30.09.2012 Views

Origin of octahedral tilting in the perovskites - Université de Fribourg

Origin of octahedral tilting in the perovskites - Université de Fribourg

Origin of octahedral tilting in the perovskites - Université de Fribourg

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

XX International Symposium on <strong>the</strong> Jahn-Teller Effect<br />

<strong>Fribourg</strong>, 16th - 20th August 2010<br />

<strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong><br />

<strong>perovskites</strong><br />

P. García-Fernán<strong>de</strong>z*, J. A. Aramburu, M. T.Barriuso and M. Moreno<br />

*email: garciapa@unican.es<br />

Universidad <strong>de</strong> Cantabria<br />

Spa<strong>in</strong>


Introduction<br />

Perovskite crystals present a large variety <strong>of</strong> properties<br />

Electrical: Conduct<strong>in</strong>g, <strong>in</strong>sulators, superconductors<br />

Magnetic: Ferro, antiferro, diamagnetic<br />

Dielectric: Ferroelectricity, …<br />

Many properties are sensitive to external <strong>in</strong>fluence<br />

Temperature, pressure, stra<strong>in</strong>, applied fields…<br />

Changes associated to structural phase transitions!<br />

The simple perovskite ABX 3 structure is cubic Pm3m<br />

Three ma<strong>in</strong> types <strong>of</strong> distortion<br />

- Jahn-Teller effect <strong>in</strong> BX 6 octahedra<br />

- Ferroelectric distortions<br />

- Tilt<strong>in</strong>g <strong>of</strong> <strong>the</strong> BX 6 octahedra<br />

electronic<br />

electronic<br />

steric<br />

Is <strong>tilt<strong>in</strong>g</strong> unrelated to <strong>the</strong> Pseudo Jahn-Teller?<br />

P.W. Woodward, Acta. Cryst. B53, 32 (1997)<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 1/16


AX<br />

BX 2<br />

AX<br />

Introduction<br />

Perovskite structure is formed <strong>of</strong> alternat<strong>in</strong>g AX and BX 2 planes<br />

A<br />

B<br />

In-phase<br />

M 3 + R 3 +<br />

Tilt<strong>in</strong>g is associated with <strong>the</strong> rotation <strong>of</strong> BX 6 octahedra<br />

X (F - , O 2- ) Two triply <strong>de</strong>generate mo<strong>de</strong>s associated to <strong>the</strong>m<br />

Opposite<br />

-phase<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 2/16


Steric mo<strong>de</strong>ls<br />

Tilt<strong>in</strong>gs appear due to <strong>the</strong> misfit size <strong>of</strong> <strong>the</strong> A cation<br />

How do <strong>the</strong> atoms fit <strong>in</strong>si<strong>de</strong> <strong>the</strong> perfect cubic lattice if <strong>the</strong>y<br />

are consi<strong>de</strong>red hard spheres?<br />

2 2<br />

a=2R(B)+2R(X) a= R(A)+ R(X)<br />

√2 √2<br />

Goldschmidt ratio<br />

τ =<br />

√2<br />

1<br />

R(A)+R(X)<br />

R(B)+R(X)<br />

τ 1 Ferroelectric (B site)<br />

BX 2 plane AX plane<br />

• The orig<strong>in</strong> <strong>of</strong> ferroelectricity is not steric<br />

• Why does A not move <strong>of</strong>f-center when small?<br />

• Ionic radii are empiric parameters <strong>de</strong>pend<strong>in</strong>g on:<br />

- Ion charge<br />

- Ion coord<strong>in</strong>ation<br />

- Magnetic state<br />

H.D. Megaw, Acta Cryst. B 24, 149 (1968)<br />

D.I. Brown, Acta Cryst. B 48, 553 (1992)<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong><br />

�<br />

�<br />

Reasonable<br />

Born-Mayer<br />

3/16


e g<br />

t 2g<br />

Steric mo<strong>de</strong>ls<br />

high-sp<strong>in</strong><br />

Goldschmidt ratio<br />

R(A)+R(X)<br />

τ =<br />

√2 R(B)+R(X)<br />

1<br />

low-sp<strong>in</strong><br />

τ 1 Ferroelectric (B site)<br />

antibond<strong>in</strong>g σ-orbitals<br />

antibond<strong>in</strong>g π-orbitals<br />

• The orig<strong>in</strong> <strong>of</strong> ferroelectricity is not steric<br />

