17.04.2013 Views

copy of BB25-21 - International Buffalo Information Centre

copy of BB25-21 - International Buffalo Information Centre

copy of BB25-21 - International Buffalo Information Centre

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Volume 25 No.2


<strong>International</strong> <strong>Buffalo</strong> <strong>Information</strong> Center<br />

Aims<br />

(IBIC)<br />

IBIC is a specialized information center on<br />

water buffalo. Established in 1981 by Kasetsart<br />

University (Thailand) with an initial financial<br />

support from the <strong>International</strong> Development<br />

Research Center (IDRC) <strong>of</strong> Canada. IBIC aims at<br />

being the buffalo information center <strong>of</strong> buffalo<br />

research community through out the world.<br />

Main Objectives<br />

1. To be world source on buffalo<br />

information<br />

2. To provide literature search and<br />

photo<strong>copy</strong> services<br />

3. To disseminate information in<br />

newsletter<br />

4. To publish occasional publications<br />

such as an inventory <strong>of</strong> ongoing<br />

research projects<br />

BUFFALO BULLETIN<br />

ISSN : 0125-6726<br />

<strong>Buffalo</strong> Bulletin is published quarterly in<br />

March, June, September and December.<br />

Contributions on any aspect <strong>of</strong> research or<br />

development, progress reports <strong>of</strong> projects and<br />

news on buffalo will be considered for publication<br />

in the bulletin. Manuscripts must be<br />

written in English and follow the instruction for<br />

authors which describe at inside <strong>of</strong> the back cover.<br />

Editor<br />

S. Sophon<br />

Publisher<br />

<strong>International</strong> <strong>Buffalo</strong> <strong>Information</strong> <strong>Centre</strong>,<br />

Main Library, Kasetsart University<br />

Online availible:<br />

http://ibic.lib.ku.ac.th/e-Bulletin<br />

BUFFALO BULLEITN<br />

IBIC, KASETSART UNIVERSITY, P.O. BOX 1084<br />

BANGKOK 10903, THAILAND<br />

URL : http://ibic.lib.ku.ac.th<br />

E-mail : libibic@ku.ac.th<br />

Tel : 66-2-9428616 ext. 344<br />

Fax : 66-2-9406688


25<br />

<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

RUMINAL pH AS REGULATOR OF RUMEN METABOLISM IN BUFFALOES<br />

The importance <strong>of</strong> the buffalo as a dairy<br />

animal is due to its ability to produce milk efficiently,<br />

effectively and economically. The process <strong>of</strong><br />

conversion <strong>of</strong> feed into milk is complicated and is<br />

dependent upon the ruminal environment. The type<br />

<strong>of</strong> diet affects the rumen environment by changing<br />

its pH, causing various digestive disorders<br />

influencing the metabolic activity: hypo-galactia and<br />

agalactia. The present study was, therefore,<br />

undertaken to investigate the effect <strong>of</strong> changes in<br />

pH on rumen metabolism and production in lactating<br />

Murrah buffaloes.<br />

Materials and Methods<br />

A total 144 clinical cases <strong>of</strong> buffaloes <strong>of</strong> third/<br />

fourth lactation (12 months) suffering from primary<br />

indigestion were studied for one year at the<br />

Veterinary Clinics <strong>of</strong> the University. Similarly, a total<br />

120 buffaloes (10 per month) at the same lactation<br />

were randomly selected and maintained on normal<br />

farm schedule at the Animal Farm <strong>of</strong> the University.<br />

Rumen samples were collected from these animals<br />

at monthly intervals. The pH strip was used<br />

immediately to assess the pH <strong>of</strong> rumen liquor and<br />

later the pH <strong>of</strong> strained rumen liquor (SRL) was<br />

measured for confirmation. Total counts <strong>of</strong> rumen<br />

protozoa and bacteria were done following the<br />

method described by Moir (1951) and Gall et al.<br />

(1945) and their classification were done as per the<br />

method described by Pounden and Hibs (1948). The<br />

total and individual volatile fatty acids were<br />

analyzed by using gas chromatography (Bernard and<br />

Bouchque, 1968). Ruminal biogenic amines were<br />

estimated by HPLC (Kochler and Eitenmiller, 1975).<br />

M.A. Akbar and Ramesh Kumari<br />

Results and Discussion<br />

For the past last thirteen years, studies were<br />

carried out on 144 clinical cases and 120 healthy<br />

buffaloes <strong>of</strong> third/fourth lactation every year. Out <strong>of</strong><br />

144 clinical cases <strong>of</strong> buffaloes, three cases (2.08%)<br />

<strong>of</strong> bloat, six cases (4.17%) <strong>of</strong> acidic indigestion, <strong>21</strong><br />

cases <strong>of</strong> impaction (14.58%) and 114 cases (79.16%)<br />

<strong>of</strong> alkaline indigestion were observed.<br />

The mean pH value <strong>of</strong> strained rumen<br />

liquor (SRL) ranged from 6.99 to 7.3 in healthy<br />

animals and 5.5 to 8.9 in digestive disorder cases.<br />

On the basis <strong>of</strong> pH value, the clinical cases were<br />

categorized into four kind <strong>of</strong> indigestion, viz., bloat<br />

(pH 5.52 to 5.72), acidic indigestion (pH 5.73 to 6.99),<br />

impaction (pH 7.00 to 7.49) and alkaline indigestion<br />

(pH 7.5 to 8.9) as shown in the Table . The above<br />

categorization on the basis <strong>of</strong> pH corroborates with<br />

the reports <strong>of</strong> Bhaskar (1971), Gupta et al. (1976)<br />

and Choudhary et al. (1981).<br />

Most <strong>of</strong> the cases had alkaline indigestion<br />

and had a history <strong>of</strong> feeding on too much sorghum,<br />

pearl millet and berseem fodder. It was observed<br />

that acidic indigestion occurred due to excessive<br />

feeding on dry ration and grains. The consumption<br />

<strong>of</strong> rotten wheat straw, pearl millet stover and paddy<br />

straw caused impaction while the cases <strong>of</strong> bloat<br />

were due to excessive intake <strong>of</strong> green fodders like<br />

lucerne, mustard, etc.<br />

On microscopic examination <strong>of</strong> SRL, the<br />

predominant genera <strong>of</strong> protozoa found were<br />

Entodenia followed by Isotricha and Dasytricha at<br />

pH 5.5 to 8.9 in both healthy and anorexic<br />

buffaloes. Other protozoan species like Entodinium<br />

bursa, Diplodinium dentatum, Polyplastron<br />

multivesiculatum were observed only in healthy<br />

buffaloes. The bacteria Oscillospira guillermondii<br />

College <strong>of</strong> Animal Sciences, CCS Haryana Agricultural University, Hisar-125 004, India


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

was also found in these animals during winter months,<br />

and this is an index <strong>of</strong> positive nitrogen balance in<br />

healthy buffaloes. Entodenia species like E. simplex,<br />

E. bicarinatum, E. triacum and E. elongatum were<br />

seen in healthy buffaloes at pH 6.99 to 7.30.<br />

These species are very rarely found in buffaloes<br />

suffering from primary indigestion because these are<br />

very sensitive to pH changes in the rumen (Hungate,<br />

1966).<br />

Rumen bacteria like Gram negative short rods<br />

in fours and multiples <strong>of</strong> four suggestive <strong>of</strong> window<br />

