14.04.2013 Views

POS-124-PDP

POS-124-PDP

POS-124-PDP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

W.E.ST. Elektronik GmbH<br />

Technical Documentation<br />

<strong>POS</strong>-<strong>124</strong>-A-<strong>PDP</strong><br />

<strong>POS</strong>-<strong>124</strong>-I-<strong>PDP</strong><br />

Two axes positioning and synchronisation control module with<br />

integrated profibus interface and SSI sensor interface


W.E.ST. Elektronik GmbH<br />

CONTENTS<br />

1 General Information ............................................................................................................................................. 4<br />

1.1 Order number .............................................................................................................................................. 4<br />

1.2 Scope of supply ........................................................................................................................................... 4<br />

1.3 Accessories ................................................................................................................................................. 4<br />

1.4 Symbols used .............................................................................................................................................. 5<br />

1.5 Using this documentation ............................................................................................................................ 5<br />

1.6 Legal notice ................................................................................................................................................. 5<br />

1.7 Safety instructions ....................................................................................................................................... 6<br />

2 Characteristics ..................................................................................................................................................... 7<br />

2.1 Device description ....................................................................................................................................... 8<br />

3 Use and application ............................................................................................................................................. 9<br />

3.1 Installation instructions ................................................................................................................................ 9<br />

3.2 Typical system structure ............................................................................................................................ 10<br />

3.3 Method of operation ................................................................................................................................... 10<br />

3.4 Commissioning .......................................................................................................................................... 12<br />

4 Technical description ......................................................................................................................................... 13<br />

4.1 Input and output signals ............................................................................................................................. 13<br />

4.2 LED definitions ........................................................................................................................................... 14<br />

4.3 Circuit diagram ........................................................................................................................................... 15<br />

4.4 Typical cabling ........................................................................................................................................... 16<br />

4.5 Connection examples ................................................................................................................................ 16<br />

4.6 Technical data ........................................................................................................................................... 17<br />

5 Parameters ........................................................................................................................................................ 18<br />

5.1 Parameter overview ................................................................................................................................... 18<br />

5.2 Parameter description ................................................................................................................................ 20<br />

5.2.1 LG (Changing the language for the help texts) ................................................................................. 20<br />

5.2.2 <strong>PDP</strong>ADR (Profibus adress) ............................................................................................................... 20<br />

5.2.3 MODE (Switching between parameter groups) ................................................................................. 20<br />

5.2.4 SENS (Module monitoring) ............................................................................................................... 21<br />

5.2.5 STROKE1 /STROKE2 (Full stroke) ................................................................................................... 21<br />

5.2.6 VRAMP1 /VRAMP2 (Ramp time for external speed demand) .......................................................... 21<br />

5.2.7 VMODE1 / VMODE2 (Switching over the control mode)................................................................... 22<br />

5.2.8 VMAX1 / VMAX2 (Maximum speed in NC Mode) ............................................................................. 22<br />

5.2.9 POL1 / POL2 (Output polarity) .......................................................................................................... 23<br />

5.2.10 EOUT1 / EOUT2 (Output signal in case of error) .............................................................................. 23<br />

5.2.11 INPX (Sensor type define) ................................................................................................................ 24<br />

5.2.12 SSI:OFFSET (Sensor offset) ............................................................................................................. 24<br />

5.2.13 SSI:POL (Direction of the sensor signal) ........................................................................................... 24<br />

5.2.14 SSI:RES (Signal resolution) .............................................................................................................. 25<br />

5.2.15 SSI:BITS (Number of bits) ................................................................................................................. 25<br />

5.2.16 SSI:CODE (Signal coding) ................................................................................................................ 25<br />

5.2.17 AIN (Analogue input scaling) ............................................................................................................. 26<br />

5.2.18 A1 / A2 (Acceleration time) ............................................................................................................... 27<br />

5.2.19 D1 / D2 (Deceleration / braking distance) ......................................................................................... 27<br />

5.2.20 V01 / V02 (Loop gain setting) ............................................................................................................. 28<br />

5.2.21 CTRL1 / CTRL2 (Deceleration function characteristic) ..................................................................... 29<br />

5.2.22 GL: P (gain of the synchronization in SDD mode) ............................................................................. 30<br />

5.2.23 GL: V0 (gain of the synchronization in NC mode) ............................................................................. 30<br />

5.2.24 GL:T1 (Time constant of the synchronisation control) ....................................................................... 30<br />

5.2.25 GL:E (Window for the synchronization error) .................................................................................... 30<br />

Page 2 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


W.E.ST. Elektronik GmbH<br />

5.2.26 HAND1 / HAND2 (Manual speed) ..................................................................................................... 31<br />

5.2.27 MIN / MIN2 (Overlap compensation) ................................................................................................. 32<br />

5.2.28 MAX1 / MAX2 (Limitation) ................................................................................................................. 32<br />

5.2.29 TRIGGER (Response threshold for the MIN parameter) ................................................................... 32<br />

5.2.30 OFFSET1 / OFFSET2 (Zero correction) ............................................................................................ 33<br />

5.2.31 IN<strong>POS</strong>:S1 / IN<strong>POS</strong>:S2 (In position window) ...................................................................................... 33<br />

5.2.32 IN<strong>POS</strong>:D1 / IN<strong>POS</strong>:D2 (following error window) ............................................................................... 33<br />

5.2.33 PROCESS DATA (Monitoring) .......................................................................................................... 34<br />

6 Appendix ............................................................................................................................................................ 35<br />

6.1 Failure monitoring ...................................................................................................................................... 35<br />

6.2 Troubleshooting ......................................................................................................................................... 35<br />

6.3 Description of the command structure ........................................................................................................ 37<br />

7 Profibus DP interface ......................................................................................................................................... 38<br />

7.1 Profibus functions....................................................................................................................................... 38<br />

7.2 Installation .................................................................................................................................................. 38<br />

7.3 GSD Configuration File .............................................................................................................................. 38<br />

7.4 Description Profibus DP interface .............................................................................................................. 39<br />

7.5 Commands via PROFIBUS ........................................................................................................................ 40<br />

7.5.1 Command map .................................................................................................................................. 40<br />

7.5.2 Definition of the control bits: .............................................................................................................. 41<br />

7.6 DATA send to PROFIBUS ......................................................................................................................... 42<br />

7.6.1 Feedback map ................................................................................................................................... 42<br />

7.6.2 Definition of the status bits: ............................................................................................................... 43<br />

8 Notes.................................................................................................................................................................. 44<br />

Page 3 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


1 General Information<br />

1.1 Order number<br />

W.E.ST. Elektronik GmbH<br />

<strong>POS</strong>-<strong>124</strong>-A-<strong>PDP</strong>-1121 1 triple stage module with digital SSI-interface with analogue ±10 V<br />

differential output, housing width 67,5 mm<br />

<strong>POS</strong>-<strong>124</strong>-I-<strong>PDP</strong>-1121 triple stage module with digital SSI-interface with analogue 4… 20 mA<br />

output, housing width 67,5 mm<br />

Alternative products:<br />

<strong>POS</strong>-<strong>124</strong>-A-<strong>PDP</strong>-S1-1121 double stage module without digital SSI-interface with analogue ±10 V<br />

differential output, 45 mm housing width<br />

<strong>POS</strong>-<strong>124</strong>-I-<strong>PDP</strong>-S1-1121 double stage module without digital SSI-interface with analogue<br />

4… 20 mA output, 45 mm housing width<br />

1.2 Scope of supply<br />

The scope of supply includes the module including the terminal blocks which are a part of the housing.<br />

The Profibus plug, interface cables and further parts which may be required should be ordered separately.<br />

This documentation can be downloaded as a PDF file from www.w-e-st.de.<br />

1.3 Accessories<br />

RS232-SO - Programming cable with RS232 interface<br />

USB-SO - Programming cable with USB interface<br />

WPC-300 - Start-Up-Tool (download: www.w-e-st.de/produkte/software)<br />

<strong>PDP</strong>-Plug - Profibus connector with switchable terminating resistors<br />

1 The number of the version consists of the hardware-version (first two digits) and the software-version (second two<br />

digits). Because of the development of the products these numbers can vary. They are not strictly necessary for the<br />

order. We will always deliver the newest version.<br />

Page 4 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


1.4 Symbols used<br />

General information<br />

Safety-related information<br />

1.5 Using this documentation<br />

Structure of the documentation:<br />

W.E.ST. Elektronik GmbH<br />

The standard product is descibed up to chapter 6. The extensions like POWER STAGE or<br />

SSI-INTERFACE are described in the chapters ADDITIONAL INFORMATION.<br />

1.6 Legal notice<br />

W.E.St. Elektronik GmbH<br />

Gewerbering 31<br />

D-41372 Niederkrüchten<br />

Tel.: +49 (0)2163 577355-0<br />

Fax.: +49 (0)2163 577355 -11<br />

Homepage: www.w-e-st.de or www.west-electronics.com<br />

EMAIL: info@w-e-st.de<br />

Date: 13.02.2013<br />

The data and characteristics described herein serve only to describe the product. The user is required to<br />

evaluate this data and to check suitability for the particular application. General suitability cannot be inferred<br />

from this document. We reserve the right to make technical modifications due to further development<br />

of the product described in this manual. The technical information and dimensions are non-binding.<br />