• Why does A not move <strong>of</strong>f-center when small?<br />

• Ionic radii are empiric parameters <strong>de</strong>pend<strong>in</strong>g on:<br />

- Ion charge<br />

- Ion coord<strong>in</strong>ation<br />

- Magnetic state<br />

H.D. Megaw, Acta Cryst. B 24, 149 (1968)<br />

D.I. Brown, Acta Cryst. B 48, 553 (1992)<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong><br />

�<br />

�<br />

?<br />

� longer distances<br />

Reasonable<br />

Born-Mayer<br />

Covalency!<br />

3/16


Steric mo<strong>de</strong>ls<br />

KMgF3 BaNbO3 KZnF3 KNiF3 How does it perform?<br />

0 tilt 1 tilt<br />

1.032<br />

1.031<br />

1.021<br />

1.014<br />

KMnF3 SrTiO3 0.978<br />

1.009<br />

P.W. Woodward, Acta. Cryst. B53, 44 (1997)<br />

R(A)+R(X)<br />

τ =<br />

√2 R(B)+R(X)<br />

1 τ ~1 cubic<br />

τ


Magnetic properties<br />

metal (3d)<br />

ligand (2p)<br />

The magnetic phase is <strong>de</strong>pen<strong>de</strong>nt on <strong>the</strong> <strong>tilt<strong>in</strong>g</strong>s<br />

Consi<strong>de</strong>r: Superexchange <strong>in</strong>teraction<br />

Antiferromagnetic phases are common for no or low <strong>tilt<strong>in</strong>g</strong>s<br />

Ferromagnetic phases are common for large rotations<br />

no <strong>tilt<strong>in</strong>g</strong><br />

strong σ-bond<strong>in</strong>g!<br />

antiferromagnetic<br />

large <strong>tilt<strong>in</strong>g</strong><br />

weak σ-bond<strong>in</strong>g!<br />

ferromagnetic<br />

d-orbital energy is sensitive to distortion and covalency<br />

Strong similarity to Pseudo Jahn-Teller?<br />

P. Jeffrey Hay et al., J. Am. Chem. Soc. 97, 4884 (1975)<br />

metal (3d)<br />

ligand (2p)<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 5/16


Local view <strong>of</strong> <strong>the</strong> distortion<br />

Locally, <strong>tilt<strong>in</strong>g</strong> is similar to bend<strong>in</strong>g <strong>in</strong> a l<strong>in</strong>ear molecule<br />

Bend<strong>in</strong>g <strong>in</strong> molecules is related to <strong>the</strong> presence <strong>of</strong> empty d(xy,xz,yz)orbitals<br />

on <strong>the</strong> metal<br />

MgF2 CaF2 SrF2 BaF2 KCaF 3<br />

l<strong>in</strong>ear<br />

bent<br />

bent<br />

bent<br />

Similarly KMgF3 does not present <strong>tilt<strong>in</strong>g</strong>, KCaF3 presents <strong>tilt<strong>in</strong>g</strong><br />

Is <strong>tilt<strong>in</strong>g</strong> associated to d(xy,xz,yz) orbitals?<br />

P.Garcia-Fernan<strong>de</strong>z et al., J. Phys. Chem. A, 111, 10409 (2007)<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 6/16<br />

X<br />

CaF 2<br />

Z


Method<br />

We have studied <strong>the</strong> presence <strong>of</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> ionic series:<br />

KMF3 M=Ca, Sc, …,Zn<br />

where <strong>the</strong> population <strong>of</strong> d-orbitals <strong>in</strong>creases along <strong>the</strong> row<br />

d 0 d 10<br />

What is <strong>the</strong> effect <strong>of</strong> population on t 2g(xy,xz,yz) and e g(3z 2 -r 2 ,x 2 -y 2 )?<br />

eg low-sp<strong>in</strong> high-sp<strong>in</strong><br />

t2g garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 7/16


Computational <strong>de</strong>tails<br />

We have performed full geometry optimization <strong>of</strong> <strong>the</strong> cell follow<strong>in</strong>g<br />

R 3z + and M3z + mo<strong>de</strong>s<br />

P4mbm I4mcm<br />

M 3 + R 3 +<br />

We have employed Hartree-Fock and Density-Functional-Theory<br />

- LDA<br />

- B3LYP (Hybrid Functional)<br />

Exact-exchange is necessary to correctly simulate magnetic states<br />

k-space sampl<strong>in</strong>g: 8x8x8<br />

All electron localized gaussian basis set<br />

- DZP quality<br />

Tight convergence parameters<br />

All calculations carried out with CRYSTAL06 package<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 8/16