pans (Hay flora, group II-c) remained prominent in<br />

healthy as well as in buffaloes suffering from<br />

indigestion. Gram positive cocci singly or in long<br />

chains, Gram negative rods resembling coli form<br />

organisms, grain flora group-II, large Gram positive<br />

cocci in closely knit-pairs or tetrads, hay flora group<br />

I and medium sized comparatively thin Gram<br />

positive rods or grain flora group-I were present in<br />

addition to miscellaneous organisms like quoin’s oval<br />

in healthy buffaloes. In clinical cases, small Gram<br />

negative rods (F-type grain flora group-II) in<br />

alkaline pH 7.5 to 8.9 and the gram positive cocci<br />

were predominant after d-type flora in impaction at<br />

pH 7.0 to 7.4. In the cases <strong>of</strong> acidic (pH 5.5 to 6.9)<br />

only a particular species, i.e. Gram positive cocci,<br />

dominated because other species are very sensitive<br />

and required a specific pH and the proper substrate<br />

for their role and activity. These observations<br />

corroborate with the findings <strong>of</strong> other workers<br />

(Ryan, 1964; Hungate, 1966), which indicated that<br />

the number <strong>of</strong> species was higher in the control group<br />

due to favourable pH and proper substrate to<br />

survive and thrives.<br />

The total protozoan count ranged from 4.35<br />

x 10 5 /ml to 7.26x10 5 /ml at normal pH from 6.99 to<br />

7.3 in healthy animals. In clinical cases where pH<br />

varied from 5.5 to 8.9 the total protozoan count<br />

ranged from 2.35 to 4.12 x10 5 /ml, which was<br />

significantly (P


et al., loc. cit.).<br />

The levels <strong>of</strong> ruminal biogenic amines, i.e.<br />

histamine, tryptamine and tyramine, have positive<br />

correlation with milk production (Singh et al., 1989).<br />

Any kind <strong>of</strong> deviation in ruminal pH directly affects<br />

the levels <strong>of</strong> biogenic amines and hence milk<br />

production. The ruminal histamine level was found<br />

to be more than double in bloat, i.e. at pH 5.00 to<br />

5.50, and towards higher side in acidic indigestion,<br />

where the pH was 5.60 to 6.90. High levels <strong>of</strong><br />

histamine in the above cases was responsible for<br />

rumen atony and loss <strong>of</strong> appetite, thereby, reducing<br />

metabolic activity and ultimately milk production.<br />

The lower level <strong>of</strong> histamine in impaction and<br />

alkaline indigestion, where the pH ranged from 7.5<br />

to 8.9, was also observed to be associated with lower<br />

milk production (Irwin et al., 1972; Gupta et al., loc.<br />

cit.; Chaudhary et al., loc. cit.).<br />

Ruminal tryptamine and tyramine levels<br />

were found highest in alkaline indigestion followed<br />

by impaction, acidic indigestion and bloat. Their<br />

levels increased due to decarboxylation <strong>of</strong> tryptopha<br />

and tyrosine for which optimum pH was observed<br />

to be 7.00 to 8.90. These observations do not<br />

correspond with the findings <strong>of</strong> Irwin et al. (loc. cit.;<br />

1979). They reported higher values <strong>of</strong> these amines<br />

at 10 per cent dietary protein level and the optimum<br />

pH for decarboxylation was 5.5, while in the present<br />

investigations it was observed to be alkaline. The<br />

decarboxylation <strong>of</strong> tyrosine by mixed bacteria may<br />

continue to occur when pH is in the neutral or in the<br />

27<br />

<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

alkaline range. On the other hand, higher level <strong>of</strong><br />

tryptamine was probably due to its endogenous<br />

release even at low protein concentration in the<br />

rumen liquor. The higher level <strong>of</strong> both the amines<br />

reduced the rumen motility, causing rumen atony<br />

and various digestive disorders. This resulted in<br />

reduced feed intake, low metabolic activity and<br />

hence lower milk production through inhibition <strong>of</strong><br />

galactopoietic hormones and release <strong>of</strong><br />

catecholamine further impairing the action <strong>of</strong><br />

oxytocin towards release <strong>of</strong> milk.<br />

Summary<br />

Studies conducted on clinical cases <strong>of</strong><br />

lactating buffaloes suffering from primary<br />

indigestion revealed that ruminal pH is one <strong>of</strong> the<br />

most important factors. Any deviation in ruminal pH<br />

causes different kinds <strong>of</strong> indigestion, which disrupt<br />

the rumen environment resulting in reduced<br />

metabolic activities and ultimately inhibiting milk<br />

production.<br />

Acknowledgement<br />

Authors are thankful to Dr. Narendra Singh,<br />

former Dean, College <strong>of</strong> Animal Sciences <strong>of</strong> this<br />

University, for providing research facilities to carry<br />

out this work under the National Fellow (ICAR)<br />

project.


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

Table1 Microbial counts, VFA and biogenic amines found in rumen liquor <strong>of</strong> buffaloes suffering from<br />

primary indigestion.<br />

Attribute Digestive disorders<br />

Healthy Bloat Acidic Impaction Alkaline<br />

animals indigestion indigestion<br />

pH 7.30±0.05 5.70±0.05 6.60±0.10 7.10±0.04 8.20±0.04<br />

Total protozoan<br />

counts (nx10 5 /ml) 5.59±0.39 1.50±0.04 4.18±0.20 4.59±0.06 3.14±0.07<br />

Total bacterial<br />

counts (nx10 9 /ml) 6.77±0.<strong>21</strong> 3.14±0.02 4.70±0.15 4.22±0.04 4.94±0.09<br />

TVFA (m.eq./l) 110.09±6.73 50.02±0.76 51.30±1.033 53.08±0.68 54.63±0.26<br />

Acetic acid (%) 70.42±2.02 54.69±0.94 55.23±1.46 56.62±0.68 54.63±0.26<br />

Propionic acid (%) 14.06±0.73 30.13±0.32 28.51±0.22 24.76±0.34 22.62±0.12<br />

Butyric acid (%) 10.93±0.29 7.38±0.09 8.09±0.06 9.61±0.06 10.14±0.03<br />

Ruminal biogenic amines ( µg/ml)<br />

Histamine 0.513±0.004 1.084±0.005 0.864±0.013 0.198±0.003 0.203±0.003<br />

Tryptamine 0.298±0.004 0.285±0.001 0.351±0.001 0.460±0.008 0.453±0.003<br />

Tyramine 0.268±0.004 0.197±0.001 0.<strong>21</strong>1±0.002 0.277±0.006 0.357±0.002<br />

28


REFERENCES<br />

Ash, R.M. 1956. In: The Rumen and its Microbes.<br />

Hungate R.E., ed. Academic Press, New York.<br />

J. Physiol. 133: 75-78.<br />

Bernard, G.C. and C.V. Bouchque. 1968. Rapid<br />

method for the gas chromatographic<br />

determination <strong>of</strong> volatile fatty acids in rumen<br />

fluid. J. Agric. Food Chem. 16: 105-108.<br />

Bhaskar, V.K. 1971.Studies on some <strong>of</strong> the<br />

clinico-pathological aspects <strong>of</strong> indigestion<br />

in buffaloes and cattle. M.V.Sc. Thesis,<br />

Haryana Agricultural University, Hisar.<br />

Choudhary, P.C., B. Prasad and S.K. Misra 1981.<br />

Note on the use <strong>of</strong> rumen liquor in the<br />

treatment <strong>of</strong> chronic alkaline indigestion in<br />

cows. Indian J. Anim. Sci. 51: 356-360.<br />

Dirksen, G. 1970. In: Physiology <strong>of</strong> Digestion and<br />

Metabolism in the Ruminants. Phillipson, A.T.<br />

ed. Oriels Press, London. p. 692.<br />

Gall, L.S., W. Burroughs, P. Gerlaugh and B.H.<br />

Edginton 1945. Special methods for rumen<br />

bacterial studies in the field. J. Anim. Sci. 8:<br />

433-436.<br />

Gupta, G.C., B.P. Joshi and P. Rai. 1976. A note on<br />

histamine concentration in rumen fluid and<br />

blood in tropical bovine suffering from<br />

indigestion. J. Anim. Sci. 46: 319-3<strong>21</strong>.<br />

Hungate, R.E. 1966. The Rumen and its Microbes.<br />

Academic Press, New York.p.434.<br />

Irwin, L.N., Jr. Mitchel, R.E. Tucker and G.T.<br />

Shelling, 1972. Amine production by sheep with<br />

glucose. J. Anim. Sci. 35: 267-271.<br />

29<br />

<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

Irwin, L.N., G.E. Mitchell, R.E. Tucker and G.T.<br />

Shelling. 1979. Histamine, tryptamine and<br />

tyramine, and electrolytes during glucose<br />

induced lactic acidosis. J. Anim. Sci.<br />

48: 367-374.<br />

Kochler, P.E. and R.R. Eitenimller. 1975.High<br />

pressure liquid chromotatographic analysis <strong>of</strong><br />

tyramine, phenyl ethylamine and tryptamine in<br />

sausage and chocolate. J. Food Sci.<br />

43: 1245-1249.<br />

Moir, R.J. 1951. The seasonal variation in the<br />

ruminal micro organisms <strong>of</strong> grazing sheep.<br />

Australian J. Agric. Res. 2: 322-331.<br />

Pounden, W.D. and J.W. Hibs. 1948. The influence<br />

<strong>of</strong> the ratio <strong>of</strong> grain to hay in the ration <strong>of</strong> dairy<br />

calves in certain rumen micoorganisms.<br />

J. Dairy Sci. 31: 1051-1057.<br />

Ryan, R.K. 1964. In: The Rumen and its Microbes.<br />

Ed. Hungate R.E., Academic Press, New York.<br />

Am. J. Vet. Res., 25: 646-648.<br />

Singh, N., J.P. Puri, O.P. Nangia and S.L. Garg.<br />

1983. Early development <strong>of</strong> rumen function in<br />

buffalo calves: Rumen microbes, metabolites<br />

and cellulose digestion in vitro as a function <strong>of</strong><br />

age and diet. Indian J. Anim. Sci.<br />

53: 933-938.<br />

Singh, N., Kumari, R. and Akbar, M.A. 1989.<br />

Effect <strong>of</strong> biogenic amines on milk production.<br />

Indian J. Anim. Sci. 59: 1319-1323.


