General Introduction to In Situ Hybridization

General Introduction to In Situ Hybridization General Introduction to In Situ Hybridization

nhjy.hzau.edu.cn
from nhjy.hzau.edu.cn More from this publisher
12.04.2013 Views

CONTENTS INDEX General Introduction to In Situ Hybridization

CONTENTS<br />

INDEX<br />

<strong>General</strong> <strong><strong>In</strong>troduction</strong> <strong>to</strong><br />

<strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong>


1<br />

8<br />

<strong>General</strong> <strong><strong>In</strong>troduction</strong> <strong>to</strong> <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong><br />

<strong>In</strong> situ hybridization techniques allow<br />

specific nucleic acid sequences <strong>to</strong> be<br />

detected in morphologically preserved<br />

chromosomes, cells or tissue sections. <strong>In</strong><br />

combination with immunocy<strong>to</strong>chemistry,<br />

in situ hybridization can relate microscopic<br />

<strong>to</strong>pological information <strong>to</strong> gene activity at<br />

the DNA, mRNA, and protein level.<br />

The technique was originally developed by<br />

Pardue and Gall (1969) and (independently)<br />

by John et al. (1969). At this time<br />

radioiso<strong>to</strong>pes were the only labels available<br />

for nucleic acids, and au<strong>to</strong>radiography was<br />

the only means of detecting hybridized<br />

sequences. Furthermore, as molecular cloning<br />

was not possible in those days, in situ<br />

hybridization was restricted <strong>to</strong> those<br />

sequences that could be purified and isolated<br />

by conventional biochemical methods (e.g.,<br />

mouse satellite DNA, viral DNA, ribosomal<br />

RNAs).<br />

Molecular cloning of nucleic acids and<br />

improved radiolabeling techniques have<br />

changed this picture dramatically. For<br />

example, DNA sequences a few hundred<br />

base pairs long can be detected in metaphase<br />

chromosomes by au<strong>to</strong>radiography<br />

(Harper et al., 1981; Jhanwag et al., 1984;<br />

Rabin et al., 1984; Schroeder et al., 1984).<br />

Also radioactive in situ techniques can detect<br />

low copy number mRNA molecules in<br />

individual cells (Harper et al., 1986). Some<br />

years ago, chemically synthesized, radioactively<br />

labeled oligonucleotides began <strong>to</strong> be<br />

used, especially for in situ mRNA detection<br />

(Coghlan et al., 1985).<br />

<strong>In</strong> spite of the high sensitivity and wide<br />

applicability of in situ hybridization techniques,<br />

their use has been limited <strong>to</strong> research<br />

labora<strong>to</strong>ries. This is probably due <strong>to</strong> the<br />

problems associated with radioactive<br />

probes, such as the safety measures required,<br />

limited shelf life, and extensive time required<br />

for au<strong>to</strong>radiography. <strong>In</strong> addition, the scatter<br />

inherent in radioactive decay limits the<br />

spatial resolution of the technique.<br />

However, preparing nucleic acid probes<br />

with a stable nonradioactive label removes<br />

the major obstacles which hinder the general<br />

application of in situ hybridization. Furthermore,<br />

it opens new opportunities for combining<br />

different labels in one experiment.<br />

The many sensitive antibody detection<br />

systems available for such probes further<br />

enhances the flexibility of this method. <strong>In</strong><br />

this manual, therefore, we describe nonradioactive<br />

alternatives for in situ hybridization.<br />

CONTENTS<br />

INDEX


Direct and indirect methods<br />

There are two types of nonradioactive<br />

hybridization methods: direct and indirect.<br />

<strong>In</strong> the direct method, the detectable molecule<br />

(reporter) is bound directly <strong>to</strong> the<br />

nucleic acid probe so that probe-target<br />

hybrids can be visualized under a microscope<br />

immediately after the hybridization<br />

reaction. For such methods it is essential that<br />

the probe-reporter bond survives the rather<br />

harsh hybridization and washing conditions.<br />

Perhaps more important, however, is, that<br />

the reporter molecule does not interfere<br />

with the hybridization reaction. The<br />

terminal fluorochrome labeling procedure of<br />

RNA probes developed by Bauman et al.<br />

(1980, 1984), and the direct enzyme labeling<br />

procedure of nucleic acids described by<br />

Renz and Kurz (1984) meet these criteria.<br />

Boehringer Mannheim has introduced<br />

several fluorochrome-labeled nucleotides<br />

that can be used for labeling and direct<br />

detection of DNA or RNA probes.<br />

If antibodies against the reporter molecules<br />

are available, direct methods may also be<br />

converted <strong>to</strong> indirect immunochemical<br />

amplification methods (Bauman et al.,<br />

1981; Lansdorp et al., 1984; Pinkel et al.,<br />

1986).<br />

<strong>In</strong>direct procedures require the probe <strong>to</strong><br />

contain a reporter molecule, introduced<br />

chemically or enzymatically, that can be<br />

detected by affinity cy<strong>to</strong>chemistry. Again,<br />

the presence of the label should not<br />

interfere with the hybridization reaction or<br />

the stability of the resulting hybrid. The<br />

reporter molecule should, however, be<br />

accessible <strong>to</strong> antibodies. A number of such<br />

hapten modifications has been described<br />

(Langer et al., 1981; Leary et al., 1983;<br />

Landegent et al., 1984; Tchen et al., 1984;<br />

Hopman et al., 1986; Hopman et al., 1987;<br />

Shroyer and Nakane, 1983; Van Prooijen et<br />

al., 1982; Viscidi et al., 1986; Rudkin and<br />

S<strong>to</strong>llar, 1977; Raap et al., 1989). One of the<br />

most popular is the biotin-streptavidin<br />

system. Boehringer Mannheim offers an<br />

alternative, the Digoxigenin (DIG/Genius)<br />

System which is described in detail later in<br />

this chapter.<br />

CONTENTS<br />

INDEX<br />

<strong>General</strong> <strong><strong>In</strong>troduction</strong> <strong>to</strong> <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong><br />

A few years ago, the chemical synthesis<br />

of oligonucleotides containing functional<br />

groups (e.g., primary aliphatic amines or<br />

sulfhydryl groups) was described. These<br />

can react with haptens, fluorochromes or<br />

enzymes <strong>to</strong> produce a stable probe which<br />

can be used for in situ hybridization experiments<br />

(Agrawal et al., 1986; Chollet and<br />

Kawashima, 1985; Haralambidis et al.,<br />

1987; Jablonski et al., 1986). Modified<br />

oligonucleotides can also be obtained with<br />

the DIG/Genius system (Mühlegger et<br />

al., 1990). Such oligonucleotide probes will<br />

undoubtedly be widely used as au<strong>to</strong>mated<br />

oligonucleotide synthesis makes them<br />

available <strong>to</strong> researchers not familiar with<br />

DNA recombinant technology.<br />

This manual concentrates on two labeling<br />

systems:<br />

<strong>In</strong>direct methods using digoxigenin<br />

(detected by specific antibodies) and<br />

biotin (detected by streptavidin)<br />

Direct methods using fluorescein or<br />

other fluorochromes directly coupled <strong>to</strong><br />

the nucleotide<br />

The ordering information in Chapter 7 lists<br />

all the kits and single reagents Boehringer<br />

Mannheim offers for nonradioactive<br />

labeling and detection.<br />

9<br />

1


1<br />

*Sold under the tradename of Genius<br />

in the US.<br />

–<br />

10<br />

O O O<br />

O P O P O P<br />

O –<br />

O –<br />

O –<br />

O<br />

R1<br />

<strong><strong>In</strong>troduction</strong> <strong>to</strong> Hapten Labeling and Detection<br />

of Nucleic Acids<br />

A wide variety of labels are available for<br />

in situ hybridization experiments. This<br />

manual presents (Chapter 5) examples for<br />

all the labels described below.<br />

Digoxigenin (DIG) labeling<br />

The Digoxigenin (DIG/Genius) System<br />

is emphasized in this manual. It was developed<br />

and continues <strong>to</strong> be expanded by<br />

Boehringer Mannheim (Kessler, 1990, 1991;<br />

Kessler et al., 1990; Mühlegger et al., 1989;<br />

Höltke et al., 1990; Seibl et al., 1990; Mühlegger,<br />

et al., 1990; Höltke and Kessler, 1990;<br />

Rüger et al., 1990; Martin et al., 1990;<br />

Schmitz et al., 1991; Höltke et al., 1992).<br />

The first kit, the DIG DNA Labeling and<br />

Detection Kit*, was introduced in 1987.<br />

The DIG labeling method is based on a<br />

steroid isolated from digitalis plants<br />

(Digitalis purpurea and Digitalis lanata,<br />

Figure 1). As the blossoms and the leaves<br />

of these plants are the only natural source<br />

of digoxigenin, the anti-DIG antibody<br />

does not bind <strong>to</strong> other biological material.<br />

Digoxigenin is linked <strong>to</strong> the C-5 position<br />

of uridine nucleotides via a spacer arm<br />

containing eleven carbon a<strong>to</strong>ms (Figure 2).<br />

The DIG-labeled nucleotides may be<br />

incorporated, at a defined density, in<strong>to</strong><br />

nucleic acid probes by DNA polymerases<br />

(such as E. coli DNA Polymerase I, T4<br />

DNA Polymerase, T7 DNA Polymerase,<br />

Reverse Transcriptase, and Taq DNA<br />

Polymerase) as well as RNA Polymerases<br />

(SP6, T3, or T7 RNA Polymerase), and<br />

Terminal Transferase. DIG label may be<br />

added by random primed labeling, nick<br />

translation, PCR, 3'-end labeling/tailing,<br />

or in vitro transcription.<br />

O<br />

O<br />

NH<br />

R2<br />

O<br />

N<br />

N H<br />

O<br />

Nucleic acids can also be labeled chemically<br />

with DIG-NHS ester. However, we recommend<br />

enzymatic labeling methods for preparing<br />

hybridization probes because they<br />

are more convenient and more efficient.<br />

Hybridized DIG-labeled probes may be<br />

detected with high affinity anti-digoxigenin<br />

(anti-DIG) antibodies that are conjugated<br />

<strong>to</strong> alkaline phosphatase, peroxidase, fluorescein,<br />

rhodamine, AMCA, or colloidal gold.<br />

Alternatively, unconjugated anti-digoxigenin<br />

antibodies and conjugated secondary<br />

antibodies may be used.<br />

Detection sensitivity depends upon the<br />

method used <strong>to</strong> visualize the ant-DIG antibody<br />

conjugate. For instance, when an<br />

anti-DIG antibody conjugated <strong>to</strong> alkaline<br />

phosphatase is visualized with colorimetric<br />

(NBT and BCIP) or fluorescent (HNPP)<br />

alkaline phosphatase substrates, the sensitivity<br />

of the detection reaction is routinely<br />

0.1 pg (on a Southern blot).<br />

H<br />

N<br />

O<br />

O<br />

CONTENTS<br />

CH 3<br />

H<br />

OH<br />

H<br />

Figure 1:<br />

Digitalis<br />

purpurea.<br />

CH 3<br />

OH<br />

Figure 2: Digoxigenin-UTP/dUTP/ddUTP, alkali-stable.<br />

Digoxigenin-UTP (R1 = OH, R2 = OH)<br />

Digoxigenin-dUTP (R1 = OH, R2 = H)<br />

Digoxigenin-ddUTP (R1 = H, R2 = H)<br />

O<br />

INDEX<br />

O


The labeling mixtures in the DIG/Genius<br />

labeling kits contain a ratio of DIG-labeled<br />

uridine <strong>to</strong> dTTP which produces an<br />

optimally sensitive hybridization probe.<br />

For most applications, that ratio produces a<br />

DNA with a DIG-labeled nucleotide incorporated<br />

every 20th <strong>to</strong> 25th nucleotide. This<br />

labeling density permits optimal steric<br />

interaction between the hapten and anti-<br />

DIG antibody conjugate; the antibody<br />

conjugate is large enough <strong>to</strong> cover about<br />

20 nucleotides.<br />

To see the full line of DIG/Genius kits<br />

and reagents, turn <strong>to</strong> Chapter 7.<br />

HN<br />

H<br />

O<br />

S<br />

NH<br />

H<br />

CONTENTS<br />

<strong><strong>In</strong>troduction</strong> <strong>to</strong> Hapten Labeling and Detection of Nucleic Acids<br />

O<br />

NH<br />

INDEX<br />

Biotin labeling of nucleic acids<br />

Enzymatic labeling of nucleic acids with<br />

biotin-dUTP (Figure 3) was developed by<br />

David Ward and coworkers at Yale<br />

University (Langer et al., 1981). More<br />

recently, labora<strong>to</strong>ries have synthesized other<br />

biotinylated nucleotides such as biotinylated<br />

adenosine and cy<strong>to</strong>sine triphosphates<br />

(Gebeyehu et al., 1987). Also, a pho<strong>to</strong>chemical<br />

procedure (Forster et al., 1985) and a<br />

number of chemical biotinylation procedures<br />

(Sverdlov et al., 1974) has been<br />

described (Gillam and Tener, 1986; Reisfeld<br />

et al., 1987; Viscidi et al., 1986)<br />

O<br />

NH<br />

NH<br />

O<br />

O O O<br />

–<br />

O P O P O P O<br />

O –<br />

O –<br />

x 4 Li +<br />

OH<br />

<strong>In</strong> principle biotin can be used in the same<br />

way as digoxigenin; it can be detected by<br />

anti-biotin antibodies. However, streptavidin<br />

or avidin is more frequently used<br />

because these molecules have a high binding<br />

capacity for biotin. Avidin, from egg white,<br />

is a 68 kd glycoprotein with a binding constant<br />

of 10 –15 M –1 at 25°C.<br />

To see the selection of biotin reagents offered<br />

by Boehringer Mannheim, turn <strong>to</strong> Chapter 7.<br />

O –<br />

O<br />

O<br />

NH<br />

NO<br />

Figure 3: Biotin-dUTP.<br />

11<br />

1


Figure 4: Fluorescein-dUTP.<br />

12<br />

<strong><strong>In</strong>troduction</strong> <strong>to</strong> Hapten Labeling and Detection of Nucleic Acids<br />