No claims may be made based on them.<br />

This document is copyright.<br />

Page 5 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


1.7 Safety instructions<br />

W.E.ST. Elektronik GmbH<br />

Please read this document and the safety instructions carefully. This document will help to define the<br />

product area of application and to put it into operation. Additional documents (WPC-300 for the start-up<br />

software) and knowledge of the application should be taken into account or be available.<br />

General regulations and laws (depending on the country: e.g. accident prevention and environmental protection)<br />

must be complied with.<br />

These modules are designed for hydraulic applications in open or closed-loop control circuits.<br />

Uncontrolled movements can be caused by device defects (in the hydraulic module<br />

or the components), application errors and electrical faults. Work on the drive or the electronics<br />

must only be carried out whilst the equipment is switched off and not under pressure.<br />

This handbook describes the functions and the electrical connections for this electronic<br />

assembly. All technical documents which pertain to the system must be complied with<br />

when commissioning.<br />

This device may only be connected and put into operation by trained specialist staff. The<br />

instruction manual must be read with care. The installation instructions and the commissioning<br />

instructions must be followed. Guarantee and liability claims are invalid if the instructions<br />

are not complied with and/or in case of incorrect installation or inappropriate<br />

use.<br />

CAUTION!<br />

All electronic modules are manufactured to a high quality. Malfunctions due to the failure<br />

of components cannot, however, be excluded. Despite extensive testing the same also<br />

applies for the software. If these devices are deployed in safety-relevant applications,<br />

suitable external measures must be taken to guarantee the necessary safety. The same<br />

applies for faults which affect safety. No liability can be assumed for possible damage.<br />

Further instructions<br />

• The module may only be operated in compliance with the national EMC regulations. It<br />

is the user’s responsibility to adhere to these regulations.<br />

• The device is only intended for use in the commercial sector.<br />

• When not in use the module must be protected from the effects of the weather, contamination<br />

and mechanical damage.<br />

• The module may not be used in an explosive environment.<br />

• To ensure adequate cooling the ventilation slots must not be covered.<br />

• The device must be disposed of in accordance with national statutory provisions.<br />

Page 6 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


2 Characteristics<br />

W.E.ST. Elektronik GmbH<br />

This electronic module has been developed for controlling hydraulic positioning drives.<br />

Both axes are controlled complete autonomous via the Profibus. Optionally an interconnection to a two<br />

axes synchronised system is intended.<br />

The differential outputs are covered for activation of constant valves with integrated or external<br />

electronics (differential input). Intended is this module for the connection of analogue way sensors 0...10V<br />

or 4...20mA (scalable) or digital SSI sensor interfaces.<br />

The internal control signals operating states and error conditions via Profibus to the higher-level control.<br />

The operation is signaled by a switch output.<br />

Typical applications: Positioning control or synchronization control with hydraulic axes.<br />

Features<br />

• Two independent positioning axes<br />

• Can be combined for synchronization controls<br />

• Command position parameter, actual value response, on loop control byte and status byte via<br />

fieldbus Profibus DP<br />

• Principle of stroke-dependent deceleration for the shortest positioning time or NC profile gen-<br />

erator for constant speed<br />

• Analogue or digital (SSI) actual value registration for both axes<br />

• Superimposed synchronization controller as PT1 actuator<br />

• Usable with zero lapped control valves<br />

• Fault diagnosis and extended function checking<br />

• Simplified parameterization with WPC-300 software version 3.2<br />

Page 7 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


2.1 Device description<br />

D-outputs<br />

Ready<br />

24 V<br />

0 V<br />

Enable<br />

D-inputs<br />

99,0000 mm<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

Made in Germany<br />

Date: Add.:<br />

ID:<br />

V:<br />

Analogue<br />

GND<br />

GND<br />

Pos. 1<br />

Pos. 2<br />

W.E.ST. Elektronik<br />

A Differential<br />

B output<br />

D-41372 Niederkrüchten<br />

Homepage: http://www.w-e-st.de<br />

Typenschild und Anschlussbelegung<br />

Type plate and terminal pin assignment<br />

W.E.ST. Elektronik GmbH<br />

LEDs<br />

RS232<br />

Interface<br />

1 2 3 4 17 18 19 20 33 34 35 36<br />

5 6 7 8 21 22 23 24 37 38 39 40<br />

W.E.ST.<br />

Page 8 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013<br />

Ready<br />

Status<br />

Online<br />

Profibus<br />

9pol SUBD<br />

9 10 11 12 25 26 27 28 41 42 43 44<br />

13 14 15 16 29 30 31 32 45 46 47 48<br />

67,5000 mm<br />

121,0000 mm<br />

114,0000 mm<br />

Klemmblöcke (steckbar)<br />

Terminals (removable)<br />

PROFIBUS Buchse<br />

PROFIBUS connector


3 Use and application<br />

3.1 Installation instructions<br />

W.E.ST. Elektronik GmbH<br />

• This module is designed for installation in a shielded EMC housing (control cabinet). All cables<br />

which lead outside must be screened; complete screening is required. It is also a requirement<br />

that no strong electro-magnetic interference sources are installed nearby when using our control<br />

and regulation modules.<br />

• Typical installation location: 24V control signal area (close to PLC)<br />

The devices must be arranged in the control cabinet so that the power section and the signal section<br />

are separate from each other.<br />

Experience shows that the installation space close to the PLC (24 V area) is most suitable. All<br />

digital and analogue inputs and outputs are fitted with filters and surge protection in the device.<br />

• The module should be installed and wired in accordance with the documentation bearing in mind<br />

EMC principles. If other consumers are operated with the same power supply, a star- connected<br />

ground wiring scheme is recommended. The following points must be observed when wiring:<br />

• The signal cables must be laid separately from power cables.<br />

• Analogue signal cables must be shielded.<br />

• All other cables must be screened if there are powerful interference sources (frequency<br />

converters, power contactors) and cable lengths > 3m. Inexpensive SMD ferrites<br />

can be used with high-frequency radiation.<br />

• The screening should be connected to PE (PE terminal) as close to the module as<br />

possible. The local requirements for screening must be taken into account in all cases.<br />

The screening should be connected to at both ends. Equipotential bonding must be<br />

provided where there are differences between the connected electrical components.<br />

• With longer lengths of cable (>10 m) the diameters and screening measures should<br />

be checked by specialists (e.g. for possible interference, noise sources and voltage<br />

drop). Particular care is required with cables of over 40 m in length – the manufacturer<br />

should be consulted if necessary.<br />

• A low-resistance connection between PE and the mounting rail should be provided. Transient interference<br />

is transmitted from the module directly to the mounting rail and from there to the local<br />

earth.<br />

• Power should be supplied by a regulated power supply unit (typically a PELV system complying<br />

with IEC364-4-4, secure low voltage). The low internal resistance of regulated power supplies<br />

gives better interference voltage dissipation, which improves the signal quality of high-resolution<br />

sensors in particular. Switched inductances (relays and valve coils connected to the same power<br />

supply) must always be provided with appropriate overvoltage protection directly at the coil.<br />

Page 9 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


3.2 Typical system structure<br />

W.E.ST. Elektronik GmbH<br />

This minimal system consists of the following components:<br />

(*1) proportional valve<br />

(*2) hydraulic cylinder<br />

(*3) position sensor<br />

(*4) <strong>POS</strong>-<strong>124</strong>-<strong>PDP</strong> control module<br />

(*5) interface to PLC with analogue and digital signals<br />

3.3 Method of operation<br />

This control module supports simple point-to-point positioning with hydraulic drives. The system works<br />

based on the principle of stroke-dependent deceleration, i.e. the control gain (deceleration stroke) is set<br />

via parameters D:A and D:B. Alternatively the loop gain will be used in NC mode.<br />

The deceleration characteristics can be set linearly (LIN) or approximately quadratically (SQRT1) via the<br />

CTRL parameter. For normal proportional valves SQRT1 is the input setting.<br />

For control valves with a linear flow curve it depends on the application. If LIN is selected for these valves<br />

a significantly shorter deceleration distance can often be set (D:A and D:B).<br />

Page 10 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


W.E.ST. Elektronik GmbH<br />

Positioning sequence:<br />

The positioning is controlled via Profibus. After releasing (ENABLE input), the command<br />

position is set to the actual position of the sensor and the axis stays in closed loop position control<br />

mode. The READY output indicates that the system is generally ready for operation. When setting the<br />

START-signal, the preset command value will be taken over. The axis immediately will drive to this new<br />

command position and indicates reaching it by setting the InPos output.<br />

The InPos output stays active as long as the axis is within the preset InPos window and the START input<br />

is active. The driving velocity is forced by preset parameter, too.<br />

The axis can be driven in manual mode (START is off) using the control bits HAND+ or HAND-. The<br />

velocity is programmable. When the HAND signal is deactivated, the command position is set to the actual<br />

position and the system stays in closed loop position control mode.<br />

Setting the synchronous bit (GL) will synchronize both axes and the synchronization controller is overriding<br />

the position controller of axis 2. Axis 2 is now following axis 1 according to the master-slave-principle.<br />

Influences on positioning accuracy:<br />

The positioning accuracy is determined by the hydraulic and mechanical conditions. The right choice of<br />

valve is therefore a decisive factor. In addition, two mutually contradictory requirements (short position<br />

time and high accuracy) must be taken into account when designing the system.<br />