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

A SIGNIFICANT OBSERVATION ON THE STATUS OF CORTISOL IN NEONATAL BUFFALO<br />

CALVES AND COW CALVES VIS-À -VIS THEIR DAMS<br />

ABSTRACT<br />

Cortisol levels were measured through ELISA<br />

in 85 animals inclusive <strong>of</strong> periparturient dams and<br />

their calves up to 91 days <strong>of</strong> life. The levels were<br />

lower in the dams but in the early neonatal periods<br />

the cortisol levels were significantly (P


RESULTS AND DISCUSSION<br />

The values <strong>of</strong> serum cortisol in the periparturient<br />

buffaloes and cows and their respective neonatal<br />

calves have been presented in Table 2. The levels<br />

<strong>of</strong> cortisol in the periparturient dams remained<br />

almost identical. However, in the neonatal calves,<br />

particularly within a month period, the cortisol levels<br />

were significantly (p


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

Table 2. Status <strong>of</strong> serum cortisol <strong>of</strong> neonatal buffalo calves and cow calves along with their dams at different<br />

periods.<br />

Parameters Serum cortisol (µg/dl)<br />

Dams <strong>Buffalo</strong>es Cows<br />

Pre-partum 1.5±0.3 1.6±0.2<br />

Post-partum 1.3±0.1 1.5±0.2<br />

Calves Bc Cc<br />

Pre-colostrum feeding 4.2±3.3* 4.5±0.8<br />

6 h Post Colostrum feeding 7.2±2.8 7.8±1.4<br />

1 st day 11.0±4.0* 8.4±2.0*<br />

2 nd day 5.4±4.0 9.6±3.0<br />

3 rd day 7.4±3.0 6.4±2.0<br />

4 th day 8.0±4.0 7.0±3.0<br />

5 th day 6.0±5.0 12.0±4.0<br />

6 th day 9.0±6.0 10.0±4.0<br />

14 th day 4.6±4.0 5.7±2.0<br />

<strong>21</strong> th day 4.0±0.4 8.0±4.0<br />

28 th day 5.0±0.7 9.0±5.6<br />

35 th day 3.0±2.0 6.0±3.0<br />

42 th day 3.0±1.0 5.0±2.0<br />

49 th day 3.0±1.0 4.0±1.0<br />

56 th day 3.0±0.6 4.0±1.0<br />

63 th day 5.0±1.0 3.0±1.3<br />

70 th day 3.0±0.5 3.0±1.0<br />

32


Contd.<br />

*P


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

PROFILE OF SERUM IMMUNOGLOBULINS, GLUCOSE- 6-PHOSPHATE<br />

DEHYDROGENASE AND L: N RATIO AS A MEASURE OF INTERNAL DEFENSE OF<br />

NEONATAL BOVINE CALVES VS THEIR DAM : EFFECT OF NEEM OIL AS<br />

IMMUNOMODULATOR<br />

A.K. Jain, I. J. Sharma, M.A. Quadri, R.K. Tripathi and R.G.Agrawal<br />

ABSTRACT<br />

The internal defense <strong>of</strong> the animals is<br />

accomplished through the combined effort <strong>of</strong> blood<br />

cells and different immunoglobulins. The levels <strong>of</strong><br />

immunoglobulins were higher in sera samples <strong>of</strong><br />

periparturient buffaloes while reverse was true for<br />

the levels in the colostrum. The immunoglobulin<br />

content in the serum <strong>of</strong> buffalo calves after<br />

colostrum feeding was lower that in sera <strong>of</strong> cow<br />

calves. This clearly indicates poor absorption <strong>of</strong><br />

immunoglobulins from the gastrointestinal tract <strong>of</strong><br />

buffalo calves. The L:N ratio was also low in the<br />

buffalo calves, whereas G-6PD was higher. Together<br />

the low immunoglobulin and L: N ratio reduce the<br />

immunocompetence <strong>of</strong> the buffalo calves.<br />

Keyword: neonate, postpartum, immunology,<br />

glucose-6-phosphate dehydrogenase, neem oil,<br />

calves<br />

INTRODUCTION<br />

In bovines, the maternal transfer <strong>of</strong><br />

immunoglobulins through placenta is very little.<br />

Maternal colostrum accumulates and provides the<br />

immunoglobulins to the newborn calves, which give<br />

passive immunity to the calves. Variation in the<br />

immunoglobulin levels in neonates <strong>of</strong> different<br />

genotypes was reported by Sangwan et al. (1987).<br />

The death <strong>of</strong> the buffalo calves within 15 days was<br />

reported by Sikka and Seth (1996) due to poor<br />

Jawaharlal Nehru Krishi Vishwa Vidyalaya,Jabalpur,Madhya Pradesh 482001 (M.P.)India<br />

34<br />

absorption <strong>of</strong> immunoglobulin from the gastrointestinal<br />

tract. Internal defense is the result <strong>of</strong><br />

a combined effort <strong>of</strong> blood cells and serum<br />

immunoglobulins. Gupta et al. (1990) pointed out that<br />

the foetuses <strong>of</strong> buffalo calves had negligible amounts<br />

<strong>of</strong> immunoglobulins in their serum. Later on after<br />

birth 70% <strong>of</strong> young calves had more than 15mg%<br />

due to absorption <strong>of</strong> colostral immunoglobulins<br />

through intestinal villi. The L:N ratio is important from<br />

viewpoint <strong>of</strong> defense through antibody secretion.<br />

The G-6PD is the first line <strong>of</strong> defense <strong>of</strong> the body<br />

(Ganong, 1999). The interassociation <strong>of</strong> other<br />

related cellular parameters and serum<br />

immunoglobulins with high mortality <strong>of</strong> the neonatal<br />

buffalo calves is not clear. In an attempt to work<br />

out the possible cause <strong>of</strong> the heavy toll <strong>of</strong> neonatal<br />

buffalo calves, this project was envisaged.<br />

MATERIALS AND METHODS<br />

The experiment was carried out from<br />

December 1, 2004 to August 2005. The experimental<br />

design and animals used are given in Table 1. The<br />

immunoglobulin levels in the sera samples <strong>of</strong> the<br />

calves and whey portion <strong>of</strong> colostrum <strong>of</strong> their<br />

respective dams were estimated as per the method<br />

<strong>of</strong> Selman et al. (1970) using the ZnSO 4 turbidity<br />

method and the level <strong>of</strong> G-6-PD by the methods <strong>of</strong><br />

Kachmar and Moss (1976) in the red cell<br />

haemolysate using ready-made kits. The


Lymphocyte: Neutrophil (L:N) ratio was calculated<br />

from their respective absolute figures recorded with<br />

a Medonic Thor – 20 Auto cell counter. The<br />

statistical analysis <strong>of</strong> date was done as per Snedecor<br />

and Cochren (1989).<br />

RESULTS AND DISCUSSION<br />

The results <strong>of</strong> serum and colostral<br />

immunoglobulin <strong>of</strong> dams, their L:N ratio and<br />

G-6-PD have been presented in Table 2. The total<br />

immunoglobulin was recorded to be always higher<br />

in the periparturient buffalo sera and colostral<br />

samples in comparison to the periparturient cows.<br />

However, immediately after birth, before colostrum<br />

feeding to the calves <strong>of</strong> both the species, the total<br />

immunoglobulin content was almost nil, but it started<br />

rising 6 h after colostral feeding and thereafter with<br />

a slight ebb during the first week <strong>of</strong> the neonatal<br />

period (Table 3). Administration <strong>of</strong> neem oil<br />

enhanced the immunocompetence <strong>of</strong> the calves as<br />

earlier reported by Katiyar et al. (1997). One fact<br />

was evident from the observation that the levels <strong>of</strong><br />

serum immuno globulins in buffalo calves was<br />

always lower than the cow calves. This might have<br />

been the resultant <strong>of</strong> poor absorption from the G.I.<br />

tract <strong>of</strong> the buffalo calves resulting into low levels<br />

<strong>of</strong> immunoglobulins in serum and high mortality rate<br />

<strong>of</strong> neonatal buffalo calves. Archana et al. (1996)<br />

also reported that the higher environmental<br />

temperature reduces the absorption from G.I. Tract.<br />

The L:N ratio was quite high in periparturient<br />

dams but fell down (Table 3) in the precolostral fed<br />

calves. The ratio increased slowly to adult values<br />

with age. The conspicuous observation was that the<br />

L:N ratio <strong>of</strong> buffalo calves was significantly (P


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

Table 1. Place <strong>of</strong> procurement and number <strong>of</strong> the animals.<br />