Results<br />

With <strong>the</strong> previous method accurate results can be obta<strong>in</strong>ed<br />

θ (<strong>de</strong>grees)<br />

• Lattice parameters with<strong>in</strong> 1% <strong>of</strong> experimental results<br />

• Angles with<strong>in</strong> 1º <strong>of</strong> experimental results<br />

• Correct magnetic states for <strong>the</strong> lattice (AFM)<br />

Is <strong>the</strong> population <strong>of</strong> <strong>the</strong> t 2g orbital relevant to <strong>tilt<strong>in</strong>g</strong>?<br />

12<br />

8<br />

4<br />

Ca 2+<br />

Sc 2+<br />

Ti 2+<br />

Mn 2+<br />

V2+ Cr2+ Fe 2+<br />

Cr 2+<br />

Zn 2+<br />

Cu 2+<br />

Ni2+ Co2+ Mn2+ Fe2+ Co2+ 0 0 1 2 3 4 5 6<br />

Number <strong>of</strong> t 2g electrons<br />

High sp<strong>in</strong><br />

configuration<br />

Larger<br />

rotation<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 9/16<br />

→<br />

less t 2g electrons<br />

e g<br />

t 2g<br />

low-sp<strong>in</strong> high-sp<strong>in</strong><br />

P. Garcia-Fernan<strong>de</strong>z et al., J.<br />

Phys. Chem. Lett. 1, 647 (2010)


Energy (cm ‐1 )<br />

Energy cross-section<br />

400<br />

300<br />

200<br />

100<br />

It is <strong>in</strong>terest<strong>in</strong>g to study <strong>the</strong> energy cross-section for different cases<br />

0<br />

KNiF 3<br />

(t 2g 6 )<br />

KZnF 3<br />

(t 2g 6 )<br />

KMnF 3<br />

‐100 0 2 4 6 8 10 12<br />

θ (<strong>de</strong>gree)<br />

(t 2g 3 )<br />

Compar<strong>in</strong>g Ni 2+ and Zn 2+ radii<br />

R(Ni 2+ )<br />

83pm<br />

R(Zn 2+ )<br />

74pm<br />

We would expect KZnF3 to be<br />

even more stable than KNiF3 KZnF3 is almost unstable!<br />

KZnF 3 tends to <strong>tilt<strong>in</strong>g</strong> due to low-ly<strong>in</strong>g Zn 4s-orbitals → extra PJT contributions<br />

Different crystals have different covalent bond<strong>in</strong>g patterns and<br />

different <strong>tilt<strong>in</strong>g</strong> ten<strong>de</strong>ncy<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 10/16<br />

>


Covalency<br />

Let us visualize <strong>the</strong> rotation <strong>in</strong> a BX 2 plane<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 11/16


Covalency<br />

Let us visualize <strong>the</strong> rotation <strong>in</strong> a BX 2 plane<br />

Tilt<strong>in</strong>g breaks σ-bond<strong>in</strong>g<br />

The overlap variation is<br />

quadratic<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 11/16


Covalency<br />

Let us visualize <strong>the</strong> rotation <strong>in</strong> a BX 2 plane<br />

Tilt<strong>in</strong>g breaks σ-bond<strong>in</strong>g<br />

The overlap variation<br />

is quadratic<br />

Tilt<strong>in</strong>g opens up new bond<strong>in</strong>g<br />

channels:<br />

Tilt<strong>in</strong>g allows new overlaps<br />

The effect is l<strong>in</strong>ear<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 11/16


0.5<br />

Covalency<br />

Pseudo Jahn-Teller is associated with new covalencies<br />

Where is charge concentrat<strong>in</strong>g? Compare KMnF 3 cases<br />

Density difference diagram with respect to spheric ions<br />

electron concentration electron <strong>de</strong>fect<br />

high‐sp<strong>in</strong> low‐sp<strong>in</strong><br />

0.5<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 12/16<br />

0.5<br />

High-sp<strong>in</strong> system shows <strong>in</strong>creased π-covalency


Energy (eV)<br />

Covalency<br />

Steric <strong>in</strong>teractions → lower electron-electron repulsion<br />

200<br />

100<br />

50<br />

PJT → new covalencies → higher electron-nuclei <strong>in</strong>teraction<br />