The electronic limitations lie mainly in the resolution of the analogue signals, although with our modules a<br />

resolution of < 0.01% only needs to be considered with long positions. In addition, the linearity of the individual<br />

signal points (PLC, sensor and control module) must be considered. The worst-case scenario is<br />

that a system-specific absolute fault occurs.<br />

The repeat accuracy is, however, not affected by this.<br />

V+<br />

V+<br />

volumetric flow P-A and B-T<br />

MAX:A<br />

A:A D:A<br />

D:B<br />

control direction<br />

driving out<br />

control direction<br />

driving in<br />

MAX:B<br />

Page 11 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013<br />

A:B


3.4 Commissioning<br />

Step Task<br />

W.E.ST. Elektronik GmbH<br />

Installation Install the device in accordance with the circuit diagram. Ensure it is wired correctly<br />

and that the signals are well shielded. The device must be installed in a metal<br />

protective housing (control cabinet or similar).<br />

Switching on for the first<br />

time<br />

Ensure that no unwanted movement is possible in the drive (e.g. switch off the<br />

hydraulics). Connect an ammeter and check the current consumed by the device.<br />

If it is higher than specified there is an error in the cabling. Switch the device off<br />

immediately and check the cabling.<br />

Setting up communication Once the power input is correct the PC (notebook) should be connected to the serial<br />

interface. Please see the WPC-300 program documentation for how to set up<br />

communication.<br />

Further commissioning and diagnosis are supported by the operating software.<br />

Pre-parameterisation Now set up the following parameters (with reference to the system design and circuit<br />

diagrams):<br />

The STROKE, <strong>POS</strong>ITION, SENSOR SETTING, POLARITY, ACCELERATION<br />

and DECELERATION.<br />

Pre-parameterisation is necessary to minimise the risk of uncontrolled movements.<br />

Parameterise specific settings for the control element (MIN for following error<br />

compensation and MAX for maximum velocity).<br />

Reduce the speed limitation to a value which is uncritical for the application.<br />

Control signals Check the control signal with a voltmeter. The control signals (PIN 15 to PIN16<br />

and PIN19 to PIN20) lies in the range of ± 10V. In the current state it should be<br />

0V. Alternatively, if current signals are used, approx. 0 mA should flow.<br />

CAUTION! This signal depends on the EOUT setting.<br />

Profibus communication Activate the profibus communication and check whether the right values and bits<br />

are send to the module.<br />

Switching on the hydraulics<br />

Activating ENABLE<br />

The hydraulics can now be switched on. Since the module is not yet generating a<br />

signal the drive should be at a standstill or drift slightly (leave its position at a slow<br />

speed).<br />

CAUTION! The drive can now leave its position and move to an end position at<br />

full speed. Take safety measures to prevent personal injury and damage.<br />

The drive is in the current position (with ENABLE the actual position is accepted<br />

as the required position). Should the drive move to an end position the polarity is<br />

probably wrong.<br />

Activating START With the start signal the demand value on the analogue demand value input is accepted<br />

and the axis moves to the predefined target position.<br />

If START is disabled the axis stops in the preset deceleration distance D:S.<br />

Manual (HAND) operation If START is disabled the axis can be moved manually with HAND+ or HAND- .<br />

After disabling the HAND signal, the axis stops in a controlled manner at the current<br />

position.<br />

Optimise controller Now optimise the controller parameters according to your application and your<br />

requirements.<br />

Page 12 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


4 Technical description<br />

4.1 Input and output signals<br />

Connection Supply<br />

PIN 3, PIN 31<br />

and PIN 35<br />

PIN 4, PIN 32<br />

and PIN 36<br />

W.E.ST. Elektronik GmbH<br />

Power supply (see technical data)<br />

0 V (GND) connection.<br />

Caution, PIN 4 is connected internally to PIN 11 (and also possibly to PIN 12 depending on<br />

the model). These connections serve as a reference potential for the analogue sensor or<br />

demand value signals.<br />

Connection Analogue signals<br />

PIN 13 Analogue position actual value (X1), range 0… 100% corresponds to 0… 10V or 4… 20 mA<br />

PIN 14 Analogue position actual value (X2), range 0… 100% corresponds to 0… 10V or 4… 20 mA<br />

PIN 15 / 16 Analogue differential output for activation of the axis 1:<br />

-100...100% corresponds to -10...10V.<br />

PIN 19 / 20 Analogue differential output for activation of the axis 2:<br />

-100...100% corresponds to -10...10V.<br />

Connection SSI sensors<br />

PIN 37-40<br />

PIN 33, 34<br />

PIN 41-44<br />

PIN 47, 48<br />

Interface 1 to the SSI sensor. RS422 interface and power supply<br />

Interface 2 to the SSI sensor. RS422 interface and power supply<br />

Connection Digital inputs and outputs<br />

PIN 8<br />

Enable input:<br />

This digital input signal initializes the application. The signal will be approved in connection<br />

with the software enable the corresponding axis.<br />

PIN 2 Synchronous error output (only active in synchronous mode):<br />

ON: Slave axis within the error window (GL:E)<br />

PIN 1<br />

OFF: Slave axis outside the error window (GL:E)<br />

READY output:<br />

ON: The module is enabled; there are no discernable errors.<br />

OFF: Enable (PIN 8) is disabled or an error (sensor or internal error) has been detected.<br />