S. No. Experimentation Condition <strong>of</strong> Animals Location <strong>of</strong> Animals No. <strong>of</strong> animals used Calves died<br />

1. Periparturient <strong>Buffalo</strong>es Reliable Dairy, Gwarighat, Jabalpur 19 -<br />

Periparturient Cows LSF, Adhartal, COVS, Jabalpur 16 -<br />

2. Control <strong>Buffalo</strong> calves Reliable Dairy, Gwarighat, Jabalpur 12 6<br />

Cow calves LSF, Adhartal, COVS, Jabalpur 12 2<br />

36<br />

3. Treated with <strong>Buffalo</strong> calves Reliable Dairy, Gwarighat, Jabalpur 15 7<br />

Neem oil<br />

@ 10ml/Day<br />

Cow calves LSF, Adhartal, COVS, Jabalpur 11 -


Table 2. Status <strong>of</strong> defensive parameters <strong>of</strong> periparturient buffaloes and cows<br />

37<br />

<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

Stage Animal Total Immunoglobulin (mg/ml) G-6PD (U/g. Hb) L: N ratio<br />

Colostrum Serum<br />

Prepartum <strong>Buffalo</strong>es 127±11 79±15 1.57<br />

Cows 92±16 17±3.3 1.76<br />

Postpartum <strong>Buffalo</strong>es 254±33 202±11 77±12 1.84<br />

Cows 206±32 149±28 22±6.3 4.97


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

Table 3. Status <strong>of</strong> defensive parameters <strong>of</strong> neonatal buffalo calves (Bc) and cow calves (Cc) along with<br />

effect <strong>of</strong> Neem oil at different time intervals<br />

Time intervals Neonatal Total immunoglobulin G6PD(U/gm Hb) L: NRatio<br />

(mg/ml)<br />

Calves Control Neemoil treat Control Neemoil treat. Control Neemoil treat.<br />

Precolostral Bc 5.8±0.6 - 107±25 - 0.8±0.1* -<br />

feeding<br />

Cc 4.1±1.0 34±8 1.1±0.1<br />

6 h post Bc 122±30* 123±10 124±<strong>21</strong>* 81±12 0.7±0.1* 0.8±0.1<br />

colost. feed.<br />

Cc 153±34 155±43 26±6.5 <strong>21</strong>±5.2 1.2±0.1 1.1±0.1<br />

1 st Day Bc 65±9.3 78±20 117±15* 112±22 0.8±0.1* 0.8±0.1<br />

Cc 96±25 95±17 23±6.4 33±6.0 1.2±0.1 1.2±0.1<br />

2 nd Day Bc 91±13 86±27 198±17* 122±18 0.8±0.1* 0.8±0.1<br />

Cc 95±19 94±14 24±5.0 38±10 1.4±0.1 1.4±0.1<br />

3 rd Day Bc 98±18 110±25 150±18* 99±23 0.8±0.1* 0.9±0.1<br />

Cc 103±<strong>21</strong> 105±7.6 23±5.0 <strong>21</strong>±5.4 1.5±0.1 1.5±0.1<br />

4 th Day Bc 119±13 111±25 158±25* 109±17 0.8 0* 0.9±0.1<br />

Cc 104±19 108±23 33±4.0 37±10 1.5±0.1 1.6±0.1<br />

5 th Day Bc 123±22 101±20 166±17* 146±61 0.8±0.1* 0.9±0<br />

Cc 134±29 139±16 44±9.2 61±8.1 1.6±0 1.7±0.1<br />

6 th Day Bc 103±27 94±<strong>21</strong> 146±28* 90±25 0.9±0.1* 0.9±0<br />

Cc 113±11 115±13 47±10 16±4.0 1.5±0.1 1.8±0.2<br />

14 th Day Bc 101±22 114±17 56±18 1<strong>21</strong>±24 0.9±0.1* 0.9±0<br />

Cc 110±<strong>21</strong> 140±25 36±9.8 36±9.8 1.5±0.1 1.5±0.3<br />

<strong>21</strong> st Day Bc 109±10 99±31 65±<strong>21</strong> 82±23 1±0.1 1.0±0<br />

Cc 115±26 92±16 38±4.4 35±8.5 1.5±00 2.0±0.1<br />

38


39<br />

<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

Time intervals Neonatal Total immunoglobulin G6PD(U/gm Hb) L: NRatio<br />

(mg/ml)<br />

Calves Control Neemoil treat Control Neemoil treat. Control Neemoil treat.<br />

28 th Day Bc 125±12 101±18 122±26* 69±24 1.0±00 0.9±0.1<br />

Cc 104±11 124±23 32±12 37±10 1.6±0.1 2.3±0.2<br />

35 th Day Bc 129±15 181±42 108±30* 38±8.9 0.8±0.2* 0.9±0.1<br />

Cc 140±35 155±43 25±7.8 30±9.1 1.5±0.1 2.3±0.2<br />

42 nd Day Bc 90±24* 159±32 33±6.6 67±16 0.8±0.1 0.9±0.1<br />

Cc 148±60 123±15 22±10 44±12 1.4±0.1 2.2±0.2<br />

49 th Day Bc 184±32 90±17 60±<strong>21</strong> 75±28 0.8±0.1* 0.9±0.1<br />

Cc 142±32 171±17 26±3.8 28±6.7 1.5±0.1 2.3±0.1<br />

56 th Day Bc 104±26 92±16 47±15 50±16 0.7±0.1* 0.8±0.1<br />

Cc 139±16 187±39 17±3.8 28±5.8 1.5±0.1 2.3±0.1<br />

63 rd Day Bc 123±22 91±11 123±22 91±11 0.7±0.1* 0.8±0.1<br />

Cc 114±20 141±20 114±20 141±20 1.5±0.1 2.2±0.1<br />

70 th Day Bc 95±13* 92±16 95±13 92±16 0.7±0.1* 0.7±0.1<br />

Cc 174±32 146±29 174±32 146±29 1.4±0.1 2.4±0.1<br />

77 th Day Bc 126±10 123±10 61±20 72±19 0.7±0.1 0.7±0.1<br />

Cc 115±26 148±22 19±3.9 24±2.4 1.6±0.1 2.3±0.4<br />

84 th Day Bc 115±15 108±12 265±14 53±11 0.6±0.1* 0.6±0.1<br />

Cc 104±12 147±20 19±5.8 32±4.7 1.5±0.1 2.3±0.2<br />

91 st Day Bc 107±25 142±19* 65±16 53±11 0.5±0.1* 0.6±0.1*<br />

postpatum Cc 115±25 145±28 31±7.4 33±4.8 1.5±0.1 2.6±0.3<br />

. *P


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

HAEMATO-BIOCHEMICAL PROFILES OF BUFFALO IN ANTHELMINTICS TREATMENT<br />

AGAINST FASCIOLA GIGANTICA INFECTION<br />

ABSTRACT<br />

Haemato-biochemical pr<strong>of</strong>iles were studied on<br />

Fasciola gigantica infected buffalo in Triclabendazole,<br />

Rafoxanide and Oxyclozanide treatment<br />

Haemetological analysis showed reduced<br />

erythrocytic count, haemoglobin percent and PCV<br />

level and eosinophilia in all groups before treatment.<br />

The values were improved 15 days after treatment.<br />

But the statistically significant improvement was seen<br />

in eosinophil percent in Rafoxanide and Oxyclozanide<br />

treated animals while Triclabendazole treated<br />

animals showed low level <strong>of</strong> eosinophilia.<br />

Biochemical analysis revealed hypoproteinemia,<br />

hypoalbuminemia, hypoglobulinemia, increased<br />

levels <strong>of</strong> total serum bilirubin, AST, ALT and ALP<br />

before treatment. After treatment, total serum<br />

bilirubin and AST values were decreased significantly<br />

in all treated groups while a significant level <strong>of</strong> total<br />

protein and globulin were found only in Oxyclozanide<br />

treated animals.<br />

INTRODUCTION<br />

Fasciolosis is a serious economic disease <strong>of</strong><br />

livestock with worldwide distribution. Of the three<br />

species (F. hepatica, F. giantica and F. jacksoni)<br />

F. giantica is regarded as one <strong>of</strong> the most important<br />

parasitic infection <strong>of</strong> ruminants in countries with<br />

tropical climates (Boray, 1985; Harrison et al., 1996<br />

and Tantrawatpan et al., 2003). It is a major<br />

constraint for livestock industries due to high<br />

mortality and morbidity (Sharma et al., 1989),<br />

decrease in weight gain (Bhatia et al., 1989 and<br />

S. Pal and C.K. Dasgupta<br />

Department <strong>of</strong> Veterinary Parasitology, West Bengal University <strong>of</strong> Animal and Fishery Sciences, Belgachia,<br />

