15.04.2013 Views

The p53 tumor suppressor

The p53 tumor suppressor

The p53 tumor suppressor

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>p53</strong> <strong>tumor</strong> <strong>suppressor</strong>


1 I II III IV V<br />

Transactivation<br />

domain<br />

<strong>p53</strong><br />

393<br />

NLS I NLS II NLS III<br />

DNA-binding domain Regulatory domain<br />

Tetramerization<br />

domain<br />

• Discovered in 1979 (A. Levine, D. Lane)<br />

(1988, B. Vogelstein)<br />

• bona fide Tumor <strong>suppressor</strong><br />

• Transcriptional activator and repressor<br />

• Mutated on over 50% of human <strong>tumor</strong>s<br />

• Cancer therapeutic target (traditional drugs<br />

side effects)


Discovery of <strong>p53</strong><br />

• Immunocytochemical and immunohistochemical analysis show that the <strong>p53</strong> protein<br />

accumulates in the nucleus of transformed or <strong>tumor</strong> cells. Before 1990, the protein<br />

was believed to be wild type.


<strong>p53</strong> is a <strong>tumor</strong> <strong>suppressor</strong><br />

• <strong>p53</strong> in Friend murine erythroleukemia<br />

• In these <strong>tumor</strong>s induced by the Friend virus, the <strong>p53</strong> gene found in the <strong>tumor</strong> cells is<br />

truncated or mutated. In this <strong>tumor</strong> model, func


<strong>p53</strong> is a <strong>tumor</strong> <strong>suppressor</strong><br />

• Wild type <strong>p53</strong> has an@prolifera@ve proper@es and does not cooperate with Ha-­‐ras<br />

• Cotransfec


<strong>p53</strong> is a <strong>tumor</strong> <strong>suppressor</strong><br />

• <strong>p53</strong> gene is mutated in a wide variety of human cancer<br />

• Gene


<strong>p53</strong> mutations in human <strong>tumor</strong>s


<strong>p53</strong> is a <strong>tumor</strong> <strong>suppressor</strong><br />

• Germline muta@on of the <strong>p53</strong> gene are found in Li-­‐Fraumeni pa@ents<br />

• This syndrome presents as a familial associa


<strong>p53</strong> is a <strong>tumor</strong> <strong>suppressor</strong><br />

• <strong>p53</strong> in mouse <strong>tumor</strong> development<br />

• Mice homozygous for the null allele appear normal but are prone to the spontaneous<br />

development of a variety of <strong>tumor</strong>s by 6 months of age. <strong>The</strong>se observa


<strong>p53</strong> protein<br />

• Human <strong>p53</strong> protein can be divided into five domains, each corresponding to specific<br />

functions:<br />

• I) <strong>The</strong> amino-terminus part 1-42 contains the acidic transactivation domain and the mdm2<br />

protein binding site. It also contains the Highly Conserved Domain I (HCD I).<br />

II) Region 40-92 contains series repeated proline residues that are conserved in the<br />

majority of <strong>p53</strong>. it also contains a second transactivation domain.<br />

III) <strong>The</strong> central region (101-306) contains the DNA binding domain. It is the target of 90% of<br />

<strong>p53</strong> mutations found in human cancers. It contains HCD II to V.<br />

IV) <strong>The</strong> oligomerization domain (307-355, 4D) consists of a beta-strand, followed by an<br />

alpha-helix necessary for dimerization, as <strong>p53</strong> is composed of a dimer of two dimers. A<br />

nuclear export signal (NES) is localized in this oligomerization domain.<br />

V) <strong>The</strong> C-terminus of <strong>p53</strong> (356-393) contains 3 nuclear localization signals (NLS) and a<br />

non-specific DNA binding domain that binds to damaged DNA. This region is also involved<br />

in downregulation of DNA binding of the central domain.


