

Rotterdam, Bos<strong>to</strong>n (Balkema).<br />

SACS (South Afric<strong>an</strong> Committee for Stratigraphy) 1980. Stratigraphy<br />

of South Africa: Part 1.: Geological Survey South Africa,<br />

H<strong>an</strong>dbook 8.<br />

Schalk K. 1961. Water bal<strong>an</strong>ce of <strong>the</strong> Uhlenhorst cloudburst <strong>in</strong> South<br />

West Africa. CCTA Publ., 66. Nairobi.<br />

Schalk KEL & Hegenberger W. 1991. Bibliography of <strong>Namibia</strong>n<br />

Earth Science. - Vol. 2. W<strong>in</strong>dhoek (Geological Survey).<br />

[Publications from 1981 <strong>to</strong> 1986].<br />

Schatz I. 1978. Höhlen <strong>in</strong> den Otavibergen. Newsletter SWA Scientific<br />

Society, 18.<br />

Schmidt G & Plöthner D. 1999. Abschätzung der Grundwasservorräte<br />

im Fluß- und Dünengebiet des unteren Kuiseb, <strong>Namibia</strong>.<br />

Zeitschrift für <strong>an</strong>gew<strong>an</strong>dte Geologie, 45.<br />

Schmidt G & Plöthner D. 2000. Hydrogeological <strong>in</strong>vestigations <strong>in</strong>


<strong>the</strong> Otavi Mounta<strong>in</strong> L<strong>an</strong>d. In: Sililo O. et al. (Eds). Proceed<strong>in</strong>gs<br />

of <strong>the</strong> XXX IAH Congress on <strong>Groundwater</strong>: Ground water -<br />

Past Achievments <strong>an</strong>d Future Challenges, Cape Town 26 Nov-<br />

1 Dec 2000. Rotterdam (Balkema).<br />

Schmidt M. 1963. Die Wasserwirtschaft Südwestafrikas. Wasserwirtschaft,<br />

58.<br />

Schneider MB. 1990. Bewässerungsl<strong>an</strong>dwirtschaft <strong>in</strong> <strong>Namibia</strong> und<br />

ihre Grundlagen <strong>in</strong> der Kolonialzeit. Wiss. Forsch. <strong>in</strong> <strong>Namibia</strong>,<br />

19. W<strong>in</strong>dhoek (Wissenschaftliche Gesesellschaft, <strong>Namibia</strong>).<br />

Schwartz MO & Plöthner D. 1999. Removal of heavy metals from<br />

m<strong>in</strong>e water by carbonate precipitation <strong>in</strong> <strong>the</strong> Grootfonte<strong>in</strong>-<br />

Omatako C<strong>an</strong>al, <strong>Namibia</strong>. Environmental Geology, 39.<br />

Seeger KG. 1990. An Evaluation of <strong>the</strong> <strong>Groundwater</strong> Resources of<br />

<strong>the</strong> Grootfonte<strong>in</strong> Karst Area. Unpubl. DWA report W<strong>in</strong>dhoek.<br />

Seely MK. 1991. <strong>Namibia</strong>: drought <strong>an</strong>d desertification. W<strong>in</strong>dhoek<br />

(Gamsberg Press).<br />

Seely MK. 1992. The Namib - Natural his<strong>to</strong>ry of <strong>an</strong> <strong>an</strong>cient desert.<br />

Shell Guide, 2nd ed. W<strong>in</strong>dhoek (John Me<strong>in</strong>ert).<br />

Seely MK. & Jacobson K M. 1994. Desertification <strong>an</strong>d <strong>Namibia</strong>: a<br />

perspective. Journal of Afric<strong>an</strong> Zoology, 108.<br />

Seimons WS & v<strong>an</strong> Tonder GJ. 1993. Geohydrological characterisation<br />

<strong>an</strong>d modell<strong>in</strong>g of <strong>the</strong> Otjiwarongo marble aquifer <strong>in</strong><br />

<strong>Namibia</strong>. Afr. Geoscience Rev., 1.<br />

Selby MJ, Hendey CH & Seely MK. 1979. A late Quaternary lake<br />

<strong>in</strong> <strong>the</strong> central Namib Desert, sou<strong>the</strong>rn Africa, <strong>an</strong>d some implications.<br />

Palaeogrography, Palaeoclima<strong>to</strong>logy, Palaeoecology, 26.<br />

Sengpiel K-P. 1997. Improved Del<strong>in</strong>eation of Sal<strong>in</strong>e <strong>Groundwater</strong> by Airborne<br />

Electromagnetics. Proceed<strong>in</strong>gs of <strong>the</strong> 14th Salt Water Instrusion<br />

Meet<strong>in</strong>g (SWIM 1996), Malmö/Sweden, 16-21 June 1996.<br />

Siemon B & Sengpiel K-P. 1997. Helicopter-borne electromagnetic<br />

groundwater exploration survey <strong>in</strong> <strong>the</strong> Kuiseb Dune Area, Central<br />

Namib Desert. Proceed<strong>in</strong>gs South Afric<strong>an</strong> Geophysical Association<br />

(SAGA) Fifth Technical Meet<strong>in</strong>g, 28-30 September 1997,<br />

Swakopmund, <strong>Namibia</strong>.<br />

Siesser WG. 1980. Late Miocene orig<strong>in</strong> of <strong>the</strong> Benguela upwell<strong>in</strong>g<br />

system off nor<strong>the</strong>rn <strong>Namibia</strong>. Science, 208.<br />

Simmonds ALE & Schum<strong>an</strong>n FW. 1987. The occurrence <strong>an</strong>d<br />

utilisations of groundwater <strong>in</strong> Kav<strong>an</strong>go S.W.A./<strong>Namibia</strong>. Journal<br />

Wissenschaftliche Gesellschaft, XLI. W<strong>in</strong>dhoek.<br />

Söhnge PG. 1967. Tsumeb - a his<strong>to</strong>rical sketch. 2nd ed. S.W.A.<br />

Scientific Society W<strong>in</strong>dhoek.<br />

Stengel HW. (Ed). 1963. Wasserwirtschaft - Waterwese - Water Affairs<br />

<strong>in</strong> S.W.A.W<strong>in</strong>dhoek (Afrika-Verlag: Der Kreis).<br />

Stengel HW. 1966. Vom Regen und von Regenkarten <strong>in</strong> Südwestafrika.<br />

S.W.A. Scientific Society, Spec. publ. 7. W<strong>in</strong>dhoek.<br />

Stengel HW. 1974. Bibliographie Wasserwirtschaft <strong>in</strong> Südwestafrika.<br />

Mittl. Basler Afr. Abh.<br />

S<strong>to</strong>llhofen H. 1999. Karoo Synrift Sedimentation und ihre tek<strong>to</strong>nische<br />

Kontrolle am entstehenden Kont<strong>in</strong>entalr<strong>an</strong>d <strong>Namibia</strong>s. Z. Dt.<br />

Geol. Gesellschaft, 149.<br />

Struckmeier W & Margat J. 1995. Hydrogeological Maps - A Guide<br />

<strong>an</strong>d a St<strong>an</strong>dard Legend. International Association of Hydro -<br />

geologists/International Contributions <strong>to</strong> Hydrogeology, 17.<br />

Symons G, Miller R McG, Hata Y, Yamasaki Y, Sugawara K & Noell<br />

U. 2000. Geology <strong>an</strong>d resistivity characteristics of <strong>the</strong> Stampriet<br />

Artesi<strong>an</strong> Bas<strong>in</strong>. In: Sililo O. et al. (Eds). Proceed<strong>in</strong>gs of <strong>the</strong> XXX<br />

IAH Congress on <strong>Groundwater</strong>: Past Achievements <strong>an</strong>d Future<br />

Challenges, Cape Town, South Africa, 26 Nov. - 1 Dec. 2000.<br />

Rotterdam (Balkema).<br />

The Constitution of <strong>the</strong> Republic of <strong>Namibia</strong>. 1990. W<strong>in</strong>dhoek (M<strong>in</strong>istry<br />

of Information <strong>an</strong>d Broadcast<strong>in</strong>g).<br />

Tötemeyer G. (Ed). 1987. <strong>Namibia</strong> <strong>in</strong> Perspective. W<strong>in</strong>dhoek.<br />

Tredoux G & Kirchner J. 1980. The evolution of <strong>the</strong> chemical<br />

composition of artesi<strong>an</strong> water <strong>in</strong> <strong>the</strong> Auob s<strong>an</strong>ds<strong>to</strong>ne. <strong>Groundwater</strong><br />

1980 Conf., Pre<strong>to</strong>ria, July 1980.<br />

Truswell, JF. 1977. The geological evolution of South Africa. Cape<br />

Town (Purnell & Sons), South Africa.<br />

Turner SD. 1992. Reformulation mission: Ogongo-Okalongo <strong>an</strong>d<br />

Oshakati-Omak<strong>an</strong>go water schemes. Unpublished report.<br />

W<strong>in</strong>dhoek (Ne<strong>the</strong>rl<strong>an</strong>ds Development Cooperation Office).<br />

United Nations Institute for <strong>Namibia</strong> 1986. Perspectives for National<br />

Reconstruction <strong>an</strong>d Development. Lusaka.<br />

United Nations 1989. Ground Water <strong>in</strong> Eastern, Central <strong>an</strong>d Sou<strong>the</strong>rn<br />

Africa. Natural Resources/Water Series No. 19: chapter <strong>Namibia</strong>,<br />

New York (United Nations).<br />

V<strong>an</strong> der Merwe JH. (Ed.) 1983. National Atlas of South West Africa<br />

(<strong>Namibia</strong>). Cape Town.<br />

Vogel JC & Rust U. 1987. Environmental ch<strong>an</strong>ges <strong>in</strong> <strong>the</strong> Kaokol<strong>an</strong>d<br />

Namib Desert dur<strong>in</strong>g <strong>the</strong> present millenium. Madoqua, 15.<br />

Vogel JC & v<strong>an</strong> Urk H. 1975. Iso<strong>to</strong>pic composition of ground -<br />

water <strong>in</strong> semi-arid regions of Sou<strong>the</strong>rn Africa. Journal of Hydrology,<br />

25.<br />

Vogel JC. 1989. Evidence of past climatic ch<strong>an</strong>ge <strong>in</strong> <strong>the</strong> Namib Desert.<br />

Palaeogrography, Palaeoclima<strong>to</strong>logy, Palaeoecology, 70.<br />

Vrba J & Zaporozec A. 1994. Guidebook on Mapp<strong>in</strong>g Ground water<br />

Vulnerability. International Association of Hydrogeologists. International<br />

Contributions <strong>to</strong> Hydrogeology, 16.<br />

Ward JD. 1988. Aeoli<strong>an</strong>, fluvial <strong>an</strong>d p<strong>an</strong> (playa) facies of <strong>the</strong> Tertiary<br />

Tsondab Formation <strong>in</strong> <strong>the</strong> Central Namib Desert, <strong>Namibia</strong>.<br />

Sedimentary Geology, 55.<br />

Ward JD. 1990. Geological processes at work <strong>in</strong> <strong>the</strong> Namib. In: Environmental<br />

Implications of Prospect<strong>in</strong>g <strong>an</strong>d M<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> Namib.<br />

A Sem<strong>in</strong>ar presented by Geol. Soc. <strong>Namibia</strong> & Desert Ecol.<br />

Res. Unit <strong>Namibia</strong>. W<strong>in</strong>dhoek (Geological Survey, <strong>Namibia</strong>).<br />

Wippl<strong>in</strong>ger O. 1958. S<strong>to</strong>rage of Water <strong>in</strong> S<strong>an</strong>d: An Investigation of<br />

<strong>the</strong> Properties of Natural <strong>an</strong>d Artificial S<strong>an</strong>d Reservoirs <strong>an</strong>d of<br />

Methods of Develop<strong>in</strong>g such Reservoirs. W<strong>in</strong>dhoek (South West<br />

Africa Adm<strong>in</strong>istration, Water Affairs Br<strong>an</strong>ch).<br />

World B<strong>an</strong>k, The United Nations Development Programme. 1995.<br />

Sub Sahar<strong>an</strong> Africa - Hydrological Assessment - SADC Countries.<br />

Unpubl. Draft Country Report: <strong>Namibia</strong>. Montpellier.<br />

World Health Org<strong>an</strong>isation. 1984. Guidel<strong>in</strong>es for Dr<strong>in</strong>k<strong>in</strong>g-Water<br />

Quality, Vol. 1: Recommendations. Geneva (WHO).<br />

Wrabel J. 1999. Ermittlung der Grundwasserneubildung im semiariden<br />

Bereich <strong>Namibia</strong>s mittels der Chlorid-Bil<strong>an</strong>z-Methode.<br />

Hydrogeologie und Umwelt, 16. Würzburg.<br />

115


116<br />

Annex 1: <strong>Groundwater</strong> supply schemes operated by NamWater <strong>an</strong>d municipalities<br />