1 Fluorescent labeling of nucleic acids Multiple labeling and detection<br />

–<br />

Fluorescein-labeled nucleotides (Figure 4)<br />

were released by Boehringer Mannheim<br />

in 1991 as a new nonradioactive labeling<br />

alternative. Fluorescein nucleotide analogues<br />

can be used for direct as well<br />

as indirect in situ hybridization experiments<br />

(Dirks et al., 1991; Wiegant et al., 1991).<br />

Fluorescein-dUTP/UTP/ddUTP can be incorporated<br />

enzymatically in<strong>to</strong> nucleic acids<br />

according <strong>to</strong> standard techniques (as listed<br />

in Chapter 4). Since fluorescein is a direct<br />

label, no immunocy<strong>to</strong>chemical visualization<br />

procedure is necessary and the<br />

background is low. <strong>General</strong> drawbacks of<br />

direct methods are, however, that they can<br />

be less sensitive than the indirect methods<br />

described above.<br />

O O O<br />

O P O P O P<br />

O –<br />

O –<br />

x 4 Li +<br />

O –<br />

O<br />

OH<br />

O<br />

O<br />

HN N<br />

Alternatively, fluorescein-labeled nucleotides<br />

can be detected with an anti-fluorescein<br />

antibody-enzyme conjugate or with an<br />

unconjugated antibody and a fluoresceinlabeled<br />

secondary antibody. The sensitivity<br />

of such experiments corresponds <strong>to</strong> that of<br />

other indirect methods.<br />

Other fluorochrome-labeled nucleotides,<br />

Tetramethylrhodamine-6-dUTP (red fluorescent<br />

dye) and Amino-methylcoumarin-<br />

6-dUTP (blue fluorescent dye) are also<br />

available from Boehringer Mannheim.<br />

O<br />

N<br />

By using combinations of digoxigenin-,<br />

biotin- and fluorochrome-labeled probes,<br />

labora<strong>to</strong>ries can perform multiple simultaneous<br />

hybridizations <strong>to</strong> localize different<br />

chromosomal regions or different RNA<br />

sequences in one preparation. Such multiprobe<br />

experiments are made possible by the<br />

availability of different fluorescent dyes<br />

coupled <strong>to</strong> antibodies; these include fluorescein<br />

or FITC (fluorescein isothiocyanate;<br />

yellow), rhodamine or TRITC (tetramethylrhodamine<br />

isothiocyanate; red) and AMCA<br />

(amino-methylcoumarinaceticacid; blue).<br />

Chapter 5 contains several detailed examples<br />

of such multiple labeling and detection<br />

experiments. These use two, three, and even<br />

twelvedifferentprobesinasingleexperiment.<br />

H<br />

O<br />

Antibody conjugates<br />

CONTENTS<br />

H<br />

N O<br />

OOHO<br />

C<br />

INDEX<br />

O<br />

OH<br />

Various reporter molecules can be coupled<br />

<strong>to</strong> detecting antibodies <strong>to</strong> visualize the<br />

specific probe-target hybridization. Commonly<br />

used conjugates include:<br />

Enzyme-coupled antibodies require substrates<br />

which usually generate a precipitating,<br />

colored product. Alternatively,<br />

Boehringer Mannheim recently introduced<br />

an alkaline phosphatase substrate<br />

(HNPP) that produces a precipitating,<br />

fluorescent product. These conjugates<br />

are most commonly used for in situ<br />

hybridization experiments.<br />

Fluorochrome-labeled antibodies require<br />

the availability of a fluorescent microscope<br />

and specific filters which allow<br />

visualization of the wavelength emitted<br />

by the fluorescent dye.<br />

Antibodies coupled <strong>to</strong> colloidal gold are<br />

mainly used for electron microscopy on<br />

cryostatic sections.


Choosing the Right Labeling Method for your<br />

<strong>Hybridization</strong> Experiment<br />

Note: For details on the labeling methods described here, see Chapter IV.<br />

Homogeneous labeling methods<br />

for DNA<br />

Probes prepared by random primed labeling<br />

are often preferred for blot applications<br />

because of the high incorporation rate of<br />

nucleotides and the high yield of labeled<br />

probe. <strong>In</strong> the random primed labeling<br />

reaction, the template DNA is linearized,<br />

denatured, and annealed <strong>to</strong> a primer. Starting<br />

from the 3'-OH end of the annealed primer,<br />

Klenow enzyme synthesizes new DNA<br />

along the single-stranded substrate. The size<br />

of the probe is about 200 <strong>to</strong> 1000 bp. With<br />

the help of a premixed labeling reagent (such<br />

as DIG-, Biotin-, or Fluorescein High<br />

Prime), the random primed reaction can<br />

produce from 30–70 ng (for 10 ng template<br />

and 1 h incubation) <strong>to</strong> 2.10–2.65 µg (for 3 µg<br />

template and 20 h incubation) of nonradioactively<br />

labeled DNA.<br />

<strong>In</strong> the nick translation reaction the DNA<br />

template can be supercoiled or linear. After<br />

the DNA is nicked with DNase I, the<br />

5'→3' exonuclease activity of DNA Polymerase<br />

I extends the nicks <strong>to</strong> gaps; then the<br />

polymerase replaces the excised nucleotides<br />

with labeled ones. The reaction<br />

produces optimal labeling after 60 <strong>to</strong> 90<br />

min. The size of the probe after the<br />

reaction should be about 200 <strong>to</strong> 500 bp.<br />

Probes can also be prepared by the Polymerase<br />

Chain Reaction (PCR). <strong>In</strong> PCR,<br />

two oligonucleotide primers hybridize <strong>to</strong><br />

opposite DNA strands and flank a specific<br />

target sequence. Then, a thermostable polymerase<br />

(such as Taq DNA Polymerase)<br />

elongates the two PCR primers. A repetitive<br />

series of cycles (template denaturation,<br />

primer annealing, and extension of primers)<br />

results in an exponential accumulation of<br />

copies of the target sequence (about a<br />

million copies in twenty cycles). <strong>In</strong>corporation<br />

of a labeled nucleotide during PCR can<br />

produce large amounts of labeled probe<br />

from minimal amounts (10–100 pg) of<br />

linearized plasmid or even from nanogram<br />

amounts of genomic DNA. The length of<br />

the amplified probe is precisely defined by<br />

the 5' ends of the PCR primers, so PCR<br />

allows easy production of optimally sized<br />

hybridization probes.<br />

Note: A variant of PCR, in situ PCR,<br />

actually allows PCR amplification (and<br />

labeling) of target sequences inside intact<br />

cells or tissue slices. For details of the<br />

potential and problems of in situ PCR, see<br />

Komminoth and Long (1995) and “PCR<br />

Applications Manual” published by<br />

Boehringer Mannheim.<br />

All three DNA labeling methods allow<br />

great flexibility with regard <strong>to</strong> length of the<br />

labeled fragments. <strong>In</strong> the nick translation<br />

reaction, changing the DNase concentration<br />

alters the fragment length. <strong>In</strong> the<br />

random primed labeling reaction, changing<br />

the primer concentration affects fragment<br />

length. <strong>In</strong> the PCR, changing the sequence<br />

of the PCR primers controls fragment<br />

length.<br />

<strong>In</strong> both nick translation and random primed<br />

labeling, a heterogeneous population of<br />

probe strands, many of which have overlapping<br />

complementary regions, are<br />

produced. This may lead <strong>to</strong> a signal amplification<br />

in the hybridization experiment.<br />

Homogeneous labeling methods<br />

for RNA<br />

<strong>In</strong> contrast <strong>to</strong> DNA probes, RNA probes<br />

are generated by in vitro transcription from<br />

a linearized template. <strong>In</strong> this case a promoter<br />

for RNA polymerases must be available on<br />

the vec<strong>to</strong>r DNA containing the template.<br />

SP6, T3, or T7 RNA Polymerase is<br />

commonly used <strong>to</strong> synthesize RNA<br />

complementary <strong>to</strong> the DNA substrate. The<br />

synthesis is complete after 1 <strong>to</strong> 2 h. The<br />

synthesized transcripts are an exact copy of<br />

the sequence from the promoter site <strong>to</strong> the<br />

restriction site used for linearization. Thus,<br />

the size of the probe can be adjusted by<br />

choice of the linearizing restriction enzyme<br />

and probes all have the same length. RNA<br />

probes are inherently single-stranded. The<br />

amount of nonradioactively labeled RNA<br />

probe is about 10 µg for about 1 µg of input<br />

DNA.<br />

CONTENTS INDEX<br />

13<br />

1


14<br />

Choosing the Right Labeling Method for your <strong>Hybridization</strong> Experiment<br />

1 Stability of probe-target interaction Using unlabeled, rather than<br />

<strong>In</strong> hybridization experiments the strength<br />

of the bond between probe and target plays<br />

an important role. The strength decreases in<br />

the order RNA-RNA, DNA-RNA, DNA-<br />

DNA (Wetmur et al., 1981). Stability of the<br />

hybrids is also influenced by the hybridization<br />

conditions, e.g., the concentration of<br />

labeled probes<br />

formamide, salt concentration, or the<br />

hybridization temperature (as detailed in<br />

Chapter 3).<br />

Nonradioactive labeling of<br />

oligonucleotides<br />

Synthetic oligonucleotides have several<br />

advantages. They are readily available<br />

through au<strong>to</strong>mated synthesis, small, and<br />

single-stranded. Their size gives them good<br />

penetration properties, which is considered<br />

one of the main fac<strong>to</strong>rs for successful in situ<br />

hybridization.<br />

The small size of oligonucleotides can also<br />

be a disadvantage because they usually<br />

cover less target than conventional cDNA<br />

probes. Recent studies, however, suggest<br />

that their good penetration properties<br />

largely compensate for the smaller target<br />

they cover. The fact that they are singlestranded<br />

also excludes the possibility of<br />

renaturation. (See Chapter 3).<br />

Oligonucleotides may be labeled either<br />

directly with a fluorochrome or enzyme, or<br />

with a hapten such as biotin and digoxigenin,<br />

which is visualized by affinity<br />

cy<strong>to</strong>chemistry after hybridization. Such<br />

labeling can be carried out either chemically<br />

or enzymatically.<br />

The chemical approach uses synthetic oligonucleotides<br />

which have reactive amine or<br />

thiol groups added in the final step of<br />

au<strong>to</strong>mated synthesis. After purification, the<br />

reactive oligonucleotide is modified with a<br />

hapten, e.g. DIG-NHS-ester, or with<br />

reporter molecules.<br />

<strong>In</strong> this manual we describe only the<br />

enzymatic approach, which uses terminal<br />

deoxynucleotidyl transferase <strong>to</strong> label<br />

synthetic oligonucleotides enzymatically at<br />

the 3' end using digoxigenin-labeled deoxyand<br />

dideoxyuridine triphosphate. Such<br />

methods are advantageous for small scale<br />

probe production because they do not<br />

require the synthesis and derivatization of<br />

oligonucleotides.<br />

A special labeling method, PRINS (primed<br />

in situ labeling), begins with the hybridization<br />

of an unlabeled oligonucleotide <strong>to</strong><br />

the target sequence in chromosome preparations.<br />

Then, using the hybridized oligonucleotide<br />

as a primer site, a thermostable<br />

polymerase synthesizes a nonradioactively<br />

labeled copy of the target sequence itself.<br />

The labeled site may then be detected with<br />

a suitable fluorescence-conjugated antibody.<br />

Because the hybridization reaction is<br />

performed before the labeling reaction,<br />

PRINS offers the advantages of low background<br />

and speedy reactions. For details of<br />

the PRINS technique, see Chapter 5.<br />

Double-stranded versus<br />

single-stranded probes<br />

As detailed in Chapter 3, a number of<br />

competing reactions occur during in situ<br />

hybridization with double-stranded probes.<br />

Thus, single-stranded probes provide the<br />

following advantages:<br />

The probe is not exhausted by selfannealing<br />

in solution.<br />

Large concatenates are not formed in<br />

solution. Such concatenates would penetrate<br />

the section or chromosomes<br />

poorly.<br />

With DNA-DNA in situ hybridization, the<br />

in situ renaturation of target DNA<br />

sequences cannot be prevented because in<br />

situ hybrids and renatured sequences have<br />

similar thermal stability. However, in situ<br />

renaturation is probably limited <strong>to</strong><br />

repetitive sequences since they have the<br />

greatest chance of being in partial register.<br />

<strong>In</strong> situ renaturation of target DNA can,<br />

however, bepreventedwiththeuseofsinglestranded<br />

RNA probes. Since DNA-RNA<br />

hybrids are more thermally stable than<br />

DNA-DNA hybrids, hybridization conditions<br />

can be designed in which DNA-DNA<br />

hybrid formation is not favored but DNA-<br />

RNA hybrid formation is.<br />

CONTENTS<br />

INDEX


References<br />

CONTENTS<br />

Choosing the Right Labeling Method for your <strong>Hybridization</strong> Experiment<br />

Agrawal, S.; Chris<strong>to</strong>doulow, C.; Gait, M. J. (1986)<br />

Efficient methods for attaching nonradioactive<br />

labels <strong>to</strong> the 5'-ends of synthetic oligodeoxyribonucleotides.<br />

Nucleic Acids Res. 14, 6227–6245.<br />

Baumann, J. G. J.; Van der Ploeg, M.; Van Duijn, P.<br />

(1984) Fluorescent hybridocy<strong>to</strong>chemical procedures:<br />

DNA-RNA hybridization in situ. <strong>In</strong>: Chayen,<br />

J.; Bitensky, L. (Eds.) <strong>In</strong>vestigative Microtechniques<br />

in Medicine and Microbiology. New York: Marcel<br />

Dekker, 41–48.<br />

Baumann, J. G. J.; Wiegant, J.; Borst, P.; Van Duijn, P.<br />

(1980) A new method for fluorescence microscopical<br />

localization of specific DNA sequences by in situ<br />

hybridization of fluorochrome-labeled RNA. Exp. Cell<br />

Res. 138, 485–490.<br />

Baumann, J. G. J.; Wiegant, J.; Van Duijn, P. (1981)<br />

Cy<strong>to</strong>chemical hybridization with fluorochromelabeled<br />

RNA. III. <strong>In</strong>creased sensitivity by the use of<br />

anti-fluorescein antibodies. His<strong>to</strong>chemistry 73,<br />

181–193.<br />

Chollet, A.; Kawashima, E. M. (1985) Biotin-labeled<br />

synthetic oligodeoxyribonucleotides: synthesis and<br />

uses as hybridization probes. Nucleic Acids Res. 13,<br />

1529–1541.<br />

Coghlan, J. P.; Aldred, P.; Haralambridis, J.;<br />

Niall, H. D.; Penschow, J. D.; Tregear, G. W. (1985)<br />

<strong>Hybridization</strong> his<strong>to</strong>chemistry. Anal. Biochem. 149,<br />