• <strong>The</strong> amino-­‐terminus of <strong>p53</strong><br />

• AD1: ac


• <strong>The</strong> carboxy-­‐terminus of <strong>p53</strong><br />

• Tetra (4D): oligomeriza


<strong>p53</strong> is a DNA-­‐binding protein<br />

• <strong>The</strong> core domain structure<br />

consists of a beta sandwich<br />

that serves as a scaffold for<br />

two large loops and a loop-­‐<br />

sheet-­‐helix mo


<strong>p53</strong> structure<br />

<strong>p53</strong> <strong>tumor</strong><br />

<strong>suppressor</strong><br />

binds to DNA<br />

using all four<br />

of its arms.<br />

<strong>p53</strong> is a <strong>tumor</strong> <strong>suppressor</strong>


• <strong>p53</strong> structure<br />

• <strong>p53</strong> <strong>tumor</strong> <strong>suppressor</strong> is a flexible<br />

molecule composed of four iden


• P53/DNA structure<br />

• <strong>p53</strong> <strong>tumor</strong> <strong>suppressor</strong> binds to<br />

DNA using all four of its arms.<br />

• <strong>The</strong> typical binding site for the<br />

whole molecule is composed of<br />

three parts: a specific binding<br />

site for two <strong>p53</strong> domains, a<br />

variable stretch of 0 to 13 base<br />

pairs, and a second specific<br />

binding site for the other two<br />

<strong>p53</strong> domains. .<br />

• <strong>The</strong> tetrameriza


Mdm2 is a repressor of <strong>p53</strong><br />

• MDM2 is a RING-­‐finger E3 ubiqui


P53 is a sensor of stress<br />

• <strong>p53</strong> pathway in stress response<br />

• i)<strong>The</strong> stress signals that ac


A Classic model of <strong>p53</strong> stabiliza


<strong>p53</strong> activation by ARF<br />

ARF (known as p14 in<br />

humans and p19 in mice)<br />

was originally identified<br />

as an alternative<br />

transcript of the Ink4a/<br />

ARF <strong>tumor</strong> <strong>suppressor</strong><br />

locus, a gene that<br />

encodes the Ink4a/p16<br />

inhibitor of cyclindependent<br />

kinases. ARF<br />

suppresses aberrant cell<br />

growth in response to<br />

oncogenic stress mainly<br />

by activating the <strong>p53</strong><br />

pathway.<br />

MULE = ARF-BP1<br />

A model of <strong>p53</strong> ac


Mul


P53-mediated growth<br />

arrest:<br />

downstream signaling, G1<br />

arrest via p21 transcription.<br />

<strong>The</strong> CDKI p21 will prevent<br />

Rb phosphorylation via<br />

inhibiation of the CDK4 and<br />

CDK2 kinases.<br />

A model of <strong>p53</strong>-­‐mediated cell cycle arrest.


<strong>p53</strong><br />

<strong>p53</strong> and Cell Cycle Arrest<br />

p21<br />

GADD45<br />

14-­‐3-­‐3σ<br />

cdk2<br />

cdc2<br />

G1<br />

arrest<br />

G2<br />

arrest


<strong>p53</strong><br />

<strong>p53</strong> and Apoptosis<br />

PUMA<br />

Bax<br />

BCL-2<br />

Other <strong>p53</strong> apoptotic targets: Noxa, Fas,<br />

DR5, Apaf-1, <strong>p53</strong>AIP1, PIDD and etc<br />

Apoptosis


Transcrip


Several transcrip


<strong>p53</strong> and Metabolic regulation.<br />

Key targets: SCO2, Hexokinase, GLUT1,3,4, TIGAR and PGM


Regula@on of <strong>p53</strong><br />

Stress<br />

DNA damage<br />

<strong>p53</strong><br />

Ac


Figure 1-Kruse and Gu


Regulation of <strong>p53</strong><br />

Stress<br />

DNA damage<br />

<strong>p53</strong><br />

Ubiquitination<br />

<strong>p53</strong> stabilization<br />

Acetylation<br />

Senescence<br />

Cell growth arrest<br />

Apoptosis<br />

Phosphorylation, Methylation, Sumylation,<br />

Neddylation and etc.