150 V en<br />

0<br />

‐50<br />

high-sp<strong>in</strong> KMnF3 vs low-sp<strong>in</strong> KMnF3 Total energy variation Variation difference (high-low)<br />

0.4<br />

V ee<br />

V nn<br />

Energy (eV)<br />

‐100 ‐0.1<br />

0 2 4 6 8 10 12 0 2 4 6 8 10 12<br />

θ (<strong>de</strong>gree)<br />

θ (<strong>de</strong>gree)<br />

Trends seem to agree with steric <strong>in</strong>terpretation but:<br />

It is impossible to dist<strong>in</strong>guish high and low sp<strong>in</strong> KMnF3 Energy scale is much higher than that <strong>of</strong> <strong>the</strong> transition (55K)<br />

High sp<strong>in</strong> shows <strong>in</strong>creased covalency with respect to low sp<strong>in</strong><br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 13/16<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

V ee<br />

V en


Are <strong>the</strong>re no steric effects <strong>in</strong> <strong>the</strong> <strong>perovskites</strong>?<br />

The force constant <strong>of</strong> a system can be written:<br />

K=K 0+K v = K 0 - F2<br />

elastic term<br />

positive (aga<strong>in</strong>st distortion)<br />

PJT <strong>the</strong>orem<br />

(Bersuker, 1980)<br />

steric terms<br />

smaller A ions may<br />

favor distortion but<br />

never produce it<br />

Δ<br />

vibronic term<br />

negative (favors distortion)<br />

<strong>de</strong>scribes <strong>the</strong> change <strong>in</strong> electron <strong>de</strong>nsity<br />

but covalency should be consi<strong>de</strong>red <strong>the</strong> ma<strong>in</strong> cause<br />

NaMgF 3<br />

KMgF 3<br />

0.5 0.5<br />

NaMgF3 shows extra covalency vs KMgF3 garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 14/16


Oxi<strong>de</strong>s<br />

Let us consi<strong>de</strong>r <strong>the</strong> sp<strong>in</strong>-lattice coupl<strong>in</strong>g<br />

In some systems <strong>the</strong> vibrational frequencies associated to<br />

different magnetic states are different<br />

Calculation <strong>of</strong> <strong>the</strong> <strong>tilt<strong>in</strong>g</strong> frequencies for FM and AFM states:<br />

antiferromagnetic<br />

ferromagnetic<br />

KMnF 3<br />

SrMnO 3<br />

CaMnO 3<br />

193i<br />

Steric mo<strong>de</strong>ls are clearly <strong>in</strong>correct to <strong>de</strong>scribe this behavior<br />

However, <strong>the</strong> effect is <strong>de</strong>pen<strong>de</strong>nt on <strong>the</strong> f<strong>in</strong>e <strong>de</strong>tails <strong>of</strong> <strong>the</strong><br />

electronic structure and can only be expla<strong>in</strong>ed by PJT<br />

P. Garcia-Fernan<strong>de</strong>z et al. sent to Phys. Rev. Lett.<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 15/16<br />

22i<br />

39i<br />

10<br />

202i<br />

J.H. Lee et al., Phys. Rev. Lett. 104, 207204 (2010)<br />

250i


Conclusions<br />

• Tilt<strong>in</strong>gs have traditionally been attributed to steric effects,<br />

however, this approach conta<strong>in</strong>s many problems.<br />

• Cannot expla<strong>in</strong> <strong>tilt<strong>in</strong>g</strong>s <strong>in</strong> a system-by-system basis<br />

• Leads to unphysical results <strong>in</strong> WO 3<br />

• Clearly unable to expla<strong>in</strong> sp<strong>in</strong>-lattice coupl<strong>in</strong>g<br />

• The Pseudo Jahn-Teller mo<strong>de</strong>l solves many <strong>of</strong> <strong>the</strong>se <strong>in</strong>consistencies<br />

• Allows to establish bridges between electronic properties<br />

and structure<br />

• When <strong>the</strong> B-ion is a transition metal <strong>the</strong> population <strong>of</strong> <strong>the</strong><br />

t 2g orbitals is <strong>of</strong> great importance <strong>in</strong> <strong>the</strong> rotation.<br />