1–28.<br />

Dirks, R. W.; Van Gijlswijk, R. P. M.; Vooijs, M. A.;<br />

Smit, A. B.; Bogerd, J.; Van Minnen, J.; Raap, A. K.;<br />

Van der Ploeg, M. (1991) 3'-end fluorochromized and<br />

haptenized oligonucleotides as in situ hybridization<br />

probes for multiple simultaneous RNA detection.<br />

Exp. Cell Res. 194, 310–315.<br />

Forster, A. C.; Mc<strong>In</strong>nes, J. L.; Skingle, D. C.;<br />

Symons, R. H. (1985) Nonradioactive hybridization<br />

probes prepared by the chemical labeling of DNA<br />

and RNA with a novel reagent, pho<strong>to</strong>biotin. Nucleic<br />

Acids Res. 13, 745–761.<br />

Gebeyehu, G.; Rao, P. Y.; SooChan, P.; Simms, D.;<br />

Klevan, L. (1987) Novel biotinylated nucleotide<br />

analogs for labeling and colorimetric detection of<br />

DNA. Nucleic Acids Res. 15, 4513–4534.<br />

Gillam, I. C.; Tener, G. M. (1986) N4-(6-aminohexyl) cytidine and deoxycytidine nucleotides can be used<br />

<strong>to</strong> label DNA. Anal. Biochem. 157, 199–207.<br />

Haralambidis, J.; Chai, M.; Tregear, G. W. (1987)<br />

Preparation of base-modified nucleosides suitable<br />

for nonradioactive label attachment and their<br />

incorporation on<strong>to</strong> synthetic oligodeoxyribonucleotides.<br />

Nucleic Acids Res. 15, 4857–4876.<br />

Harper, M. E.; Marselle, L. M.; Gallo, R. C.;<br />

Wong-Stahl, F. (1986) Detection of lymphocytes<br />

expressing human T-lymphotropic virus type III in<br />

lymph nodes and peripheral blood from infected<br />

individuals by in situ hybridization. Proc. Natl. Acad.<br />

Sci. USA 83, 772–776.<br />

INDEX<br />

Harper, M. E.; Ullrich, A.; Saunders, G. F. (1981)<br />

Localization of the human insulin gene <strong>to</strong> the<br />

distal end of the short arm of chromosome 11.<br />

Chromosoma 83, 431–439.<br />

Höltke, H.-J.; Kessler, C. (1990) Nonradioactive<br />

labeling of RNA transcripts in vitro with the hapten<br />

digoxigenin (DIG); hybridization and ELISA-based<br />

detection. Nucleic Acids Res. 18, 5843–5851.<br />

Höltke, H.-J.; Seibl, R.; Burg, J.; Mühlegger, K.;<br />

Kessler, C. (1990) Nonradioactive labeling and<br />

detection of nucleic acids: II. Optimization of the<br />

digoxigenin system. Biol. Chem. Hoppe-Seyler 371,<br />

929–938.<br />

Höltke, H.-J.; Sagner, G.; Kessler, C.; Schmitz, G.<br />

(1992) Sensitive chemiluminescent detection of<br />

digoxigenin-labeled nucleic acids: a fast and simple<br />

pro<strong>to</strong>col and its applications. BioTechniques 12 (1),<br />

104–114.<br />

Hopman, A. H. N.; Wiegant, J.; Tesser, G. I.; Van<br />

Duijn, P. (1986) A nonradioactive in situ hybridization<br />

method based on mercurated nucleic acid probes<br />

and sulfhydryl-hapten ligands. Nucleic Acids Res.<br />

14, 6471–6488.<br />

Hopman, A. H. N.; Wiegant, J.; Van Duijn, P. (1987)<br />

Mercurated nucleic acid probes, a new principle for<br />

nonradioactive in situ hybridization. Exp. Cell Res.<br />

169, 357–368.<br />

Jablonski, E.; Moomaw, E. W.; Tullis, R. H.; Ruth,<br />

J. L. (1986) Preparation of oligonucleotide-alkaline<br />

phosphatase conjugates and their use as hybridization<br />

probes. Nucleic Acids Res. 14, 6115–6129.<br />

Jhanwag, S. C.; Neel, B. G.; Hayward, W. S.;<br />

Chaganti, R. S. K. (1984) Localization of the cellular<br />

oncogenes ABL, SIS and FES on human germ-line<br />

chromosomes. Cy<strong>to</strong>genet. Cell Genet. 38, 73–75.<br />

John, H.; Birnstiel, M.; Jones, K. (1969) RNA-DNA<br />

hybrids at the cy<strong>to</strong>logical level. Nature 223,<br />

582–587.<br />

Kessler, C. (1990) The digoxigenin system: principle<br />

and applications of the novel nonradioactive DNA<br />

labeling and detection system. BioTechnology <strong>In</strong>t.<br />

1990, 183–194.<br />

Kessler, C. (1991) The digoxigenin system: anti-digoxigenin<br />

technology – a survey on the concept and<br />

realization of a novel bioanalytic indica<strong>to</strong>r system.<br />

Mol. Cell. Probes 5, 161–205.<br />

Kessler, C.; Höltke, H.-J.; Seibl, R.; Burg, J.;<br />

Mühlegger, K. (1990) Nonradioactive labeling and<br />

detection of nucleic acids: I. A novel DNA labeling<br />

and detection system based on digoxigenin: antidigoxigenin<br />

ELISA principle. Biol. Chem. Hoppe-<br />

Seyler 371, 917–927.<br />

Komminoth, P.; Long, A. A. (1995) <strong>In</strong> situ Polymerase<br />

Chain Reaction – methodology, applications and<br />

nonspecific pathways. <strong>In</strong>: PCR Applications Manual.<br />

Mannheim, Germany: Boehringer Mannheim,<br />

97–106.<br />

15<br />

1


1<br />

16<br />

Choosing the Right Labeling Method for your <strong>Hybridization</strong> Experiment<br />

Landegent, J. E.; Jansen in de Wal, N.; Baan, R. A.;<br />

Hoeijmakers, J. H. J.; Van der Ploeg, M. (1984)<br />

2-Acetylaminofluorene-modified probes for the<br />

indirect hybridocy<strong>to</strong>chemical detection of specific<br />

nucleic acid sequences. Exp. Cell Res. 153, 61–72.<br />

Langer, P. R.; Waldrop, A. A.; Ward, D. A. (1981)<br />

Enzymatic synthesis of biotin-labeled polynucleotides:<br />

novel nucleic acid affinity probes. Proc. Natl.<br />

Acad. Sci. USA 78, 6633–6637.<br />

Lansdorp, P. M.; Van der Kwast, T. H.; de Boer, M.;<br />

Zeijlemaker, W. P. (1984) Stepwise amplified<br />

immunoperoxidase (PAP) staining. I. Cellular<br />

morphology in relation <strong>to</strong> membrane markers.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 32, 172–178.<br />

Leary, J. L.; Brigati, D. J.; Ward, D. C. (1983) Rapid<br />

and sensitive colorimetric method for visualizing<br />

biotin-labeled DNA probes hybridized <strong>to</strong> DNA or RNA<br />

immobilized on nitrocellulose: Bio-blots. Proc. Natl.<br />

Acad. Sci. USA 80, 4045–4049.<br />

Martin, R.; Hoover, C.; Grimme, S.; Grogan, C.;<br />

Höltke, J.; Kessler, C. (1990) A highly sensitive,<br />

nonradioactive DNA labeling and detection system.<br />

BioTechniques 9, 762–768.<br />

Mühlegger, K.; Huber, E.; von der Eltz, H.; Rüger, R.;<br />

Kessler, C. (1990) Nonradioactive labeling and<br />

detection of nucleic acids: IV. Synthesis and<br />

properties of digoxigenin-modified 2'-deoxyuridine-5'-triphosphates<br />

and a pho<strong>to</strong>activatable<br />

analog of digoxigenin (pho<strong>to</strong>digoxigenin). Biol.<br />

Chem. Hoppe-Seyler 371, 953–965.<br />

Mühlegger, K.; Batz, H.-G.; Böhm, S.; von der Eltz,<br />

H.; Höltke, H.-J.; Kessler, C. (1990) Synthesis and<br />

use of new digoxigenin-labeled nucleotides in<br />

nonradioactive labeling and detection of nucleic<br />

acids. Nucleosides & Nucleotides 8, 1161–1163.<br />

Pardue, M. L.; Gall, J. G. (1969) Molecular hybridization<br />

of radioactive DNA <strong>to</strong> the DNA of cy<strong>to</strong>logical<br />