No Scheme name<br />

Lat Long Geology<br />

Production<br />

3 ( Tm<br />

/ a)<br />

Depth<br />

( m)<br />

Quality<br />

class<br />

1 Aasvoelnes -19, 44000<br />

20, 11000<br />

Kalahari 18 145 A<br />

2 Ai-Ais -27, 90000<br />

1 7,<br />

50000<br />

Alluvium ( Fish<br />

River)<br />

58 15A-B 3 Am<strong>in</strong>uis -23, 64000<br />

1 9,<br />

37000<br />

S<strong>an</strong>ds<strong>to</strong>ne, shale<br />

( Karoo)<br />

86 186 B<br />

4 Andara -17, 97200<br />

2 1,<br />

26600<br />

Kalahari ( calcrete,<br />

s<strong>an</strong>d)<br />

10 55D 5 Anichab -20, 95000<br />

1 4,<br />

84000<br />

Alluvium ( Ugab<br />

River)<br />

25 10-15 B<br />

6 Anker -19, 77000<br />

1 4,<br />

55000<br />

Quartzite, gr<strong>an</strong>ite<br />

( Huab<br />

Complex)<br />

31 57-66 C<br />

7 Ar<strong>an</strong>os -24, 14700<br />

1 9,<br />

11800<br />

S<strong>an</strong>ds<strong>to</strong>ne ( Karoo)<br />

300 204-387 A<br />

8 Ariamsvlei -28, 12000<br />

1 9,<br />

84000<br />

Meta-sediments ( Nama<br />

Group)<br />

40 100-120 B-C<br />

9 Aroab -26, 80000<br />

1 9,<br />

63000<br />

S<strong>an</strong>ds<strong>to</strong>ne ( Nama<br />

Group)<br />

60 77-124 A<br />

10Aus -26, 66000<br />

1 6,<br />

27400<br />

Gr<strong>an</strong>ite-gneiss ( Namaqual<strong>an</strong>d)<br />

24 42-142 A-C<br />

11 Bag<strong>an</strong>i -18, 10900<br />

21, 65000<br />

Kalahari 1 114 C-D<br />

12Berg Aukas<br />

-19, 50300<br />

1 8,<br />

23600<br />

Dolomite ( Otavi<br />

Group,<br />

Damara)<br />

700 92-98 B<br />

13 Bergsig -20, 21000<br />

14, 06000<br />

Basalt 2 12 A-B<br />

14Berseba -25, 99000<br />

1 7,<br />

76000<br />

S<strong>an</strong>ds<strong>to</strong>ne ( Nama<br />

Group)<br />

40 34-42 A<br />

15 Beth<strong>an</strong>ien -26, 50000<br />

1 7,<br />

13000<br />

Shale, limes<strong>to</strong>ne<br />

( Nama<br />

Group)<br />

120 75 B-D<br />

16Br<strong>an</strong>dwag -19, 68000<br />

1 7,<br />

98000<br />

Dolomite ( Otavi<br />

Group,<br />

Damara)<br />

0 15-60 B<br />

17 Bu<strong>in</strong>ja -17, 86000<br />

19, 36000<br />

Kalahari 6 57-79 A<br />

18Buitepos -22, 28000<br />

1 9,<br />

99000<br />

Tsumis Quartzite<br />

( Damara)<br />

9 40-60 B<br />

19 Bukalo -17, 72000<br />

24, 53000<br />

Kalahari 70 40-54 B<br />

20Ch<strong>in</strong>chim<strong>an</strong>e -17, 98500<br />

24, 12400<br />

Kalahari 30 50B-C 21 Da<strong>an</strong> Viljoen<br />

-22, 54000<br />

1 6,<br />

95000<br />

Mica schist<br />

( Khomas,<br />

Damara)<br />

60 76-125 B<br />

22Dordabis -22, 95000<br />

1 7,<br />

66000<br />

Quartzite ( Rehoboth<br />

Sequence)<br />

20 42-76 A-B<br />

23 Epukiro Post<br />

3 -21, 58000<br />

1 9,<br />

45000<br />

Marble, quartzite,<br />

schist<br />

( Damara)<br />

60 50-180 B-D<br />

24Epukiro Post<br />

10<br />

-21, 52000<br />

1 9,<br />

47000<br />

Marble, quartzite,<br />

schist<br />

( Damara)<br />

20 126-182 A-B<br />

25 Ernst Meyer<br />

-22, 37000<br />

1 9,<br />

40000<br />

Kalahari & quartzite<br />

( Damara)<br />

18 55-60 A<br />

26Erwee -19, 69000<br />

1 4,<br />

30000<br />

Quartzite, gr<strong>an</strong>ite<br />

( Huab<br />

Complex)<br />

30 58-65 B-C<br />

27 Fr<strong>an</strong>sfonte<strong>in</strong> -20, 21000<br />

1 5,<br />

05000<br />

Shale, dolomite,<br />

s<strong>an</strong>ds<strong>to</strong>ne,<br />

limes<strong>to</strong>ne<br />

( Damara)<br />

140 61-151 B<br />

28Gabis -28, 10000<br />

18, 61000<br />

Namaqual<strong>an</strong>d gneiss<br />

19 56-86 C-D<br />

29 Ga<strong>in</strong>achas -25, 76000<br />

1 7,<br />

71000<br />

S<strong>an</strong>ds<strong>to</strong>ne ( Nama<br />

Group)<br />

3 32-39 A<br />

30Gibeon -24, 74000<br />

1 7,<br />

89000<br />

S<strong>an</strong>ds<strong>to</strong>ne ( Dwyka,<br />

Karoo)<br />

340 30-43 A<br />

31 Gobabeb -23, 56000<br />

1 5,<br />

04000<br />

Alluvium ( Kuiseb<br />

River)<br />

2 30-40 B-D<br />

32Gobabis NE<br />

-22, 24000<br />

19, 11000<br />

Damara Sequence<br />

80<br />

Black Nossob<br />

-22, 32000<br />

18, 92000<br />

Damara Sequence<br />

0 30<br />

Grunental -22, 37200<br />

18, 39400<br />

Damara Sequence<br />

110 60-108 A<br />

South Station<br />

-22, 51000<br />

18, 98000<br />

Damara Sequence<br />

30 72-76 A<br />

Witvlei ( > Gobabis)<br />

-22, 41000<br />

18, 47000<br />

Damara Sequence<br />

16 65A 33 Goblenz -20, 09900<br />

18, 14500<br />

Kalahari 800 100-450 A-B<br />

34Gochas -24, 75000<br />

1 8,<br />

74000<br />

S<strong>an</strong>ds<strong>to</strong>ne & shale<br />

( Karoo)<br />

70 130-235 A<br />

35 Grünau -27, 72000<br />

1 8,<br />

38000<br />

Gr<strong>an</strong>ite ( Namaqual<strong>an</strong>d<br />

Complex)<br />

10 58-160 B-D<br />

36Halali Kle<strong>in</strong> Halali<br />

-19, 05000<br />

1 6,<br />

49000<br />

Calcrete ( Kalahari)<br />

10 20-70 C<br />

Renosterkom -19, 09800<br />

1 6,<br />

52000<br />

Dolomite ( Damara)<br />

80 67-87 B<br />

37 Henties Bay<br />

-22, 09000<br />

1 4,<br />

29000<br />

Alluvium ( Omaruru<br />

Delta)<br />

35 32-35 A<br />

38Hochfeld -21, 49000<br />

17, 85000<br />

Damara Sequence<br />

10 46-66 A<br />

39 Kahenge -17, 68000<br />

18, 67000<br />

Kalahari 26 38-40 A<br />

40Kalkfeld -20, 89000<br />

1 6,<br />

19000<br />

Meta-sediments, gr<strong>an</strong>ite<br />

( Damara)<br />

50 19-183 A-B<br />

41 Kalkr<strong>an</strong>d -24, 25000<br />

1 7,<br />

26000<br />

Basalt ( Karoo)<br />

100 65-77 B<br />

42Kam<strong>an</strong>jab Town & Airport<br />

-19, 62000<br />

1 4,<br />

84000<br />

Intrusives, metased.<br />

( Huab<br />

Complex)<br />

34 60-100 B-D<br />

Kalkr<strong>an</strong>d -19, 64000<br />

1 4,<br />

98000<br />

Huab covered<br />

10<br />

m calcrete<br />

( Tertiary)<br />

29 100-120 B<br />

43 Karasburg -28, 00000<br />

1 8,<br />

68000<br />

Shale, dolerite<br />

( Karoo)<br />

300 27-78 B<br />

44Karibib Hä lbichsbrunn<br />

-21, 96000<br />

1 5,<br />

90000<br />

Marble ( Damara)<br />

130 80-120 B-C<br />

Spes Bona<br />

-21, 78000<br />

1 5,<br />

94000<br />

Alluvium ( Kh<strong>an</strong>)<br />

, limes<strong>to</strong>ne,<br />

shale<br />

( Damara)<br />

0 31-76<br />

45 K arstl<strong>an</strong>d<br />

Dolomite ( Otavi<br />

Group,<br />

Damara)<br />

10 B<br />

46Kayengona -17, 89000<br />

19, 88000<br />

Kalahari 140 50-60 A<br />

47 Khorixas -20, 38000<br />

1 4,<br />

96000<br />

Calcrete, dolomite<br />

( Damara)<br />

700-1. 6 31-150 B<br />

48Koes -25, 93000<br />

1 9,<br />

12000<br />

S<strong>an</strong>ds<strong>to</strong>ne ( Ecca<br />

Group,<br />

Karoo)<br />

70 43-70 B<br />

49 Koichab -26, 20000<br />

1 5,<br />

87000<br />

S<strong>an</strong>d, gravel,<br />

clay<br />

( Tertiary)<br />

600-1. 0 59-107 A<br />

50Kosis -26, 71000<br />

1 7,<br />

32000<br />

S<strong>an</strong>ds<strong>to</strong>ne, shale,<br />

limes<strong>to</strong>ne<br />

( Nama<br />

Gr.<br />

)<br />

45 60-70 A-B<br />

51 Kriess -25, 00000<br />

1 8,<br />

16000<br />

S<strong>an</strong>ds<strong>to</strong>ne ( Karoo)<br />

10 80-90 A<br />

52Kuiseb -23, 19000<br />

1 4,<br />

66000<br />

Alluvium ( Kuiseb<br />

River)<br />

5. 500<br />

15-50 A-B<br />

Dorop<br />

Rooib<strong>an</strong>k<br />

Swartb<strong>an</strong>k


No Scheme name<br />

Lat Long Geology<br />

Production<br />

3 ( Tm<br />

/ a)<br />

Depth<br />

( m)<br />

Quality<br />

class<br />

53 Kwakwas -23, 21000<br />

1 6,<br />

90000<br />

Quartzite, schist<br />

( Rehoboth<br />

Sequence)<br />

No <strong>in</strong>fo<br />

79-104 A-B<br />

54Leonardville -23, 50300<br />

1 8,<br />

79000<br />

S<strong>an</strong>ds<strong>to</strong>ne, shale<br />

( Karoo)<br />

60 188-280 A-B<br />

55 Maltahöhe -24, 81000<br />

1 6,<br />

99000<br />

Quartzite ( Nama<br />

Group)<br />

200 31-46 C<br />

56M<strong>an</strong>getti Du<strong>in</strong><br />

-19, 52000<br />

19, 73000<br />

Kalahari 40 180-197 A<br />

57 Maroelaboom -19, 25000<br />

18, 80000<br />

Kalahari 4 147 B<br />

58M'Kata -19, 50000<br />

19, 63000<br />

Kalahari 9 170 A<br />

59 Mpunguvlei -17, 67000<br />

18, 23000<br />

Kalahari 20 86-90 D<br />

60Mup<strong>in</strong>i -17, 86000<br />

19, 63000<br />

Kalahari 5 50-57 C<br />

61 Namu<strong>to</strong>ni -18, 80000<br />

17, 04000<br />

Kalahari 150 39-43 B<br />

62Nei Neis<br />

-21, 47000<br />

1 5,<br />

04000<br />

Alluvium ( Omaruru<br />

River)<br />

330 12-28 A-C<br />

63 Nkurenkuru -17, 63000<br />

18, 62000<br />

Kalahari 20 40-60<br />

64Ny<strong>an</strong>g<strong>an</strong>a -18, 02000<br />

20, 68000<br />

Kalahari 80<br />

65 Oamites -22, 98000<br />

1 7,<br />

07000<br />

Marble ( Damara)<br />

250 100-150 No<br />

<strong>in</strong>fo<br />

66Okaukuejo -19, 18000<br />

1 5,<br />

92000<br />

Kalahari ( calcrete)<br />

250 10-80 B<br />

67 Okombahe -21, 35000<br />

1 5,<br />

40000<br />

Alluvium ( Omaruru<br />

River)<br />

380 25-26 A<br />

68Okondjatu -20, 98000<br />

18, 23000<br />

Damara under<br />

Kalahari<br />

70 98-100 B<br />

69 Omatako -19, 44000<br />

19, 22000<br />

Kalahari 20 161-184 B<br />

70Omatako Dam<br />

-21, 14000<br />

1 7,<br />

17000<br />

S<strong>an</strong>ds<strong>to</strong>ne, shale<br />

( Karoo)<br />

4 55-90 B-D<br />

71 Ombika -19, 33000<br />

1 5,<br />

94000<br />

Dolomite, limes<strong>to</strong>ne<br />

( Otavi,<br />

Damara)<br />

12 20-130 B<br />

72Omdel -22, 09000<br />

1 4,<br />

29000<br />

Alluvium ( Omaruru<br />

Delta)<br />

5. 500<br />

50-100 B<br />

73 Omega -17, 89000<br />

22, 15000<br />

Kalahari 115 70-90 B<br />

74Ondekaremba -22, 48000<br />

1 7,<br />

42000<br />

Khomas schist<br />

( Damara)<br />

4 96-125 B<br />

75 Onderombapa -23, 15000<br />

1 9,<br />

56000<br />

S<strong>an</strong>ds<strong>to</strong>ne, shale<br />

( Karoo)<br />

4 93-96 A<br />

76Opuwo -18, 06000<br />

13,<br />

85000<br />

SE wellfield<br />

-18, 15000<br />

13, 95000<br />

Otavi Group,<br />

Damara<br />

25 90-120 B<br />

NWwellfield -18, 04000<br />

13, 82000<br />

Karoo ( Dwyka)<br />

/ calcrete<br />

780 56-110 C-D<br />

77 Oshivelo -18, 62000<br />

1 7,<br />

17000<br />

Kalahari ( s<strong>an</strong>d,<br />

shale)<br />

300 68-74 B<br />

78Osire -21, 08000<br />

1 7,<br />

37000<br />

Om<strong>in</strong>gonde Fm<br />

( Karoo)<br />

55 57-77 A-B<br />

79 Otavi -19, 64000<br />

1 7,<br />

35000<br />

Limes<strong>to</strong>ne, dolomite<br />

( Otavi,<br />

Damara)<br />

500 60-61 A-B<br />

80Otjimb<strong>in</strong>gwe -22, 35200<br />

1 6,<br />

13600<br />

Alluvium ( Swakop<br />

River)<br />

280 12 A-C<br />

81 Otj<strong>in</strong>ene -21, 14000<br />

18, 79000<br />

Damara under<br />

Kalahari<br />

150 63-125 A-C<br />

82Otjiwarongo -20, 46000<br />

1 6,<br />

64000<br />

Marble ( Damara)<br />

1. 800<br />

66-185 B<br />

Otjituuo -19, 44800<br />

1 8,<br />

21000<br />

Dolimite ( Berg<br />

Aukas<br />

formasie)<br />

900 85-100 A<br />

83Otjovas<strong>an</strong>du -19, 25000<br />

1 4,<br />

51000<br />

Metamorphosed lava<br />

( Khoabendus)<br />

10 61B-C 84 Ovi<strong>to</strong><strong>to</strong> -21, 91000<br />

17, 10000<br />

Damara Sequence<br />