Kolkata, West Bengal 700 037, India<br />

40<br />

Mandal, 1997), fertility, milk yield and wool<br />

production and liver condemnation (Swarup et al.,<br />

1987). Prevalences <strong>of</strong> F. giantica in fection in some<br />

ruminants range up to 80-100% in many countries<br />

like West Africa (Schillhorn Van Veen, 1980), India<br />

(Sharma et al., 1989) and Pakistan (Kendall, 1954)<br />

etc. Among the different definitive hosts, buffalo is<br />

the susceptible.<br />

Effective strategies for the control <strong>of</strong> fasciolosis<br />

are mainly based on the proper diagnosis and the<br />

use <strong>of</strong> very effective drugs. But, resistance <strong>of</strong> the<br />

liver fluke to flukicides is becoming a great problem<br />

to farmers (Mitchell et al., 1998; Estuningsih, et al.<br />

1990 and Sanyal, 1996). It was therefore, decided<br />

to undertake this study to see the haematobiochemical<br />

changes in buffalo infected with F.<br />

gigantica in leading flukicides therapy.<br />

MATERIALS AND METHODS<br />

Sixteen adult buffaloes (Murrah breed) <strong>of</strong><br />

either sex naturally infected with Fasciola gigantica<br />

at Mayakole, Krishnagar, Nadia, West Bengal were<br />

used for this study. They were divided into four groups<br />

<strong>of</strong> four in each. Animals <strong>of</strong> Group-I were treated<br />

with Triclabendazole (Fasinex, Trend Pharma<br />

Private Ltd.) at 12 mg/kg body weight orally.<br />

Group-II was treated with Rafoxanide (Rafoxin<br />

2000, Concept Pharmaceuticals Ltd.) at 7.5 mg/kg<br />

body weight and Group-III was treated with<br />

Oxyclozanide (Distodin, Pfizer) at 10 mg/kg body<br />

weight orally while Group-IV was left as an untreated<br />

infected control. Efficacy <strong>of</strong> the chemotherapeutic


agents was determined on the basis <strong>of</strong> pre and 15 th<br />

day post-treatment haematological and biochemical<br />

values.<br />

Haematological pr<strong>of</strong>iles:<br />

The blood samples collected in EDTA<br />

(sodium salt <strong>of</strong> ethylenediamine tetraacetic acid)<br />

vials were processed immediately as per the method<br />

describe by Jain (1986) to note the parameters viz.,<br />

total erythrocyte count (10 6 /cumm), total leukocyte<br />

count (10 3 /cumm), haemoglobin (gm/dl),<br />

differential leukocyte count (%) and PCV (%).<br />

Biochemical pr<strong>of</strong>iles:<br />

The sera samples collected in the sterilized<br />

plastic vials were preserved at 20 C till used for<br />

biochemical analysis. The samples were subjected<br />

to liver function tests viz., Serum Aspartate<br />

Aminotransferase(AST), Serum Alanine<br />

Aminotransferase (ALT), Alkaline Phosphatase<br />

(ALP), total protein, albumin, globulin and serum<br />

bilirubin as per the spectrophotometric methods<br />

supplied by ‘SPAN’ diagnostic kits.<br />

RESULTS AND DISCUSSION<br />

Haematological pr<strong>of</strong>iles in bubaline fasciolosis :<br />

The blood samples <strong>of</strong> the 16 buffaloes<br />

confirmed infected with F. gigantica were subjected<br />

to haematological analysis. The values <strong>of</strong> total<br />

erythrocyte count, haemoglobin and PCV before the<br />

treatment were below the mean reference values<br />

and increased following treatment in all treated groups<br />

(Table 1). But a significant difference (P


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

Table 1 Haematological pr<strong>of</strong>iles <strong>of</strong> F. gigantica infected buffalo before (BT) and after treatment (AT):<br />

Anima1 Drug TEC(X10 6 /ul) Hb(g/dl) PCV(%)<br />

BT AT BT AT BT AT<br />

1 Group-I 4.14 4.50 8.45 8.89 23 26<br />

2 Triclabendazole 5.85 5.70 10.18 10.83 30 30<br />

3 @ 12 mg/kg B.wt. 5.53 5.62 9.84 10.03 29 30<br />

4 5.76 6.10 10.<strong>21</strong> 10.81 30 31<br />

Avg.±S.E. 5.32±0.39 5.48±0.34 9.67±0.41 10.41±0.45 28.00±1.68 29.25±1.26 ab<br />

5 Group-II 5.02 5.28 10.06 10.74 25 26<br />

6 Rafoxanide @ 5.58 5.47 10.06 10.44 26 27<br />

7 7.5mg/kg b. wt. 4.61 5.03 9.18 9.48 20 24<br />

8 5.61 6.08 10.47 10.63 27 31<br />

Avg. ±S.E. 5.<strong>21</strong>±0.24 5.47±0.22 9.94±0.27 10.32±0.28 24.50±1.55 27.00±1.47 b<br />

9 Group-III 5.96 6.15 11.37 11.53 30 32<br />

10 Oxyclozanide @ 5.34 5.86 10.88 11.03 26 29<br />

11 10Mg/kg b. wt. 5.12 5.87 9.33 10.02 24 30<br />

12 5.67 6.08 11.20 11.47 27 31<br />

Avg. ±S.E. 5.52±0.18 5.99±0.07 10.70±0.46 11.01±0.34 26.75±1.25 30.50±0.65 a<br />

13 Group-IV 5.60 5.52 10.12 10.28 28 27<br />

14 Untreated 5.41 5.46 10.33 10.26 27 27<br />

15 Control 5.78 5.62 11.07 10.69 28 26<br />

16 5.27 5.30 9.93 10.13 25 24<br />

Avg. ±S.E 5.52±0.11 5.48±0.06 10.36±0.24 10.34±0.12 27.00±0.71 26.00±0.71 bc<br />

Means under the same superscripts do not differ significantly<br />

42


Table 3 Biochemical pr<strong>of</strong>iles <strong>of</strong> F. gigantica infected buffaloes before (BT) and after treatment (AT).<br />

Anima1 Drug TLC Neutrophil Eosinophil Basophil Lymphocyte Monocyte<br />

(X103ul) (%) (%) (%) (%) (%)<br />

BT AT BT AT BT AT BT AT BT AT BT AT<br />

43<br />

<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

1 Group I 10.85 11.95 32.00 37.00 19.00 12.00 1.00 1.00 45.00 48.00 3.00 2.00<br />

2 Triclaben 9.25 8.70 32.00 34.00 9.00 7.00 2.00 1.00 58.00 54.00 3.00 4.00<br />

3 dazole @ 10.05 10.79 36.00 35.00 11.00 7.00 - 1.00 55.00 54.00 4.00 3.00<br />

4 12 mg/kgB. wt 10.22 11.32 32 36.00 11.00 10.00 1.00 1.00 53.00 48.00 3.00 5.00<br />

Avg. ±S.E. 10.09 10.69 33.00 35.50 12.50 9.00 1.00 1.00 52.75 51.00 3.25 3.50<br />

±0.32 ±0.70 ±1.00 ±0.64 ±2.<strong>21</strong> ±1.22b ±0.41 ±0.00 ±2.78 ±1.73 ±0.25 ±0.6<br />

5 Group II 8.90 8.95 33.00 38.00 14.00 6.00 2.00 1.00 47.00 52.00 4.00 3.00<br />

6 Rafoxa 9.95 11.55 26.00 34.00 13.00 4.00 - 1.00 58.00 57.00 3.00 4.00<br />

7 nide@ 10.05 11.40 30.00 30.00 17.00 6.00 - 1.00 47.00 58.00 6.00 5.0<br />

8 7.5 mg/kg b. wt.12.95 12.85 35.00 36.00 13.00 6.00 1.00 1.00 44.00 54.00 7.00 4.00<br />

Avg. ±S.E. 10.46 11.19 31.00 34.50 14.25 5.50 0.75 1.00 49.00 55.25 5.00 4.00<br />