preparations. Proc. Natl. Acad. Sci. USA 64,<br />

600–604.<br />

Pinkel, D.; Straume, T.; Gray, J. W. (1986)<br />

Cy<strong>to</strong>genetic analysis using quantitative, high<br />

sensitivity fluorescence hybridization. Proc. Natl.<br />

Acad. Sci. USA 83, 2934–2938.<br />

Raap, A. K.; Hopman, A. H. N., Van der Ploeg, M.<br />

(1989) Use of hapten modified nucleic acid probes<br />

in DNA in situ hybridization. Techniques<br />

Immunocy<strong>to</strong>chem. 4, 167–197.<br />

Rabin, M.; Watson, M.; Barker, P. E.; Ryan, J.; Breg,<br />

W. R.; Ruddle, F. H. (1984) N-ras transforming gene<br />

maps <strong>to</strong> region p11–p13 on chromosome 1 by in<br />

situ hybridization. Cy<strong>to</strong>genet. Cell Genet. 38,<br />

70–72.<br />

Reisfeld, A.; Rothenberg, J. M.; Bayer, E. A.;<br />

Wilchek, M. (1987) Nonradioactive hybridization<br />

probes prepared by the reaction of biotin hydrazide<br />

with DNA. Biochem. Biophys. Res. Commun. 142,<br />

519–526.<br />

Renz, M.; Kurz, C. (1984) A colorimetric method for<br />

DNA hybridization. Nucleic Acid Res. 12,<br />

3435–3444.<br />

Rüger, R.; Höltke, H.-J.; Reischl, U.; Sagner, G.;<br />

Kessler, C. (1990) Use of the Polymerase Chain<br />

Reaction for labeling specific DNA sequences with<br />

digoxigenin. J. Clin. Chem. Clin. Biochem. 28, 566.<br />

Rudkin, G. T.; S<strong>to</strong>llar, B. D. (1977) High resolution<br />

detection of DNA:RNA hybrids in situ by indirect<br />

immunofluorescence. Nature 265, 472–473.<br />

Schmitz, G. G.; Walter, T.; Seibl, R.; Kessler, C.<br />

(1991) Nonradioactive labeling of oligonucleotides<br />

in vitro with the hapten digoxigenin by tailing with<br />

terminal transferase. Anal. Biochem. 192, 222–231.<br />

Schroeder, W. T.; Lopez, L. C.; Harper, M. E.;<br />

Saunders, G. F. (1984) Localization of the human<br />

glucagon gene (GCG) <strong>to</strong> chromosome segment<br />

2936–37. Cy<strong>to</strong>genet. Cell Genet. 38, 76–79.<br />

Seibl, R.; Höltke, H.-J.; Rüger, R.; Meindl, A.;<br />

Zachau, H. G.; Raßhofer, R.; Roggendorf, M.;<br />

Wolf, H.; Arnold, N.; Wienberg, J.; Kessler, C. (1990)<br />

Nonradioactive labeling and detection of nucleic<br />

acids: III. Applications of the digoxigenin system.<br />

Biol. Chem. Hoppe-Seyler 371, 939–951.<br />

Shroyer, K. R.; Nakane, P. K. (1983) Use of DNPlabeled<br />

cDNA in in situ hybridization. J. Cell Biol.<br />

97, 377a.<br />

Sverdlov, E. D.; Monastyrskaya, G. S.; Guskova, L. I.;<br />

Levitan, T. L.; Scheichenko, V. I.; Budowski, E. I.<br />

(1974) Modification of cytidin residues with a<br />

bisulphite-O-methylhydroxylamine mixture.<br />

Biochim. Biophys. Acta 340, 153–165.<br />

Tchen, P.; Fuch, R. P. P.; Sage, E.; Leng, M. (1984)<br />

Chemically modified nucleic acids as immunodetectable<br />

probes in hybridization experiments.<br />

Proc. Natl. Acad. Sci. USA 81, 3466–3470.<br />

Van Prooijen-Knegt, A. C.; Van Hoek, J. F. M.;<br />

Baumann, J. G. J.; Van Duijn, P.; Wool, I. G.;<br />

Van der Ploeg, M. (1982) <strong>In</strong> situ hybridization of DNA<br />

sequences in human metaphase chromosomes<br />

visualized by an indirect fluorescent immunocy<strong>to</strong>chemical<br />

procedure. Exp. Cell Res. 141, 397–407.<br />

Viscidi, R. P.; Connelly, C. J.; Yolken, R. H. (1986)<br />

Novel chemical method for the preparation of<br />

nucleic acids for non-iso<strong>to</strong>pic hybridization.<br />

J. Clin. Microbiol. 23, 311–317.<br />

Wetmur, J. G.; Ruyechan, W. T.; Douthart, R. J.<br />

(1981) Denaturation and renaturation of Penicillium<br />

chrysogenum mycophage double-stranded<br />

ribonucleic acid in tetraalkylammonium salt<br />

solutions. Biochemistry 20, 2999–3002.<br />

Wiegant, J.; Ried, T.; Nederlof, P. M.; Van der Ploeg,<br />

M.; Tanke, H. J.; Raap, A. K. (1991) <strong>In</strong> situ<br />

hybridization with fluoresceinated DNA. Nucleic<br />

Acids Res. 19 (12), 3237–3241.<br />

CONTENTS<br />

INDEX


CONTENTS<br />

INDEX<br />

Guidelines for<br />

<strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong>


2<br />

18<br />

Guidelines for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong><br />

An in situ hybridization pro<strong>to</strong>col follows<br />

this general outline:<br />

Preparation of slides and fixation of<br />

material<br />

Pretreatments of material on slides, e.g.,<br />

permeabilization of cells and tissues<br />

Denaturation of in situ target DNA (not<br />

necessary for mRNA target)<br />

Preparation of probe<br />

<strong>In</strong> situ hybridization<br />

Posthybridization washes<br />

Immunocy<strong>to</strong>chemistry<br />

Microscopy<br />

All these steps are discussed below in<br />

detail. The information provided will make<br />

it easier <strong>to</strong> decide whether a certain step<br />

should or should not be included in a given<br />

in situ hybridization pro<strong>to</strong>col.<br />

CONTENTS<br />

INDEX


Details of the Technique<br />

Slide preparation<br />

For chromosome spreads, alcohol/ether<br />

(1:1) cleaned slides are sufficient. However,<br />

since tissue sections may be lost during the<br />

procedure, use either polylysine or<br />

glutaraldehyde-activated gelatin chrome<br />

aluminum slides for these sections.<br />

Fixation<br />

To preserve morphology, the biological<br />

material must be fixed. From a chemical<br />

point of view, there is little limitation in the<br />

type of fixation used because one of the<br />

following will be true:<br />

The functional groups involved in base<br />

pairing are protected in the double helix<br />

structure of duplex DNA.<br />

RNA is fairly unreactive <strong>to</strong> crosslinking<br />

agents.<br />

The reaction is reversible (e.g., with<br />

formaldehyde).<br />

For metaphase chromosome spreads, methanol/acetic<br />

acid fixation is usually sufficient.<br />

For paraffin-embedded tissue sections, use<br />

formalin fixation. Cryostat sections fixed for<br />

30 min with 4% formaldehyde or with<br />

Bouin’s fixative have been used successfully,<br />

as well as paraformaldehyde vapor fixation.<br />

Tissues can also be freeze-dried.<br />

It should be noted that the DNA and RNA<br />

target sequences are surrounded by<br />

proteins and that extensive crosslinking of<br />

these proteins masks the target nucleic<br />

acid. Therefore, permeabilization procedures<br />

are often required.<br />

Unfortunately, a fixation pro<strong>to</strong>col which<br />

can be used for all substrates has not yet<br />

been described. The fixation and pretreatment<br />

pro<strong>to</strong>cols must be optimized for<br />

different applications.<br />

CONTENTS<br />

INDEX<br />

Pretreatments of material on the slide<br />

Endogenous enzyme inactivation<br />

When an enzyme is used as the label, the<br />

endogenous enzyme activity may have <strong>to</strong> be<br />

inactivated. For peroxidase, this is done by<br />

treating the sections with 1% H2O2 in<br />

methanol for 30 min. For alkaline phosphatase,<br />

levamisole may be added <strong>to</strong> the<br />

substrate solution, but this may be unnecessary<br />

since residual alkaline phosphatase<br />

activity is usually lost during hybridization.<br />

RNase treatment<br />

RNase treatment serves <strong>to</strong> remove endogenous<br />

RNA and may improve the signal-<strong>to</strong>noise<br />

ratio in DNA-DNA hybridizations.<br />

This treatment can also be used as a control in<br />

hybridizations with (m)RNA as target. It is<br />

done by incubating the preparations in<br />

DNase-free RNase (100 µg/ml) in 2 x SSC at<br />

37°C for 60 min. (SSC = 150 mM NaCl,<br />

15 mM sodium citrate, pH 7.4).<br />

HCl treatment<br />

<strong>In</strong> several pro<strong>to</strong>cols a 20–30 min treatment<br />

with 200 mM HCl is included. The precise<br />

action of the acid is not known, but<br />

extraction of proteins and partial hydrolysis<br />

of the target sequences may contribute <strong>to</strong> an<br />

improvement in the signal-<strong>to</strong>-noise ratio.<br />

Detergent treatment<br />

Preparations may be pretreated with Tri<strong>to</strong>n ®<br />

X-100, sodium dodecyl sulfate, or other<br />

detergents if lipid membrane components<br />

have not been extracted by other procedures<br />

such as fixation, dehydration, embedding,<br />

and endogenous enzyme inactivation<br />

procedures.<br />

19<br />

2


2<br />

20<br />

Details of the Technique<br />

Protease treatment<br />

Protease treatment serves <strong>to</strong> increase target<br />

accessibility by digesting the protein that<br />

surrounds the target nucleic acid. To digest<br />

the sample, incubate the preparations with<br />

up <strong>to</strong> 500 µg/ml Proteinase K (the optimal<br />

amount must be determined) in 20 mM<br />

Tris-HCl, 2 mM CaCl2, pH 7.4, for 7.5–30<br />

min at 37°C. For example, with chromosomes<br />

or isolated preparations of nuclei,<br />

a reasonable starting point for protease<br />

digestion is up <strong>to</strong> 1 µg/ml Proteinase K<br />

for 7.5 min. For formalin-fixed material,<br />

5–15 µg/ml for 15–30 min usually gives<br />

good results.<br />

The use of pepsin has been shown <strong>to</strong> give<br />

excellent results for formalin-fixed, paraffinembedded<br />

tissue sections. Routine pepsin<br />

digestion involves incubating the preparations<br />

for 30 min at 37°C in 200 mM HCl<br />

containing 500 µg/ml pepsin. For the<br />

pretreatment of chromosome spreads with<br />

pepsin see page 70.<br />

Other hydrolases, such as Collagenase and<br />

diastase, may be tried if preparations of<br />

connective tissue and liver give high<br />

background reactions.<br />

Also, freeze/thaw cycles have been used <strong>to</strong><br />

improve the penetration of probes in<strong>to</strong><br />

tissues.<br />

Prehybridization<br />

A prehybridization incubation is often necessary<br />

<strong>to</strong> prevent background staining. The<br />

prehybridization mixture contains all components<br />

of a hybridization mixture except<br />

for probe and dextran sulfate.<br />

Denaturation of probe and target<br />

For in situ hybridization <strong>to</strong> chromosomal<br />

DNA, the DNA target must be denatured.<br />

<strong>In</strong> general such treatments may lead <strong>to</strong> loss<br />

of morphology, so in practice, a compromise<br />

must be found between hybridization<br />

signal and morphology. Alkaline denaturations<br />

have traditionally been used. Heat<br />

denaturations have also become popular,<br />

because of their experimental simplicity and<br />

greater effectiveness. Variations in time and<br />

temperature should be evaluated <strong>to</strong> find the<br />

best conditions for denaturation.<br />

For heat denaturation, the probe and target<br />

chromosomal DNA may be denatured<br />

simultaneously. To accomplish this, put the<br />

probe on the slide and cover with a<br />

coverslip. Bring the slide <strong>to</strong> 80°C for 2 min<br />

in an oven for the denaturation and then<br />

cool <strong>to</strong> 37°C. For tissue sections, if<br />

necessary, extend the time of denaturation<br />

at 80°C <strong>to</strong> 10 min.<br />

For competition in situ hybridization,<br />

where the labeled probe is allowed <strong>to</strong><br />

reanneal with unlabeled competi<strong>to</strong>r DNA,<br />

denature the chromosomal preparation<br />

and probe separately.<br />

<strong>Hybridization</strong><br />

See Chapter 3 for the composition of the<br />

hybridization solution, and the fac<strong>to</strong>rs<br />

affecting hybridization kinetics and hybrid<br />

stability.<br />

CONTENTS<br />

INDEX


Posthybridization washes<br />

Labeled probe can hybridize nonspecifically<br />

<strong>to</strong> sequences which are partially but<br />

not entirely homologous <strong>to</strong> the probe<br />

sequence. Such hybrids are less stable than<br />

perfectly matched hybrids. They can be<br />

dissociated by performing washes of various<br />

stringencies (as described in Chapter 3). The<br />

stringency of the washes can be manipulated<br />

by varying the formamide concentration,<br />

salt concentration, and temperature. Often a<br />

wash in 2 x SSC containing 50% formamide<br />

suffices. For some applications the stringency<br />

of the washes should be higher.<br />

However, we recommend hybridizing<br />

stringently rather than washing stringently.<br />

Immunocy<strong>to</strong>chemistry<br />

<strong>In</strong> this manual immunocy<strong>to</strong>chemical procedures<br />

using digoxigenin, biotin, and<br />

fluorochromes are described. These allow<br />

flexibility in the choice of the final reporter<br />

molecule and type of microscopy.<br />

Blocking reaction<br />

Use a blocking step prior <strong>to</strong> the immunological<br />

procedure <strong>to</strong> remove high background.<br />

For example, perform biotin detection<br />

steps in PBS containing Tween ® 20 and<br />

BSA (when using monoclonal antisera) or<br />

normal serum (when using polyclonal<br />

antisera).<br />

Perform routine digoxigenin detection in<br />

Tris-HCl buffer containing Blocking Reagent<br />

(instead of BSA or normal serum) <strong>to</strong><br />

remove background. Also the addition of<br />

0.4 M NaCl can help prevent background<br />

staining if the antigen/hapten bond can<br />

survive the high salt conditions.<br />

<strong>In</strong> a standard reaction, block the target<br />

tissue, cell, or chromosome preparation<br />

and then incubate it with the antibodyconjugate<br />

solution for 30 min at 37°C (or 2<br />

h at room temperature) in a moist chamber.<br />

Afterwards, wash the slide three times<br />

(5–10 min each) with buffer containing<br />

Tween ® 20.<br />

CONTENTS<br />

INDEX<br />

Fluorescence<br />

Details of the Technique<br />

Useful fluorochromes for fluorescence in<br />

situ hybridization (FISH) include the blue<br />

fluorochrome AMCA (amino-methylcoumarin-acetic<br />

acid), the green fluorophore<br />

fluorescein, and the red fluorochromes CY3,<br />

rhodamine, and Texas Red. Recently, the<br />

FISH application of an infrared dye has been<br />

reported (Ried et al., 1992), although it can<br />

only be visualized with infrared-sensitive<br />

cameras. For routine experiments, several<br />

immunofluorophores with good spectral<br />

separation properties can be used for FISH<br />

analysis (Table 1). Chapter 5 contains<br />

detailed procedures for using all these<br />

fluorochromes.<br />

Color Excitation max. (nm) Emission max. (nm)<br />

AMCA Blue 399 446<br />

Fluorescein Green 494 523<br />

CY3 Red 552 565<br />

Rhodamine Red 555 580<br />

Texas Red Red 590 615<br />

Rhodamine-, fluorescein-, and coumarinbased<br />

dyes cover the three primary colors<br />

of the visible part of the electro-magnetic<br />

spectrum. By using selective excitation and<br />

emission filters, and dichroic mirrors, these<br />

colors can be visualized without “crosstalk”,<br />

making triple color FISH feasible.<br />

To increase the identification of targets by<br />

color, a combina<strong>to</strong>rial labeling approach<br />

has been developed (Niederlof et al., 1990;<br />

Ried et al., 1992; Wiegant et al., 1993).<br />

Multiplicity is then given by 2n – 1, where<br />

n is the number of colors.<br />

After establishing that hybridized probes<br />

labeled with two haptens in different ratios<br />

stillfluoresceatfairlyconstantratios,labora<strong>to</strong>ries<br />

extended the combina<strong>to</strong>rial approach<br />

<strong>to</strong> ratio-labeling (Nederlof et al., 1992). <strong>In</strong><br />