P. Garcia-Fernan<strong>de</strong>z et al., J. Phys. Chem. Lett. 1, 647 (2010)<br />

P. Garcia-Fernan<strong>de</strong>z et al., sent to Phys. Rev. Lett.<br />

Thank you for your attention!<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 16/16


Covalency<br />

From a local po<strong>in</strong>t <strong>the</strong> ma<strong>in</strong> effects <strong>of</strong> <strong>tilt<strong>in</strong>g</strong> on electronic structure<br />

can be <strong>de</strong>picted <strong>in</strong> an orbital diagram:<br />

Free ion<br />

3d<br />

Ligand 2p<br />

cubic<br />

perovskite<br />

e g<br />

t 2g<br />

t 1g<br />

tilted<br />

perovskite<br />

~x2-y2 ~x2-y2 ~3z2-r2 ~3z2-r2 ~xz; yz<br />

~xy<br />

E. Pavar<strong>in</strong>i et al., New J. Phys. 7, 188 (2005)<br />

Does <strong>the</strong> change <strong>of</strong> electronic<br />

structure <strong>in</strong>fluence any property?<br />

Unusual localization <strong>of</strong> electrons<br />

<strong>in</strong> d 1 transition metal conta<strong>in</strong><strong>in</strong>g<br />

<strong>perovskites</strong><br />

PJT <strong>in</strong>creases gap which is<br />

associated to localization<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 17/21


Oxi<strong>de</strong>s<br />

Let us study an special system:<br />

Its structure is that <strong>of</strong> a perovskite<br />

with its A ion removed<br />

In steric mo<strong>de</strong>ls <strong>the</strong> energy is ga<strong>in</strong>ed by gett<strong>in</strong>g <strong>the</strong> anions closer<br />

to <strong>the</strong> A cation<br />

Attraction<br />

WO 3<br />

M<strong>in</strong>imum tolerance factor possible!<br />

Large <strong>tilt<strong>in</strong>g</strong>s!<br />

Does it make sense?<br />

However, <strong>in</strong> WO 3 rigid rotations only <strong>in</strong>crease <strong>the</strong> energy that way!<br />

The energy ga<strong>in</strong> must come from covalency!<br />

Repulsion<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 19/21


Oxi<strong>de</strong>s<br />

Let us compare two typical oxi<strong>de</strong>s:<br />

CaTiO 3<br />

BaTiO 3<br />

τ<br />

0.97<br />

1.07<br />

Tilt<strong>in</strong>g<br />

No <strong>tilt<strong>in</strong>g</strong><br />

What happens when we apply pressure?<br />

Pressure<br />

Increases <strong>tilt<strong>in</strong>g</strong><br />

Tilt<strong>in</strong>g!<br />

KMgF 3 1.03 No <strong>tilt<strong>in</strong>g</strong> No <strong>tilt<strong>in</strong>g</strong><br />

BaTiO 3 does not rotate, as expected by large tolerance factor<br />

Is this general?<br />

Some authors expla<strong>in</strong> <strong>the</strong>se effects by ion site compressibility<br />

us<strong>in</strong>g more empirical parameters!<br />

The overlap due to distortion <strong>in</strong>creases fast with pressure!<br />

small PJT constant large PJT constant<br />

garciapa@unican.es <strong>Orig<strong>in</strong></strong> <strong>of</strong> <strong>octahedral</strong> <strong>tilt<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>perovskites</strong> 18/21


Introduction<br />

Perovskite structure is formed <strong>of</strong> alternat<strong>in</strong>g AX and BX 2 planes<br />

A<br />

B<br />

X (F - , O 2- )<br />

Tilt<strong>in</strong>g is associated with <strong>the</strong><br />

rotation <strong>of</strong> BX6 octahedra<br />

Two triply <strong>de</strong>generate mo<strong>de</strong>s<br />

associated to <strong>the</strong>m


Introduction<br />

Perovskite structure is formed <strong>of</strong> alternat<strong>in</strong>g AX and BX 2 planes<br />

Tilt<strong>in</strong>g is associated with <strong>the</strong><br />

rotation <strong>of</strong> BX6 octahedra<br />

In-phase Phase-<br />

Two triply <strong>de</strong>generate mo<strong>de</strong>s<br />

opposition<br />

associated to <strong>the</strong>m<br />

M 3 + R 3 +<br />

A<br />

B<br />

X (F - , O 2- )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!