40 32-38 B<br />

85Plessisplaas -21, 71000<br />

19, 04000<br />

Kalahari, Gamsberg<br />

gr<strong>an</strong>ite<br />

10 56-82 A<br />

86 Rietfonte<strong>in</strong> -21, 90400<br />

2 0,<br />

91800<br />

Kamtsas Fm<br />

( Damara)<br />

140 48-109 C<br />

87Rooidaghek -19, 25000<br />

19, 27000<br />

Kalahari 10 180<br />

88 Runduhek -18, 78700<br />

18, 94200<br />

Kalahari 30 250<br />

89Rupara -17, 84000<br />

19, 08000<br />

Kalahari 10 77-82 A<br />

90 Sambiu -17, 91000<br />

20, 03000<br />

Kalahari 30 60-70 A<br />

91Schlip -24, 04300<br />

1 7,<br />

13100<br />

Limes<strong>to</strong>ne, dolomite,<br />

shale<br />

( Nama)<br />

230 43-104 B<br />

92 Seeis -22, 45000<br />

1 7,<br />

62000<br />

Alluvium ( Seeis<br />

River)<br />

30 12-15 No<br />

<strong>in</strong>fo<br />

93Sesfonte<strong>in</strong> -19, 12000<br />

1 3,<br />

61000<br />

Dolomite, phyllite<br />

( Damara)<br />

20 36-51 A-B<br />

94 Spitzkoppe -21, 85000<br />

1 5,<br />

20000<br />

Gr<strong>an</strong>ite, schist<br />

( Damara)<br />

13 60-92 C-D<br />

95Stampriet -24, 34200<br />

1 8,<br />

40900<br />

S<strong>an</strong>ds<strong>to</strong>ne, shale<br />

( Karoo)<br />

60 84-101 A<br />

96 Terrace Bay<br />

-20, 18900<br />

1 3,<br />

20100<br />

Alluvium ( Uniab<br />

River)<br />

17 10-20 A-D<br />

97Tondoro -17, 77000<br />

18, 79000<br />

Kalahari 70 65-68 A<br />

98 Tses<br />

Old scheme<br />

-25, 89000<br />

1 8,<br />

11000<br />

Shale ( Dwyka,<br />

Nama<br />

Group)<br />

30 47-109 A-C<br />

New boreholes<br />

-25, 92000<br />

1 7,<br />

94000<br />

Shale ( Dwyka,<br />

Nama<br />

Group)<br />

0 57-100 B-C<br />

99Ts<strong>in</strong>tsabis -18, 78000<br />

17, 96000<br />

Kalahari 30 31-93 B<br />

100 Tsumkwe -19, 59000<br />

20, 50000<br />

Kalahari 55 20-35 A-C<br />

101 Tubussis -21, 54800<br />

1 5,<br />

46200<br />

Schist, quartzite<br />

( Damara)<br />

20 13-110 B-C<br />

102 Usakos -21, 99200<br />

15, 60100<br />

285 15-100 A-B<br />

K h<strong>an</strong><br />

River<br />

Alluvium<br />

( Kh<strong>an</strong><br />

River)<br />

Aroab River<br />

Calcrete<br />

& Onguati<br />

marble<br />

103 Warmbad -28, 44100<br />

18, 74200<br />

Namaqual<strong>an</strong>d gr<strong>an</strong>ite-gneiss<br />

complex<br />

25 107-110 C-D<br />

104 Witvlei -22, 41000<br />

1 8,<br />

50000<br />

Quartzite, limes<strong>to</strong>ne<br />

( Damara)<br />

140 31-38 B-D<br />

Municipal<br />

schemes<br />

105 W<strong>in</strong>dhoek -22, 59000<br />

17, 08000<br />

Auas quartzites<br />

2. 000<br />

77-305 A<br />

106 Omaruru -21, 41000<br />

1 5,<br />

95000<br />

Alluvium ( Omaruru<br />

River)<br />

1. 000<br />

12-16 A<br />

107 Tsumeb -19, 25000<br />

17, 71000<br />

Dolomite 2. 000<br />

130-200 A<br />

108 Outjo -20, 11000<br />

16, 16000<br />

Dolomite 800 90-100 A<br />

109 Grootfonte<strong>in</strong> -19, 56000<br />

18, 11000<br />

Dolomite 2. 000<br />

50-70 A<br />

117


118<br />

Annex 2: Selected representative boreholes<br />

Latitude Longitude WW<br />

no<br />

Depth<br />

[ m]<br />

Water<br />

level<br />

[ m bgl]<br />

Yield<br />

3 [ m / h]<br />

Water<br />

quality<br />

Aquifer<br />

host<br />

rock<br />

-17. 50013<br />

24. 35257<br />

37113 49 6 22 C Kalahari<br />

-17. 50590<br />

12. 79480<br />

33962 39 8 4 A Quartzite<br />

-17. 56111<br />

16. 35397<br />

37070 259 20 18 C Kalahari<br />

( Very<br />

Deep<br />

Aquifer)<br />

-17. 60965<br />

12. 94160<br />

36681 74 - 0 - Gneiss<br />

-17. 64612<br />

24. 16922<br />

36622 70 1419 C Kalahari<br />

-17. 68162<br />

24. 46502<br />

37111 39 4 22 C Kalahari<br />

-17. 69023<br />

23. 42113<br />

36479 68 2419 A Kalahari<br />

-17. 70410<br />

12. 75600<br />

33963 59 17 1 A Gneiss<br />

-17. 70710<br />

24. 03052<br />

36451 69 2311 B Kalahari<br />

-17. 78010<br />

16. 84440<br />

36867 200 55 13 A Kalahari<br />

-17. 82223<br />

23. 39272<br />

36502 61 319 A Kalahari<br />

-17. 85707<br />

23. 71302<br />

36543 73 16 10 B Kalahari<br />

-17. 88680<br />

15. 95620<br />

9124 668 - 10 - Kalahari,<br />

Karoo<br />

-17. 88735<br />

24. 19542<br />

36575 27 9 - B Kalahari<br />

-17. 89303<br />

18. 28392<br />

39962 101 - 1 - Kalahari<br />

-17. 95050<br />

23. 47782<br />

36529 76 29 - B Kalahari<br />

-17. 97130<br />

13. 85610<br />

33969 70 163 B Shale<br />

-17. 97300<br />

14. 02870<br />

33964 71 40 - A Dolomite<br />

-17. 98600<br />

13. 81840<br />

33958 104 - 0 - Shale<br />

-17. 99600<br />

13. 65900<br />

33959 108 23 3 A Shale<br />

-18. 06190<br />

12. 76660<br />

33972 103 - 0 - Quartzite,<br />

shale<br />

-18. 08562<br />

23. 37620<br />

36540 59 7 - B Kalahari<br />

-18. 20398<br />

19. 48798<br />

39964 72 - 22 - Kalahari<br />

-18. 24922<br />

21. 03687<br />

39961 81 - 13 - Kalahari<br />

-18. 26565<br />

19. 92525<br />

39966 70 - 13 - Kalahari<br />

-18. 34710<br />

16. 56610<br />

8191 101 15 10 D Kalahari<br />

-18. 35210<br />

13. 89570<br />

33966 70 387 A Dolomite<br />

-18. 36967<br />

19. 10807<br />

39965 120 - 4 - Kalahari<br />

-18. 43290<br />

13. 93950<br />

33967 100 62 1 A Silts<strong>to</strong>ne<br />

-18. 52083<br />

16. 77250<br />

2731 244 Artesi<strong>an</strong> 100 D Kalahari<br />

( Oshivelo<br />

Artesi<strong>an</strong><br />

Aquifer)<br />

-18. 58667<br />

14. 25833<br />

36680 121 3 4 A Calcrete,<br />

muds<strong>to</strong>ne,<br />

s<strong>an</strong>ds<strong>to</strong>ne<br />

-18. 77930<br />

12. 94510<br />

33975 15 7 26 - Gneiss<br />

-18. 97460<br />

14. 15555<br />

35489 56 317 A Calcrete,<br />

clay<br />

-18. 97460<br />

14. 15555<br />

35490 154 32 15 A Calcrete,<br />

clay,<br />

shale<br />

-18. 99536<br />

17. 60146<br />

39980 398 11 2 B Shale,<br />

muds<strong>to</strong>ne<br />

( Karoo<br />

sequence)<br />

-18. 99643<br />

16. 40460<br />

9581 32 Artesi<strong>an</strong> 8 D Dolomite<br />

( Tsumeb<br />

Subgroup)<br />

-19. 01942<br />

14. 47157<br />

35827 101 13 150 B Dolomite<br />

( Abenab<br />

Subgroup)<br />

-19. 08487<br />

14. 04905<br />

35491 183 56 11 A Calcrete,<br />

clay,<br />

shale<br />

-19. 10972<br />

15. 21255<br />

37229 63 11- B Kalahari<br />

( Limes<strong>to</strong>ne<br />

of<br />

Unconf<strong>in</strong>ed<br />

Kalahari<br />

Aquifer)<br />

-19. 21389<br />

16. 05861<br />

3617 46 15 - C Kalahari<br />

( Limes<strong>to</strong>ne<br />

of<br />

Unconf<strong>in</strong>ed<br />

Kalahari<br />

Aquifer)<br />

-19. 30245<br />

18. 07460<br />

40000 400 66 25 B Dolomite,<br />

limes<strong>to</strong>ne<br />

( Abenab<br />

subgroup)<br />

-19. 33841<br />

17. 18271<br />

39984 335 12 12 B Quartzite,<br />

shale<br />

( Mulden<br />

group)<br />

-19. 38713<br />

14. 57475<br />

37180 63 32- B Khoabendus<br />

Formation<br />

-19. 41740<br />

17. 61896<br />

39991 140 53 1 B Quartzite<br />

( Nosib<br />

formation)<br />

-19. 41843<br />

17. 88354<br />

39972 85 372 B Gneiss<br />

( Grootfonte<strong>in</strong><br />

basement<br />

complex)<br />

-19. 52147<br />

14. 36407<br />

4245 49 37 3 D Gneiss<br />

-19. 99097<br />

19. 73580<br />

39967 117 - 23 - Kalahari<br />

-20. 02960<br />

18. 19470<br />

37741 462 33 33 B Kalahari<br />

-20. 13264<br />

20. 14354<br />

39913 225 138 0 - Kalahari<br />

-20. 15293<br />

20. 79700<br />

39909 201 7 1 B Dolomite<br />

-20. 15900<br />

16. 89290<br />

30643 78 5 144 A Marble<br />

-20. 16322<br />

14. 85734<br />

7647 31 5 8 C Gneiss


Latitude Longitude WW<br />

no<br />

Depth<br />

[ m]<br />

Water<br />

level<br />

[ m bgl]<br />

Yield<br />

3 [ m / h]<br />

Water<br />

quality<br />

Aquifer<br />

host<br />

rock<br />

-20. 21846<br />

14. 07537<br />

20020 58 6 2 B Basalt<br />

-20. 25040<br />

16. 76110<br />

29494 102 36 36 A Marble<br />

-20. 34668<br />

14. 46168<br />

39938 34 23- D Gneiss<br />

-20. 36964<br />

15. 11598<br />

30815 95 11 0 C Schist<br />

-20. 46185<br />

20. 78952<br />

39912 157 120 5 B Calcrete,<br />

dolomite<br />

-20. 53340<br />

17. 36987<br />

39910 171 - 0 - Clay,<br />

siltsone,<br />

muds<strong>to</strong>ne,<br />

schist<br />

-20. 54140<br />

14. 49924<br />

6393 33 225 D Gr<strong>an</strong>ite<br />

-20. 67605<br />

20. 81943<br />

39907 165 144 1 - Kalahari<br />

-20. 87434<br />

19. 13697<br />

39979 201 - 0 - S<strong>an</strong>ds<strong>to</strong>ne,<br />

marble<br />

-20. 94361<br />

17. 43833<br />

34684 120 75 2 A S<strong>an</strong>ds<strong>to</strong>ne<br />

-21. 79917<br />

18. 87472<br />

35206 102 1 100 A Kalahari,<br />

quartzite<br />

( Eskadron)<br />

-21. 82020<br />

15. 56140<br />

22159 27 7 8 A Alluvium<br />

of<br />

Kh<strong>an</strong><br />

River<br />

with<br />

bedrock<br />

of<br />

gr<strong>an</strong>ite,<br />

schist<br />

-21. 83023<br />

20. 47874<br />

39906 201 - 0 A Quartzite<br />

-21. 91410<br />

14. 46020<br />

22194 100 28 70 A Alluvium<br />

of<br />

Omaruru<br />

Delta<br />

-22. 08480<br />

19. 89810<br />

39905 177 - 0 A Kalahari<br />

-22. 14333<br />

19. 07555<br />

35224 120 23 34 A Kalahari,<br />

quartzite<br />

-22. 15358<br />

17. 11150<br />

39908 99 6 1 C Schist<br />

-22. 19138<br />

19. 04306<br />

35229 102 24 82 A Kalahari,<br />

quartzite<br />

-22. 28778<br />

19. 22778<br />

35203 108 26 68 A Quartzite<br />

-22. 36806<br />

19. 05222<br />

35215 102 22 39 A Quartzite<br />

-23. 25415<br />

18. 98668<br />

39839 256 58 8 - S<strong>an</strong>ds<strong>to</strong>ne<br />

( Auob<br />

member)<br />

-23. 34070<br />

14. 77480<br />

20146 33 10 74 A Alluvium<br />

of<br />

Kuiseb<br />

River<br />

-23. 40049<br />

19. 62557<br />

39846 204 59 20 C S<strong>an</strong>ds<strong>to</strong>ne<br />

( Auob<br />

member)<br />

-23. 40098<br />

19. 62489<br />

39845 53 45 0 - Basalt<br />

( Kalkr<strong>an</strong>d<br />

basalt)<br />

-23. 40105<br />

19. 62621<br />

39847 356 10 12 - S<strong>an</strong>ds<strong>to</strong>ne<br />

( Nossob<br />

member)<br />

-23. 64747<br />

18. 38873<br />

39840 131 17 3 A S<strong>an</strong>ds<strong>to</strong>ne<br />

( Auob<br />

member)<br />

-23. 64808<br />

18. 38871<br />

39841 209 7 3 - S<strong>an</strong>ds<strong>to</strong>ne<br />

( Nossob<br />

member)<br />

-23. 88778<br />

18. 03833<br />

34572 39 13 34 A Basalt<br />

-23. 92722<br />

18. 04667<br />

34534 54 3 6 A Basalt<br />

-23. 96917<br />

18. 03944<br />

34569 44 6 8 A Basalt<br />

-24. 00194<br />

18. 21500<br />

39857 141 2 45 A S<strong>an</strong>ds<strong>to</strong>ne<br />

( Auob<br />

member)<br />

-24. 04592<br />

18. 79340<br />

39842 102 19 2 - Calcrete<br />

( Rietmond<br />

formation)<br />

-24. 04792<br />

18. 79312<br />

39843 253 16 20 A S<strong>an</strong>ds<strong>to</strong>ne<br />

( Auob<br />

member)<br />

-24. 04858<br />

18. 79614<br />

39844 409 Artesi<strong>an</strong> 0 A S<strong>an</strong>ds<strong>to</strong>ne<br />

( Nossob<br />

member)<br />

-24. 32842<br />

18. 39794<br />

39848 187 Artesi<strong>an</strong> 1 - S<strong>an</strong>ds<strong>to</strong>ne<br />

( Nossob<br />

member)<br />

-24. 79963<br />

19. 33457<br />

39851 385 Artesi<strong>an</strong> - - S<strong>an</strong>ds<strong>to</strong>ne<br />