ratio-labeling, the ratio of fluorescence<br />

intensities of the various color combinations<br />

is used for color identification of the<br />

probes. This approach allowed simultaneous<br />

identification of twelve different<br />

probes (Dauwerse et al., 1992). For detailed<br />

information, refer <strong>to</strong> the literature<br />

describing combina<strong>to</strong>rial and ratio labeling<br />

(Wiegant and Dauwerse, 1995).<br />

<br />

Table 1: Spectral properties of<br />

fluorophores used in FISH analysis.<br />

21<br />

2


2<br />

22<br />

Details of the Technique<br />

Fluorescent DNA counterstaining is usually<br />

performed with red fluorescent propidium<br />

iodide (PI) or with blue fluorescent DAPI.<br />

Currently, new counterstains are being<br />

introduced, e.g., green fluorescent YOYO-1<br />

(Molecular Probes, <strong>In</strong>c., USA).<br />

An antifading agent should be added <strong>to</strong> the<br />

embedding medium <strong>to</strong> retard fading. When<br />

fluorescent labels are used, the recommended<br />

antifading agent is Vectashield<br />

(Vec<strong>to</strong>r Labora<strong>to</strong>ries). The different DNA<br />

counterstains can be directly dissolved in<br />

the embedding medium (40 ng DAPI/ml;<br />

100 ng PI/ml; or 0.1 µM YOYO-1/ml) or<br />

the fluorescent specimen can first be<br />

counterstained and then embedded in<br />

Vectashield. If desired, the coverslip may<br />

be sealed with nail varnish.<br />

Enzymes<br />

Use any enzyme commonly used in<br />

immunocy<strong>to</strong>chemistry. We show examples<br />

for peroxidase and alkaline phosphatase.<br />

With peroxidase (POD), use the diaminobenzidine<br />

(DAB)/imidazole reaction (Graham<br />

and Karnovsky, 1966). With alkaline phosphatase<br />

(AP), use the 5-Bromo-4-chloro-3indolylphosphate/Nitro-blue<br />

tetrazolium<br />

(BCIP/NBT) reaction. The advantages of<br />

these colorimetric detection methods are good<br />

localization properties, high sensitivity (De Jong<br />

et al., 1985; Straus, 1982; Scopsi and Larson,<br />

1986) and stability of the precipitates. As<br />

the DAB reaction produces a color which<br />

contrasts with the blue alkaline phosphatase<br />

staining reaction (and vice versa), one can<br />

use both enzymes in double hybridizations.<br />

Furthermore, both detection methods have<br />

bright reflective properties. They can be<br />

amplified by gold/silver (Gallyas et al.,<br />

1982; Burns et al., 1985) and the color can be<br />

modified with heavy metal ions (Hsu and<br />

Soban, 1982; Cremers et al., 1987).<br />

When using brightfield microscopy with<br />

peroxidase, prepare the following peroxidase<br />

substrate solution: 0.5 mg/ml diaminobenzidine<br />

in 50 mM Tris-HCl, pH 7.4,<br />

containing 10 mM imidazole. Shortly before<br />

use, add 0.05% H2O2. <strong>In</strong>cubate with substrate<br />

from 2–30 min (depending on the<br />

signal-<strong>to</strong>-noise ratio). We advise inspecting<br />

sections microscopically during the peroxidase<br />

reaction. S<strong>to</strong>p the reaction by washing<br />

the sample with water. Counterstain with<br />

Giemsa if desired.<br />

<strong>In</strong> the case of reflection contrast microscopy<br />

with peroxidase, prepare the following<br />

peroxidase substrate solution: 0.1 mg/<br />

ml diaminobenzidine in 50 mM Tris-HCl,<br />

pH 7.4. Shortly before use, add 0.01%<br />

H2O2. The usual reaction time is 10 min.<br />

After s<strong>to</strong>pping the reaction with H2O and<br />

dehydrating with ethanol, evaluate slides<br />

by oil-immersion microscopy without<br />

embedding.<br />

When using Alkaline Phosphatase, prepare<br />

the following substrate: 0.16 mg/ml 5-Bromo-<br />

4-chloro-3-indolyl-phosphate (BCIP) and<br />

0.33 mg/ml Nitro-blue tetrazolium salt<br />

(NBT) in 200 mM Tris-HCl, 10 mM<br />

MgCl2, pH 9.2. Determine reaction times<br />

by evaluating the signal-<strong>to</strong>-noise ratio,<br />

which should be checked microscopically<br />

during the enzyme reaction. The reaction<br />

medium itself is stable (in the dark). The<br />

final product (NBT formazan) also has<br />

reflective properties.<br />

A recently introduced alkaline phosphatase<br />

substrate (HNPP/Fast Red TR) also<br />

allows fluorescent detection of alkaline<br />

phosphatase label. For fluorescence microscopy,<br />

prepare the following substrate:<br />

10 mg/ml HNPP (in dimethylformamide)<br />

and 25 mg/ml Fast Red TR in redist H2O.<br />

For details on the use of HNPP/Fast Red<br />

TR, see the article in Chapter 5, page 108.<br />

CONTENTS<br />

INDEX


Microscopy<br />

Brightfield microscopy<br />

<strong>In</strong> brightfield microscopy the image is<br />

obtained by the direct transmission of light<br />

through the sample.<br />

Evaluation of in situ hybridization results<br />

by brightfield microscopy is preferred for<br />

most routine applications because the preparations<br />

are permanent. However, the sensitivity<br />

demanded by many applications (e.g.,<br />

single copy gene localization requires the<br />

detection of a few at<strong>to</strong>grams of DNA) may<br />

require more sophisticated microscopy.<br />

Darkfield microscopy<br />

<strong>In</strong> the darkfield microscope, the illuminating<br />

rays of light are directed from the side,<br />

so that only scattered light enters the<br />

microscope lenses. Consequently, the<br />

material appears as an illuminated object<br />

against a black background.<br />

Darkfield microscopy is extensively used for<br />

radioactive in situ hybridization experiments<br />

because large fields can be examined at low<br />

magnification. The distribution of the silver<br />

grains can be seen with high contrast. <strong>In</strong> contrast,<br />

these types of microscopy are seldom<br />

used <strong>to</strong> localize reaction products of nonradioactive<br />

hybridization procedures (Heyting<br />

et al., 1985). However, Garson et al. (1987)<br />

shows the application of phase contrast<br />

microscopy <strong>to</strong> single copy gene detection.<br />

Phase contrast microscopy<br />

Phase contrast microscopy exploits the<br />

interference effects produced when two sets<br />

of waves combine. This is the case when<br />

light passing e.g., through a relatively thick<br />

or dense part of the cell (such as the nucleus)<br />

is retarded and its phase consequently<br />

shifted relative <strong>to</strong> light that has passed<br />

through an adjacent (thinner) region of the<br />

cy<strong>to</strong>plasm. Phase contrast microscopy is<br />

often used for enzyme detection.<br />

Reflection contrast microscopy<br />

Reflection contrast microscopy is similar<br />

<strong>to</strong> phase contrast microscopy. This technique<br />

measures the shift of wavelength of<br />

the light reflected from the sample relative<br />

<strong>to</strong> that of directly emitted light.<br />

Bonnet (personal communication) made<br />

the crucial observation that with reflection<br />

contrast microscopy (Ploem, 1975; Van der<br />

Ploeg and Van Duijn, 1979; Landegent et<br />

CONTENTS<br />

INDEX<br />

Details of the Technique<br />

al., 1985a) the DAB/peroxidase product displays<br />

bright reflection when present in<br />

extremely low amounts (i.e., low local<br />

absorption, typically A < 0.05). This property<br />

has made reflection contrast microscopy<br />

instrumental in detecting the first single copy<br />

gene by nonradioactive means (Landegent et<br />

al., 1985b; Hopman et al., 1986b; Ambros et<br />

al., 1986). Studies of DAB image formation in<br />

reflection contrast microscopy have shown<br />

that best results require thin objects and low<br />

local absorbances of the DAB product<br />

(Cornelese ten Velde et al., 1988).<br />

Fluorescence microscopy<br />

A fluorescence microscope contains a lamp<br />

for excitation of the fluorescent dye and a<br />

special filter which transmits a high percentage<br />

of light emitted by the fluorescent dye.<br />

Usually antifading reagents have <strong>to</strong> be added<br />

before analysis.<br />

Fluorescence microscopy is of great value<br />

for nonradioactive in situ hybridization. It is<br />

highly sensitive. Furthermore, it can be used<br />

<strong>to</strong> excite three different immunofluorophores<br />

with spectrally well-separated emissions<br />

(which allows multiple detection).<br />

Also the option of using highly sensitive<br />

image acquisition systems and the relative<br />

ease of quantitation of fluorescence signals<br />

adds <strong>to</strong> its attractiveness.<br />

Digital imaging microscopy<br />

Digital imaging microscopes can detect signals<br />

that cannot be seen with conventional<br />

microscopes. Also, image processing technology<br />

provides enhancement of signal-<strong>to</strong>noise<br />

ratios as well as measurement of quantitative<br />

data. The most sensitive system <strong>to</strong><br />

date, the cooled CCD (charged coupled<br />

device) camera, counts emitted pho<strong>to</strong>ns with<br />

a high efficiency over a broad spectral range of<br />

wavelengths, and thus is the instrument of<br />

choice for two-dimensional analysis. For<br />

three-dimensional analysis, confocal laser<br />

scanning microscopy is used.<br />

Electron microscopy<br />

The resolution of microscopy is enhanced<br />

when electrons instead of light are used,<br />

since electrons have a much shorter wavelength<br />

(0.004 nm). The practical resolving<br />

power of most modern electron microscopes<br />

is 0.1 nm. With the electron microscope,<br />

the fine structure of a cell can be<br />

resolved. Such analysis requires special preparative<br />

procedures which are described in<br />

detail in Chapter 5.<br />

23<br />

2


2<br />

24<br />

Fluorescence microscopy<br />

for probes directly labeled<br />

with a fluorochrome<br />

Details of the Technique<br />

Flow cy<strong>to</strong>metry<br />

The enormous speed with which fluorescence<br />

of individual cells can be measured<br />

with a flow cy<strong>to</strong>meter has many advantages<br />

for quantitating in situ hybridization<br />

Flow diagram for in situ hybridization<br />

Preparation of slides/coverslips<br />

– e.g., gelatin or poly-lysine treatment of slides<br />

– siliconization of coverslips<br />

Fixation of material on slide<br />

– by precipitation (e.g., ethanol)<br />

– by cross-linkage (e.g., formaldehyde)<br />

Pretreatment of specimen (optional)<br />

a) Treatments <strong>to</strong> prevent background staining<br />

– endogenous enzyme inactivation<br />

– RNase-treatment<br />

b) Permeabilization<br />

– diluted acids<br />

– detergent/alcohol<br />

– proteases<br />

Prehybridization (optional)<br />

<strong>In</strong>cubation of specimen with a pre-hybridization<br />

solution (= hybridization solution minus probe) is<br />

performed at the same temperature as hybridization<br />

Denaturation of probe and target<br />

– pH or heat<br />

– simultaneous or separate denaturation of probe<br />

and target (if double stranded)<br />

<strong>Hybridization</strong><br />

Components of the solution are mainly:<br />

– Denhardt’s Mix (Ficoll, BSA, PVP)<br />

– heterologous nucleic acids<br />

(e.g., herring sperm DNA/tRNA/competi<strong>to</strong>r DNA)<br />

– sodium phosphate, EDTA, SDS, salt<br />

– formamide<br />

– dextran sulfate<br />

Post-hybridization steps<br />

– treatment with single strand specific nuclease<br />

(optional)<br />

– stringency washes<br />

Immunological detection<br />

– blocking step<br />

– antibody incubation<br />

– colorimetric substrate or fluorescence microscopy<br />

– counterstaining<br />

– mounting<br />

Microscopy<br />

– microscopic analysis of results and documentation<br />

Evaluation<br />

signals. Procedures for fluorescence in situ<br />

hybridization in suspension have been<br />

described (Trask et al., 1985) and further<br />

developments in this field will be very<br />

important.<br />

Probe<br />

a) Choice of the probe<br />

– ds: DNA, cDNA<br />

– ss: RNA, oligonucleotide ss-DNA<br />

b) Preparation of the probe<br />

– DNA: fragment isolation (optional)<br />

– cDNA: cloning<br />

– RNA: cloning in transcription vec<strong>to</strong>rs<br />

– oligonucleotides: chemical synthesis<br />

c) Labeling of the probe<br />

– ds DNA: random primed DNA labeling,<br />

nick translation, PCR<br />

– RNA: <strong>In</strong> vitro transcription, RT-PCR<br />

– oligonucleotides: endlabeling or tailing<br />

Determination of hybridization conditions,<br />

e.g.,<br />

– determination of hybridization temperature,<br />

pH, use of formamide, salt concentration<br />

– composition of hybridization solution<br />

– probe concentration<br />

Determination of hybridization specificity<br />

(controls)<br />

– nuclease treatment<br />

– use of multiple probes<br />

– use of heterologous nucleic acid/vec<strong>to</strong>rs<br />

CONTENTS<br />

INDEX


References<br />

Ambros, P. F.; Matzke, M. A.; Matzke, A. J. M.<br />

(1986) Detection of a 17 kb unique (T-DNA) in plant<br />

chromosomes by in situ hybridization. Chromosoma<br />

94, 11–16.<br />

Burns, J.; Chan, V. T. W.; Jonasson, J. A.; Fleming,<br />

K. A.; Taylor, S.; McGee, J. O. D. (1985) Sensitive<br />

system for visualizing biotinylated DNA probes<br />

hybridized in situ: rapid sex determination of intact<br />

cells. J. Clin. Pathol. 38, 1085–1092.<br />

Cornelese ten Velde, I.; Bonnet, J.; Tanke, H. J.;<br />

Ploem, J. S. (1988) Reflection contrast microscopy.<br />

Visualization of (peroxidase generated) diaminobenzidine<br />

polymer products and its underlying<br />

optical phenomena. His<strong>to</strong>chemistry 89, 141–150.<br />

Cremers, A. F. M.; Jansen in de Wal, N.; Wiegant, J.;<br />

Dirks, R. W.; Weisbeek, P.; Van der Ploeg, M.;<br />

Landegent, J. E. (1987) Nonradioactive in situ<br />

hybridization. A comparison of several immunocy<strong>to</strong>chemical<br />

detection systems using reflection<br />

contrast microscopy and electron microscopy.<br />

His<strong>to</strong>chemistry 86, 609–615.<br />

Dauwerse, J. G.; Wiegant, J.; Raap, A. K.; Breuning,<br />

M. H.; Van Ommen, G. J. B. (1992) Multiple colors<br />

by fluorescence in situ hybridization using ratiolabeled<br />

DNA probes create a molecular karyotype.<br />

Hum. Molec. Genet. 1, 593–598.<br />

De Jong, A. S. H.; Van Kessel-Van Vark, M.; Raap, A.<br />

K. (1985) Sensitivity of various visualization methods<br />

for peroxidase and alkaline phosphatase activity in<br />

immunoenzyme his<strong>to</strong>chemistry. His<strong>to</strong>chem. J. 17,<br />

1119–1130.<br />

Gallyas, F.; Gorcs, T.; Merchenthaler, I. (1982)<br />

High grade intensification of the end-product of<br />

the diaminobenzidine reaction for peroxidase his<strong>to</strong>chemistry.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 30, 183–184.<br />

Garson, J. A.; Van den Berghe, J. A.; Kemshead,<br />

J. T. (1987) Novel non-iso<strong>to</strong>pic in situ hybridization<br />

technique detects small (1 kb) unique sequences<br />

in routinely G-banded human chromosomes: fine<br />

mapping of N-myc and b-NGF genes. Nucleic Acids<br />

Res. 15, 4761–4770.<br />

Graham, R. C.; Karnovsky, M. J. (1966) The early<br />

stages of absorption of injected horseradish peroxidase<br />

in the proximal tubules of mouse kidney:<br />

ultrastructural cy<strong>to</strong>chemistry by a new technique.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 14, 291–302.<br />

Heyting, C.; Kroes, W. G. M.; Kriek, E.; Meyer, I.;<br />

Slater, R. (1985) <strong>Hybridization</strong> of N-ace<strong>to</strong>xy-N-acetyl-<br />

2-aminofluorene labeled RNA <strong>to</strong> Q-banded metaphase<br />

chromosomes. Acta His<strong>to</strong>chem. 77, 177–184.<br />

Hopman, A. H. N.; Wiegant, J.; Raap, A. K.;<br />

Landegent, J. E.; Van der Ploeg, M.; Van Duijn, P.<br />

(1986b) Bi-color detection of two target DNAs by<br />

nonradioactive in situ hybridization. His<strong>to</strong>chemistry<br />

85, 1–4.<br />

Hsu, S. M.; Soban, E. (1982) Color modification of<br />

diaminobenzidine (DAB) precipitation by metallic<br />

ions and its application for double immunohis<strong>to</strong>chemistry.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 30, 1079–1082.<br />

CONTENTS<br />

INDEX<br />

Details of the Technique<br />

Landegent, J. E., Jansen in de Wal, N.; Ommen,<br />

G. J. B.; Baas, F.; De Vijlder, J. J. M.; Van Duijn, P.;<br />

Van der Ploeg, M. (1985b) Chromosomal localization<br />

of a unique gene by non-au<strong>to</strong>radiographic in situ<br />

hybridization. Nature 317, 175–177.<br />

Landegent, J. E.; Jansen in de Wal, N.; Ploem, J. S.;<br />

Van der Ploeg, M. (1985a) Sensitive detection of<br />

hybridocy<strong>to</strong>chemical results by means of reflection<br />

contrast microscopy. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 33,<br />