Page 13 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


4.2 LED definitions<br />

W.E.ST. Elektronik GmbH<br />

LEDs Description of the LED function<br />

GREEN Identical to the READY output.<br />

OFF: no power supply or ENABLE is not activated<br />

ON: System is ready for operation<br />

Flashing: Error discovered (valve solenoid or 4… 20 mA).<br />

The error of one axis results to a flashing LED.<br />

YELLOW Only active in synchronous mode:<br />

OFF: Slave axis outside the error window<br />

GREEN<br />

(right side)<br />

ON: Slave axis within the error window<br />

Profibus connection.<br />

OFF: No Profibus communication<br />

ON: Profibus communication in prozess<br />

Page 14 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


4.3 Circuit diagram<br />

Profibus DP<br />

ANA Feedback<br />

Position 1<br />

0 V<br />

SSI Feedback<br />

Position 1<br />

ANA Feedback<br />

Position 2<br />

0 V<br />

SSI Feedback<br />

Position 2<br />

Enable<br />

0..10V<br />

4..20mA<br />

0 V<br />

0..10V<br />

4..20mA<br />

0 V<br />

13<br />

11<br />

33<br />

34<br />

37<br />

38<br />

39<br />

40<br />

14<br />

11<br />

47<br />

48<br />

41<br />

42<br />

43<br />

44<br />

8<br />

9<br />

24 V<br />

0 V<br />

CLK+<br />

CLK-<br />

DATA+<br />

DATA-<br />

24 V<br />

0 V<br />

CLK+<br />

CLK-<br />

DATA+<br />

DATA-<br />

Profibus<br />

SUBD<br />

9polig<br />

Speed<br />

via Feldbus<br />

Position<br />

via Feldbus<br />

Input Scaling<br />

Commands:<br />

AIN:W<br />

SSI Sensor<br />

Commands:<br />

SSI:RES<br />

SSI:BITS<br />

SSI:CODE<br />

SSI:POL1<br />

SSI:OFFSET1<br />

Input Scaling<br />

Commands:<br />

AIN:W<br />

SSI Sensor<br />

Commands:<br />

SSI:RES<br />

SSI:BITS<br />

SSI:CODE<br />

SSI:POL2<br />

SSI:OFFSET2<br />

24 V input<br />

W.E.ST. Elektronik GmbH<br />

ws1<br />

x2<br />

v1<br />

Speed<br />

INPX = ANA<br />

INPX = SSI<br />

INPX = ANA<br />

x2<br />

INPX = SSI<br />

Profil Generator<br />

Commands:<br />

- STROKE<br />

VMODE = NC<br />

VMODE = SDD<br />

Commands:<br />

- TS (sample time)<br />

- MODE (Expert or Standard)<br />

- EOUT (Error Mode)<br />

- IN<strong>POS</strong> (InPos output)<br />

w1<br />

-<br />

<strong>POS</strong>-<strong>124</strong>-A/I-<strong>PDP</strong><br />

xd1<br />

x1<br />

Control Function<br />

Commands:<br />

- A:A and A:B<br />

- D:A and D:B<br />

Control program<br />

AXIS 2<br />

Output Adaptation<br />

Commands:<br />

- MIN: A and B<br />

- MAX: A and B<br />

- TRIGGER<br />

- OFFSET<br />

- POL<br />

Internal Power<br />

VMODE = SDD<br />

3,5 mm JISC-6560 Buchse<br />

PE via DIN-RAIL<br />

Page 15 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013<br />

x1<br />

x2<br />

Output<br />

limitation<br />

AXIS 1<br />

Synchronous Controller<br />

Commands:<br />

- GL:P<br />

- GL:T1<br />

- GL:E<br />

RS232 C<br />

9600 Baud<br />

1 Stopbit<br />

no parity<br />

u2<br />

u1<br />

DC<br />

24 V output<br />

24 V output<br />

DC<br />

Output: A<br />

Output: B<br />

Enable Sync.<br />

via Feldbus<br />

Output: A<br />

Output: B<br />

24 V<br />

0 V<br />

35<br />

31<br />

3<br />

4<br />

32<br />

36<br />

15<br />

16<br />

12<br />

19<br />

20<br />

18<br />

1<br />

2<br />

Differentialinput<br />

I-Version: 4... 20 mA<br />

PIN 15 = +, PIN 12 = GND<br />

Ready<br />

24 V<br />

PELV<br />

0 V<br />

Differentialinput<br />

I Version: 4... 20 mA<br />

PIN 19 = +, PIN 18 = GND<br />

Synchron<br />

Error


4.4 Typical cabling<br />

0..10V, 4..20mA<br />

sensor position<br />

13 = X1, 14 = X2<br />

ENABLE<br />

+/- 10 V (4...20mA)<br />

to control valve 1<br />

4.5 Connection examples<br />

SPS / PLC 0... 10 V speed input signal<br />

+In PIN 10<br />

-In PIN 9<br />

GND PIN 11<br />

PE<br />

SPS / PLC 0... 10 V command and feedback signal<br />

+In PIN 13 or PIN 14<br />

In PIN 12 (GND)<br />

Valve (6 + PE plug) with OBE electronics<br />

Module<br />

PIN 12<br />

PIN 15<br />

PIN 16<br />

A : 24 V supply<br />

B : 0 V supply<br />

C : GND or enable<br />

D : + differential input<br />

E : - differential input<br />

F : diagnostics<br />

PE -<br />

W.E.ST. Elektronik GmbH<br />

1<br />

5<br />

9<br />

13<br />

2<br />

6<br />

10<br />

14<br />

3<br />

7<br />

11<br />

15<br />

4<br />

8<br />

12<br />

16<br />

17<br />

21<br />

29<br />

18<br />

22<br />

Profibus<br />

9pol Buchse<br />

30<br />

z. B. 24 V<br />

19<br />

23<br />

31<br />

z. B. 24 V<br />

24V power<br />

0V supply<br />

+/- 10 V (4...20mA)<br />

to control valve 2<br />

Page 16 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013<br />

20<br />

24<br />

32<br />

33<br />

37<br />

41<br />

45<br />

34<br />

38<br />

42<br />

46<br />

35<br />

39<br />

43<br />

47<br />

36<br />

40<br />

44<br />

48<br />

PE Klemme<br />

GND<br />

+24 V DC<br />

power supply<br />

communication modul<br />

+In PIN 13 or 14<br />

PIN 12 (GND)<br />

+24 V DC<br />

GND<br />

SSI 1<br />

sensor interface<br />

CLK+<br />

CLK-<br />

DATA+<br />

DATA-<br />

DATA-<br />

DATA+<br />

CLK-<br />

CLK+<br />

SSI 2<br />

sensor interface<br />

GND<br />

+24 V DC<br />

PLC or sensor with 4... 20 mA (two wire connection)<br />

+In PIN 13 or 14<br />

PIN 12 (GND)<br />

AIN:W 2000 1600 2000 C ( für 0... 100%)<br />

PLC or sensor with 4... 20 mA (three wire connection)<br />

AIN:W 2000 1600 2000 C ( für 0... 100%)


4.6 Technical data<br />

Supply voltage<br />

Current requirement<br />

External protection<br />

Digital inputs<br />

Input resistance<br />

W.E.ST. Elektronik GmbH<br />

[VDC]<br />

[mA]<br />

[A]<br />

[V]<br />

[V]<br />

[kOhm]<br />

Digital outputs [V]<br />

Analogue inputs (sensor and<br />

demand value signal)<br />

Signal resolution<br />

Analogue outputs<br />

Voltage<br />

Signal resolution<br />

Current<br />

Signal resolution<br />

[V]<br />

[V]<br />

[mA]<br />

[%]<br />

[V]<br />

[mA]<br />

[%]<br />

[mA]<br />

[%]<br />

24 (±10 %)<br />

500<br />

1 medium time lag<br />

logic 0: < 2 V<br />

logic 1: > 10 V,current consumption<br />

< 0,1 mA<br />

25<br />

logic 0: < 2 V<br />

logic 1: > 12 V; max. 10 mA<br />

0… 10. 33 kOhm<br />

4… 20. 250 Ohm<br />

0.01(internally 0.0031) inc. oversampling<br />

2 x 0… 10; Differential output<br />

5 (max. load)<br />

0.024<br />

4… 20; 390 Ohm maximum load<br />

0.024<br />

SSI interface - RS-422 Spezifikation, 150 kBaud<br />

Controller sample time [ms] 1<br />

Serial interface<br />

Profibus DP<br />

Baud rate<br />

ID Number<br />

RS 232C, 9600… 57600 Baud, 1 stop<br />

bit, no parity, Echo Mode<br />

9.6,19,2,93.75,187.5,500,1500,3000<br />

6000, 12000 kbits/s<br />

1810h<br />

Housing Snap-on module to EN 50022<br />

Protection class<br />

Temperature range<br />

Storage Temperature<br />

Humidity<br />

[°C]<br />

[°C]<br />

[%]<br />

PA 6.6 polyamide<br />

Flammability class V0 (UL94)<br />

IP20<br />

-10… 50<br />

-20... 70<br />


5 Parameters<br />

5.1 Parameter overview<br />

W.E.ST. Elektronik GmbH<br />

Command Default Unit Description<br />

LG GB - Changing language help texts.<br />

<strong>PDP</strong>ADR 126 - Address of the unit at the Profibus.<br />

MODE STD - Mode parameter.<br />

SENS ON - Activation and disabling of internal failure monitoring<br />

functions.<br />

INPX SSI - Switching between SSI and analog sensors.<br />

STROKE1<br />

STROKE2<br />

VRAMP1<br />

VRAMP2<br />

VMODE1<br />

VMODE2<br />

VMAX1<br />

VMAX2<br />

POL1<br />

POL2<br />

EOUT1<br />

EOUT2<br />

SSI:OFFSET1<br />

SSI:OFFSET2<br />

SSI:POL1<br />

SSI:POL2<br />

X = 10...10000 mm Working stroke of the sensor.<br />

100 ms Ramp function for external speed input.<br />

SDD - Control structure for positioning process.<br />

50 mm/s Maximum speed in NC mode.<br />

+ - Reversal of output polarity.<br />

0 0,01% Error output signal.<br />

0 10 nm Position offset<br />

+ - Sensor polarity<br />

SSI:RES 500 10 nm Resolution of the sensors (the same for both)<br />

SSI:BITS 24 - Number of transmitted bits (the same for both)<br />

SSI:CODE GRAY - transfer Encoding (the same for both)<br />

AIN:I<br />

A<br />

B<br />

C<br />

X<br />

A1:I<br />

A2:I<br />

D1:I<br />

D2:I<br />

V01:I<br />

V02:I<br />

CTRL 1<br />

CTRL 2<br />

GL:P<br />

GL:T1<br />

GL:E<br />

HAND1:I<br />

HAND2:I<br />

10000<br />

10000<br />

10000<br />

V<br />

:A 100<br />

:B 100<br />

:A 25<br />

:B 25<br />

:S 10<br />

:A 10<br />

:B 10<br />

-<br />

-<br />

0,01 %<br />

-<br />

ms<br />

mm<br />

mm<br />

mm<br />

1/s<br />

1/s<br />

Analogue input scaling for X1 and X2.<br />

Acceleration times.<br />

Deceleration distance<br />

Deceleration distance<br />

Emergency deceleration distance<br />

Loop gain setting.<br />

sqrt1 - Specification of control characteristics.<br />

48<br />

80<br />

200<br />

:A 3330<br />

:B -3330<br />

0,01<br />

ms<br />

µm<br />

0,01%<br />

Definition of the synchronization actuator. GL:P<br />

adjusted the gain, GL:T1 effects a decelerated action<br />

of the actuator (revised stability) and .GL:E for<br />

error-window in synchronous run (out of window<br />

GL-Error-Bit is set on the Profibus)<br />

Output signal in manual mode.<br />

Page 18 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


MIN1:I<br />

MIN2:I<br />

MAX1:I<br />

MAX2:I<br />

TRIGGER1<br />

TRIGGER2<br />

OFFSET1<br />

OFFSET2<br />

IN<strong>POS</strong>1:I<br />

IN<strong>POS</strong>2:I<br />

W.E.ST. Elektronik GmbH<br />

0<br />

0<br />

10000<br />

10000<br />

200<br />

200<br />

0<br />

0<br />

200<br />

200<br />

0,01 %<br />

0,01 %<br />

0,01 %<br />

0,01 %%<br />

0,01 %<br />

0,01 %%<br />

0,01 %<br />

0,01 %%<br />

µm<br />

µm<br />

Zero point setting /following error compensation.<br />

Maximum output signal limitation.<br />

Trigger threshold for activating the following error<br />

compensation (MIN).<br />

Offset value (added to the output signal).Axis 1 and<br />

axis 2 separate definable.<br />

Range for InPos signal.<br />

Page 19 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


5.2 Parameter description<br />

W.E.ST. Elektronik GmbH<br />

5.2.1 LG (Changing the language for the help texts)<br />

Command Parameters Unit Group<br />

LG x x= DE|GB - STD<br />

Either German or English can be selected for the help texts.<br />

CAUTION: After changing the language settings the ID button (SPEED BUTTON) in the menu<br />

bar (WPC-300) must be pressed (module identification).<br />

5.2.2 <strong>PDP</strong>ADR (Profibus adress)<br />

Command Parameters Unit Group<br />

<strong>PDP</strong>ADR X x= 1...126 - STD<br />

Slave address in the Profibus network.<br />

5.2.3 MODE (Switching between parameter groups)<br />

Command Parameters Unit Group<br />

MODE x x= STD|EXP - STD<br />

This command changes the operating mode. Various commands (defined via STD/EXP) are blanked out<br />

in Standard Mode. The commands in Expert Mode have a more significant influence on system behaviour<br />

and should accordingly be changed with care.<br />

Page 20 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


5.2.4 SENS (Module monitoring)<br />

W.E.ST. Elektronik GmbH<br />

Command Parameters Unit Group<br />

SENS x x= ON|OFF - STD<br />

This command is used to activate and disable monitoring functions (4… 20 mA sensors and internal<br />

module monitoring).<br />

ON: Monitor function is activ.<br />

OFF: Failures are ignored.<br />

Normally, monitoring is always active as otherwise no errors are signalled via the PIN 1<br />