( Nossob<br />

member)<br />

-24. 80009<br />

19. 33483<br />

39849 169 102 3 - Kalahari<br />

-24. 80059<br />

19. 33520<br />

39850 273 104 4 B S<strong>an</strong>ds<strong>to</strong>ne<br />

( Auob<br />

member)<br />

-25. 00056<br />

17. 85667<br />

33749 50 2 10 D Carbonaceous<br />

shale<br />

-25. 09250<br />

17. 50889<br />

34260 90 45 6 A S<strong>an</strong>ds<strong>to</strong>ne<br />

-25. 19530<br />

17. 35000<br />

33761 154 130 1 B S<strong>an</strong>ds<strong>to</strong>ne<br />

-25. 29117<br />

18. 41650<br />

39853 250 22 0 - S<strong>an</strong>ds<strong>to</strong>ne<br />

( Nossob<br />

member)<br />

-25. 29163<br />

18. 41678<br />

39852 55 107 - Kalahari<br />

-25. 34940<br />

17. 68970<br />

33784 86 12 4 A S<strong>an</strong>ds<strong>to</strong>ne<br />

-25. 45174<br />

19. 43373<br />

39855 250 172 - D S<strong>an</strong>ds<strong>to</strong>ne<br />

( Auob<br />

member)<br />

-25. 46028<br />

19. 42444<br />

39854 129 60 0 C Kalahari<br />

-25. 46148<br />

19. 43324<br />

39856 346 20 - D S<strong>an</strong>ds<strong>to</strong>ne<br />

( Nossob<br />

member)<br />

-25. 48000<br />

17. 48972<br />

34692 50 16 - A S<strong>an</strong>ds<strong>to</strong>ne<br />

-25. 51722<br />

17. 53556<br />

34695 93 371 B S<strong>an</strong>ds<strong>to</strong>ne<br />

-25. 73417<br />

17. 39611<br />

33739 250 192 1 B S<strong>an</strong>ds<strong>to</strong>ne<br />

-26. 21889<br />

18. 81250<br />

34682 44 9 9 A S<strong>an</strong>ds<strong>to</strong>ne<br />

-26. 33420<br />

17. 44670<br />

33742 250 209 1 B S<strong>an</strong>ds<strong>to</strong>ne<br />

119


120<br />

Annex 3: Irrigation schemes us<strong>in</strong>g groundwater<br />

Scheme Name<br />

Latitude Longitude<br />

Cons.<br />

/ Ha<br />

3 ( m / a)<br />

1999<br />

3 ( Mm<br />

/ a)<br />

Bas<strong>in</strong> Ma<strong>in</strong><br />

crops<br />

Aalborg -19. 15<br />

17. 85<br />

15000 0. 0450<br />

Cuvelai Vegetables<br />

Abenab -19. 29<br />

18. 09<br />

9000 0. 1800<br />

Cuvelai Maize<br />

Adri<strong>an</strong>ople -24. 32<br />

19. 39<br />

15000 0. 0900<br />

Nossob<br />

A'h<strong>in</strong>gas -25. 39<br />

18. 63<br />

18000 0. 0000<br />

Auob<br />

Ai-ais -23. 10<br />

18. 68<br />

15000 0. 0300<br />

Nossob<br />

Areams -23. 86<br />

19. 05<br />

17908 0. 0537<br />

Nossob Lucerne<br />

Awadoab -24. 00<br />

18. 95<br />

15000 0. 0450<br />

Nossob<br />

Badenhorst -23. 36<br />

18. 70<br />

15000 0. 0600<br />

Nossob<br />

Berg Aukas<br />

-19. 51<br />

18. 26<br />

15000 0. 1200<br />

Omatako Vegetables<br />

Bernafay -24. 61<br />

18. 55<br />

20000 0. 2000<br />

Auob Vegetables,<br />

citrus<br />

Blakeway -22. 64<br />

14. 67<br />

20000 0. 0200<br />

Swakop<br />

Boomplaas -24. 56<br />

18. 53<br />

15000 0. 1500<br />

Auob Maize,<br />

lucerne<br />

Cleopatra -24. 09<br />

19. 07<br />

14086 0. 0563<br />

Nossob Lucerne<br />

Dawn -19. 50<br />

18. 10<br />

15000 0. 0150<br />

Omatako Vegetables<br />

DeDu<strong>in</strong>en -24. 59<br />

18. 45<br />

15000 0. 0750<br />

Auob<br />

De Jager<br />

-23. 21<br />

18. 74<br />

15000 0. 0450<br />

Nossob<br />

Die Vlakte<br />

-19. 47<br />

14. 89<br />

10000 0. 0300<br />

Huab Vegetables<br />

Dobb<strong>in</strong> -24. 29<br />

18. 50<br />

27138 0. 5428<br />

Auob Vegetables,<br />

melons<br />

Donnersberg -23. 19<br />

18. 65<br />

25629 0. 0769<br />

Nossob Lucerne<br />

Drimiopsis -22. 09<br />

19. 06<br />

10000 0. 0400<br />

Nossob Vegetables<br />

Eahero -21. 45<br />

17. 95<br />

10000 0. 1000<br />

Omatako Vegetables<br />

Eendrag -21. 27<br />

17. 82<br />

10000 0. 0900<br />

Omatako Maize,<br />

vegetables<br />

Eersbeg<strong>in</strong> -20. 14<br />

14. 52<br />

12000 0. 3600<br />

Huab Dates<br />

Eerstbeg<strong>in</strong> -24. 36<br />

18. 58<br />

20299 0. 0609<br />

Auob Vegetables,<br />

prickly<br />

pears<br />

Eirup -24. 22<br />

18. 41<br />

22260 0. 1336<br />

Auob Citrus,<br />

lucerne<br />

Excelsior -19. 01<br />

17. 94<br />

10000 0. 0700<br />

Cuvelai Vegetables,<br />

maize<br />

Fricourt -24. 55<br />

18. 66<br />

14858 0. 2972<br />

Auob Lucerne,<br />

table<br />

grapes<br />

Friedrichsruhe -19. 16<br />

17. 81<br />

7603 0. 2281<br />

Cuvelai Maize<br />

Gabis -28. 28<br />

18. 57<br />

18000 0. 0180<br />

Or<strong>an</strong>ge Fodder,<br />

vegetables<br />

Ga<strong>in</strong>atseb -20. 29<br />

15. 23<br />

15000 0. 0750<br />

Huab Citrus<br />

Galenbeck -24. 16<br />

18. 13<br />

18000 0. 0000<br />

Auob<br />

Gal<strong>to</strong>n -23. 32<br />

18. 68<br />

15000 0. 0450<br />

Nossob<br />

Ge<strong>in</strong>kous -23. 40<br />

18. 71<br />

15000 0. 0450<br />

Nossob<br />

Georgia -23. 29<br />

18. 66<br />

24000 0. 0240<br />

Nossob Lucerne<br />

Glave -24. 18<br />

18. 65<br />

28290 0. 4244<br />

Auob Table<br />

grapes<br />

Go<strong>an</strong>ikontes no<br />

28/<br />

b<br />

-22. 67<br />

14. 84<br />

9840 0. 0492<br />

Swakop Dates,<br />

lucerne,<br />

fodder<br />

Go<strong>an</strong>ikontes Oos<br />

no<br />

59<br />

-22. 67<br />

14. 82<br />

8000 0. 0240<br />

Swakop Dates,<br />

lucerne,<br />

prickly<br />

pears,<br />

asparagus,<br />

fodder<br />

Gross Nabas<br />

-24. 50<br />

18. 55<br />

29531 0. 1772<br />

Auob Vegetables,<br />

melons<br />

Gu<strong>in</strong>as ( Henn<strong>in</strong>g<br />

Farm)<br />

-19. 25<br />

17. 39<br />

15000 0. 4500<br />

Cuvelai Maize,<br />

wheat,<br />

cot<strong>to</strong>n<br />

Gu<strong>in</strong>as vlei<br />

( Erasmus<br />

Farm)<br />

-19. 24<br />

17. 23<br />

15000 0. 0300<br />

Cuvelai Vegetables<br />

Gunchab -24. 15<br />

18. 56<br />

13200 0. 0792<br />

Auob<br />

Hartebeesteich Noord<br />

-21. 38<br />

17. 86<br />

10000 0. 0150<br />

Omatako Vegetables<br />

Hartebeesteich Suid<br />

-21. 43<br />

17. 87<br />

12000 0. 0600<br />

Omatako Olives<br />

Hartebeestloop -24. 36<br />

18. 75<br />

7577 0. 0379<br />

Auob<br />

Heidelberg -19. 09<br />

17. 75<br />

10754 0. 1613<br />

Cuvelai<br />

Hiebis Ost<br />

-19. 09<br />

17. 81<br />

15000 0. 0900<br />

Cuvelai Vegetables,<br />

citrus<br />

Hoagosgeis -23. 79<br />

18. 95<br />

15000 0. 0450<br />

Nossob Lucerne<br />

Hoogenhout -24. 37<br />

18. 36<br />

24000 0. 0960<br />

Auob Lucerne,<br />

table<br />

grapes<br />

Huttenhof -19. 48<br />

17. 19<br />

8073 0. 2826<br />

Cuvelai Maize<br />

Imkerhof -21. 23<br />

17. 74<br />

10000 0. 1000<br />

Omatako Cot<strong>to</strong>n<br />

Kameelboom -24. 25<br />

18. 73<br />

12108 0. 0726<br />

Auob Maize<br />

Kameelpoort -23. 29<br />

18. 79<br />

15000 0. 0450<br />

Nossob<br />

Kle<strong>in</strong> Birkenfels<br />

-22. 64<br />

14. 75<br />

18000 0. 0000<br />

Swakop<br />

Kle<strong>in</strong> Hutte<br />

-24. 59<br />

18. 69<br />

18000 0. 0180<br />

Auob Lucerne,<br />

oats,<br />

seet<br />

pota<strong>to</strong>es<br />

Kle<strong>in</strong> Nabas<br />

West<br />

-24. 55<br />

18. 49<br />

18000 0. 2880<br />

Auob Lucerne,<br />

maize<br />

Kombat -19. 76<br />

17. 68<br />

15000 1. 5000<br />

Ugab Maize,<br />

wheat<br />

Kosis -25. 01<br />

17. 34<br />

18000 0. 0063<br />

Fish Fodder,<br />

vegetables<br />

Kowarib -19. 26<br />

13. 75<br />

4778 0. 0860<br />

Ho<strong>an</strong>ib Wheat,<br />

maize,<br />

tabacco,<br />

citrus<br />

Kristall -21. 45<br />

16. 01<br />

20000 0. 1000<br />

Omaruru V<strong>in</strong>eyard,<br />

asparagus<br />

L<strong>an</strong>gverwacht -25. 02<br />

18. 52<br />

15000 0. 0450<br />

Auob<br />

Lidfonte<strong>in</strong> -24. 07<br />

18. 25<br />

18000 0. 0000<br />

Auob<br />

Ludwigshaven -19. 15<br />

17. 78<br />

20000 2. 4000<br />

Cuvelai Maize,<br />

vegetables,<br />

citrus<br />

Maitl<strong>an</strong>d -21. 31<br />

17. 75<br />

10000 0. 0500<br />

Omatako Vegetables<br />

M<strong>an</strong>getti Dune<br />

( Tsumkwe)<br />

-18. 50<br />

17. 66<br />

10000 0. 0500<br />

Cuvelai Vegetables


Scheme Name<br />

Latitude Longitude<br />

Cons.<br />

/ Ha<br />

3 ( m / a)<br />

1999<br />

3 ( Mm<br />

/ a)<br />

Bas<strong>in</strong> Ma<strong>in</strong><br />

crops<br />

M<strong>an</strong>nheim farms<br />

<strong>an</strong>d<br />

plots<br />

-19. 15<br />

17. 74<br />

20000 3. 0000<br />

Cuvelai Maize,<br />

wheat,<br />

lucerne,<br />

citrus,<br />

vegetables<br />

Mara ( Halifax)<br />

-24. 81<br />

16. 69<br />

10000 0. 0500<br />

Fish Vegetables<br />

Middelplaats -24. 34<br />

18. 67<br />

24529 0. 5396<br />

Auob Vegetables,<br />

maize,<br />

melons<br />

Nabas Ost<br />

-24. 50<br />

18. 66<br />

24000 0. 4800<br />

Auob Lucerne<br />

Nad<strong>in</strong>e -22. 65<br />

14. 70<br />

18000 0. 0000<br />

Swakop<br />

Namat<strong>an</strong>ga -18. 31<br />

14. 44<br />

10000 0. 0500<br />

Cuvelai Vegetables<br />

Noas<strong>an</strong>abis -23. 46<br />

18. 82<br />

18000 0. 0180<br />

Nossob Lucerne,<br />

vegetables<br />

Nunib -24. 20<br />

18. 57<br />

11024 0. 1764<br />

Auob Maize,<br />

wheat<br />

Nuwe Coenbritz<br />

-23. 87<br />

18. 88<br />

7256 0. 0218<br />

Nossob Lucerne,<br />

vegetables<br />

Nuwe M<strong>an</strong>ie<br />

-23. 83<br />

19. 00<br />

18487 0. 0555<br />

Nossob Lucerne<br />

O<strong>an</strong>ob river<br />

plots<br />

( Rehoboth)<br />

-23. 33<br />

17. 11<br />

O<strong>an</strong>ob<br />

Okamahapu -21. 53<br />

17. 71<br />

10000 0. 1000<br />

Omatako Vegetables<br />

Okaokasjoti -21. 40<br />

16. 03<br />

10000 0. 1200<br />

Omaruru Vegetables<br />

Okongeama -21. 56<br />

17. 94<br />

12000 0. 0240<br />

Omatako Olives<br />

Okoronyama -21. 32<br />

16. 09<br />

10000 0. 0200<br />

Omaruru Fodder<br />

Olif<strong>an</strong>ts fonte<strong>in</strong><br />

-19. 45<br />

18. 02<br />

20000 0. 0000<br />

Omatako Vegetables,<br />

citrus<br />

Omatako Dam<br />

( Mcloud)<br />

-21. 05<br />

16. 95<br />

24000 0. 4800<br />

Omatako Lucerne<br />

Omup<strong>an</strong>da -21. 49<br />

17. 96<br />

22000 0. 0220<br />

Omatako Citrus<br />

Orab -24. 74<br />

17. 91<br />

15000 0. 0750<br />

Fish<br />

Osterode Nord<br />

-24. 40<br />

18. 42<br />

24025 0. 3604<br />

Auob Lucerne,<br />

maize,<br />

vegetables,<br />

melon<br />

Osterode Sud<br />

-24. 42<br />

18. 47<br />

21782 0. 2178<br />

Auob Lucerne,<br />

vegetables<br />

Otavi Farm<br />

-19. 68<br />

17. 39<br />

12000 0. 3600<br />

Ugab Maize,<br />

wheat<br />

Otavi Fonte<strong>in</strong><br />

-19. 67<br />

17. 43<br />

10160 0. 2032<br />

Ugab Vegetables,<br />

citrus<br />

Otjozondu Oos<br />

-21. 26<br />

17. 89<br />

10000 0. 0100<br />

Omatako Vegetables<br />

Outjo farms<br />

-20. 14<br />

16. 25<br />

15000 0. 6900<br />

Ugab Vegetables<br />

Palmenhorst -22. 69<br />

14. 90<br />

18000 0. 0000<br />

Swakop<br />

Portion 11<br />

of<br />

Omburo<br />

-21. 27<br />

16. 20<br />

9550 0. 0955<br />

Omaruru Fodder<br />

Portion 3 of<br />

Omburo<br />

-21. 29<br />

16. 17<br />

12000 0. 0720<br />

Omaruru<br />

Portion 6 & 9 Okoronyama<br />

-21. 32<br />

16. 11<br />

12512 0. 3754<br />

Omaruru Lucerne,<br />

citrus<br />

Portion c of<br />

Kakombo<br />

-21. 36<br />

15. 98<br />

11740 0. 0117<br />

Omaruru Citrus,<br />

vegetables<br />

RCMission Am<strong>in</strong>uis<br />

-23. 69<br />

19. 44<br />

10000 0. 0300<br />

Nossob<br />

RC Mission<br />

Waldfrieden<br />

-21. 39<br />

16. 10<br />

18000 0. 0360<br />

Omaruru Vegetables,<br />

lucerne<br />

Rema<strong>in</strong>der of<br />

Omburo<br />

-21. 24<br />

16. 24<br />

20675 0. 0827<br />

Omaruru Lucerne<br />

Richthoven -22. 64<br />

14. 71<br />

15000 0. 0450<br />

Swakop Asparagus<br />

Rietfonte<strong>in</strong> Farm<br />

-19. 79<br />

17. 78<br />

20000 1. 6600<br />

Omatako Maize,<br />

lucerne<br />

Röss<strong>in</strong>g Ur<strong>an</strong>ium<br />

-22. 51<br />

15. 06<br />

24781 0. 2974<br />

Swakop Asparagus,<br />

vegetables<br />

Ruhleben -22. 64<br />

14. 69<br />

20333 0. 0610<br />

Swakop<br />

Schifloodage -24. 63<br />

18. 71<br />

15000 0. 0150<br />

Auob Lucerne,<br />

prickley<br />

pears,<br />

vegetables<br />

Schurfpenz -24. 21<br />

18. 27<br />

18000 0. 0000<br />

Auob<br />

Scott -19. 09<br />

17. 87<br />

15000 0. 1800<br />

Cuvelai Vegetables,<br />

citrus<br />

Sesfonte<strong>in</strong> -19. 15<br />

13. 59<br />

12000 0. 3600<br />

Ho<strong>an</strong>ib Wheat,<br />

maize,<br />

tabacco,<br />

citrus<br />

Skoonheid -21. 54<br />

19. 15<br />

10000 0.<br />

0200<br />

Okav<strong>an</strong>go<br />

Delta<br />

Vegetables<br />

Sommerville -23. 73<br />

18. 94<br />

10000 0. 0500<br />

Nossob Maize,<br />

vegetables<br />

Spes Bona<br />

-21. 35<br />

18. 13<br />

22000 0. 0880<br />

Omatako Citrus<br />

Sponholz -24. 65<br />

18. 53<br />

23270 0. 1164<br />

Auob Lucerne<br />

Stampriet -24. 32<br />

18. 42<br />

25000 2. 0000<br />

Auob Table<br />

grapes,<br />

vegetables,<br />

lucerne,<br />

melons<br />

Swakopaue -22. 64<br />

14. 63<br />

9200 0. 0046<br />

Swakop<br />

Swartmodder -24. 31<br />

18. 19<br />

18000 0. 0000<br />

Auob<br />

T<strong>an</strong>nenhof -22. 64<br />

14. 72<br />

18000 0. 0000<br />

Swakop<br />

Three Sisters<br />

-22. 65<br />

14. 69<br />

24000 0. 1200<br />

Swakop Lucerne<br />

Toekoms -24. 02<br />

18. 88<br />

18000 0. 0180<br />

Nossob Lucerne,<br />

prickley<br />

pears,<br />

vegetables<br />

Tsumeb <strong>to</strong>wn<br />

<strong>an</strong>d<br />

<strong>to</strong>wnl<strong>an</strong>ds<br />

-19. 26<br />

17. 71<br />

24000 4. 8000<br />

Cuvelai Lucerne<br />

Uitkomst<br />

no<br />

78<br />

( Floodeischm<strong>an</strong>n)<br />

-22. 64<br />

14. 65<br />

24000 0. 1920<br />

Swakop Lucerne<br />

Urikuribus -24. 73<br />

18. 80<br />

18000 0. 0000<br />

Auob<br />

Vaalb<strong>an</strong>k -23. 93<br />

18. 87<br />

18000 0. 0000<br />

Nossob<br />

Virg<strong>in</strong>ia -23. 24<br />

18. 65<br />

24000 0. 0240<br />

Nossob Lucerne<br />

Walroda -19. 39<br />

17. 47<br />

15000 0. 0300<br />

Ugab Vegetables<br />

Warmquelle/ Ongongo<br />

-19. 17<br />

13. 81<br />

12000 0. 1920<br />

Ho<strong>an</strong>ib Wheat,<br />

maize,<br />

<strong>to</strong>bacco,<br />

citrus<br />

Welgevonde -23. 97<br />

18. 88<br />

6080 0. 0304<br />

Nossob Lucerne,<br />

vegetables<br />

Westfalen -23. 66<br />

18. 02<br />

20000 0. 1600<br />

Auob Citrus,<br />

vegetables<br />

Witkr<strong>an</strong>z -24. 44<br />

18. 53<br />

8000 0. 0560<br />

Auob Lucerne,<br />

vegetables,<br />

cot<strong>to</strong>n,<br />

maize<br />

Wolfputz -23. 91<br />

18. 12<br />

18000 0. 0000<br />

Auob<br />

121


122<br />

Annex 4: Comparison of selected guidel<strong>in</strong>e values for dr<strong>in</strong>k<strong>in</strong>g water quality<br />