1241–1246.<br />

Nederlof, P .M.; Van der Flier, S.; Wiegant, J.; Raap,<br />

A. K.; Tanke, H. J.; Ploem, J. S.; Van der Ploeg, M.<br />

(1990) Multiple fluorescence in situ hybridization.<br />

Cy<strong>to</strong>metry 11, 126–131.<br />

Nederlof, P. M.; Van der Flier, S.; Vrolijk, J.; Tanke,<br />

H. J.; Raap, A. K. (1992) Quantification of in situ<br />

hybridization signals by fluorescence digital imaging<br />

microscopy. III. Fluorescence ratio measurements<br />

of double labeled probes. Cy<strong>to</strong>metry 13, 838–845.<br />

Ploem, J. S. (1975) Reflection contrast microscopy<br />

as a <strong>to</strong>ol for investigation of the attachment of living<br />

cells <strong>to</strong> a glass surface. <strong>In</strong>: Van Furth, R. (Ed.)<br />

Mononuclear Phagocytes in Immunity, <strong>In</strong>fection and<br />

Pathology. Oxford: Blackwell, 405–421.<br />

Reid, T.; Baldini, A.; Rand, T. C.; Ward, D. C. (1992)<br />

Simultaneous visualization of seven different probes<br />

by in situ hybridization using combina<strong>to</strong>rial<br />

fluorescence and digital imaging microscopy. Proc.<br />

Natl. Acad. Sci. USA 89, 1388–1392.<br />

Scopsi, L.; Larsson, L. I. (1986) <strong>In</strong>creased sensitivity<br />

in peroxidase immunocy<strong>to</strong>chemistry. A comparative<br />

study of a number of peroxidase visualization<br />

methods employing a model system. His<strong>to</strong>chemistry<br />

84, 221–230.<br />

Straus, W. (1982) Imidazole increases the sensitivity<br />

of the cy<strong>to</strong>chemical reaction for peroxidase with<br />

diaminobenzidine at a neutral pH. J. His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 30, 491–493.<br />

Trask, B.; Van den Engh, G.; Landegent, J.; Jansen<br />

in de Wal, N.; Van der Ploeg, M. (1985) Detection of<br />

DNA sequences in nuclei in suspension by in situ<br />

hybridization and dual beam flow cy<strong>to</strong>metry.<br />

Science 230, 1401–1403.<br />

Van der Ploeg, M.; Van Duijn, P. (1979) Reflection<br />

versus fluorescence. His<strong>to</strong>chemistry 62, 227–232.<br />

Wiegant, J.; Wiesmeijer, C. C.; Hoovers, J. M. N.;<br />

Schuuring, E.; D’Azzo, A.; Vrolijk, J.; Tanke, H. J.;<br />

Raap, A. K. (1993) Multiple and sensitive in situ<br />

hybridization with rhodamine-, fluorescein-, and<br />

coumarin-labeled DNAs. Cy<strong>to</strong>genet. Cell Genet. 63,<br />

73–76.<br />

Wiegant, J.; Dauwerse, J. G. (1995) Multiple-colored<br />

chromosomes by fluorescence in situ hybridization.<br />

<strong>In</strong>: Verma, R. S.; Babu, A. (Eds.) Human Chromosomes:<br />

Principles and Techniques, 2nd ed.<br />

New York: McGraw-Hill, <strong>In</strong>c.<br />

25<br />

2


CONTENTS<br />

INDEX<br />

Nucleic Acid <strong>Hybridization</strong><br />

– <strong>General</strong> Aspects


3<br />

28<br />

This chapter discusses the effects of various<br />

components of the hybridization solution<br />

on the rate of renaturation and thermal<br />

stability of DNA hybrids free in solution.<br />

The features will be more or less identical <strong>to</strong><br />

those of immobilized nucleic acids, such as<br />

in filter and in situ hybridizations. The<br />

largest deviation probably occurs in the<br />

kinetics. The reader is referred <strong>to</strong> the<br />

following literature for more background<br />

information: Casey and Davidson (1976),<br />

Cox et al. (1984), Flavell et al. (1974), Hames<br />

and Higgins (1985), Maniatis et al. (1982),<br />

Raap et al. (1986), Schildkraut and Lifson<br />

(1965), Spiegelman et al. (1973), Wetmur and<br />

Davidson (1968), Wetmur (1975).<br />

The main parameters that influence<br />

hybridization<br />

<strong>Hybridization</strong> depends on the ability of<br />

denatured DNA <strong>to</strong> reanneal with complementary<br />

strands in an environment just<br />

below their melting point (Tm).<br />

The Tm is the temperature at which half the<br />

DNA is present in a single-stranded<br />

(denatured) form. The Tm value is different<br />

for genomic DNA isolated from various<br />

organisms, e.g., for Pneumococcus DNA it<br />

is 85°C, for Serratia DNA it is 94°C. The<br />

Tm can be calculated by measuring the<br />

absorption of ultraviolet light at 260 nm.<br />

The stability of the DNA is directly<br />

dependent on the GC content. The higher<br />

the molar ratio of GC pairs in a DNA, the<br />

higher the melting point.<br />

Tm and renaturation of DNA are primarily<br />

influenced by four parameters:<br />

Temperature<br />

pH<br />

Concentration of monovalent cations<br />

Presence of organic solvents<br />

Temperature<br />

Themaximumrateofrenaturation(hybridization)<br />

of DNA is at 25°C. However, the<br />

bell-shaped curve relating renaturation rate<br />

and temperature is broad, with a rather<br />

flat maximum from about 16°C <strong>to</strong> 32°C<br />

below Tm.<br />

pH<br />

From pH 5–9, the rate of renaturation is<br />

fairly independent of pH. Buffers containing<br />

20–50 mM phosphate, pH 6.5–7.5 are<br />

frequently used. Note: Higher pH can be<br />

used <strong>to</strong> produce more stringent hybridization<br />

conditions.<br />

Monovalent cations<br />

Monovalent cations (e.g., sodium ions)<br />

interact electrostatically with nucleic acids<br />

(mainly at the phosphate groups) so that<br />

the electrostatic repulsion between the two<br />

strands of the duplex decreases with<br />

increasing salt concentration, i.e. higher<br />

salt concentrations increase the stability of<br />

the hybrid. Low sodium concentrations<br />

affect the Tm, as well as the renaturation<br />

rate, drastically.<br />

Sodium ion (Na + ) concentrations above<br />

0.4 M only slightly affect the rate of<br />

renaturation and the melting temperature.<br />

The following equation has been given for<br />

the dependence of Tm on the GC content<br />

and the salt concentration (for salt<br />

concentrations from 0.01 <strong>to</strong> 0.20 M):<br />

Tm = 16.6 log M + 0.41 (GC) + 81.5<br />

where M is the salt concentration (molar)<br />

and GC, the molar percentage of guanine<br />

plus cy<strong>to</strong>sine. Above 0.4 M Na + , the<br />

following formula holds:<br />

Tm = 81.5 + 0.41 (GC)<br />

Free divalent cations strongly stabilize<br />

duplex DNA. Remove them from the<br />

hybridization mixture or complex them<br />

(e.g., with agents like citrate or EDTA).<br />

CONTENTS<br />

<strong>General</strong> Guidelines for PCR<br />

Nucleic Acid <strong>Hybridization</strong> – <strong>General</strong> Aspects<br />

INDEX


Formamide<br />

DNA melts (denatures) at 90°–100°C in<br />

0.1–0.2 M Na + . For in situ hybridization<br />

this implies that microscopic preparations<br />

must be hybridized at 65°–75°C for prolonged<br />

periods. This may lead <strong>to</strong> deterioration<br />

of morphology. Fortunately, organic<br />

solvents reduce the thermal stability of<br />

double-stranded polynucleotides, so that<br />

hybridization can be performed at lower<br />

temperatures in the presence of formamide.<br />

Formamide has for years been the organic<br />

solvent of choice. It reduces the melting<br />

temperature of DNA-DNA and DNA-<br />

RNA duplexes in a linear fashion by 0.72°C<br />

for each percent formamide. Thus, hybridization<br />

can be performed at 30°–<br />

45°C with 50% formamide present in the<br />

hybridization mixture. The rate of renaturation<br />

decreases in the presence of formamide.<br />

The melting temperature of hybrids<br />

in the presence of formamide can be calculated<br />

according <strong>to</strong> the following equation:<br />

For 0.01–0.2 M Na + :<br />

Tm = 16.6 log M + 0.41 (GC) + 81.5 – 0.72<br />

(% formamide)<br />

For Na + concentrations above 0.4 M:<br />

Tm = 81.5 + 0.41 (GC) – 0.72 (% formamide)<br />

To obtain a large increase of in situ hybridization<br />

signal for rDNA, hybridize with<br />

rRNA in 80% formamide at 50°–55°C,<br />

instead of 70% formamide at 37°C.<br />

Finally, it should be mentioned that during<br />

the in situ hybridization procedure, relatively<br />

large amounts of DNA can be lost<br />

(Raap et al., 1986).<br />

CONTENTS<br />

INDEX<br />

Nucleic Acid <strong>Hybridization</strong> – <strong>General</strong> Aspects<br />

Additional hybridization variables<br />

Additional parameters must be considered<br />

when calculating the optimal hybridization<br />

conditions including the probe length, probe<br />

concentration, the inclusion of dextran<br />

sulfate, the extent of mismatch between<br />

probe and target, the washing conditions,<br />

and whether the probes will be single- or<br />

double-stranded.<br />

Probe length<br />

The rate of the renaturation of DNA in<br />

solution is proportional <strong>to</strong> the square root<br />

of the (single-stranded) fragment length.<br />

Consequently, maximal hybridization rates<br />

are obtained with long probes. However,<br />

short probes are required for in situ hybridization<br />

because the probe has <strong>to</strong> diffuse in<strong>to</strong><br />

the dense matrix of cells or chromosomes.<br />

The fragment length also influences<br />

thermal stability. The following formula,<br />

which relates the shortest fragment length<br />

in a duplex molecule <strong>to</strong> change in Tm, has<br />

been derived:<br />

Change in Tm · n = 500 (n = nucleotides).<br />

Probe concentration<br />

The probe concentration affects the rate at<br />

which the first few base pairs are formed<br />

(nucleation reaction). The adjacent base<br />

pairs are formed afterwards, provided they<br />

are in register (zippering). The nucleation<br />

reaction is the rate limiting step in hybridization.<br />

The kinetics of hybridization is<br />

considered <strong>to</strong> be a second order reaction<br />

[r = k2 (DNA) (DNA)]. Therefore, the<br />

higher the concentration of the probe, the<br />

higher the reannealing rate.<br />

Dextran sulfate<br />

<strong>In</strong> aqueous solutions dextran sulfate is<br />

strongly hydrated. Thus, macromolecules<br />

have no access <strong>to</strong> the hydrating water,<br />

which causes an apparent increase in probe<br />

concentration and consequently higher<br />

hybridization rates.<br />

29<br />

3


3<br />

30<br />

Nucleic Acid <strong>Hybridization</strong> – <strong>General</strong> Aspects<br />

Base mismatch<br />

Mismatching of base pairs results in<br />

reduction of both hybridization rates and<br />

thermal stability of the resulting duplexes.<br />

To discriminate maximally between closely<br />

related DNA sequences, hybridize under<br />

fairly stringent conditions (e.g. at Tm –<br />

15°C). On the average, the Tm decreases<br />

about 1°C per % (base mismatch) for large<br />

probes. Mismatching in oligonucleotides<br />

greatly influences hybrid stability; this<br />

forms the basis of point mutation detection.<br />

Stringency washes<br />

During hybridization, duplexes form<br />

between perfectly matched sequences and<br />

between imperfectly matched sequences.<br />

The extent <strong>to</strong> which the latter occurs can be<br />

manipulated <strong>to</strong> some extent by varying the<br />

stringency of the hybridization reaction.<br />

(See above.)<br />

To remove the background associated with<br />

nonspecific hybridization, wash the sample<br />

with a dilute solution of salt. The lower the<br />

salt concentration and the higher the wash<br />

temperature, the more stringent the wash.<br />

<strong>In</strong> general, greater specificity is obtained<br />

when hybridization is performed at a high<br />

stringency and washing at similar or lower<br />

stringency, rather than hybridizing at low<br />

stringency and washing at high stringency.<br />

Use of single-stranded versus<br />

double-stranded probes<br />

A number of competing reactions occur<br />

during in situ hybridization with doublestranded<br />

probes. These include:<br />

Probe renaturation in solution<br />

<strong>In</strong> situ hybridization<br />

<strong>In</strong> situ renaturation (possibly, for ds<br />

targets)<br />

Consequently, the use of single-stranded<br />

probes has advantages for in situ hybridization.<br />

Such probes can be made by using<br />

the single-stranded M13 (or like bacteriophage<br />

cloning vec<strong>to</strong>rs) as template, or by<br />

using transcription vec<strong>to</strong>rs which permit<br />

the production of large amounts of singlestranded<br />

RNA. (See Chapter 4 for a detailed<br />

description).<br />

Competition in situ hybridization<br />

Recombinant DNA isolated from eukaryotic<br />

DNA often contains genomic repetitive<br />

sequences (e.g., the Alu sequence in humans).<br />

<strong>In</strong> situ hybridization <strong>to</strong> chromosomes with a<br />

probe which contains repetitive DNA<br />

usually results in uniform staining. However,<br />

unlabeled competi<strong>to</strong>r DNA (usually <strong>to</strong>tal<br />

genomic DNA) prevents the repetitive probe<br />

sequences from annealing <strong>to</strong> the target, and<br />

leads <strong>to</strong> stronger in situ hybridization signals<br />

from the unique sequences in the probe.<br />

(This approach was first described for in situ<br />

hybridization by Landegent et al., 1987;<br />

Lichter et al., 1988a; Pinkel et al., 1988.)<br />

Obviously, the greater the complexity of<br />

probe (plasmids < phages < cosmids < yeast<br />

artificial chromosomes < chromosome<br />

libraries), the greater the need for competition<br />

in situ hybridization. This approach has<br />

proved particularly useful for in situ<br />

hybridization with DNA isolated from<br />

chromosome-specific libraries (CISS-hybridization);<br />

a specific chromosome can be<br />

fluorescently labeled over its full length<br />

(Lichter et al., 1988a,b; Cremer et al., 1988;<br />

Pinkel et al., 1988).<br />

Oligonucleotide hybridization<br />

The rules given for hybrid stability and<br />

kinetics of hybridization can probably not<br />

be extrapolated <strong>to</strong> hybridization with oligodeoxynucleotides.<br />