(READY) output. It can, however, be disabled for fault finding.<br />

5.2.5 STROKE1 /STROKE2 (Full stroke)<br />

Command Parameters Unit Group<br />

STROKE1 X<br />

STROKE2 X<br />

x= 10… 10000 mm STD<br />

This command defines the full stroke, which corresponds to 100% of the input signal. If the demand is set<br />

incorrectly, this leads to incorrect system settings, and the dependent parameters such as speed and<br />

gain cannot be calculated correctly.<br />

5.2.6 VRAMP1 /VRAMP2 (Ramp time for external speed demand)<br />

Command Parameters Unit Group<br />

VRAMP1 X<br />

VRAMP2 X<br />

x= 1… 2000 ms STD<br />

The rate of change of the external speed demand can be limited by this ramp time. The command is only<br />

active if external speed demand (VS = EXT) has been parametrised.<br />

Page 21 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


W.E.ST. Elektronik GmbH<br />

5.2.7 VMODE1 / VMODE2 (Switching over the control mode)<br />

Command Parameters Unit Group<br />

VMODE1 X<br />

VMODE2 X<br />

x= SDD|NC EXP<br />

The fundamental control structure can be changed with this parameter.<br />

SDD: Stroke-Dependent Deceleration. In this mode, stroke-dependent deceleration is activated. This<br />

mode is the default mode and is suitable for most applications. With stroke-dependent deceleration<br />

the drive comes to a controlled stop at the target position. From the set deceleration<br />

point the drive then switches to control mode and moves accurately to the desired position.<br />

This control structure is very robust and reacts insensitively to external influences such as fluctuating<br />

pressures.<br />

One disadvantage is that the speed varies with the fluctuating pressure as the system runs<br />

under open-loop control.<br />

NC: Numerically Controlled. In this mode a position profile is generated internally. The system always<br />

works under control and uses the following error to follow the position profile. The magnitude<br />

of the following error is determined by the dynamics and the set control gain. The advantage<br />

is that the speed is constant (regardless of external influences 2 ) due to the profile<br />

demand. Because of continuous control, it is necessary not to run at 100% speed, as otherwise<br />

the errors cannot be corrected. 80% of the maximum speed is typical although especially<br />

the system behaviour and the load pressure should be taken into account when specifying the<br />

speed.<br />

5.2.8 VMAX1 / VMAX2 (Maximum speed in NC Mode)<br />

Command Parameters Unit Group<br />

VMAX1 X<br />

VMAX2 X<br />

x= 1… 5000 mm/s VMODE = NC<br />

Specification of the maximum speed in NC Mode. This value is defined by the drive system and should be<br />

specified as precisely as possible (not too high under any circumstances) 3 . The maximum speed is<br />

scaled by means of the VELO value or via the external speed demand. The command is only active if the<br />

VMODE has been parametrised to NC.<br />

2<br />

There are deviations due to external influences which are then compensated for. The time response is defined by<br />

the system dynamics.<br />

3<br />

If the retraction speed and the outward speed are different, the smaller one has to be used<br />

Page 22 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


W.E.ST. Elektronik GmbH<br />

5.2.9 POL1 / POL2 (Output polarity)<br />

Command Parameters Unit Group<br />

POL1 X<br />

POL2 X<br />

x= +|- - STD<br />

This command enables the output signal polarity to be reversed.<br />

5.2.10 EOUT1 / EOUT2 (Output signal in case of error)<br />

Command Parameters Unit Group<br />

EOUT1 X<br />

EOUT2 X<br />

x= -10000… 10000 0,01% EXP<br />

Error output value. A value (degree of valve opening) for use in the event of a sensor error can be defined<br />

here. This function can be used if, for example, the drive is to move to one of the two end positions (at the<br />

specified speed) in case of a sensor error.<br />

|EOUT| = 0 The output is switched off in the event of an error. This is normal behaviour.<br />

CAUTION! If the output signal is 4… 20 mA, the output is switched off if |EOUT| = 0. If a<br />

null value = 12 mA is to be output in the event of an error, EOUT must be set to 1 4 .<br />

CAUTION! The output value defined here is stored permanently (independently of the parameter<br />

set). The effects should be analysed by the user for each application from the<br />

point of view of safety<br />

CAUTION! If EOUT is activated, the HAND mode should not be used. After deactivating<br />

the HAND mode the output will be set to the programmed EOUT value.<br />

.<br />

4 This is necessary if using valves without error detection for signals lower than 4 mA<br />

Page 23 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


5.2.11 INPX (Sensor type define)<br />

W.E.ST. Elektronik GmbH<br />

Command Parameters Unit Group<br />

INPX X x= SSI|ANA STD<br />

With this parameter the appropriate sensor type can be activated.<br />

SSI: The SSI sensor interfaces are active. The SSI sensors have to be adjusted via the SSI commands<br />

to the sensors. The relevant sensor data must be available.<br />

ANA: The analog sensor interfaces (0 ... 10 V or 4 ... 20 mA) are active. The sensors are scaled with<br />

the commands AIN: X<br />

The SSI interface is suitable for digital position sensor. The internally processed accuracy is 1 micron.<br />

CAUTION: It can only be used SSI sensors of the same type, ie the resolution of the sensor,<br />

the number of bits transmitted and the transmission coding must be the same!<br />

5.2.12 SSI:OFFSET (Sensor offset)<br />

Command Parameters Unit Group<br />

SSI:OFFSET1 X<br />

SSI:OFFSET2 X<br />

This command is a sensor offset (zero point of the sensor).<br />

x= -1000000… 1000000 µm INPX = SSI<br />

5.2.13 SSI:POL (Direction of the sensor signal)<br />

Command Parameters Unit Group<br />

SSI:POL1 X<br />

SSI:POL2 X<br />

x= +|- - INPX = SSI<br />

To reverse the working direction of the sensor, with this command, the polarity can be changed.<br />

Example: Sensor Length = 200 mm, reverse the direction of work is required.<br />

Set SSI: POL to "-" (internally, the sensor position is subtracted from the stroke ).<br />

Page 24 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


5.2.14 SSI:RES (Signal resolution)<br />

W.E.ST. Elektronik GmbH<br />

Command Parameters Unit Group<br />

SSI:RES X x= 100… 10000 0,01 µm INPX = SSI<br />

This command defines the signal resolution of the sensor. Data entry has a resolution of 10 nm (nanometers<br />

or 0.01 micron). If the sensor has one micron resolution, the value must be set to 100. This makes it<br />

possible to scale rotational sensors.<br />

Take the data from the sensor data sheet.<br />

Caution: The signal resolution for both SSI sensors must be equal.<br />

5.2.15 SSI:BITS (Number of bits)<br />

Command Parameters Unit Group<br />

SSI:BITS X x= 8… 31 bits INPX = SSI<br />

With this command the number of data bits can be set.<br />

Take the data from the sensor data sheet.<br />

Caution: The number of bits for both SSI sensors must be equal.<br />

5.2.16 SSI:CODE (Signal coding)<br />

Command Parameters Unit Group<br />

SSI:CODE X x= GRAY|BIN - INPX = SSI<br />

With this command the signal coding can be set.<br />

Take the data from the sensor data sheet.<br />

Caution: The signal coding for both SSI sensors must be equal.<br />

Page 25 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


5.2.17 AIN (Analogue input scaling)<br />

W.E.ST. Elektronik GmbH<br />

Command Parameters Unit Group<br />

AIN:I<br />

A<br />

B<br />

C<br />

X<br />

i= X1|X2<br />

a= -10000… 10000<br />

b= -10000… 10000<br />

c= -700… 10000<br />

x= V|C<br />

-<br />

-<br />

0.01%<br />

-<br />

This command can be used to scale the individual inputs. The following linear equation is used for<br />

scaling.<br />

= ∙ −<br />

The “c” value is the offset (e.g. to compensate the 4 mA in the case of a 4… 20 mA input). The variables a<br />

and b define the gain factor.<br />

e.g.: 2.345 correspond to: a = 2345, b =1000<br />

The internal measuring resistor for measuring the current (4… 20 mA) is activated via the x value and the<br />

evaluation switched over accordingly.<br />

Typical settings:<br />

Command Input Description<br />

AIN:X1 1000 1000 0 V 0… 10V Range: 0… 100%<br />

AIN:X1 10 8 1000 V<br />

OR<br />

AIN:X1 1000 800 1000 V<br />

AIN:X1 10 4 500 V<br />

OR<br />

AIN:X1 1000 400 500 V<br />

AIN:X1 20 16 2000 C<br />

OR<br />

AIN:X1 2000 1600 2000 C<br />

Page 26 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013<br />

STD<br />

1… 9V Range: 0… 100%; 1 V = 1000 used for the offset and gained by 10 /<br />

8 (10V divided by 8 V (9V -1V)<br />

0,5… 4,5V Range: 0… 100%; 0,5 V = 500 used for the offset and gained by 10 /<br />

4 (10V divided by 4 V (4,5V -0,5V)<br />

4… 20mA Range: 0… 100%<br />

The offset will be compensated on 20% (4 mA) and the signal (16 mA<br />

= 20mA – 4 mA) will be gained to 100% (20 mA).