Parameter<br />

<strong>an</strong>d<br />

Expression<br />

of<br />

<strong>the</strong><br />

results<br />

Proposed<br />

WHO<br />

Council<br />

Guidel<strong>in</strong>es<br />

Directive<br />

for<br />

of<br />

28<br />

Dr<strong>in</strong>k<strong>in</strong>g-<br />

April<br />

Water<br />

1995<br />

Quality<br />

( 95/<br />

C/<br />

13-<br />

2nd<br />

edition<br />

1/<br />

03)<br />

1993<br />

EEC<br />

Guidel<strong>in</strong>e<br />

Proposed<br />

Value<br />

Parameter<br />

( GV)<br />

Value<br />

Council<br />

Directive<br />

of<br />

15<br />

July<br />

1980<br />

relat<strong>in</strong>g<br />

<strong>to</strong><br />

<strong>the</strong><br />

quality<br />

<strong>in</strong>tended<br />

for<br />

hum<strong>an</strong><br />

consumption<br />

80/<br />

778/<br />

EEC<br />

Guide<br />

Level<br />

( GL)<br />

Maximum<br />

Admissible<br />

Concentration<br />

( MAC)<br />

U.<br />

S.<br />

EPA<br />

Dr<strong>in</strong>k<strong>in</strong>g<br />

Water<br />

St<strong>an</strong>dards<br />

<strong>an</strong>d<br />

Health<br />

Advisories<br />

Table<br />

December<br />

1995<br />

<strong>Namibia</strong>,<br />

Department<br />

of<br />

Water<br />

Affairs<br />

Guidel<strong>in</strong>es<br />

for<br />

<strong>the</strong><br />

evaluation<br />

of<br />

dr<strong>in</strong>k<strong>in</strong>g-water<br />

for<br />

hum<strong>an</strong><br />

consumption<br />

with<br />

reference<br />

<strong>to</strong><br />

chemical,<br />

physical<br />

<strong>an</strong>d<br />

bacteriological<br />

quality<br />

July<br />

1991<br />

Maximum<br />

Group<br />

C<br />

Group<br />

A Group<br />

B<br />

Contam<strong>in</strong><strong>an</strong>t<br />

Low<br />

Group<br />

D<br />

Excellent<br />

Good<br />

Level<br />

Health<br />

Unsuitable<br />

Quality<br />

Quality<br />

( MCL)<br />

Risk<br />

Temperature t ° C - - 12 25 - - - - -<br />

Hydrogen<br />

ion<br />

concentration<br />

pH, 25°<br />

C - R < 8.<br />

0<br />

6.<br />

5 <strong>to</strong><br />

9.<br />

5<br />

6.<br />

5 <strong>to</strong><br />

8.<br />

5<br />

10 - 6. 0 <strong>to</strong><br />

9.<br />

0 5. 5 <strong>to</strong><br />

9.<br />

5 4.<br />

0 <strong>to</strong><br />

11.<br />

0<br />

< 4.<br />

0 <strong>to</strong><br />

> 11.<br />

0<br />

Electronic conductivity<br />

EC, 25°<br />

C mS/ m - 280 45 - - 150 300 400 > 400<br />

Total dissolved<br />

solids<br />

TDS mg/ l R 1000 - - 1500 - - - - -<br />

Total Hardness<br />

CaCO mg/ l - - - - - 300 650 1300 > 1300<br />

3<br />

Alum<strong>in</strong>ium Al µ g/<br />

l R 200 200 50 200 S 50-200 150 500 1000 > 1000<br />

Ammonia H<br />

+ N g/<br />

l<br />

4<br />

m R 1. 5 0. 5 0. 05<br />

0. 5<br />

- 1. 5 2. 5 5. 0 > 5.<br />

0<br />

N mg/ l 1, 0<br />

0. 04<br />

0. 4<br />

- 1. 0 2. 0 4. 0 > 4.<br />

0<br />

Antimony Sb µ g/<br />

l P 5 3 - 10 C 6 50 100 200 > 200<br />

Arsenic As µ g/<br />

l P 10 10 - 50 C 50 100 300 600 > 600<br />

Barium Ba µ g/<br />

l 700 - 100 - C 2000 500 1000 2000 > 2000<br />

Beryllium Be µ g/<br />

l - - - - C 4 2 5 10 > 10<br />

Bismuth Bi µ g/<br />

l - - - - - 250 500 1000 > 1000<br />

Boron B µ g/<br />

l 300 300 1000 - - 500 2000 4000 > 4000<br />

Bromate rO<br />

- B g/<br />

l<br />

3<br />

µ - 10 - - P 10 - - - -<br />

Brom<strong>in</strong>e Br µ g/<br />

l - - - - - 1000 3000 6000 > 6000<br />

Cadmium Cd µ g/<br />

l 3 5 - 5 C 5 10 20 40 > 40<br />

Calcium<br />

Ca<br />

aCO<br />

C 3<br />

mg/ l - - 100 - - 150 200 400 > 400<br />

mg/ l - - 250 - - 375 500 1000 > 1000<br />

Cerium Ce µ g/<br />

l - - - - - 1000 2000 4000 > 4000<br />

Chloride Cl- mg/ l R 250 - 25 - S 250 250 600 1200 > 1200<br />

Chromium Cr µ g/<br />

l P 50 50 - 50 C 100 100 200 400 > 400<br />

Cobalt Co µ g/<br />

l - - - - - 250 500 1000 > 1000<br />

Copper<br />

Cu<br />

1 after 12<br />

hours<br />

<strong>in</strong><br />

pipe<br />

µ g/<br />

l P 2000 2 100 - C TT# # 500 1000 2000 > 2000<br />

1 µ g/<br />

l - - 3000 - S 1000 - - - -<br />

Cy<strong>an</strong>ide CN- µ g/<br />

l 70 50 - 50 C 200 200 300 600 > 600<br />

Fluoride F- mg/ l 1. 5 1. 5 - at 8 <strong>to</strong><br />

12<br />

° C:<br />

1.<br />

5 C 4 1. 5 2. 0 3. 0 > 3.<br />

0<br />

mg/ l - - - at 25<br />

<strong>to</strong><br />

30<br />

° C:<br />

0.<br />

7 P, S 2 - - - -<br />

Gold Au µ g/<br />

l - - - - - 2 5 10 > 10<br />

Hydrogen sulphide<br />

H S µ g/<br />

l R 50 - -<br />

2<br />

undetectable<br />

org<strong>an</strong>oleptically<br />

- 100 300 600 > 600<br />

Iod<strong>in</strong>e I µ g/<br />

l - - - - - 500 1000 2000 > 2000<br />

P:<br />

Provisional<br />

C:<br />

Current;<br />

P:<br />

Proposed;<br />

S:<br />

Secondary;<br />

R:<br />

May<br />

give<br />

reason<br />

<strong>to</strong><br />

compla<strong>in</strong>ts<br />

from<br />

consumers<br />

T#<br />

: Treatment<br />

technique<br />

<strong>in</strong><br />

lieu<br />

of<br />

numeric<br />

MCL;<br />

TT#<br />

# : Treatment<br />

technique<br />

triggered<br />

at<br />

action<br />

level<br />

of<br />

1300<br />

µ g/<br />

l


Parameter<br />

<strong>an</strong>d<br />

Expression<br />

of<br />

<strong>the</strong><br />

results<br />

Proposed<br />

WHO<br />

Council<br />

Guidel<strong>in</strong>es<br />

Directive<br />

for<br />

of<br />

28<br />

Dr<strong>in</strong>k<strong>in</strong>g-<br />

April<br />

Water<br />

1995<br />

Quality<br />

( 95/<br />

C/<br />

13-<br />

2nd<br />

edition<br />

1/<br />

03)<br />

1993<br />

EEC<br />

Guidel<strong>in</strong>e<br />

Proposed<br />

Value<br />

Parameter<br />

( GV)<br />

Value<br />

Council<br />

Directive<br />

of<br />

15<br />

July<br />

1980<br />

relat<strong>in</strong>g<br />

<strong>to</strong><br />

<strong>the</strong><br />

quality<br />

<strong>in</strong>tended<br />

for<br />

hum<strong>an</strong><br />

consumption<br />

80/<br />

778/<br />

EEC<br />

Guide<br />

Level<br />

( GL)<br />

Maximum<br />

Admissible<br />

Concentration<br />

( MAC)<br />

U.<br />

S.<br />

EPA<br />

Dr<strong>in</strong>k<strong>in</strong>g<br />

Water<br />

St<strong>an</strong>dards<br />

<strong>an</strong>d<br />

Health<br />

Advisories<br />

Table<br />

December<br />

1995<br />

<strong>Namibia</strong>,<br />

Department<br />

of<br />

Water<br />

Affairs<br />

Guidel<strong>in</strong>es<br />

for<br />

<strong>the</strong><br />

evaluation<br />

of<br />

dr<strong>in</strong>k<strong>in</strong>g-water<br />

for<br />

hum<strong>an</strong><br />

consumption<br />

with<br />

reference<br />

<strong>to</strong><br />

chemical,<br />

physical<br />

<strong>an</strong>d<br />

bacteriological<br />

quality<br />

July<br />

1991<br />

Maximum<br />

Group<br />

C<br />

Group<br />

A Group<br />

B<br />

Contam<strong>in</strong><strong>an</strong>t<br />

Low<br />

Group<br />

D<br />

Excellent<br />

Good<br />

Level<br />

Health<br />

Unsuitable<br />

Quality<br />

Quality<br />

( MCL)<br />

Risk<br />

Iron Fe µ g/<br />

l R 300 200 50 200 S 300 100 1000 2000 > 2000<br />

Lead Pb µ g/<br />

l 10 10 - 50 C TT# 50 100 200 > 200<br />

Lithium Li µ g/<br />

l - - - - - 2500 5000 10000 > 10000<br />

Magnesium<br />

Mg<br />

aCO<br />

C 3<br />

mg/ l - - 30 50 - 70 100 200 > 200<br />

mg/ l - - 7 12 - 290 420 840 > 840<br />

M<strong>an</strong>g<strong>an</strong>ese Mn µ g/<br />

l P 500 50 20 50 S 50 50 1000 2000 > 2000<br />

Mercury Hg µ g/<br />

l 1 1 - 1 C 2 5 10 20 > 20<br />

Molybdenum Mo µ g/<br />

l 70 - - - - 50 100 200 > 200<br />

Nickel Ni µ g/<br />

l 20 20 - 50 - 250 500 1000 > 1000<br />

Nitrate<br />

*<br />

Nitrite<br />

*<br />

- NO3 N<br />

- NO2 N<br />

mg/ l 50 50 25 50 45 45 90 180 > 180<br />

mg/ l - - 5 11 C 10 10 20 40 > 40<br />

mg/ l P 3 0, 1 - 0, 1<br />

3 - - - -<br />

mg/ l - - - C 1 - - - -<br />

Oxygen, dissolved<br />

O % sat.<br />

- 50 - - - - - - -<br />

2<br />

Phosphorus<br />

P O 2 5<br />

3-<br />

O<br />

P 4<br />

µ g/<br />

l - - 400 5000 - - - - -<br />

µ g/<br />

l - - 300 3350 - - - - -<br />

Potassium K mg/ l - - 10 12 - 200 400 800 > 800<br />

Selenium Se µ g/<br />

l 10 10 - 10 C 50 20 50 100 > 100<br />

Silver Ag µ g/<br />

l - - - 10 S 100 20 50 100 > 100<br />

Sodium Na mg/ l R 200 - 20 175 - 100 400 800 > 800<br />

Sulphate O<br />

2- S g/<br />

l<br />

4<br />

m R 250 250 25 250 S 250 200 600 1200 > 1200<br />

Tellurium Te µ g/<br />

l - - - - - 2 5 10 > 10<br />

Thallium Tl µ g/<br />

l - - - - C 2 5 10 20 > 20<br />

T<strong>in</strong> Sn µ g/<br />

l - - - - - 100 200 400 > 400<br />

Tit<strong>an</strong>ium Ti µ g/<br />

l - - - - - 100 500 1000 > 1000<br />

Tungsten W µ g/<br />

l - - - - - 100 500 1000 > 1000<br />

Ur<strong>an</strong>ium U µ g/<br />

l - - - - P 20 1000 4000 8000 > 8000<br />

V<strong>an</strong>adium V µ g/<br />

l - - - - - 250 500 1000 > 1000<br />

Z<strong>in</strong>c<br />

after<br />

12<br />

hours<br />

* C GV<br />

NO3<br />

<strong>in</strong><br />

/ NO3<br />

µ g/<br />

l R 3000 - 100 - S 5000 1000 5000 10000 > 10000<br />