<strong>p53</strong> ubiquitination:<br />

1. Mdm2 Mono vs. Poly<br />

(Ub—Nuclear export)<br />

2. Deubiquitination: HAUSP<br />

3. Mdm2-independent ubiquitination<br />

ARF-BP1, COP1, PIRH2 and etc.


E1 E2 E3<br />

Mono-Ubiquitination<br />

K<br />

Multi Mono-Ubiquitination<br />

K<br />

K-<br />

K<br />

K K<br />

Poly-Ubiquitination<br />

E1 E2 E3<br />

K-<br />

K- K-<br />

K-


Mdm2 can induce both mono- and polyubiquitination of <strong>p53</strong>


Monoubiquitination of <strong>p53</strong> induces nuclear export


Polyubiquitination of <strong>p53</strong> induces nuclear degradation


<strong>p53</strong><br />

Mdm2<br />

Ub<br />

<strong>p53</strong><br />

<strong>p53</strong><br />

<strong>p53</strong><br />

Ub<br />

<strong>p53</strong><br />

Ub<br />

<strong>p53</strong><br />

<strong>p53</strong><br />

<strong>p53</strong> <strong>p53</strong><br />

Nucleus<br />

Mdm2 dependent<br />

Ub Ub<br />

Ub Ub<br />

26S<br />

<strong>p53</strong><br />

Cytoplasm<br />

Ub<br />

PARC/<br />

Cul-7<br />

??


ARF-BP1


Inactivation of ARF-BP1, but not Mdm2,<br />

induces cell growth repression in <strong>p53</strong>-null cells


WT<br />

KO<br />

<strong>p53</strong> activation in vivo in ARF-BP1-null e13.75 embryos<br />

P53 Caspase 3<br />

A B C<br />

D E F<br />

Kon and Gu<br />

unpublished


HAUSP/USP7<br />

HAUSP<br />

207 564 1102<br />

UBP: ubiquitin-specific<br />

process protease


<strong>The</strong> HAUSP Consensus Binding Site on <strong>p53</strong> and Mdm2<br />

(Shi, Y. PLoS 2006)


Ub Ub<br />

Ub Ub<br />

Mdm2<br />

HAUSP<br />

Mdm2<br />

Ub<br />

<strong>p53</strong> <strong>p53</strong><br />

HAUSP<br />

Mdm2<br />

Mdmx<br />

<strong>p53</strong><br />

<strong>p53</strong><br />

Ub Ub<br />

Ub Ub<br />

26S


HAUSP reduction/ablation has a profound effect on <strong>p53</strong>/Mdm2


Analysis of e11.5 embryos from Hausp conditional knockout<br />

Hausp +/cl<br />

Embryo<br />

Hauspko/cl, ERT2<br />

Embryo<br />

H&E Hausp <strong>p53</strong>


Oncogenic stress<br />

HAUSP<br />

<strong>p53</strong><br />

Mdm2<br />

ARF<br />

HAUSP<br />

ARF-BP1/Mule<br />

COP1, PIRH2<br />

and etc.<br />

<strong>p53</strong>


Regulation of <strong>p53</strong><br />

Stress<br />

DNA damage<br />

<strong>p53</strong><br />

Ubiquitination<br />

<strong>p53</strong> stabilization<br />

?<br />

Senescence<br />

Cell growth arrest<br />

Apoptosis


Degradation<br />

MDM2<br />

A CLASSIC MODEL OF P53 ACTIVATION<br />

<strong>p53</strong><br />

<strong>p53</strong> stabilization (I)<br />

ATM/ATR/DNA-PK, Chk1/Chk2<br />

MDM2<br />

P <strong>p53</strong><br />

P <strong>p53</strong><br />

TBP/<br />

TFIID<br />

DNA-binding (II) Transcriptional<br />

Activation (III)


Problems in the model<br />

• Modifica


<strong>p53</strong> and its signaling pathway. Various kinds of stress signals are detected by cells and communicated to the<br />