5.2.18 A1 / A2 (Acceleration time)<br />

W.E.ST. Elektronik GmbH<br />

Command Parameters Unit Group<br />

A1:I X<br />

A2:I X<br />

i= A|B<br />

x= 1… 5000<br />

Ramp function for the 1 st and 3 rd quadrants.<br />

The acceleration time for positioning is dependent on the direction. A corresponds to connection 15 and B<br />

corresponds to connection 16 (if POL = +).<br />

Normally A = flow P-A, B-T and B = flow P-B, A-T.<br />

For quadrants 2 and 4, parameters D:A and D:B are used as the deceleration distance demand.<br />

5.2.19 D1 / D2 (Deceleration / braking distance)<br />

Page 27 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013<br />

ms<br />

ms<br />

STD<br />

Command Parameters Unit Group<br />

D1:I X<br />

D2:I X<br />

i= A|B|S<br />

x= 1… 10000<br />

mm<br />

mm<br />

mm<br />

VMODE = SDD<br />

VMODE = SDD<br />

SDD + NC<br />

This parameter is specified in mm 5 .<br />

The deceleration distance is set for each direction of movement (A or B). The control gain is calculated<br />

internally depending on the deceleration distance. The shorter the deceleration distance, the higher the<br />

loop gain. A longer deceleration distance should be specified in the event of instability.<br />

Parameter D:S is used as the emergency stopping ramp when disabling the START signal. After disabling,<br />

a new target position (current position plus D:S) is calculated in relation to the speed and is specified<br />

as a demand value.<br />

G =<br />

Intern<br />

STROKE<br />

D<br />

i<br />

Calculation of control gain<br />

CAUTION: If the maximum position (<strong>POS</strong>ITION command) is changed, the deceleration distance<br />

must also be adjusted. Otherwise this can result in instability and uncontrolled movements.<br />

5 CAUTION! With older modules this parameter was specified in % of the maximum path. Since data specification for<br />

this module has now been converted to mm the relationship between the path (PATH command) and these parameters<br />

must be taken into account.


5.2.20 V01 / V02 (Loop gain setting)<br />

W.E.ST. Elektronik GmbH<br />

Command Parameters Unit Group<br />

V01:I X<br />

V02:I X<br />

i= A|B<br />

x= 1… 200<br />

Page 28 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013<br />

s -1<br />

s -1<br />

VMODE = NC<br />

This parameter is specified in s -1 (1/s).<br />

In NC Mode the loop gain is normally specified rather than the deceleration distance 6 .<br />

The internal gain is calculated from this gain value together with the VMAX and <strong>POS</strong>ITION parameters.<br />

Calculation of the internal control gain<br />

In NC Mode the following error at maximum speed is calculated by means of the loop gain. This following<br />

error corresponds to the deceleration distance with stroke-dependent deceleration. The conversion and<br />

therefore also the correct data demands related to the control system are relatively simple if the relationship<br />

described here is taken into account.<br />

6 The loop gain is alternatively defined as a KV factor with the unit (m/min)/mm or as Vo in 1/s. The conversion is KV<br />

= Vo/16.67.<br />

G<br />

v<br />

Di<br />

=<br />

V<br />

Intern<br />

max<br />

0<br />

STROKE<br />

=<br />

D<br />

i


W.E.ST. Elektronik GmbH<br />

5.2.21 CTRL1 / CTRL2 (Deceleration function characteristic)<br />

Command Parameters Unit Group<br />

CTRL1 X<br />

CTRL2 X<br />

x= lin|sqrt1<br />

|sqrt2<br />

- STD<br />

The deceleration characteristic is set with this parameter. In the case of positively overlapped proportional<br />

valves the SQRT function should be used. The non-linear flow function of these valves is linearised by the<br />

SQRT 7 function.<br />

In the case of zero lapped valves (control valves and servo valves) the LIN or SQRT1 function should be<br />

used regardless of the application. The progressive characteristic of the SQRT1 function has better positioning<br />

accuracy but can also lead to longer positioning times in individual cases.<br />

LIN: Linear deceleration characteristic (gain is increased by a factor of 1).<br />

SQRT1: Root function for braking curve calculation. The gain is increased by a factor of 3 (in the target<br />

position). This is the default setting.<br />

SQRT2: Root function for braking curve calculation. The gain is increased by a factor of 5 (in the target<br />

position). This setting should only be used with a significantly progressive flow through the<br />

valve.<br />

Velocity<br />

CTRL = LIN<br />

Braking stroke<br />

D:A or D:B<br />

Stroke<br />

CTRL = SQRT<br />

7 The SQRT function generates constant deceleration and thus reaches the target position faster. This is achieved by<br />

increasing the gain during the deceleration process.<br />

Velocity<br />

CTRL = LIN<br />

1 Braking function with respect to stroke and time<br />

Deceleration time<br />

D:A or D:B<br />

CTRL = SQRT<br />

Page 29 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013<br />

Time


W.E.ST. Elektronik GmbH<br />

5.2.22 GL: P (gain of the synchronization in SDD mode)<br />

5.2.23 GL: V0 (gain of the synchronization in NC mode)<br />

5.2.24 GL:T1 (Time constant of the synchronisation control)<br />

5.2.25 GL:E (Window for the synchronization error)<br />

Command Parameters Unit Group<br />

GL:P X<br />

GL:V0 X<br />

GL:T1 X<br />

GL:E X<br />

X = 1… 10000<br />

X = 1… 200<br />

X = 1… 200<br />

X = 2… 10000<br />

Page 30 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013<br />

mm<br />

s -1<br />

ms<br />

µm<br />

VMODE = SDD<br />

VMODE = NC<br />

These parameters are used to optimize the synchronization controller The SYNC-controller works as a<br />

PT1 compensator for optimized controlling of hydraulic drives. The parameter T1 effects a delayed action<br />

of the SYNC Controller. The stability of the compensator could be increased in critical cases with the up<br />

streamed T1 Filter.<br />

In SDD-mode is specified with GLP, the braking distance in mm. The gain will depend on the stopping<br />

distance is calculated internally. In short braking distance, the high gain is calculated.<br />

In the case of instability should be given a longer stopping distance.<br />

In NC-mode parameters of the GL: V0 is in s-1 (1 / s) specified.<br />

In this mode, the loop gain is entered.<br />

The parameter GL: T1 causes a delayed action of the synchronized controller. The stability of the controller<br />

can be increased by the upstream T1-filter in critical cases.<br />

The GL:E command defines a monitoring window in which the GL-Error message is displayed. The monitoring<br />

window is placed centrally on the required position value. The actual position value within this window<br />

is signalled by the GL-Error message at the status output (see signal description PROFIBUS). The<br />

positioning process is not influenced by this message. The control remains active.<br />

Master/Slave<br />

Profibus<br />

w<br />

x2<br />

x1<br />

Rampfunction<br />

w<br />

x2<br />

x1<br />

-<br />

-<br />

xw<br />

xk2<br />

A:A, A:B<br />

D:A, D:B<br />

GL:P, GL:V0<br />

GL:T1<br />

STD<br />

STD<br />

u2


W.E.ST. Elektronik GmbH<br />

5.2.26 HAND1 / HAND2 (Manual speed)<br />

Command Parameters Unit Group<br />

HAND1:I X<br />

HAND2:I X<br />

i= A|B<br />

x= -10000… 10000<br />

0,01%<br />

0,01%<br />

The manual speeds are set with these parameters. Entering the speed and direction at will enables any<br />

switch input to be assigned.<br />

The drive moves in a controlled manner in the defined direction when the manual signal is active. After<br />

the manual signal has been disabled, the drive remains under closed loop control in the current position.<br />

In the event of a fault (position sensor fault) the drive can still be moved with the manual function. The<br />

output is zero after the manual signals have been disabled.<br />

The manual speed is limited by the speed demand (MIN evaluation) via the Profibus.<br />

Page 31 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013<br />

STD


W.E.ST. Elektronik GmbH<br />

5.2.27 MIN / MIN2 (Overlap compensation)<br />

5.2.28 MAX1 / MAX2 (Limitation)<br />

5.2.29 TRIGGER (Response threshold for the MIN parameter)<br />

Command Parameters Unit Group<br />

MIN1:I X<br />

MAX1:I X<br />

TRIGGER1 X<br />

MIN2:I X<br />

MAX2:I X<br />

TRIGGER2 X<br />

i= A|B<br />

x= 0… 6000<br />

x= 3000… 10000<br />

x= 0… 4000<br />

x= 0… 6000<br />

x= 3000… 10000<br />

x= 0… 4000<br />

Page 32 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013<br />

-<br />

0,01%<br />

0,01%<br />

0,01%<br />

0,01%<br />

0,01%<br />

0,01%<br />

The output signal to the valve is adjusted by means of these commands. A kinked volume flow characteristic<br />

is used instead of the typical overlap step for the position controls. The advantage is better and more<br />

stable positioning behaviour. At the same time, non linear volume flow characteristics can also be adjusted<br />

with this compensation 8 .<br />

CAUTION: If there should also be adjustment options for dead zone compensation on<br />

the valve or valve amplifier, it must be ensured that the adjustment is performed either at<br />

the power amplifier or in the module.<br />

If the MIN value is set too high this has an effect on the minimum speed, which can then<br />

no longer be adjusted. In extreme cases this leads to oscillation around the controlled<br />

position.<br />

MIN:B<br />

MAX:B<br />

Output<br />

flow linearization<br />

Input<br />

STD<br />

MAX:A<br />

standard deadband compensation<br />

TRIGGER value<br />

8 Various manufacturers have valves with a defined linear curve: e.g. a kink at 40 or 60 % (corresponding to 10% input<br />

signal) of the nominal volume flow. In this case the TRIGGER value should be set to 1000 and the MIN value to<br />