pipe<br />

Zn<br />

µ g/<br />

l - - 5000 - - - - - -<br />

+ C / GV<br />

NO2<br />

NO2 1 P:<br />

Provisional<br />

R:<br />

May<br />

give<br />

reason<br />

<strong>to</strong><br />

compla<strong>in</strong>ts<br />

from<br />

consumers<br />

C:<br />

Current;<br />

P:<br />

Proposed;<br />

S:<br />

Secondary;<br />

T#<br />

: Treatment<br />

technique<br />

<strong>in</strong><br />

lieu<br />

of<br />

numeric<br />

MCL;<br />

TT#<br />

# : Treatment<br />

technique<br />

triggered<br />

at<br />

action<br />

level<br />

of<br />

1300<br />

µ g/<br />

l<br />

123


124<br />

Glossary<br />

a – Annum (lat.), year.<br />

a BP – Years before present (= 1950).<br />

Acrisol – Soil hav<strong>in</strong>g a B horizon with illuvial accumulation<br />

of clay <strong>an</strong>d low base saturation.<br />

aeoli<strong>an</strong> – Pert<strong>in</strong>ent <strong>to</strong> <strong>the</strong> action of w<strong>in</strong>d.<br />

Ag – Silver.<br />

Al – Alum<strong>in</strong>ium.<br />

Alluvium – Sediments deposited by flow<strong>in</strong>g rivers. Depend<strong>in</strong>g<br />

on <strong>the</strong> location <strong>in</strong> <strong>the</strong> floodpla<strong>in</strong> <strong>in</strong> <strong>the</strong> river, different sized<br />

sediments are deposited.<br />

Amphibolite – High grade metamorphic rock.<br />

AN – Andoni Formation.<br />

Anion exch<strong>an</strong>ge – Ion exch<strong>an</strong>ge process <strong>in</strong> which <strong>an</strong>ions <strong>in</strong><br />

solution are exch<strong>an</strong>ged for o<strong>the</strong>r <strong>an</strong>ions from <strong>an</strong> ion exch<strong>an</strong>ger.<br />

Aquiclude – A geologic formation, group of formations, or part<br />

of a formation through which virtually no water moves.<br />

Aquifer – Rock or sediment <strong>in</strong> a formation, group of formations,<br />

or part of a formation that is saturated <strong>an</strong>d sufficiently<br />

permeable <strong>to</strong> tr<strong>an</strong>smit economic qu<strong>an</strong>tities of water <strong>to</strong> boreholes<br />

or spr<strong>in</strong>gs.<br />

Aquifer, conf<strong>in</strong>ed – An aquifer that is overla<strong>in</strong> by a conf<strong>in</strong><strong>in</strong>g<br />

bed. The conf<strong>in</strong><strong>in</strong>g bed has a signific<strong>an</strong>tly lower hydraulic<br />

conductivity th<strong>an</strong> <strong>the</strong> aquifer.<br />

Aquifer, perched – Aquifer conta<strong>in</strong><strong>in</strong>g isolated bodies of groundwater<br />

suspended above water table.<br />

Aquifer, semi-conf<strong>in</strong>ed – An aquifer conf<strong>in</strong>ed by a low<br />

permeability layer that permits water <strong>to</strong> flow slowly through<br />

it. Dur<strong>in</strong>g pump<strong>in</strong>g of <strong>the</strong> aquifer, recharge <strong>to</strong> <strong>the</strong> aquifer<br />

c<strong>an</strong> occur across <strong>the</strong> conf<strong>in</strong><strong>in</strong>g layer. Also known as a leaky<br />

artesi<strong>an</strong> or leaky conf<strong>in</strong>ed aquifer.<br />

Aquifer, unconf<strong>in</strong>ed – Aquifer where <strong>the</strong> water table is exposed<br />

<strong>to</strong> <strong>the</strong> atmosphere through open<strong>in</strong>gs <strong>in</strong> <strong>the</strong> overly<strong>in</strong>g materials.<br />

Aquifer test – A test <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> withdrawal of measured<br />

qu<strong>an</strong>tities of water from or <strong>the</strong> addition <strong>to</strong>, a well <strong>an</strong>d <strong>the</strong><br />

measurement of <strong>the</strong> result<strong>in</strong>g ch<strong>an</strong>ges <strong>in</strong> head <strong>in</strong> <strong>the</strong> aquifer<br />

both dur<strong>in</strong>g <strong>an</strong>d after <strong>the</strong> period of discharge or addition.<br />

Aquitard – A saturated, but poorly permeable bed, formation,<br />

of group of formations that does not yield water freely<br />

<strong>to</strong> a well or spr<strong>in</strong>g. However, <strong>an</strong> aquitard may tr<strong>an</strong>smit appre -<br />

ciable water <strong>to</strong> <strong>an</strong>d from adjacent aquifers.<br />

Arenosol – Weakly developed, deep s<strong>an</strong>dy soil.<br />

Argillite, argilliceous – Clayey sediment, compacted.<br />

Arkose – A s<strong>an</strong>ds<strong>to</strong>ne conta<strong>in</strong><strong>in</strong>g 25 % or more of feldspars.<br />

Usually derived from dis<strong>in</strong>tegrated acid igneous rock of<br />

gr<strong>an</strong>i<strong>to</strong>id texture.<br />

Artesi<strong>an</strong> well – A well deriv<strong>in</strong>g its water from <strong>an</strong> conf<strong>in</strong>ed<br />

aquifer <strong>in</strong> which <strong>the</strong> water level st<strong>an</strong>ds above <strong>the</strong> ground surface;<br />

synonymous with flow<strong>in</strong>g artesi<strong>an</strong> well.<br />

Artificial recharge – The process by which water c<strong>an</strong> be <strong>in</strong>jected<br />

or added <strong>to</strong> <strong>an</strong> aquifer. Dug bas<strong>in</strong>s, drilled wells, or simply<br />

<strong>the</strong> spread of water across <strong>the</strong> surface are all me<strong>an</strong>s of artificial<br />

recharge.<br />

As – Arsenic.<br />

asl – Above sea level.<br />

Atm – Atmosphere(s).<br />

Basalt – A general term for dark-coloured iron- <strong>an</strong>d magnesium<br />

rich igneous rocks, commonly extrusive, but locally <strong>in</strong>trusive.<br />

It is <strong>the</strong> pr<strong>in</strong>ciple rock mak<strong>in</strong>g up <strong>the</strong> oce<strong>an</strong> floor.<br />

Bedrock – A general term for <strong>the</strong> rock, usually solid, that underlies<br />

soil or o<strong>the</strong>r unconsolidated material.<br />

Ben<strong>to</strong>nite – A colloidal clay, largely made up of <strong>the</strong> m<strong>in</strong>eral<br />

sodium montmorillonite, a hydrated alum<strong>in</strong>ium silicate.<br />

bgl – Below ground level.<br />

<strong>BGR</strong> – Bundes<strong>an</strong>stalt für Geowissenschaften und Rohs<strong>to</strong>ffe/<br />

Federal Institute for Geosciences <strong>an</strong>d Natural Resources,<br />

H<strong>an</strong>nover, Germ<strong>an</strong>y.<br />

BMZ – Bundesm<strong>in</strong>isterium für wirtschaftliche Zusammen arbeit<br />

und Entwicklung / Federal M<strong>in</strong>istry for Economic Cooperation<br />

<strong>an</strong>d Development, Bonn/Berl<strong>in</strong>, Germ<strong>an</strong>y.<br />

Borehole development – The process by which a borehole is<br />

pumped or surged <strong>to</strong> remove <strong>an</strong>y f<strong>in</strong>e material that may<br />

be block<strong>in</strong>g <strong>the</strong> well screen or <strong>the</strong> aquifer outside <strong>the</strong> well<br />

screen.<br />

Brackish – 1000 <strong>to</strong> 10 000 mg/L TDS or 150 <strong>to</strong> 1500 mS/m<br />

EC, or Group B <strong>to</strong> C quality.<br />

C – Capita.<br />

°C – Grad Celsius, dimension of temperature.<br />

Ca – Calcium.<br />

Calcisol – Soil characterised by calcium carbonate (CaCO3).<br />

Calcrete – Carbonates, precipitated from ra<strong>in</strong> water or ground -<br />

water (see Box on page 20-21).<br />

Cambisol – Soil <strong>in</strong> <strong>an</strong> early stage of development.<br />

Carbonate rocks – A rock consist<strong>in</strong>g of chiefly of carbonate<br />

m<strong>in</strong>erals, such as limes<strong>to</strong>ne <strong>an</strong>d dolomite.<br />

Cas<strong>in</strong>g – A solid piece of pipe, typically steel or PVC plastic,<br />

used <strong>to</strong> keep a well open <strong>in</strong> ei<strong>the</strong>r unconsolidated materials<br />

or un stable rock.<br />

Cement<strong>in</strong>g – The operation by which grout is placed between<br />

cas<strong>in</strong>g <strong>an</strong>d <strong>the</strong> sides of <strong>the</strong> well bore <strong>to</strong> a predeterm<strong>in</strong>ed height<br />

above <strong>the</strong> bot<strong>to</strong>m of <strong>the</strong> well. This secures <strong>the</strong> cas<strong>in</strong>g <strong>in</strong> place<br />

<strong>an</strong>d excludes water <strong>an</strong>d o<strong>the</strong>r fluids from <strong>the</strong> well bore.<br />

Cone of depression – A depression <strong>in</strong> <strong>the</strong> groundwater table<br />

or <strong>the</strong> potensiometric surface that has <strong>the</strong> shape of <strong>an</strong> <strong>in</strong>verted<br />

cone <strong>an</strong>d develops around a well from which water is withdrawn.<br />

It def<strong>in</strong>es <strong>the</strong> area of <strong>in</strong>fluence of a well.<br />

Conglomerate – A sedimentary rock conta<strong>in</strong><strong>in</strong>g rounded waterworn<br />

fragments of rock or pebbles, cemented <strong>to</strong>ge<strong>the</strong>r by<br />

<strong>an</strong>o<strong>the</strong>r m<strong>in</strong>eral subst<strong>an</strong>ce.<br />

Cl – Chloride.