<strong>p53</strong> protein and its core cons


<strong>p53</strong><br />

Acetyla@on<br />

Phosphoryla@on<br />

Ubiqui@na@on<br />

Neddyla@on<br />

Sumoyla@on<br />

Methyla@on<br />

TAD PRD DBD TD CRD<br />

1 42 63 97 100 300 307 355 393<br />

K120<br />

S6<br />

S9<br />

S15<br />

T18<br />

S20<br />

S33<br />

S36<br />

S37<br />

S46<br />

T55<br />

T81<br />

S149<br />

T150<br />

T155<br />

K164<br />

K305<br />

S315<br />

K320<br />

S376<br />

S378<br />

S392<br />

K319<br />

K320<br />

K321<br />

K351<br />

K357<br />

K370<br />

K372<br />

K373<br />

K381<br />

K382<br />

K386<br />

K320<br />

K321<br />

K370<br />

K372<br />

K373<br />

K381<br />

K382<br />

K386<br />

K370<br />

K372<br />

K373<br />

R333<br />

R335<br />

R337<br />

K370<br />

K372<br />

K373<br />

K386<br />

K382<br />

Modifying<br />

Enzyme<br />

CBP/p300, PCAF, Tip60,<br />

hMOF<br />

ATM, ATR, DNAPK,<br />

CK1, CK2, Chk1/<br />

Chk2, etc<br />

Mdm2, Pirh2,<br />

COP1, ArfBP1,<br />

E4F1, MSL2<br />

Mdm2, FBXO11<br />

PIAS, Topors<br />

Smyd2, Set7/9,<br />

Set8, G9a/Glp,<br />

PRMT5


Regula


<strong>p53</strong> is acetylated at Lysine 120 by Tip60<br />

(Tang et al., 2006; Sykes et al., 2006)


Differen@al effects of Lysine 120 acetyla@on on<br />

growth arrest vs. apoptosis<br />

D


B<br />

<strong>p53</strong> is acetylated at K164 by CBP/p300<br />

1-42 63-97 98-292 300-323 324-355 363-393<br />

Transactivation<br />

domain<br />

N-terminal Central core C-terminal<br />

Proline-rich<br />

domain<br />

K164<br />

DNA-binding domain Tetramerization<br />

domain<br />

C<br />

NLS NES<br />

C-terminal<br />

regulatory<br />

domain


All acetyla@on sites (8K) are involved in p21 ac@va@on


<strong>p53</strong> acetyla@on is essen@al for both growth arrest and apoptosis


Is <strong>p53</strong> acetyla@on essen@al in the DNA damage response?<br />

N-­‐Term.


Acetyla@on blocks the forma@on of<br />

<strong>The</strong> <strong>p53</strong>/Mdm2-­‐DNA complexes


Acetyla@on of <strong>p53</strong> is cri@cal in the DNA damage response<br />

(even in the absence of phosphoryla@on (Ac@nomycin D))


1. DNA<br />

binding<br />

<strong>p53</strong> Nega@ve feedback<br />

Mdm2, COP1, Pirh2<br />

Mdm2 MdmX<br />

<strong>p53</strong><br />

Acetylation is essential for <strong>p53</strong>-mediated function<br />

2. An@-­‐<br />

TFs<br />

repression Ac<br />

RNA pol II<br />

P <strong>p53</strong><br />

P<br />

3. Cofactor<br />

recruitment<br />

TFs<br />

P<br />

cofactor<br />

Ac<br />

<strong>p53</strong><br />

coregulator<br />

RNA pol II<br />

Mechanisms:<br />

DNA binding. Acetyla@on enhances DNA binding<br />

Cell cycle control<br />

p21, GADD45, 14-­‐3-­‐3σ<br />

Apoptosis<br />

Puma, Noxa, <strong>p53</strong>AIP1, PIG3,<br />

Bax, Fas<br />

Metabolism<br />

TIGAR, Sco2<br />

Autophagy<br />

DRAM, Sestrin-­‐1, Sestrin-­‐2<br />

An@-­‐repression: Acetyla@on affects the Mdm2/<strong>p53</strong> interac@on.<br />

Co-­‐factor recruitments: Acetylated <strong>p53</strong> recruits addi@onal cofactors.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!