4000 (6000).<br />

If zero lapped or slightly underlapped valves are used, the volume flow gain in the zero range (within the underlap) is<br />

twice as high as in the normal working range. This can lead to vibrations and jittery behaviour. To compensate for<br />

this, the TRIGGER value should be set to approximately 200 and the MIN value to 100. The gain in the zero point is<br />

thus halved and a higher overall gain can often be set.<br />

MIN:A


W.E.ST. Elektronik GmbH<br />

5.2.30 OFFSET1 / OFFSET2 (Zero correction)<br />

Command Parameters Unit Group<br />

OFFSET1 X<br />

OFFSET2 X<br />

x= -4000… 4000 0,01% STD<br />

This parameter is entered in 0.01% units.<br />

The offset value is added to the control element signal at the output. Control element (valve) zero offsets<br />

can be compensated with this parameter.<br />

5.2.31 IN<strong>POS</strong>:S1 / IN<strong>POS</strong>:S2 (In position window)<br />

Command Parameters Unit Group<br />

IN<strong>POS</strong>:S1 X<br />

IN<strong>POS</strong>:S2 X<br />

x= 2… 10000 µm STD<br />

This parameter is entered in µm.<br />

The IN<strong>POS</strong>:S command defines a monitoring window in which the IN<strong>POS</strong>:S message is displayed. The<br />

monitoring window is placed centrally on the required position value. The actual position value within this<br />

window is signalled by the IN<strong>POS</strong>:S message at the status output (see signal description PROFIBUS).<br />

The positioning process is not influenced by this message. The control remains active.<br />

5.2.32 IN<strong>POS</strong>:D1 / IN<strong>POS</strong>:D2 (following error window)<br />

Command Parameters Unit Group<br />

IN<strong>POS</strong>:D1 X<br />

IN<strong>POS</strong>:D2 X<br />

x= 2… 100000 µm STD<br />

This parameter is entered in µm.<br />

The IN<strong>POS</strong>:D command defines a monitoring window in which the IN<strong>POS</strong>:D message is displayed. The<br />

monitoring window is placed centrally on the required position value. The actual position value within this<br />

window is signalled by the IN<strong>POS</strong> message at the status output (see signal description PROFIBUS). The<br />

positioning process is not influenced by this message. The control remains active.<br />

In NC Mode this message is used to monitor the following error (depending on the parameterisation).<br />

Page 33 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


W.E.ST. Elektronik GmbH<br />

5.2.33 PROCESS DATA (Monitoring)<br />

Command Parameters Unit<br />

WA1/WA2<br />

W1/W2<br />

X1/X2<br />

XD1/XD2<br />

XK2<br />

V1/V2<br />

U1/U2<br />

Actual command position axis 1 / 2<br />

External command position axis 1 / 2<br />

Feedback positon axis 1 / 2<br />

Control error axis 1 / 2<br />

Synchronisation error at axis 2<br />

Speed set point 1 / 2<br />

Control signal axis 1 / 2<br />

0,01 mm<br />

0,01 mm<br />

0,01 mm<br />

0,01 mm<br />

0,01 mm<br />

0,01 %<br />

0,01 %<br />

The process data are the variables which can be continuously observed on the monitor or on the oscilloscope.<br />

Page 34 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


6 Appendix<br />

6.1 Failure monitoring<br />

W.E.ST. Elektronik GmbH<br />

Following possible error sources are monitored continuously:<br />

Source Fault Characteristic<br />

Command signal PIN 13<br />

4... 20 mA<br />

Feedback signal PIN 14<br />

4… 20 mA<br />

SSI-VERSION<br />

Sensor value<br />

EEPROM<br />

(at switching on)<br />

Out of range or broken wire. The output will be switched off.<br />

Out of range or broken wire. The output will be switched off.<br />

Out of range or broken wire. The output will be switched off.<br />

Data error The output is deactivated.<br />

CAUTION: Take care of the EOUT command. Changes will influense the behaviour.<br />

6.2 Troubleshooting<br />

The module can be activated by<br />

saving new parameters (pressing<br />

of the SAVE Button).<br />

It is assumed that the device is in an operable state and there is communication between the module and<br />

the WPC-300. Furthermore, the valve control parametrisation has been set with the assistance of the<br />

valve data sheets.<br />

The RC in monitor mode can be used to analyse faults.<br />

CAUTION: All safety aspects must be thoroughly checked when working with the RC (Remote<br />

Control) mode. In this mode the module is controlled directly and the machine control<br />

cannot influence the module.<br />

FAULT CAUSE / SOLUTION<br />

ENABLE is active, the<br />

module does not respond,<br />

and the READY<br />

LED is off.<br />

There is presumably no power supply or the ENABLE signal (PIN 8) or ENABLE signal<br />

via Profibus is not present.<br />

If there is no power supply there is also no communication via our operating program.<br />

If a connection has been made to the WPC-300, then a power supply is also<br />

available<br />

If the power supply exists, an attempt should be made to see whether the system<br />

can be moved by means of the HAND+ and HAND- signals (measuring the output<br />

signal to the valve helps).<br />

Page 35 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


ENABLE is active, the<br />

READY LED is flashing.<br />

ENABLE is active; the<br />

READY LED is on, the<br />

system moves to an<br />

end position.<br />

ENABLE is active, the<br />

READY LED is on, the<br />

STATUS LED is not<br />

flashing, the system<br />

moves to the target position<br />

but doesn’t reach<br />

it (positioning error).<br />

ENABLE is active, the<br />

READY LED is on, and<br />

the system oscillates on<br />

the spot.<br />

W.E.ST. Elektronik GmbH<br />

The flashing READY LED signals that a fault is been detected by the module. The<br />

fault could be:<br />

• A broken cable or no signal at the input (PIN 10/9 or PIN 14/13), if 4… 20<br />

mA signals are parametrised.<br />

• Internal data error: press the command/SAVE button to delete the data error.<br />

The system reloads the DEFAULT data.<br />

With the WPC-300 operating program the fault can be localised directly via the monitor.<br />

The control circuit polarity is incorrect. The polarity can be changed with the POL<br />

command or by reversing the connections to PIN 15 and PIN 16 or<br />

PIN 19 and PIN 20.<br />

Serious positioning errors can result from incorrect parametrisation or incorrect system<br />

design.<br />

• Is the cylinder position specified correctly?<br />

• Are the deceleration distances correct (to start the system the deceleration<br />

distances should be set to approx. 20… 25 % of the cylinder position 9 )?<br />

• Is the valve a zero lapped control valve or a standard proportional valve?<br />

In the case of a proportional valve, the valve overlap which may be present<br />

should be compensated for with the MIN parameters. Typical values are to<br />

be found in the valve data sheet.<br />

The system is working and also actuating the valve.<br />

Various potential problems could be:<br />

• The parametrisation is not yet adjusted to the system (gain too high).<br />

• There is severe interference on the power supply.<br />

• Very long sensor cables (> 40 m) and sensor signal interference.<br />

• The MIN setting to compensate the valve overlap is too high.<br />

As a basic principle, the parametrisation of the sensor data and the controller settings<br />

must be carried out first (before switching on). An incorrect demand is equivalent<br />

to incorrect system design which then leads to incorrect operation. If the system<br />

oscillates, the gain should first be reduced (longer deceleration distances for D:A and<br />

D:B) and in the case of overlapped valves the MIN parameter should also be reduced.<br />

Speed too low The drive may be able to move to position but the speed is too low.<br />

• Check the control signal to the valve.<br />

• Via the integrated oscilloscope (U variable).<br />

• Measure the signal to the valve with an external oscilloscope /<br />

voltmeter.<br />

• If the control is within the range of ± 100% (± 10V), the fault must be sought<br />

in the hydraulics.<br />

• If the control signal is relatively low, the following points should be checked:<br />

• Is the internal/external speed signal limiting the speed?<br />

• Which setting has been specified for the deceleration distance in<br />

relation to the <strong>POS</strong>ITION?<br />

Speed too high The drive should move to position. The drive moves in and out too fast leading to uncontrolled<br />

behaviour. Reducing the speed (MAX or VELO parameter) has very little<br />

or no effect.<br />

• The hydraulic system is over-sized. The entire parametrisation of the<br />

movement cycle cannot be reproduced (overlap and deceleration distance<br />

settings)<br />

9 The stability criterion of the hydraulic axes must be taken into account.<br />

Page 36 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


W.E.ST. Elektronik GmbH<br />

6.3 Description of the command structure<br />

The command structure:<br />

[nnnn:i x] or<br />

[nnnn x]<br />

Meaning:<br />

nnnn - used for an arbitrary command name<br />

nnnn: - used for an arbitrary command name, expandable by an index.<br />

i oder I - a dummy is for the index. E. g. an index can be „A“ or „B“, depending on the direction.<br />

x - parameter value, in case of special commands more than one parameter are possible.<br />