Contam<strong>in</strong><strong>an</strong>t – Any solute or cause of ch<strong>an</strong>ge <strong>in</strong> physical properties<br />

that renders water unfit for a given use.<br />

CO2 – Carbon dioxide.<br />

CSIR – The Council for Scientific <strong>an</strong>d Industrial Research,<br />

Republic of South Africa.<br />

Cu – Copper.<br />

d – Day.<br />

D – Water saturated thickness <strong>in</strong> metre.<br />

Darcy’s Law – A derived equation for <strong>the</strong> flow of fluids on<br />

<strong>the</strong> assumption that flow is lam<strong>in</strong>ar <strong>an</strong>d that <strong>in</strong>ertia c<strong>an</strong> be<br />

neglected.<br />

Desal<strong>in</strong>ation – To remove salt <strong>an</strong>d o<strong>the</strong>r chemicals form sea or<br />

sal<strong>in</strong>e water.<br />

Discharge area – An area <strong>in</strong> which <strong>the</strong>re are upward com ponents<br />

of hydraulic head <strong>in</strong> <strong>the</strong> aquifer - <strong>Groundwater</strong> is flow<strong>in</strong>g<br />

<strong>to</strong>ward <strong>the</strong> surface <strong>in</strong> a discharge area <strong>an</strong>d may escape as a<br />

spr<strong>in</strong>g, seep, or baseflow or by evaporation <strong>an</strong>d tr<strong>an</strong>spiration.<br />

Dra<strong>in</strong>age bas<strong>in</strong> – The l<strong>an</strong>d area form which surface runoff<br />

dra<strong>in</strong>s <strong>in</strong><strong>to</strong> a river system.<br />

Dolerite – A coarser gra<strong>in</strong>ed rock of basaltic composition<br />

<strong>in</strong>trud<strong>in</strong>g as dykes or sills with<strong>in</strong> <strong>the</strong> earth’s crust.<br />

Dolocrete – Gravel, s<strong>an</strong>d or desert debris cemented by porous<br />

calcium magnesium carbonate.<br />

Drawdown – The lower<strong>in</strong>g of <strong>the</strong> water table of unconf<strong>in</strong>ed<br />

aquifer or <strong>the</strong> potensiometric surface of a conf<strong>in</strong>ed aquifer<br />

caused by pump<strong>in</strong>g of groundwater from boreholes.<br />

Dunite – A nonfeldspathic plu<strong>to</strong>nic rock consist<strong>in</strong>g almost<br />

entirely of oliv<strong>in</strong>e <strong>an</strong>d conta<strong>in</strong><strong>in</strong>g accessory pyroxene <strong>an</strong>d<br />

chromite.<br />

Durisol – Hard crust soil.<br />

DWA – Department of Water Affairs, W<strong>in</strong>dhoek, <strong>Namibia</strong>.<br />

DPA – Discont<strong>in</strong>uous Perched Aquifer.<br />

E – East.<br />

EEC – Europe<strong>an</strong> Economic Commission, Brussels, Belgium.<br />

EC – Electrical conductivity of water <strong>in</strong> µS/cm or mS/cm at<br />

25 º C.<br />

Effluent – A waste liquid discharge from a m<strong>an</strong>ufactur<strong>in</strong>g or<br />

treatment process, <strong>in</strong> its natural state or partially or completely<br />

treated, that discharges <strong>in</strong><strong>to</strong> <strong>the</strong> environment.<br />

e.g. – For example.<br />

Electrical conduct<strong>an</strong>ce – A measure of <strong>the</strong> ease with which a<br />

conduct<strong>in</strong>g current c<strong>an</strong> be caused <strong>to</strong> flow through a material<br />

under <strong>the</strong> <strong>in</strong>fluence of <strong>an</strong> applied electric field. It is reciprocal<br />

of resistively <strong>an</strong>d is measured <strong>in</strong> mhos metre.<br />

Electrical resistively – The property of a material which resists<br />

<strong>the</strong> flow of <strong>an</strong> electric current measured per unit length<br />

through a unit cross sectional area.<br />

ENWC – Eastern National Water Carrier (see Box on page<br />

70-71).<br />

Equipotential l<strong>in</strong>e – A con<strong>to</strong>ur l<strong>in</strong>e on <strong>the</strong> water table or <strong>the</strong><br />

potensiometric surface, a l<strong>in</strong>e along which <strong>the</strong> pressure head<br />

of groundwater <strong>in</strong> <strong>an</strong> aquifer is <strong>the</strong> same. Fluid flow is normal<br />

<strong>to</strong> <strong>the</strong>se l<strong>in</strong>es <strong>in</strong> <strong>the</strong> direction of decreas<strong>in</strong>g fluid potential.<br />

Evaporation – The process by which water passes from liquid<br />

<strong>to</strong> vapour state.<br />

Evapotr<strong>an</strong>spiration – Loss of water from a l<strong>an</strong>d area through<br />

tr<strong>an</strong>spiration of pl<strong>an</strong>ts <strong>an</strong>d evaporation form <strong>the</strong> soil.<br />

Facies – A stratigraphic body as dist<strong>in</strong>guished from o<strong>the</strong>r bodies<br />

of different appear<strong>an</strong>ce <strong>an</strong>d composition.<br />

Fault – A fracture or a zone of fractures along which <strong>the</strong>re has<br />

been displacement of <strong>the</strong> sides relative <strong>to</strong> one <strong>an</strong>o<strong>the</strong>r parallel<br />

<strong>to</strong> <strong>the</strong> fracture.<br />

Fe – Iron.<br />

Ferralsol – Soil with a high content of iron oxides.<br />

Filterpack – S<strong>an</strong>d or gravel that is smooth, uniform, cle<strong>an</strong>, wellrounded<br />

<strong>an</strong>d siliceous. It is placed <strong>in</strong> <strong>the</strong> <strong>an</strong>nulus of <strong>the</strong><br />

well between <strong>the</strong> borehole wall <strong>an</strong>d <strong>the</strong> well screen <strong>to</strong> prevent<br />

formation material from enter<strong>in</strong>g <strong>the</strong> screen.<br />

Floodpla<strong>in</strong> – The surface or strip of a relative smooth l<strong>an</strong>d<br />

adjacent <strong>to</strong> a river ch<strong>an</strong>nel, constructed by <strong>the</strong> present river<br />

<strong>an</strong>d covered with water when <strong>the</strong> river overflows its b<strong>an</strong>ks.<br />

It is build of alluvium carried by <strong>the</strong> river dur<strong>in</strong>g floods<br />

<strong>an</strong>d deposited <strong>in</strong> <strong>the</strong> sluggish water beyond <strong>the</strong> <strong>in</strong>fluence<br />

of <strong>the</strong> swiftest current.<br />

fluvial, fluviatile – Pert<strong>in</strong>ent <strong>to</strong> <strong>the</strong> action of river water.<br />

Fm – Formation.<br />

Fossil water – Interstitial water that was buried <strong>the</strong> same time<br />

as <strong>the</strong> sediment.<br />

Foyaite – Syenitic rocks conta<strong>in</strong><strong>in</strong>g almost equal proportions<br />

o feldspathoids <strong>an</strong>d potash feldspars.<br />

fresh –


126<br />

Group A – No risk, excellent water quality.<br />

Group B – Insignific<strong>an</strong>t risk, good quality water.<br />

Group C – Low risk.<br />

Group D – High risk or water unsuitable for hum<strong>an</strong> consumption.<br />

GSN – Geological Survey of <strong>Namibia</strong>, W<strong>in</strong>dhoek.<br />

ha – Hectare, (1 ha=10000 m2 ).<br />

Hardness – A property of <strong>the</strong> water caus<strong>in</strong>g formation of <strong>an</strong><br />

<strong>in</strong>soluble residue when water is used with soap. Sum of <strong>the</strong><br />

ions which c<strong>an</strong> precipitate as “hard particles” from water. Sum<br />

of Ca2+ <strong>an</strong>d Mg2+ , <strong>an</strong>d sometimes Fe2+ . Ex pressed <strong>in</strong> mg/L<br />

CaCO3 or <strong>in</strong> hardness degrees. Temporary hardness is <strong>the</strong> part<br />

of Ca2+ <strong>an</strong>d Mg2+ concentrations, which are bal<strong>an</strong>ced by HCO3 -<br />

<strong>an</strong>d c<strong>an</strong> thus precipitate as carbonate. Perm<strong>an</strong>ent hardness<br />

is <strong>the</strong> part of Ca2+ <strong>an</strong>d Mg2+ be<strong>in</strong>g <strong>in</strong> excess HCO3 - .Total hardness<br />

is <strong>the</strong> sum of temporary <strong>an</strong>d perm<strong>an</strong>ent hardness.<br />

Hardness r<strong>an</strong>ges – [mg/L CaCO3] (0-75= soft; 75-150 =<br />

moderately hard; 150-300 =hard; >300 = very hard).<br />

HCO3 – Bicarbonate.<br />

Head – Energy conta<strong>in</strong>ed <strong>in</strong> a water mass, produced by elevation,<br />

pressure, or velocity.<br />

heterogeneous – Perta<strong>in</strong><strong>in</strong>g <strong>to</strong> a subst<strong>an</strong>ce hav<strong>in</strong>g different<br />

characteristics <strong>in</strong> different locations. A synonym for nonuniform.<br />

homogeneous – Perta<strong>in</strong><strong>in</strong>g <strong>to</strong> a subst<strong>an</strong>ce hav<strong>in</strong>g identical<br />

characteristics everywhere. A synonym is uniform.<br />

Hydraulic conductivity – A coefficient of proportionality<br />

describ<strong>in</strong>g <strong>the</strong> rate at which water c<strong>an</strong> move through a<br />

permeable medium. The density <strong>an</strong>d k<strong>in</strong>ematic viscosity of<br />

<strong>the</strong> water must be considered <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> hydraulic<br />

conductivity.<br />

Hydraulic gradient – The ch<strong>an</strong>ge <strong>in</strong> <strong>the</strong> <strong>to</strong>tal head with <strong>the</strong><br />

ch<strong>an</strong>ge <strong>in</strong> dist<strong>an</strong>ce <strong>in</strong> a given direction. The direction is<br />

that which yields a maximum rate of decrease <strong>in</strong> head.<br />

Hydraulic parameter – Values (K, T, s) that are determ<strong>in</strong>ed<br />

qu<strong>an</strong>titatively <strong>to</strong> characterise <strong>the</strong> aquifer, <strong>an</strong>d are used for<br />

modell<strong>in</strong>g.<br />

Hydrogeology – The study of <strong>in</strong>terrelationships of geologic<br />

materials <strong>an</strong>d processes with water, especially groundwater.<br />

Hydrologic cycle – The circulation of water from oce<strong>an</strong>s through<br />

<strong>the</strong> atmosphere <strong>to</strong> <strong>the</strong> l<strong>an</strong>d <strong>an</strong>d ultimately back <strong>to</strong> <strong>the</strong> oce<strong>an</strong>.<br />

Hydrology – The study of <strong>the</strong> occurrence, distribution <strong>an</strong>d chemistry<br />

of all waters of <strong>the</strong> earth.<br />

IAEA – International A<strong>to</strong>mic Energy Agency.<br />

i.e. – That is.<br />

Igneous rocks – Rocks that solidified from molten material, that<br />

is, a magma.<br />

Inselberg – Erosion rest of previously wider extended rock cover.<br />

Intrusive rocks – Those igneous rocks that formed from magma<br />

<strong>in</strong>jected beneath <strong>the</strong> earth’s surface. Generally <strong>the</strong>se rocks<br />

have large crystals by slow cool<strong>in</strong>g.<br />

Ion exch<strong>an</strong>ge – A process by which <strong>an</strong> ion <strong>in</strong> a m<strong>in</strong>eral lattice<br />

is replaced by <strong>an</strong>o<strong>the</strong>r ion that was present <strong>in</strong> aqueous solution.<br />

isostatic – Subject <strong>to</strong> equal pressure from every side; be<strong>in</strong>g <strong>in</strong><br />

hydrostatic equilibrium.<br />

Isopach – Con<strong>to</strong>ur l<strong>in</strong>es <strong>in</strong>dicat<strong>in</strong>g areas of equal depth.<br />

K – Hydraulic conductivity <strong>in</strong> m/d or m/s, K=T/D.<br />

Karst – The type of geologic terra<strong>in</strong> underla<strong>in</strong> by carbonate<br />

rocks where signific<strong>an</strong>t solution of <strong>the</strong> rock has occurred due<br />

<strong>to</strong> <strong>the</strong> flow<strong>in</strong>g of groundwater.<br />

km – Kilometre.<br />

L – Litre.<br />

L<strong>an</strong>dfill – A general term <strong>in</strong>dicat<strong>in</strong>g a disposal site of refuse,<br />

dirt from excavations, <strong>an</strong>d junk.<br />

lacustr<strong>in</strong>e – In a lake environment.<br />

Leachate – A liquid that has percolated through solid waste <strong>an</strong>d<br />

dissolved soluble components.<br />

Lep<strong>to</strong>sol – Shallow, s<strong>to</strong>ny soil overly<strong>in</strong>g rock.<br />

Limes<strong>to</strong>ne – A sedimentary rock consist<strong>in</strong>g chiefly of calcium<br />

carbonate, primarily <strong>in</strong> <strong>the</strong> from of <strong>the</strong> m<strong>in</strong>eral calcite.<br />

Lithology, lithologic – Rock composition, rock type.<br />

Luvisol – Soil with prom<strong>in</strong>ent illuvial accumulation of clay <strong>in</strong><br />

<strong>the</strong> subsoil.<br />

m – Metre.<br />

m2 – Square metre.<br />

Ma – Million years.<br />

MAC – Maximum Admissible Concentration.<br />

M<strong>an</strong>tle – Layer of <strong>the</strong> earth between crust <strong>an</strong>d core.<br />

MDA – Ma<strong>in</strong> Deep Aquifer.<br />

Mm3 – Million cubic metre.<br />

Mm3 /a – Million cubic metre per <strong>an</strong>num.<br />

meteoric – Perta<strong>in</strong><strong>in</strong>g <strong>to</strong> recent atmospheric water.<br />

Metamorphic rocks – Any rock derived from pre-exist<strong>in</strong>g rocks<br />

by m<strong>in</strong>eralogical, chemical, <strong>an</strong>d/or structural ch<strong>an</strong>ges, essentially<br />

<strong>in</strong> a solid state, <strong>in</strong> response <strong>to</strong> marked ch<strong>an</strong>ges <strong>in</strong> temperature,<br />

pressure, shear<strong>in</strong>g stress, <strong>an</strong>d chemical environment, generally<br />

at depth <strong>in</strong> <strong>the</strong> Earth’s crust.<br />

Mg – Magnesium.<br />

Mg/L – Milligrams per litre of sample.<br />

M<strong>in</strong> – M<strong>in</strong>ute.<br />

mm – Millimetre, e.g. 10 mm ra<strong>in</strong>fall equals 10 L/m2 .<br />

mS/m – MilliSiemens/metre, dimension of EC, =10 µS/cm.<br />

N – North.<br />

Na – Sodium.<br />

n/a – Not applicable, not available.