±0.86 ±0.81 ±1.95 ±1.70 ±0.94 ±0.50a ±0.48 ±0.00 ±3.08 ±1.37 ±0.91 ±0.40<br />

9 Group III 8.15 9.65 34.00 33.00 10.00 5.00 - 1.00 53.00 58.00 3.00 3.00<br />

10 Oxyclo 9.90 10.56 36.00 36.00 12.00 6.00 - - 50.00 55.00 2.00 3.00<br />

11 zanide @ 8.70 10.05 30.00 35.00 18.00 7.00 1.00 1.00 47.00 53.00 4.00 4.00<br />

12 10 mg/Kg b. wt 10.12 10.88 32.00 33.00 11.00 6.00 1.00 1.00 52.00 58.00 4.00 2.00<br />

Avg. ±S.E. 9.22 10.29 33.00 34.25 12.75 6.00 0.50 0.75 50.50 56.00 3.25 3.00<br />

±0.47 ±0.27 ±1.29 ±0.75 ±1.79 ±0.40a ±0.29 ±0.25 ±1.32 ±1.22 ±0.48 ±0.41<br />

13 Group IV 9.35 9.41 36.00 35.00 12.00 11.00 1.00 1.00 47.00 50.00 4.00 3.00<br />

14 Untreated 8.80 8.65 29.00 30.00 10.00 8.00 - 1.00 58.00 57.00 3.00 4.00<br />

15 Control 8.44 8.40 27.00 29.00 11.00 8.00 1.00 - 57.00 59.00 4.00 4.00<br />

16 10.07 10.<strong>21</strong> 34.00 34.00 11.00 14.00 - - 52.00 48.00 3.00 4.00<br />

Avg. ±S.E. 9.17 9.17 31.50 32.00 11.00 10.25 0.50 0.50 53.50 53.50 3.50 3.75<br />

±0.35 ±0.40 ±2.10 ±1.47 ±0.41 ±1.44b ±0.29 ±0.29 ±2.53 ±2.66 ±0.29 ±0.25<br />

Means under the same superscripts do not differ significantly


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

Table 3 Biochemical pr<strong>of</strong>iles <strong>of</strong> F. gigantica infected buffaloes before (BT) and after treatment (AT).<br />

Animal Drug TotalProtein Albumin Globulin A/G Total serum<br />

No. (g/dl) (g/dl) (g/dl) Bilirubin (mg/dl)<br />

BT AT BT AT BT AT BT AT BT AT<br />

1 Group I 6.70 6.98 2.54 2.89 4.16 4.09 0.61 0.71 0.38 0.18<br />

2 (Triclaben 6.94 7.16 2.78 3.03 4.16 4.13 0.67 0.73 0.32 0.18<br />

3 dazole 7.16 7.62 3.30 3.61 3.86 4.01 0.85 0.90 0.27 0.19<br />

4 Treated) 6.52 6.81 3.07 3.35 3.45 3.46 0.89 0.97 0.<strong>21</strong> 0.10<br />

Avg. ±S.E. 6.83 7.14 2.92 3.22 3.90 3.92 0.76 0.83 0.29 0.16<br />

±0.13 ±0.17b ±0.16 ±0.16 ±0.16 ±0.15b ±0.06 ±0.06 ±0.22 ±0.22b 5 Group II 6.<strong>21</strong> 6.87 2.43 3.18 3.78 3.69 0.64 0.86 0.20 0.06<br />

6 (Rafoxa 6.93 7.22 2.50 2.62 4.43 4.60 0.56 0.57 0.35 0.02<br />

7 nide 6.72 7.06 2.92 3.11 3.80 3.95 0.77 0.79 0.29 0.01<br />

8 treated) 7.20 7.65 3.17 3.49 4.03 4.16 0.79 0.84 0.12 0.05<br />

Avg. ±S.E. 6.77 7.20 2.76 3.10 4.01 4.10 0.69 0.76 0.24 0.04<br />

±0.20 ±0.16b ±0.17 ±0.18 ±0.15 ±0.19ab ±0.05 ±0.06 ±0.07 ±0.<strong>21</strong>a 9 Group III 6.85 8.55 2.96 3.92 3.89 4.63 0.76 0.85 0.32 0.05<br />

10 (Oxyclo 7.73 9.83 2.63 3.50 5.10 5.33 0.52 0.66 0.23 0.01<br />

11 zanide 7.40 8.95 2.65 3.77 4.75 5.18 0.56 0.73 0.23 0.03<br />

12 treated) 6.36 6.77 2.29 2.91 4.07 3.86 0.56 0.75 0.30 0.06<br />

Avg. ±S.E. 7.09 8.53 2.63 3.53 4.45 4.75 0.6 0.75 0.27 0.04<br />

±0.25 ±0.50a ±0.13 ±0.22 ±0.23 ±0.33a ±0.05 ±0.03 ±0.28 ±0.33a 13 Group IV 6.87 6.48 3.01 3.07 3.3.86 3.41 0.78 0.90 0.34 0.28<br />

14 (Untreated 6.60 6.71 2.82 2.73 3.78 3.98 0.75 0.69 0.23 0.26<br />

15 Control) 6.41 6.28 3.43 3.41 2.98 2.87 1.15 1.19 0.27 0.29<br />

16 7.43 7.12 3.64 3.60 3.79 3.52 0.96 1.02 0.31 0.35<br />

Avg. ±S.E. 6.83 6.65 3.23 3.20 3.60 3.45 0.91 0.95 0.29 0.30<br />

±0.17 ±0.19b ±0.17 ±0.19 ±0.16 ±0.24b ±0.07 ±0.11 ±0.24 ±0.16c 44<br />

Means under the same superscripts do not differ significantly


45<br />

<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

Table 4 Biochemical pr<strong>of</strong>iles <strong>of</strong> F. gigantica infected buffaloes before (BT) and after treatment (AT).<br />

Animal Drug AST(SGOT) ALT(SGPT) ALP<br />

No. (U/ml) (U/ml) (K.A. Unit)<br />

BT AT BT AT BT AT<br />

1 Group-I 56 54 32 30 33.70 28.16<br />

2 (Triclaben 47 45 30 29 17.86 15.52<br />

3 dazole 52 49 29 26 20.06 17.01<br />

4 treated) 50 47 <strong>21</strong> 22 27.14 18.55<br />

Avg. ±S.E. 51.25 48.75 28.00 25.75 24.69 19.81<br />

±1.89 ±1.93 a ±2.42 ±2.02 ±3.59 ±1.65<br />

5 Group-II 53 46 26 22 17.40 16.26<br />

6 (Rafo 51 45 22 24 16.41 15.17<br />

7 xanide 54 48 28 25 30.05 20.34<br />

8 treated) 46 42 38 30 52.40 37.87<br />

Avg. ±S.E. 51.00 45.25 28.50 25.25 29.06 22.41<br />

±1.78 ±1.25 a ±3.40 ±1.70 ±8.37 ±5.27<br />

9 Group-III 46 44 29 26 20.73 14.61<br />

10 (Oxyclo 53 46 23 <strong>21</strong> 30.47 23.28<br />

11 zanide 64 53 34 31 25.05 19.94<br />

12 treated) 51 47 36 31 18.29 12.74<br />

Avg. ±S.E. 53.50 47.50 30.50 27.25 23.63 17.64<br />

±3.80 ±1.94 a ±2.90 ±2.39 ±2.67 ±2.42<br />

13 Group-IV 54 54 31 26 32.25 31.66<br />

14 (Untreated 54 55 25 28 17.14 <strong>21</strong>.41<br />

15 Control) 51 52 28 27 20.41 20.80<br />

16 57 56 30 29 34.05 27.73<br />

Avg. ±S.E. 54.00 54.25 28.50 27.50 25.96 25.40<br />

±1.22 ±0.85 b ±1.32 ±0.65 ±4.<strong>21</strong> ±2.60<br />

Means under the same superscripts do not differ significantly


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

REFERENCES<br />

Bhatia, B.B., D.S. Upadhaya and P.D. Juyal. 1989.<br />

Epidemiology <strong>of</strong> Fasciola gigantica in<br />

buffaloes, goat and sheep in Tarai region <strong>of</strong><br />

Uttar Pradesh. J. Vet. Parasitol, 3: 25-29.<br />

Bharti, P. and K.D. Prasad. 2001. Biochemical<br />

pr<strong>of</strong>iles <strong>of</strong> cattle and buffalo infected with<br />