For in situ hybridization,<br />

the advantages of oligonucleotides<br />

include their small size (good penetration<br />

properties) and their single-strandedness<br />

(<strong>to</strong> prevent probe reannealing, as outlined<br />

in Chapter 1).<br />

The small size, however, is also a disadvantage<br />

because it covers less target. The<br />

nonradioactive label should be positioned<br />

at the 3' or the 5' end; internal labeling<br />

affects the Tm <strong>to</strong>o much.<br />

<strong>In</strong> an experiment with 20-mers of 40–60%<br />

GC content, start with the hybridization<br />

conditions described below. Depending on<br />

the results obtained, you may decide <strong>to</strong> use<br />

other stringency conditions.<br />

CONTENTS<br />

INDEX


Standard in situ hybridization<br />

conditions<br />

Department of Cy<strong>to</strong>chemistry and Cy<strong>to</strong>metry,<br />

University of Leiden, Netherlands.<br />

For “large” DNA probes (≥ 100 bp):<br />

– 50% deionized formamide<br />

– 2 x SSC (see below)<br />

– 50 mM NaH2PO4/Na2HPO4 buffer;<br />

pH 7.0<br />

– 1 mM EDTA<br />

– carrier DNA/RNA (1 mg/ml each)<br />

– probe (1–10 ng/ml)<br />

Optional components:<br />

– 1 x Denhardt’s (see below)<br />

– dextran sulfate, 5–10%<br />

– Temperature: 37°–42°C<br />

– <strong>Hybridization</strong> time: 5 min–16 h<br />

For synthetic oligonucleotides:<br />

– 25% formamide<br />

– 4 x SSC (see below)<br />

– 50 mM NaH2PO4/Na2HPO4 buffer;<br />

pH 7.0<br />

– 1 mM EDTA<br />

– carrier DNA/RNA (1 mg/ml each)<br />

– probe (1 ng/ml)<br />

– 5 x Denhardt’s (see below)<br />

– Temperature: room temperature<br />

– <strong>Hybridization</strong> time: 2–16 h<br />

Composition of SSC and Denhardt’s<br />

solution<br />

1 x SSC: 150 mM NaCl, 15 mM sodium<br />

citrate; pH 7.0:<br />

Make a 20 x s<strong>to</strong>ck solution (3 M NaCl,<br />

0.3 M sodium citrate).<br />

50 x Denhardt’s:<br />

1% polyvinylchloride, 1% pyrrolidone,<br />

2% BSA.<br />

CONTENTS<br />

INDEX<br />

Nucleic Acid <strong>Hybridization</strong> – <strong>General</strong> Aspects<br />

References<br />

Casey, J.; Davidson, N. (1976) Rates of formation<br />

and thermal stabilities of RNA-DNA and DNA-DNA<br />

duplexes at high concentrations of formamide.<br />

Nucleic Acids Res. 4, 1539–1552.<br />

Cox, K. H.; DeLeon, D. V.; Angerer, L. M.; Angerer,<br />

R. C. (1984) Detection of mRNAs in sea urchin<br />

embryos by in situ hybridization using asymmetric<br />

RNA probes. Develop. Biol. 101, 485–503.<br />

Cremer, T.; Lichter, P.; Borden, J.; Ward, D. C.;<br />

Manuelidis, L. (1988) Detection of chromosome<br />

aberrations in metaphase and interphase tumor<br />

cells by in situ hybridization using chromosome<br />

specific library probes. Hum. Genet. 80, 235–246.<br />

Flavell, R. A.; Birfelder, J. E.; Sanders, J. P. M.,<br />

Borst, P. (1974) DNA-DNA hybridization on nitrocellulose<br />

filters. I. <strong>General</strong> considerations and nonideal<br />

kinetics. Eur. J. Biochem. 47, 535–543.<br />

Hames, B. D.; Higgins, S. J. (1985) Nucleic Acid<br />

<strong>Hybridization</strong>: A Practical Approach. Oxford: IRL<br />

Press.<br />

Landegent, J. E.; Jansen in de Wal; Dirks, R. W.;<br />

Baas, F.; van der Ploeg, M. (1987) Use of whole<br />

cosmid cloned genomic sequences for<br />

chromosomal localization by nonradioactive in situ<br />

hybridization. Hum. Genet. 77, 366–370.<br />

Lichter, P.; Cremer, T.; Borden, J.; Manuelidis, L.;<br />

Ward, D. C. (1988a) Delineation of individual human<br />

chromosomes in metaphase and interphase cells by<br />

in situ suppression hybridization using recombinant<br />

DNA libraries. Hum. Genet. 80, 224–234.<br />

Lichter, P.; Cremer, T.; Tang, C. C.; Watkins, P. C.;<br />

Manuelidis, L.; Ward, D. C. (1988b) Rapid detection<br />

of human chromosomes 21 aberrations by in situ<br />

hybridization. Proc. Natl. Acad. Sci. USA 85,<br />

9664–9668.<br />

Maniatis, T.; Fritsch, E. F.; Sambrook, J. (1982)<br />

Molecular Cloning: A Labora<strong>to</strong>ry Manual. Cold<br />

Spring Harbor Labora<strong>to</strong>ries.<br />

Pinkel, D.; Landegent, J.; Collins, C.; Fuscoe, J.;<br />

Segraves, R.; Lucas, J.; Gray, J. W. (1988)<br />

Fluorescence in situ hybridization with human<br />

chromosome specific libraries: detection of trisomy<br />

21 and translocations of chromosome 4. Proc. Natl.<br />

Acad. Sci. USA 85, 9138–9142.<br />

Raap, A. K.; Marijnen, J. G. J.; Vrolijk, J.; Van der<br />

Ploeg, M. (1986) Denaturation, renaturation, and<br />

loss of DNA during in situ hybridization procedures.<br />

Cy<strong>to</strong>metry 7, 235–242.<br />

Schildkraut, C.; Lifson, S. (1965) Dependence of the<br />

melting temperature of DNA on salt concentration.<br />

Biopolymers 3, 195–208.<br />

Spiegelman, G. B.; Haber, J. E.; Halvorson, H. O.<br />

(1973) Kinetics of ribonucleic acid-deoxyribonucleic<br />

acid membrane filter hybridization. Biochemistry<br />

12, 1234–1242.<br />

Wetmur, J. G. (1975) Acceleration of DNA<br />

renaturation rates. Biopolymers 14, 2517–2524.<br />

Wetmur, J. G.; Davidson, N. (1986) Kinetics of<br />

renaturation of DNA. J. Mol. Biol. 31, 349–370.<br />

31<br />

3


CONTENTS<br />

Procedures for Labeling<br />

DNA, RNA, and Oligonucleotides<br />

with DIG, Biotin,<br />

or Fluorochromes<br />

INDEX


4<br />

34<br />

Procedures for Labeling DNA, RNA, and<br />

Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

Note: Most of the following procedures have<br />

been taken from pack inserts of different<br />

kits available from Boehringer Mannheim.<br />

The exception is procedure IV, which is an<br />

optimized version of nick translation<br />

developed at the Department of Cy<strong>to</strong>chemistry<br />

and Cy<strong>to</strong>metry, University of<br />

Leiden, and the Department of Genetics,<br />

Yale University. The labeling procedures<br />

for digoxigenin, biotin, and fluorochromes<br />

are essentially identical.<br />

The determination of the labeling efficiency<br />

for DIG-labeled nucleic acids is<br />

described under IX “Estimating the Yield<br />

of DIG-labeled Nucleic Acids”, page 51.<br />

I. Random primed labeling of ds DNA<br />

with DIG-, Biotin- or Fluorescein-High<br />

Prime reaction mix<br />

The random primed DNA labeling method<br />

(Feinberg and Vogelstein, 1984) allows<br />

efficient labeling of small (10 ng) and large<br />

(up <strong>to</strong> 3 µg) amounts of DNA. The labeling<br />

method also works with both short<br />

DNA (200 bp fragments) and long DNA<br />

(cosmid or DNA).<br />

The standard labeling reaction is fast<br />

(1 hour) and incorporates one modified<br />

nucleotide (DIG-, biotin-, or fluoresceindUTP)<br />

at every 20–25th position in the<br />

newly synthesized DNA probe. This labeling<br />

density produces the most sensitive targets<br />

for indirect (immunological) detection.<br />

The amount of newly synthesized labeled<br />

DNA depends on the amount and purity<br />

of the template DNA, the label used, and<br />

the incubation time (Table 1).<br />

The size of the labeled DNA fragments<br />

obtained by random primed DNA labeling<br />

depends on the amount and size of the<br />

template DNA. With linear pBR328<br />

plasmid DNA, the standard (1 h) reaction<br />

produces labeled DNA fragments which<br />

are approximately 200–1000 bp long.<br />

Note: Linear DNA is labeled more<br />

efficiently than circular and supercoiled<br />

DNA. <strong>In</strong> all cases the template DNA<br />

should be thoroughly heat-denatured prior<br />

<strong>to</strong> random primed labeling. DNA fragments<br />

in low melting point agarose are also<br />

labeled efficiently, but often with slower<br />

kinetics.<br />

A. Standard labeling reaction for<br />

DNA in solution<br />

1 To a 1.5 ml microcentrifuge tube, add<br />

16 µl sterile, redistilled H2O containing<br />

1 µg template DNA (linear or supercoiled).<br />

Note: For this standard reaction, the<br />

amount of DNA in the 16 µl sample can<br />

vary from 10 ng <strong>to</strong> 3 µg of DNA.<br />

To label > 3 µg of DNA, scale up the<br />

volume of the sample as well as the<br />

amounts and volumes of all reaction<br />

components below.<br />

DIG label Fluorescein label Biotin label<br />

Template Yield (ng) Yield (ng) Yield (ng) Yield (ng) Yield (ng) Yield (ng)<br />

DNA (ng) in 1 h in 20 h in 1 h in 20 h in 1 h in 20 h<br />

10 45 600 30 250 70 850<br />

30 130 1050 70 320 160 1350<br />

100 270 1500 200 650 350 1650<br />

300 450 2000 320 1350 700 2200<br />

1000 850 2300 850 1700 1250 2600<br />

3000 1350 2650 1200 2100 1600 2600<br />

Table 1: Effect of template amount and labeling time on probe yield in the High Prime labeling reactions.<br />

Labeling reactions were performed with Biotin-, DIG-, or Fluorescein-High Prime labeling mix and varying<br />

amounts of purified template. The amounts of labeled DNA synthesized after a 1 h incubation and after a<br />

20 h incubation were determined by the incorporation of a radioactive tracer and confirmed by a dot blot.<br />

Data shown for each label is the average of ten independent labeling assays. Experimental yield may vary<br />

from the above because of template purity, sequence, etc.<br />

CONTENTS<br />

INDEX


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

2 Denature the DNA by heating the tube<br />

in a boiling water bath for 10 min, then<br />

chilling quickly in an ice/NaCl or ice/<br />

ethanol bath.<br />

Caution: Complete denaturation is<br />

essential for efficient labeling.<br />

3 Add 4 µl of<br />

either DIG-High Prime<br />

or Biotin-High Prime<br />

or Fluorescein-High Prime<br />

Note: Each High Prime reaction mix<br />

contains 5x concentrated reaction buffer;<br />

50% glycerol; 1 unit/µl Klenow enzyme,<br />

labeling grade; 5x concentrated random<br />

primer mix; 1 mM each of dATP, dCTP,<br />

and dGTP; 0.65 mM dTTP; and<br />

0.35 mM X-dUTP [X = DIG (alkalilabile),<br />

biotin, or fluorescein].<br />

4 Mix the reagents, then centrifuge briefly<br />

<strong>to</strong> collect the reaction mixture at the<br />

bot<strong>to</strong>m of the tube.<br />

5 <strong>In</strong>cubate the tube at least 1 h at 37°C.<br />

Note: Longer incubations (up <strong>to</strong> 20 h)<br />

increase the yield of labeled DNA<br />

(Table 1).<br />

6 To s<strong>to</strong>p the reaction, add 2 µl 0.2 M<br />

EDTA (pH 8.0) <strong>to</strong> the reaction tube<br />

and/or heat the tube <strong>to</strong> 65°C for 10 min.<br />

7 Precipitate the labeled probe by performing<br />

the following steps:<br />

Note: As an alternative <strong>to</strong> the ethanol<br />

precipitation procedure below you may<br />

purify labeled probes which are 100 bp<br />

of longer with the High Pure PCR Product<br />

Purification Kit. See the procedure<br />

on page 50 in this chapter.<br />

To the labeled DNA, add 2.5 µl 4 M<br />

LiCl and 75 µl prechilled (–20°C)<br />

100% ethanol. Mix well.<br />

Let the precipitate form for at least<br />

30 min at –70°C or 2 h at –20°C.<br />

Centrifuge the tube (at 13,000 x g) for<br />

15 min at 4°C.<br />

Discard the supernatant.<br />

Wash the pellet with 50 µl ice-cold<br />

70% (v/v) ethanol.<br />

Centrifuge the tube (at 13,000 x g) for<br />

5 min at 4°C.<br />

Discard the supernatant.<br />

Dry the pellet under vacuum.<br />

Caution: Drying the pellet is important<br />

because small traces of residual<br />

ethanol will cause precipitation if the<br />

hybridization mixture contains dextran<br />

sulfate. Trace ethanol can also lead <strong>to</strong><br />

serious background problems.<br />

Dissolve the pellet in a minimal<br />

amount of TE (10 mM Tris-HCl,<br />

1 mM EDTA, pH 8.0) buffer.<br />

8 Do one of the following:<br />

If you are not going <strong>to</strong> use the probe<br />

immediately, s<strong>to</strong>re the probe solution<br />

at –20°C.<br />

If you are going <strong>to</strong> use the probe<br />

immediately, dilute an aliquot of the<br />

probe solution <strong>to</strong> a convenient s<strong>to</strong>ck<br />

concentration (e.g., 10–40 ng/ml) in<br />

the hybridization buffer <strong>to</strong> be used for<br />

the in situ experiment (as described in<br />

Chapters 2 and 5 of this manual).<br />

Caution: The DIG-dUTP used in this<br />

procedure is alkali-labile. Avoid exposing<br />

DIG-labeled probes <strong>to</strong> strong<br />

alkali (e.g., 0.2 mM NaOH). Standard<br />

in situ procedures should not<br />

detach the DIG label from the probe.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG-High Prime* , ** , *** 5 x solution with: 1 mM dATP, dCTP, dGTP 1 585 606 160 µl<br />