NamWater – <strong>Namibia</strong> Water Corporation (Ltd.), W<strong>in</strong>dhoek.<br />

NO3 – Nitrate.<br />

OAA – Oshivelo Artesi<strong>an</strong> Aquifer.<br />

Observation well – A well drilled at a selected location for<br />

<strong>the</strong> purpose of observ<strong>in</strong>g parameters such as water levels <strong>an</strong>d<br />

pressure ch<strong>an</strong>ges.<br />

ODA – Otavi Dolomite Aquifer.<br />

Ol – Olukondo formation.<br />

OMAP – Omaruru River alluvial pla<strong>in</strong>.<br />

OMDEL – Omaruru River Delta (see Box on page 83).<br />

OMPL – Ongopolo.<br />

Orogeny – The process of form<strong>in</strong>g mounta<strong>in</strong>s, particularly by<br />

fold<strong>in</strong>g <strong>an</strong>d thrust<strong>in</strong>g.<br />

Pb – Lead.<br />

pedogenic – Related <strong>to</strong> soils or soil water.<br />

Pelite – F<strong>in</strong>e gra<strong>in</strong>ed, clayey sediment.<br />

Permeability – The property or capacity of a porous rock,<br />

sediment, or soil tr<strong>an</strong>smitt<strong>in</strong>g a fluid; it is a measure of <strong>the</strong><br />

relative ease of fluid flow under unequal pressure.<br />

petrographic – Concern<strong>in</strong>g <strong>the</strong> m<strong>in</strong>eralogical composition of<br />

rocks.<br />

pH – A measure of <strong>the</strong> acidity <strong>an</strong>d alkal<strong>in</strong>ity of a solution, numerically<br />

equal <strong>to</strong> 7 for neutral solutions, <strong>in</strong>creas<strong>in</strong>g with <strong>in</strong>creas<strong>in</strong>g<br />

alkal<strong>in</strong>ity <strong>an</strong>d decreas<strong>in</strong>g with <strong>in</strong>creas<strong>in</strong>g acidity. Orig<strong>in</strong>ally<br />

s<strong>to</strong>od for <strong>the</strong> words potential of hydrogen. It is calculated<br />

as -log [H + ], <strong>the</strong> log of H + activity.<br />

Phyllite – A metamorphosed clay-bear<strong>in</strong>g rock <strong>in</strong>termediate <strong>in</strong><br />

grade between slate <strong>an</strong>d schist.<br />

piezometric head – Pressure head of groundwater <strong>in</strong> a well or<br />

borehole.<br />

plu<strong>to</strong>nic rock – An igneous rock formed when magma cools<br />

<strong>an</strong>d crystallises with<strong>in</strong> <strong>the</strong> earth.<br />

Pollut<strong>an</strong>t – Any solute or cause of ch<strong>an</strong>ge <strong>in</strong> physical properties<br />

that renders water unfit for a given use.<br />

Pore space – The volume between m<strong>in</strong>eral gra<strong>in</strong>s of a porous<br />

medium.<br />

Porosity – The ration of volume of void spaces <strong>in</strong> a rock or<br />

sediment <strong>to</strong> <strong>the</strong> <strong>to</strong>tal volume of <strong>the</strong> rock or sediment.<br />

potentiometric surface – A surface that represents <strong>the</strong> level o which<br />

water will rise <strong>in</strong> tightly cased boreholes. If <strong>the</strong> head varies signific<strong>an</strong>tly<br />

with <strong>the</strong> depth <strong>in</strong> <strong>the</strong> aquifer, <strong>the</strong>n <strong>the</strong>re are may be<br />

more th<strong>an</strong> one potentiometric surface. The water table is a particular<br />

potentiometric surface for <strong>an</strong> unconf<strong>in</strong>ed aquifer.<br />

Primary porosity – The porosity that represents <strong>the</strong> orig<strong>in</strong>al<br />

pore open<strong>in</strong>gs when a rock or sediment is formed.<br />

Pump<strong>in</strong>g test – A test made by pump<strong>in</strong>g a borehole for a period<br />

of time <strong>an</strong>d observ<strong>in</strong>g <strong>the</strong> ch<strong>an</strong>ge <strong>in</strong> <strong>the</strong> hydraulic head of<br />

<strong>the</strong> aquifer. A pump<strong>in</strong>g test may be used <strong>to</strong> determ<strong>in</strong>e <strong>the</strong><br />

capacity of <strong>the</strong> borehole <strong>an</strong>d <strong>the</strong> hydraulic characteristics<br />

of <strong>the</strong> aquifer. Also called <strong>an</strong> aquifer test.<br />

Pyroclastics – A rock consist<strong>in</strong>g of unreworked solid material<br />

of whatever size explosively or aerially ejected from a volc<strong>an</strong>ic<br />

vent.<br />

Pyroxenite – A medium or coarse-gra<strong>in</strong>ed rock consist<strong>in</strong>g essentially<br />

of pyroxene.<br />

Q – Pump discharge <strong>in</strong> m3 /h.<br />

Quartzite – A gr<strong>an</strong>ulose metamorphic rock consist<strong>in</strong>g essentially<br />

of quartz gr<strong>an</strong>ules.<br />

Recharge – The addition of water <strong>to</strong> a zone of saturation; also,<br />

<strong>the</strong> amount of water added.<br />

Recharge area – An area where <strong>the</strong>re are downward components<br />

of hydraulic head <strong>in</strong> <strong>the</strong> aquifer. Infiltration moves downward<br />

<strong>in</strong><strong>to</strong> <strong>the</strong> deeper parts of <strong>an</strong> aquifer <strong>in</strong> <strong>the</strong> recharge area.<br />

Recharge bas<strong>in</strong> – A bas<strong>in</strong> or pit excavated <strong>to</strong> provide me<strong>an</strong>s<br />

of allow<strong>in</strong>g water <strong>to</strong> soak <strong>in</strong><strong>to</strong> <strong>the</strong> ground at rates exceed<strong>in</strong>g<br />

those that would occur naturally.<br />

Recharge well – A borehole specifically designed so that water<br />

c<strong>an</strong> be pumped <strong>in</strong><strong>to</strong> <strong>an</strong> aquifer <strong>in</strong> order <strong>to</strong> recharge <strong>the</strong><br />

ground water reservoir.<br />

Recovery – The rate at which <strong>the</strong> water level <strong>in</strong> a well rises<br />

after <strong>the</strong> pump has been shut off. It is <strong>the</strong> <strong>in</strong>verse of draw<br />

down.<br />

Regosol – Soil with weak or no development.<br />

Rhyolite – An extrusive equivalent of a gr<strong>an</strong>ite.<br />

River, ephemeral – A river that is mostly dry <strong>an</strong>d only subject<br />

<strong>to</strong> water flow for short periods after heavier ra<strong>in</strong>fall events.<br />

River, perennial – A river that is subject <strong>to</strong> flow throughout <strong>the</strong><br />

year.<br />

Runoff – The <strong>to</strong>tal amount of water flow<strong>in</strong>g <strong>in</strong> a stream. It<br />

<strong>in</strong>cludes overl<strong>an</strong>d flow, return flow, <strong>in</strong>terflow <strong>an</strong>d baseflow.<br />

s – Second.<br />

s – S<strong>to</strong>rage coefficient.<br />

S – South.<br />

Safe yield – The amount of naturally occurr<strong>in</strong>g groundwater<br />

that c<strong>an</strong> be economically <strong>an</strong>d legally withdrawn from <strong>an</strong><br />

aquifer on a susta<strong>in</strong>ed basis without impair<strong>in</strong>g <strong>the</strong> native<br />

groundwater quality or creat<strong>in</strong>g <strong>an</strong> undesirable effect such as<br />

environment damage. It c<strong>an</strong>not exceed <strong>the</strong> <strong>in</strong>crease or leakage<br />

from adjacent strata plus <strong>the</strong> reduction <strong>in</strong> discharge, <strong>in</strong><br />

which due <strong>to</strong> <strong>the</strong> decl<strong>in</strong>e <strong>in</strong> head caused by pump<strong>in</strong>g.<br />

Sal<strong>in</strong>e – >10000 mg/L TDS or >1500 mS/m EC or Group<br />

D quality.<br />

Sal<strong>in</strong>ity r<strong>an</strong>ges – Classification: TDS [mg/L] / EC [mS/m]<br />

(fresh = < 1000 / 10 000 / >1500).<br />

S<strong>an</strong>ds<strong>to</strong>ne – A sedimentary rock composed of abund<strong>an</strong>t rounded<br />

or <strong>an</strong>gular fragments of s<strong>an</strong>d set <strong>in</strong> a f<strong>in</strong>e gra<strong>in</strong>ed matrix (silt<br />

or clay) <strong>an</strong>d more or less firmly united by cement<strong>in</strong>g material.<br />

Sapropelite – A fluid org<strong>an</strong>ic slime orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong> swamps as<br />

127


128<br />

a product of putrefaction. Often conta<strong>in</strong>s hydrocarbons. Subst<strong>an</strong>ce<br />

becomes <strong>to</strong>ugh when dry.<br />

saturated zone – The zone <strong>in</strong> which <strong>the</strong> voids <strong>in</strong> <strong>the</strong> rock or soil<br />

are filled with water at a pressure greater th<strong>an</strong> atmospheric.<br />

The water table is <strong>the</strong> <strong>to</strong>p of <strong>the</strong> saturated zone <strong>in</strong> <strong>an</strong> unconf<strong>in</strong>ed<br />

aquifer.<br />

Schist – A medium or coarse-gra<strong>in</strong>ed metamorphic rock with<br />

sub-parallel orientation of <strong>the</strong> micaceous m<strong>in</strong>erals which<br />

dom<strong>in</strong>ate its composition.<br />

secondary porosity – The porosity that has been caused by<br />

fractures or wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong> a rock or sediment after it has been<br />

formed.<br />

sedimentary rock – A rock formed from sediments through a<br />

process known as diagenesis or formed by <strong>the</strong> chemical<br />

precipitation of water.<br />

Shale – A f<strong>in</strong>e-gra<strong>in</strong>ed sedimentary rock, formed by <strong>the</strong><br />

consolidation of clay, silt <strong>an</strong>d mud. It is characterised by f<strong>in</strong>ely<br />

lam<strong>in</strong>ated structure <strong>an</strong>d it is sufficiently <strong>in</strong>durated so that<br />

it will not fall apart on wett<strong>in</strong>g.<br />

Silts<strong>to</strong>ne – A very f<strong>in</strong>e-gra<strong>in</strong>ed consolidated clastic rock composed<br />

predom<strong>in</strong><strong>an</strong>tly of particles of silt grade.<br />

SO4 – Sulphate.<br />

Solonetz – Soil with B horizon rich <strong>in</strong> sodium <strong>an</strong>d/or<br />

magnesium.<br />

Solonchak – Soil hav<strong>in</strong>g a high sal<strong>in</strong>ity <strong>an</strong>d no well- developed<br />

subsurface horizons.<br />

static water level – The level of water is a well that is not be<strong>in</strong>g<br />

affected by withdrawal of water.<br />

S<strong>to</strong>rativity, s<strong>to</strong>rage coefficient – The volume of water <strong>an</strong> aquifer<br />

releases from or takes <strong>in</strong><strong>to</strong> s<strong>to</strong>rage per unit surface area of<br />

<strong>an</strong> aquifer per unit ch<strong>an</strong>ge <strong>in</strong> hydraulic head. It is equal <strong>to</strong><br />

<strong>the</strong> product of specific s<strong>to</strong>rage <strong>an</strong>d <strong>the</strong> aquifer thickness. In<br />

<strong>an</strong> unconf<strong>in</strong>ed aquifer <strong>the</strong> s<strong>to</strong>rativity is equivalent <strong>to</strong> <strong>the</strong> specific<br />

yield. Also called s<strong>to</strong>rage coefficient.<br />

Stratigraphy – A study of rock strata, especially <strong>in</strong> <strong>the</strong>ir<br />

distribution, deposition <strong>an</strong>d age.<br />

Surface water – Water found <strong>in</strong> ponds, lakes, <strong>in</strong>l<strong>an</strong>d seas, streams<br />

<strong>an</strong>d rivers.<br />

Syenite – A plu<strong>to</strong>nic igneous rock consist<strong>in</strong>g pr<strong>in</strong>cipally of alkalic<br />

feldspar usually with one or more mafic m<strong>in</strong>erals such as<br />

hornblende or biotite.<br />

T – Temperature <strong>in</strong> °C.<br />

T – Tr<strong>an</strong>smissivity.<br />

TCL – Tsumeb Corporation Ltd. (Member of Gold Fields<br />

<strong>Namibia</strong> Ltd.).<br />

TDS – Total dissolved solids <strong>in</strong> mg/L; (sum of cations <strong>an</strong>d<br />

<strong>an</strong>ions); (<strong>in</strong> DWA <strong>an</strong>alytical reports TDS is calculated: TDS<br />

= 6.6 x EC).<br />

TKA – Tsumeb Karst Aquifer compris<strong>in</strong>g <strong>the</strong> Abenab-Tsumeb<br />

Synkl<strong>in</strong>orium.<br />

TH – Total hardness, refer <strong>to</strong> “Hardness”.<br />

Tr<strong>an</strong>smissivity – The rate at which water of a prevail<strong>in</strong>g density<br />

<strong>an</strong>d viscosity is tr<strong>an</strong>smitted through a unit width of <strong>an</strong> aquifer<br />

or conf<strong>in</strong><strong>in</strong>g bed under a unit hydraulic gradient. It is a function<br />

of <strong>the</strong> properties of <strong>the</strong> liquid, <strong>the</strong> porous media <strong>an</strong>d <strong>the</strong><br />

thickness of <strong>the</strong> porous media.<br />

Tr<strong>an</strong>spiration – The process by which water absorbed by pl<strong>an</strong>ts,<br />

usually through <strong>the</strong> roots, is evaporated <strong>in</strong><strong>to</strong> <strong>the</strong> atmosphere<br />

form <strong>the</strong> pl<strong>an</strong>t surface.<br />

Travert<strong>in</strong>e – Calcium carbonate, of light colour <strong>an</strong>d usually<br />

concretionary <strong>an</strong>d compact, deposited from solution <strong>in</strong> ground<br />

<strong>an</strong>d surface waters.<br />

Tufa – A chemical sedimentary rock composed of calcium<br />

carbonate or of silica, deposited from solution <strong>in</strong> <strong>the</strong> water<br />

of a spr<strong>in</strong>g or lake or from percolat<strong>in</strong>g ground water.<br />

UKA – Unconf<strong>in</strong>ed Kalahari Aquifer.<br />

US-EPA – United States Environmental Protection Agency,<br />

Wash<strong>in</strong>g<strong>to</strong>n, D.C.<br />

V – V<strong>an</strong>adium.<br />

VDA – Very Deep Aquifer.<br />

Vertisol – Soil <strong>to</strong>pped with clay which crack when dry.<br />

Vlei – A small swamp, usually open <strong>an</strong>d conta<strong>in</strong><strong>in</strong>g a pond.<br />

Volc<strong>an</strong>ic rock – An igneous rock formed when molten rock<br />

called lava cools on <strong>the</strong> earth’s surface.<br />

W – West.<br />

Water budget – An evaluation of all <strong>the</strong> sources of supply <strong>an</strong>d<br />

<strong>the</strong> correspond<strong>in</strong>g discharges with respect <strong>to</strong> <strong>an</strong> aquifer or<br />

dra<strong>in</strong>age bas<strong>in</strong>.<br />

Water table – The surface <strong>in</strong> <strong>an</strong> unconf<strong>in</strong>ed aquifer or conf<strong>in</strong><strong>in</strong>g<br />

bed at which <strong>the</strong> pore water pressure is atmospheric. It c<strong>an</strong><br />

be measured by <strong>in</strong>stall<strong>in</strong>g shallow wells extend<strong>in</strong>g a few metres<br />

<strong>in</strong><strong>to</strong> <strong>the</strong> zone of saturation <strong>an</strong>d <strong>the</strong>n measur<strong>in</strong>g <strong>the</strong> water level<br />

<strong>in</strong> those wells.<br />

Water type – Ions with a relative concentration (fraction)<br />

>_ 20 meq % are name-giv<strong>in</strong>g, e.g. Ca-Mg-HCO3.<br />

Well screen – Filter<strong>in</strong>g device used <strong>to</strong> keep sediment from enter<strong>in</strong>g<br />

well.<br />

Well yield – The volume of water discharged from a well <strong>in</strong> cubic<br />

metres per hour or cubic metres per day.<br />

Weir – A device placed across a stream <strong>an</strong>d used <strong>to</strong> measure<br />

<strong>the</strong> discharge by hav<strong>in</strong>g water flow over a specifically designed<br />

spillway.<br />

WHO – World Health Org<strong>an</strong>isation, Geneva, Switzerl<strong>an</strong>d.<br />

WL – Water level <strong>in</strong> metres below ground level (bgl).<br />

Zn – Z<strong>in</strong>c.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!