Paramphistomum spp and Fasciola<br />

gigantica. J. Vet. Parasitol., 15(2): 149-151.<br />

Boray, J.C. 1985. Flukes <strong>of</strong> domestic animals. In<br />

Gaafar, S.M., W.E. Howard and R.E.Marsh<br />

(eds.). Parasites, Pests and Predators.<br />

Elsevier, New York, pp. 179-<strong>21</strong>8.<br />

Estuningsih, S.E., P. Stevenson, Beriajaya and M.R.<br />

Knox. 1990. Triclabendazole in the treatment<br />

<strong>of</strong> Fasciola gigantica infection in swamp buffalo<br />

(Bubalus bubalis). Australian Vet. J., 67:<br />

234-235.<br />

Harrison, L.J.S., J.A. Hammond and M.M.H.<br />

Sewell. 1996. Studies on helminthosis at the<br />

centre for Tropical Veterinary Medicine<br />

(CTVM). Trop. Anim. Hlth Prod., 28: 23-39.<br />

Jain, N.C. 1986. Schalm Veterinary Haematology.<br />

4 th ed. Lea and Febiger, Philadelphia.<br />

Kendall, S.B. 1954. Fascioliasis in Pakistan. Ann.<br />

Trop. Med. Parasitol., 48: 307-313.<br />

Kumar, M., K.M.L. Pathak and S.P. Pachauri. 1982.<br />

Clinicopathological studies on naturally<br />

occurring bovine fascioliasis in India. British<br />

Vet. J., 138: 241-246.<br />

Maiti, S.K., V.N. Rao, S.L. Ali, G. Dutta and A.<br />

Mishra. 1999. Haematobiochemical and<br />

therapeutic aspects <strong>of</strong> biliary amphistomiasis<br />

in buffalo. Indian J. Vet. Medicine, 19:<br />

49-51.<br />

Mandal, S. 1997. Evaluation <strong>of</strong> Fasciola gigantica<br />

antigens for immunodiagnosis <strong>of</strong> fasciolosis<br />

in ruminants. M.V.Sc. Thesis, I.V.R.I.,<br />

Izatnagar, India.<br />

46<br />

Martinez-Moreno, A., V.M. Jimenez, M.S. Martinez-<br />

Cruz, F.J. Martinez, C. Becerra and<br />

S.Harnandez. 1999. Triclabendazole treatment<br />

in experimental goat fasciolosis: anthelmintic<br />

efficacy and influence in antibodody response<br />

and pathophysiology <strong>of</strong> the disease. Vet.<br />

Parasitol., 68(12): 57-67.<br />

Mitchell, G.B., L.Maris and M.A. Bonniwell. 1998.<br />

Triclabendazole resistant liver flukes in Scottish<br />

sheep. Vet. Record, 143: 399.<br />

Moreno, A., F.J. Martinez, V. Jimenez, M.S. Cruz,<br />

F.J. Martinez-Moreno, B.C. Martinez and S.<br />

Hernandez. 1997. Triclabendazole treatment in<br />

experimental goat fascioliasis: Anthelmintic<br />

efficacy and influence in antibody response and<br />

pathophysiology <strong>of</strong> the disease. Vet. Parasitol.,<br />

68: 57-67.<br />

Sanyal, P.K. 1996. Kinetic disposition and critical<br />

efficacy <strong>of</strong> triclabendazole against<br />

experimental bovine and bubaline fasciolosis.<br />

J. Vet. Parasitol., 10(2): 147-152.<br />

Schillhorn van Veen, T.W. 1980. Fascioliasis<br />

(Fasciola gigantica) in West Africa: a review.<br />

Vet. Bulletin, 50: 529-533.<br />

Sharma, R.L., D.N. Dhar and O.K. Raina. 1989.<br />

Studies on the prevalence and laboratory<br />

transmission <strong>of</strong> fascioliasis in animals in the<br />

Kashmir valley. British Vet. J., 145: 57-61.<br />

Swarup, D., S.P. Pachauri, B. Sharma and S.K.<br />

Bandhopadhyay. 1987 Serodiagnosis <strong>of</strong><br />

Fasciola gigantica in buffaloes. Vet.<br />

Parasitol., 24: 67-74.<br />

Tanrawatpan, C., W. Maleewong, C. Wongkham,<br />

S. Wongkham, P.M. Intapan and K.<br />

Nakashima. 2003. Characterization <strong>of</strong><br />

Fasciola gigantica adult 27- kDa<br />

excretory-secretory antigen in human<br />

fascioliasis. Parasitol. Res., 91(4): 325-327.<br />

Waweru, J.G., Kanyari, D.M. Mwangi, T.A. Ngatia<br />

and P. Nansen. 1999. Comparative<br />

parasitological and haematological changes in<br />

two breeds <strong>of</strong> sheep infected with Fasciola<br />

gigantica. Trop. Anim. Hlth. Prod., 31:<br />

363-372.


RESEARCH ABSTRACTS<br />

ANATOMY<br />

N. Singh, K. S. Roy. Punjab Agricultural<br />

University, Ludhiana, Punjab 141 004,<br />

India.Histochemical study on the<br />

mammary gland <strong>of</strong> Indian buffalo (Bubalus<br />

bubalis). Indian Journal <strong>of</strong> Animal Sciences<br />

(2006) 76: 43-45.<br />

The distribution <strong>of</strong> neutral and acid<br />

mucopolysaccharides, basic protein and lipids in the<br />

mammary glands <strong>of</strong> lactating and non-lactating<br />

buffaloes was studied using histochemistry. It was<br />

shown that the neutral mucopolysaccharides and<br />

basic protein were mainly found in the alveoli <strong>of</strong> the<br />

mammary glands <strong>of</strong> lactating buffaloes, while acid<br />

mucopolysaccharides were mainly found in the<br />

stromal mammary tissue <strong>of</strong> non-lactating animals.<br />

Sudanophilic lipids were also present in the alveolar<br />

and duct system epithelium <strong>of</strong> the mammary glands<br />

<strong>of</strong> lactating buffaloes. The corpora amylacea was<br />

positive for neutral mucopolysaccharides and basic<br />

protein in the mammary gland <strong>of</strong> non-lactating<br />

buffaloes.<br />

47<br />

<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

PHYSIOLOGY<br />

Sheikh, P. A., F. D. Merry, D. G. McGrath.<br />

Department <strong>of</strong> Biology, Pennsylvania State<br />

University, University Park, PA 16802, USA.<br />

Water buffalo and cattle ranching in the<br />

Lower Amazon Basin: comparisons and<br />

conflicts. Agricultural Systems (2006) 87<br />

(3):313-330.<br />

From 1975 to 2000, the water buffalo<br />

population in the Brazilian Amazon increased at<br />

nearly 13% per year, making it one <strong>of</strong> the fastest<br />

growing herds in the world. On the floodplains <strong>of</strong><br />

the Amazon River buffalo are managed in a similar<br />

manner to cattle, but <strong>of</strong>ten earn superior production<br />

figures. This production advantage, however, is<br />

tempered by the role buffalo play in conflicts<br />

between landowners; buffalo are prone to altering<br />

the floodplain environment and interfering with<br />

production activities such as fishing and farming. In<br />

this research, we show that buffalo are kept on the<br />

floodplains 24% longer than cattle throughout the<br />

year, and 37% longer than cattle during periods when<br />

landowner conflicts are most likely to occur. We also<br />

show that buffalo productivity is greater than cattle<br />

in this system, which gives an opportunity to design<br />

management regimes for buffalo that may increase<br />

production costs, but that will lower the<br />

environmental and social problems that involve<br />

buffalo. Specifically , when the waters begin to rise,<br />

buffalo should be removed from the floodplains at<br />

the same time as cattle. Although this will not lessen<br />

the damage done while the buffalo is on the<br />

floodplain, it will place buffalo on the floodplain<br />

during the dry season when the erosion potential is<br />

at its lowest, and reduce the time that buffalo may<br />

interfere with other production activities such as<br />

fishing. The additional production costs incurred by<br />

early removal will not dissipate the production<br />

advantage over cattle. Without specific management<br />

that addresses the socio-economic and environmental<br />

problems caused by buffalo, the continued high<br />

growth rate for the buffalo population on the<br />

Amazon floodplains may not be sustainable and<br />

conflicts will become commonplace.