Examples:<br />

MIN:A 2000 nnnn = “MIN”, i = “A” and x = “2000”<br />

OFFSET 50 nnnn = „OFFSET“ and x = „50“<br />

C:IC 2000 nnnn = “C”, i = “IC” and x = “2000”<br />

Page 37 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


7 Profibus DP interface<br />

7.1 Profibus functions<br />

W.E.ST. Elektronik GmbH<br />

The module supports all baud rates from 9,6 kbit/s up to 12000 kbit/s with auto detection of the baud rate.<br />

The functionality is defined in IEC 61158. The Profibus address can be programmed by a terminal program,<br />

WPC-300 or online via the Profibus. A diagnostic LED indicates the online status.<br />

7.2 Installation<br />

A typical screened Profibus plug (D-Sub 9pol with switchable termination) is mandatory. Every Profibus<br />

segment must be provided with an active bus termination at the beginning and at the end. The termination<br />

is already integrated in all common Profibus plugs and can be activated by DIL switches. The Profibus<br />

cable must be screened. PIN 17 have to be connected with PE (low impedance).<br />

7.3 GSD Configuration File<br />

The GSD data are available on our homepage: http://www.w-e-st.de/files/software/hms_1810.gsd<br />

The communication parameters are 16 bytes (8 words) for IN/OUT variables.<br />

Page 38 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


W.E.ST. Elektronik GmbH<br />

7.4 Description Profibus DP interface<br />

The resolution (data via Profibus) of the command position is defined in µm (0,001 mm) independent on<br />

the real sensor resolution.<br />

The scaled speed is defined by 0x3fff (16373) for 100% of the maximum programmed speed.<br />

The module will be controlled by the control word, with the following bits:<br />

• ENABLE1 (2): Must be activated in addition to the hardware signal<br />

• START1 (2): the new command position is taken over by a signal change from low to high (from<br />

0 to 1). By deactivation of this bit, the system stops via a programmed deceleration ramp or held<br />

controlled in target position.<br />

• HANDA1 (2): Manual mode, speed and direction on internal parameters "HAND1 (2): A". If the<br />

velocity is limited by the command velocity, only the maximum command velocity can be used<br />

for movement<br />

• HANDB1 (2): Manual mode, speed and direction on internal parameters "HAND1 (2): B". If the<br />

velocity is limited by the command velocity, only the maximum command velocity can be used<br />

for movement<br />

• GL: Activation of synchronism, synchronization of axis 2 to axis 1.<br />

• DIRECT: The target position is directly overtaken (not just on the leading edge of the START<br />

signal). This bit applies to both axes.<br />

Command values:<br />

• Command position1 (2): In positioning mode this is the target position, which is approached<br />

with "START".<br />

• Command velocity1 (2): 100 % corresponds to 0x3fff. To traverse the axes a default value<br />

(even in manual mode) is necessary.<br />

Feedback of the status words and the actual positions:<br />

• READY1 (2): System is ready. If the sensor monitoring is enabled, a sensor fault will disable the<br />

READY signal.<br />

• IN<strong>POS</strong>1:S (2): In position window. This bit is used for display only (no effect)<br />

• IN<strong>POS</strong>1:D (2): Following error window. This bit is used for display only (no effect)<br />

• GL-ERROR: the synchronization error is displayed dependent on the parameter "GL: E". This<br />

bit is used for display only (no effect).<br />

• Feedback position1 (2): corresponding to the current position in µm (0.001 mm) of the respective<br />

axis.<br />

Page 39 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


7.5 Commands via PROFIBUS<br />

7.5.1 Command map<br />

16 data bytes are sent to the module.<br />

W.E.ST. Elektronik GmbH<br />

Nr. Byte Function Remake<br />

1 0 Control word Hi unsigned int<br />

2 1 Control word Lo<br />

3 2 Command position axis 1 Hi Signal resolution independent<br />

4 3 Command position axis 1<br />

on the real sensor resolution<br />

1 µm (0,001 mm)<br />

5 4 Command position axis 1<br />

6 5 Command position axis 1 Lo<br />

7 6 Velocity axis 1 Hi Signal range = 0x3fff (16373)<br />

= 100 % of the nominal speed<br />

8 7 Velocity axis 1 Lo<br />

9 8 Command position axis 2 Hi Signal resolution independent<br />

10 9 Command position axis 2<br />

on the real sensor resolution<br />

1 µm (0,001 mm)<br />

11 10 Command position axis 2<br />

12 11 Command position axis 2 Lo<br />

13 12 Velocity axis 2 Hi Signal range = 0x3fff (16373)<br />

= 100 % of the nominal speed<br />

14 13 Velocity axis 2 Lo<br />

15 14<br />

16 15<br />

Page 40 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


7.5.2 Definition of the control bits:<br />

Nr. Bit Function<br />

W.E.ST. Elektronik GmbH<br />

Byte 0 – Control word Hi-Byte<br />

1 0 DIRECT Bit for direct control of the commando position. If this bit is set,<br />

every change of the command position is taken over as a new<br />

command position.<br />

This bit is used for both axes.<br />

2 1 GL 1: Axis B is synchronized. HANDB2, HANDA2 and START2<br />

are inactive.<br />

0: Both axis working independently.<br />

3 2 HandB1 1: Manual speed B is active. START must be inactive.<br />

0: OFF<br />

4 3 HandA1 1: Manual speed A is active. START must be inactive.<br />

0: OFF<br />

5 4 -<br />

6 5 -<br />

7 6 START1 0: No new command position can be send<br />

0-1: Signal change from 0 to 1; the new command position is<br />

taken over.<br />

1: Positioning mode is active. In case of DIRECT = 1 new<br />

command positions can be sending continuously.<br />

1-0: Signal change from 1 to 0; an emergency stop ramp is calculated<br />

and the positioning process is stopped via this ramp.<br />

8 7 ENABLE1 1: Axis is active (together with hardware enable)<br />

0: Axis is inactive, output is OFF.<br />

Nr. Bit Function<br />

1 0 - -<br />

2 1 - -<br />

Byte 1 – Control word Lo-Byte<br />

3 2 HandB2 1: Manual speed B is active. START must be inactive.<br />

0: OFF<br />

4 3 HandA2 1: Manual speed A is active. START must be inactive.<br />

0: OFF<br />

5 4 -<br />

6 5 -<br />

7 6 START2 0: No new command position can be send<br />

0-1: Signal change from 0 to 1; the new command position is<br />

taken over.<br />

1: Positioning mode is active. In case of DIRECT = 1 new<br />

command positions can be sending continuously.<br />

1-0: Signal change from 1 to 0; an emergency stop ramp is calculated<br />

and the positioning process is stopped via this ramp.<br />

8 7 ENABLE2 1: Axis is active (together with hardware enable)<br />

0: Axis is inactive, output is OFF.<br />

Page 41 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


7.6 DATA send to PROFIBUS<br />

7.6.1 Feedback map<br />

Totally, 16 Bytes will be sent to the Profibus.<br />

W.E.ST. Elektronik GmbH<br />

Nr. Byte Function Remark<br />

1 0 Status word Hi unsigned int<br />

2 1 Status word Lo<br />

3 2 Feedback position axis 1 Hi Signal resolution:<br />

1 µm (0,001 mm)<br />

4 3 Feedback position axis 1<br />

5 4 Feedback position axis 1<br />

6 5 Feedback position axis 1 Lo<br />

7 6 Feedback position axis 2 Hi Signal resolution:<br />

1 µm (0,001 mm)<br />

8 7 Feedback position axis 2<br />

9 8 Feedback position axis 2<br />

10 9 Feedback position axis 2 Lo<br />

11 10<br />

12 11<br />

13 12<br />

14 13<br />

15 14<br />

16 15<br />

Page 42 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


7.6.2 Definition of the status bits:<br />

Nr. Bit Function<br />

W.E.ST. Elektronik GmbH<br />

Byte 0 – Control word Hi-Byte<br />

1 0 F-Error1 1: No feedback error.<br />

0: Feedback error in case of a 4… 20 mA sensor.<br />

2 1 D-Error 1: No Data Error.<br />

0: An internal data error is detected.<br />

3 2 -<br />

4 3 -<br />

5 4 InPosD1 1: The position of the axis is within the InPosD window.<br />

0: The position of the Axis is out of the InPosD window.<br />

6 5 GL-Error 1: No synchronization error is detected.<br />

0: Axis 2 to axis 1 is not in the synchronization error<br />

window.<br />

7 6 InPosS1 1: The position of the axis is within the InPosS window.<br />

0: The position of the Axis is out of the InPosS window.<br />

8 7 READY1 1: Axis is working, no error detected.<br />

0: An error is detected or no Enable signal.<br />

Nr. Bit Function<br />

Byte 1 – Control word Lo-Byte<br />

1 0 F-Error 1: No feedback error.<br />

0: Feedback error in case of a 4… 20 mA sensor.<br />

2 1 -<br />

3 2 -<br />

4 3 -<br />

5 4 InPosD2 1: The position of the axis is within the InPosD window.<br />

0: The position of the Axis is out of the InPosD window.<br />

6 5 -<br />

7 6 InPosS2 1: The position of the axis is within the InPosS window.<br />

0: The position of the Axis is out of the InPosS window.<br />

8 7 READY2 1: Axis is working, no error detected.<br />

0: An error is detected or no Enable signal.<br />

Page 43 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013


8 Notes<br />

W.E.ST. Elektronik GmbH<br />

Page 44 of 45 <strong>POS</strong>-<strong>124</strong>-*-<strong>PDP</strong>-1121 13.02.2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!