Instructions for Authors<br />

<strong>Buffalo</strong> Bulletin is published by <strong>International</strong> <strong>Buffalo</strong><br />

<strong>Information</strong> Center under the authorization <strong>of</strong> Office <strong>of</strong> University<br />

Library, Kasetsart University, Thailand. Contributions on any aspect<br />

<strong>of</strong> research or development, progress report <strong>of</strong> projects and news on<br />

buffalo will be considered for publication in the bulletin.<br />

General editorial policies<br />

Authorship criteria<br />

Authorship is restricted to those who (1) have contributed<br />

substantially to one or more <strong>of</strong> the following aspects <strong>of</strong> the work and (2)<br />

are willing to assume public responsibility for the validity <strong>of</strong> the<br />

work.<br />

Copyright<br />

Copyright to published manuscripts becomes the sole<br />

property <strong>of</strong> <strong>International</strong> <strong>Buffalo</strong> <strong>Information</strong> Center.<br />

Criteria for manuscript acceptance<br />

Manuscript acceptability is based on clarity <strong>of</strong> objectives;<br />

originality; appropriateness <strong>of</strong> the experimental design, methods and<br />

statistical analysis; substance <strong>of</strong> the results; thoroughness with which the<br />

results are discussed; and appropriateness <strong>of</strong> the conclusions.<br />

Following acceptance <strong>of</strong> a paper and prior to publication, the<br />

author will be received the acceptance letter.<br />

Manuscript requirements<br />

Manuscripts preparation<br />

Manuscripts on original research in English language should<br />

include at least the following elements.<br />

Title<br />

• Full title (be concise)<br />

• Name(s) <strong>of</strong> author(s) and the first author<br />

affiliation with complete address.<br />

Abstract<br />

• An abstract not exceeding 250 words; all<br />

acronyms and abbreviations defined; no<br />

references cited. State what, where and how it<br />

was done, major results.<br />

• Five key words.<br />

Introduction. Review pertinent work, cite key references,<br />

explain importance <strong>of</strong> the research, and state objectives <strong>of</strong><br />

your work.<br />

Materials and Methods. Provide sufficient detail so work<br />

can be repeated. Describe new methods in detail; accepted<br />

methods briefly with references.<br />

Use <strong>of</strong> trade names. Trade names are to be<br />

avoided in defining products whenever possible.<br />

Use <strong>of</strong> abbreviations and acronyms. At first text<br />

use, define in parentheses. Do not use abbreviations and<br />

acronyms in titles.<br />

Results and discussion. Present results concisely using<br />

figures and tables as needed. Do not present the same<br />

information in figures and tables. Discuss principles and<br />

relationship, point out exception. Show agreement with<br />

published research work. The significances <strong>of</strong> work or<br />

conductions should be presented in the end <strong>of</strong> discussion.<br />

Tables. Number each table with Arabic numerals. Place a<br />

descriptive caption at the top <strong>of</strong> each table.<br />

Figures. (graphs, charts, line drawings, photographs)<br />

Number each figure with Arabic numerals under the<br />

illustration. Lettering, data lines and symbols must be<br />

sufficiently large so as to be clearly visible when the figure<br />

is reduced to a size commonly used in the journal.<br />

References. List only those references cited in the text.<br />

Required format <strong>of</strong> described below.<br />

Reference cited format<br />

Manuscripts should follow the name-year reference format.<br />

Cite only necessary publications. Primary rather than secondary<br />

references should be cited, when possible. It is acceptable to cite work<br />

that is “in press” (i.e., accepted but not yet published) with the pertinent<br />

year and volume number <strong>of</strong> the reference.<br />

In text. Cite publications in text with author name and<br />

year. Three or more authors use “et al.”. In parenthetical citations,<br />

separate author and year with a comma. Use suffixes a, b and c to<br />

separate publications in same year by the same author. Semi-colon<br />

separate citations <strong>of</strong> different authors. Cite two or more publications<br />

<strong>of</strong> different authors in chronological sequence, from earliest to latest.<br />

For example:<br />

….used liquid nitrogen vapour freezing technique from Verma et al.<br />

(1975)<br />

….liquid nitrogen vapour freezing technique (Verma et al., 1975)<br />

…and buffaloes (Singh et al., 1983; Shah et al., 1987; Misra, 1996;<br />

Pant et al., 2002)<br />

In reference cited. List only those literature cited in the text.<br />

References should be listed alphabetically by the first author’s last<br />

name. Single author precedes same author with co-authors. Type<br />

references flush left as separate paragraphs. Do not indent manually.<br />

Write the name <strong>of</strong> book or journal in italic letters. Use the following<br />

format.<br />

• Journal articles: Author(s). Year. Article title. Journal title,<br />

volume number: inclusive pages.<br />

Example: Citation in text: Chaudhary et al. (1981)<br />

Choudhary, P.C., B. Prasad and S.K. Misra. 1981. Note on the use <strong>of</strong><br />

rumen liquor in the treatment <strong>of</strong> chronic alkaline indigestion in<br />

cows. Indian J. Anim. Sci., 51: 356-360.<br />

• Books: Author(s) or editor(s). Year. Title. Publishername,Place<br />

<strong>of</strong> publication. Number <strong>of</strong> pages.<br />

Example: Citation in text: Snedecor and Cochram. (1980)<br />

Snedecor, G.W. and W.G. Cochram. 1980. Statistical Methods, 7 th ed.<br />

The Iowa State University Press, Ames, Iowa, USA. 593p.<br />

Sattar, A. 1995. Studies on the effect <strong>of</strong> immunopotentiation <strong>of</strong><br />

vaccinated pregnant buffaloes and cows on neonatal antibody<br />

titre and hematological pr<strong>of</strong>ile. Ph. D. thesis, University <strong>of</strong><br />

Agriculture, Faisalabad, Pakistan. 208p.<br />

• Chapter: Author(s) <strong>of</strong> the chapter. Year. Title <strong>of</strong> the chapter,<br />

pages <strong>of</strong> the chapter. In author(s) or editor(s). Title <strong>of</strong> the book.<br />

Publisher name, Place <strong>of</strong> publication.<br />

Example: Citation in text: Sloss and Dufty. (1980)<br />

Sloss, V. and J.H. Dufty. 1980. Disorders during pregnancy,<br />

p. 88-97. In Sloss, V. and J.H. Dufty (eds.) Handbook <strong>of</strong> Bovine<br />

Obstetrics. Williams and Wilkins, Baltimore, U.S.A.<br />

Sabrani, M., K. Diwyanto and M. Winugroho 1994. A critical<br />

review <strong>of</strong> buffalo research and development activities in<br />

Indonesia. Past performanceand future strategies, p. 78-89. In<br />

Proceedings <strong>of</strong> 1 st Asian <strong>Buffalo</strong> Association Congress,<br />

Thailand.<br />

Submission manuscript<br />

Submit the following items.<br />

Cover letter. Identify the corresponding author and provide his/her<br />

full name, address, numbers for telephone and fax, and e-mail address.<br />

Manuscript. In 12 point Times or Times New Roman. Type on one<br />

side <strong>of</strong> A4 paper. Use one inch margins. Number all pages. Send an<br />

original manuscript and 1 photo<strong>copy</strong>.<br />

Disk. Include an IBM-formatted, 3-1/2" disk or 4-3/4" CD-ROM,<br />

containing the manuscript in Micros<strong>of</strong>t Word.<br />

Mail manuscript to:<br />

By post: <strong>International</strong> <strong>Buffalo</strong> <strong>Information</strong> Center<br />

Office <strong>of</strong> University Library<br />

Kasetsart University,<br />

50 Pahonyothin Road, Chatuchak,<br />

Bangkok 10900, Thailand<br />

Tel. 66-2-942-8616<br />

By e-mail: libibic@ku.ac.th


<strong>Buffalo</strong> Bulletin (June 2006) Vol.25 No.2<br />

CONTENTS<br />

Ruminal pH as regulator <strong>of</strong> rumen metabolism in buffaloes<br />

M.A. Akbar and Ramesh Kumari................................................................................. 25<br />

A significant observation on the status <strong>of</strong> cortisol in neonatal buffalo calves and cow<br />

calves VIS-À -VIS their dams<br />

I.J.Sharma, A.K. Jain,and R.K. Tripathi...................................................................... 30<br />

Pr<strong>of</strong>ile <strong>of</strong> serum immunoglobulins, glucose-6-phosphate dehydrogenase and L: N<br />

ratio as a measure <strong>of</strong> internal defense <strong>of</strong> neonatal bovine calves vs their dam: effect<br />

<strong>of</strong> neem oil as immunodrlator<br />

A.K. Jain, I. J. Sharma, M.A. Quadri, R.K. Tripathi and R.G.Agrawal............................ 34<br />

Haemato-biochemical pr<strong>of</strong>iles <strong>of</strong> buffalo in anthelmintics treatment against Fasciolo<br />

gigantica infection<br />

H.S. Raghuvanshi, S.Nema, S.K Jain and B.C Sarkhe................................................ 40<br />

RESEARCH ABSTRACT........................................................................................... 47<br />

BUFFALO BULLETIN<br />

IBIC, KASETSART UNIVERSITY, P.O. BOX 1084<br />

BANGKOK 10903, THAILAND<br />

URL : http://ibic.lib.ku.ac.th<br />

E-mail : libibic@ku.ac.th<br />

Tel : 66-2-5795017<br />

Fax : 66-2-5611369<br />

48<br />

Page

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!