(each); 0.65 mM dTTP; 0.35 mM DIG-11dUTP,<br />

alkali-labile; random primer mixture;<br />

1 unit/µl Klenow enzyme, labeling grade,<br />

in reaction buffer, 50% glycerol (v/v).<br />

(40 reactions)<br />

Biotin-High Prime* 5 x solution with: 1 mM dATP, dCTP, dGTP 1 585 649 100 µl<br />

(each); 0.65 mM dTTP; 0.35 mM biotin- (25 reactions)<br />

16-dUTP; random primer mixture;<br />

1 unit/µl Klenow enzyme, labeling grade,<br />

in reaction buffer, 50% glycerol (v/v).<br />

Fluorescein-High 5 x solution with: 1 mM dATP, dCTP, dGTP 1 585 622 100 µl<br />

Prime* (each); 0.65 mM dTTP; 0.35 mM fluorescein- (25 reactions)<br />

12-dUTP; random primer mixture;<br />

1 unit/µl Klenow enzyme, labeling grade,<br />

in reaction buffer, 50% glycerol (v/v).<br />

CONTENTS<br />

INDEX<br />

***EP Patent 0 324 474 granted<br />

<strong>to</strong> and EP Patent application<br />

0 371 262 pending for Boehringer<br />

Mannheim GmbH.<br />

***This product or the use of this<br />

product may be covered by one<br />

or more patents of Boehringer<br />

Mannheim GmbH, including the<br />

following: EP patent 0 649 909<br />

(application pending).<br />

***Licensed by <strong>In</strong>stitute Pasteur.<br />

35<br />

4


4<br />

36<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

II. PCR labeling of ds DNA with the<br />

PCR DIG Probe Synthesis Kit or<br />

PCR Labeling Mixes<br />

Note: The procedures given here are necessarily<br />

generalized. Optimal PCR reaction<br />

conditions are very dependent on the<br />

sequence of the template DNA and the<br />

primer. The optimal concentrations of template,<br />

primer, Mg2+ ion, and polymerase, as<br />

well as the optimal incubation times and<br />

temperatures should be determined empirically<br />

for each new primer/template combination<br />

(<strong>In</strong>nis et al., 1990).<br />

The three procedures in this section use<br />

PCR <strong>to</strong> produce probes that are directly<br />

labeled with digoxigenin (DIG) or fluorescein.<br />

The procedures will be especially<br />

useful for producing highly labeled probes<br />

from limited amounts of template DNA.<br />

Each procedure takes advantage of a<br />

premixed labeling solution or kit that has<br />

been optimized for the production of<br />

certain types of probes. They are:<br />

PCR DIG Probe Synthesis Kit, which<br />

contains a 2+1 ratio of dTTP:DIGdUTP<br />

and is ideal for generating highly<br />

labeled hybridization probes containing<br />

unique sequences. Such probes can<br />

detect target sequences present at a low<br />

copy number in complex genomes.<br />

PCR DIG Labeling Mix, which contains<br />

a 19+1 ratio of dTTP:DIG-dUTP and is<br />

ideal for generating moderately labeled<br />

hybridization probes containing repetitive<br />

elements. Such probes can detect<br />

target sequences (e.g., human alphoid<br />

sequences) which are present at a high<br />

copy number in complex genomes.<br />

PCR Fluorescein Labeling Mix, which<br />

contains a 3+1 ratio of dTTP:<br />

fluorescein-dUTP and produces optimally<br />

labeled hybridization probes suitable for<br />

direct in situ detection experiments.<br />

A. PCR DIG labeling reaction for<br />

highly labeled probes containing<br />

unique sequences<br />

Note: This labeling reaction produces 50 µl<br />

of DIG-labeled probe solution. <strong>In</strong> a<br />

control experiment, 50 µl of DIG-labeled<br />

probe was enough <strong>to</strong> perform 25 hybridization<br />

reactions. To produce less probe,<br />

scale the reaction volume and components<br />

down proportionally.<br />

1 Place a sterile microcentrifuge tube on<br />

ice and, for each PCR, add <strong>to</strong> the tube:<br />

5 µl 10 x concentrated PCR buffer<br />

without MgCl2 (100 mM Tris-HCl,<br />

500 mM KCl, pH 8.3) (vial 3).<br />

Note: Numbered vials are included in<br />

the PCR DIG Probe Synthesis Kit.<br />

2–10 µl 25 mM MgCl2 (vial 4).<br />

Note: The concentration of MgCl2 must<br />

be determined empirically. <strong>In</strong>itially,<br />

try 1.5 mM MgCl2 (3 µl vial 4).<br />

5 µl 10 x concentrated PCR DIG<br />

Labeling Mix containing a 2:1 ratio of<br />

dTTP:DIG-dUTP (2 mM each of<br />

dATP, dCTP, and dGTP; 1.3 mM<br />

dTTP; 0.7 mM DIG-dUTP, alkalilabile;<br />

pH 7.0) (vial 2).<br />

0.1–1.0 µM PCR primer 1.<br />

0.1–1.0 µM PCR primer 2.<br />

Note: The concentration of PCR primers<br />

must be determined empirically (<strong>In</strong>nis<br />

et al., 1990). <strong>In</strong>itially, try a 0.3 mM<br />

concentration of each primer in the<br />

reaction mixture.<br />

Template DNA (1–100 ng human<br />

genomic DNA or 10–100 pg plasmid<br />

DNA).<br />

Note: The amount of template DNA<br />

must be determined empirically (<strong>In</strong>nis<br />

et al., 1990). <strong>In</strong>itially, try 50 ng human<br />

genomic DNA or 50 pg plasmid DNA.<br />

0.5–2.5 µl (0.5–2.5 units) Taq DNA<br />

Polymerase (vial 1).<br />

Note: The amount of polymerase must<br />

be determined empirically. <strong>In</strong>itially,<br />

try 2.0 units Taq DNA Polymerase<br />

(2 µl vial 1).<br />

Enough sterile, redistilled water <strong>to</strong><br />

make a <strong>to</strong>tal reaction volume of 50 µl.<br />

CONTENTS<br />

INDEX


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

2 Mix the reagents and centrifuge briefly<br />

<strong>to</strong> collect the mixture at the bot<strong>to</strong>m of<br />

the tube.<br />

3 Overlay with 100 µl mineral oil <strong>to</strong> reduce<br />

evaporation of the mixture during<br />

amplification.<br />

4 Place samples in a thermocycler and<br />

start the PCR. Use the following<br />

thermal profile:<br />

Denaturation before the first cycle:<br />

7 min at 95°C.<br />

30 cycles of:<br />

denaturation, 45 s at 95°C<br />

annealing, 1 min at 60°C<br />

elongation, 2 min at 72°C.<br />

Final elongation after the last cycle:<br />

7 min at 72°C.<br />

Note: Since cycling conditions depend<br />

on the template, primers and thermocycler,<br />

you may have <strong>to</strong> use a different<br />

thermal pro<strong>to</strong>col <strong>to</strong> get optimal results.<br />

For general information, see <strong>In</strong>nis et<br />

al., 1990.<br />

5 S<strong>to</strong>p the reaction by chilling the tubes <strong>to</strong><br />

4°C.<br />

6 Precipitate the labeled probe by performing<br />

the following steps:<br />

Note: As an alternative <strong>to</strong> the ethanol<br />

precipitation procedure below, you may<br />

purify labeled probes which are 100 bp<br />

orlongerwiththeHighPurePCRProduct<br />

Purification Kit. See the procedure on<br />

page 50 in this chapter.<br />

To the labeled DNA, add 5 µl 4 M<br />

LiCl and 150 µl prechilled (–20°C)<br />

100% ethanol. Mix well.<br />

Let the precipitate form for at least<br />

30 min at –70°C or 2 h at –20°C.<br />

Centrifuge the tube (at 13,000 x g) for<br />

15 min at 4°C.<br />

Discard the supernatant.<br />

Wash the pellet with 100 µl ice-cold<br />

70% (v/v) ethanol.<br />

Centrifuge the tube (at 13,000 x g) for<br />

5 min at 4°C.<br />

Discard the supernatant.<br />

CONTENTS<br />

INDEX<br />

Dry the pellet under vacuum.<br />

Caution: Drying the pellet is important<br />

because small traces of residual ethanol<br />

will cause precipitation if the hybridization<br />

mixture contains dextran sulfate.<br />

Trace ethanol can also lead <strong>to</strong> serious<br />

background problems.<br />

Dissolve the pellet in 50 µl TE (10 mM<br />

Tris-HCl, 1 mM EDTA, pH 8.0)<br />

buffer.<br />

Note: If the hybridization buffer (used<br />

in Step 7 below) contains a high<br />

percentage formamide, dissolve the<br />

probe pellet in a smaller amount of<br />

TE buffer <strong>to</strong> form a more concentrated<br />

probe s<strong>to</strong>ck solution.<br />

7 Do one of the following:<br />

If you are not going <strong>to</strong> use the probe<br />

immediately, s<strong>to</strong>re the probe solution<br />

at –20°C.<br />

Caution: Avoid repeated freezing and<br />

thawing of the probe.<br />

If you are going <strong>to</strong> use the probe<br />

immediately, dilute an aliquot of the<br />

probe solution in the hybridization<br />

buffer <strong>to</strong> be used for the in situ<br />

experiment (as described in Chapters<br />

2 and 5 of this manual).<br />

Note: The amount of probe solution <strong>to</strong><br />

use in the hybridization reaction must<br />

be determined empirically. <strong>In</strong>itially,<br />

try using 2 µl of probe solution (out<br />

of the original 50 µl <strong>to</strong>tal) in 20 µl<br />

hybridization solution foreach hybridization<br />

reaction (under a 24 x 24 mm<br />

coverslip). If the probe was dissolved<br />

in


4<br />

38<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

B. PCR DIG labeling reaction for<br />

moderately labeled probes<br />

Note: This labeling reaction produces 100 µl<br />

of DIG-labeled probe solution. <strong>In</strong> a control<br />

experiment, 100 µl of DIG-labeled probe<br />

was enough <strong>to</strong> perform 20–50 indirect in situ<br />

detections of repetitive (human alphoid)<br />

sequences in metaphase chromosomes. To<br />

produce less probe, scale the reaction volume<br />

and components down proportionally.<br />

1 Place a sterile 1.5 ml microcentrifuge<br />

tube on ice and, for each PCR, add <strong>to</strong><br />

the tube:<br />

10 µl 10 x concentrated PCR buffer<br />

without MgCl2 (100 mM Tris-HCl,<br />

500 mM KCl, pH 8.3).<br />

4–20 µl 25 mM MgCl2.<br />

Note:The concentrationofMgCl2must<br />

be determined empirically. <strong>In</strong>itially,<br />

try 1.5 mM MgCl2 (6 µl 25 mM s<strong>to</strong>ck).<br />

10 µl 10 x concentrated PCR DIG<br />

Labeling Mix containing a 19:1 ratio<br />

of dTTP:DIG-dUTP (2 mM each of<br />

dATP, dCTP, and dGTP; 1.9 mM<br />

dTTP; 0.1 mM DIG-dUTP; pH 7.0)<br />

0.1–1.0 µM PCR primer 1.<br />

0.1–1.0 µM PCR primer 2.<br />

Note: The concentration of PCR primers<br />

must be determined empirically (<strong>In</strong>nis<br />

et al., 1990). <strong>In</strong>itially, try a 0.3 µM<br />

concentration of each primer in the<br />

reaction mixture.<br />

Template DNA (1–100 ng human<br />

genomic DNA or 10–100 pg plasmid<br />

DNA).<br />

Note: The amount of template DNA<br />

must be determined empirically (<strong>In</strong>nis<br />

et al., 1990). <strong>In</strong>itially, try 50 ng human<br />

genomic DNA or 50 pg plasmid DNA.<br />

1–5 units Taq DNA Polymerase.<br />

Note: The amount of polymerase must<br />

be determined empirically. As a starting<br />

amount, try 2.5 units.<br />

Enough sterile, redistilled water <strong>to</strong><br />

make a <strong>to</strong>tal reaction volume of 100 µl.<br />

2 Mix the reagents, overlay with oil, and<br />

perform PCR exactly as in Steps 2–5 of<br />

Procedure IIA above (for labeling of<br />

probes containing unique sequences).<br />

3 Precipitate the labeled probe by performing<br />

the following steps:<br />

Note: As an alternative <strong>to</strong> the ethanol<br />

precipitation procedure below, you may<br />

purify labeled probes which are 100 bp<br />

or longer with the High Pure PCR Product<br />

Purification Kit. See the procedure on<br />

page 50 in this chapter.<br />

To the labeled DNA, add 10 µl 4 M<br />

LiCl and 300 µl prechilled (–20°C)<br />

100% ethanol. Mix well.<br />

Let the precipitate form for at least<br />

30 min at –70°C or 2 h at –20°C.<br />

Centrifuge the tube (at 13,000 x g) for<br />

15 min at 4°C.<br />

Discard the supernatant.<br />

Wash the pellet with 100 µl ice-cold<br />

70% (v/v) ethanol.<br />

Centrifuge the tube (at 13,000 x g) for<br />

5 min at 4°C.<br />

Discard the supernatant.<br />

Dry the pellet under vacuum.<br />

Caution: Drying the pellet is important<br />

because small traces of residual ethanol<br />

will cause precipitation if the hybridization<br />

mixture contains dextran sulfate.<br />

Trace ethanol can also lead <strong>to</strong> serious<br />

background problems.<br />

Dissolve the pellet in 100 µl TE<br />

(10 mM Tris-HCl, 1 mM EDTA, pH<br />

8.0) buffer.<br />

Note: If the hybridization buffer (used<br />

in Step 4 below) contains a high percentage<br />

formamide, dissolve the probe<br />

pellet in a smaller amount of TE buffer<br />

<strong>to</strong> form a more concentrated probe<br />

s<strong>to</strong>ck solution.<br />

4 Do one of the following:<br />

If you are not going <strong>to</strong> use the probe<br />

immediately, s<strong>to</strong>re the probe solution<br />

at –20°C.<br />

Caution: Avoid repeated freezing and<br />

thawing of the probe.<br />

If you are going <strong>to</strong> use the probe<br />

immediately, dilute an aliquot of the<br />

probe solution in the hybridization<br />

buffer <strong>to</strong> be used for the in situ experiment<br />

(as described in Chapters 2 and<br />

5 of this manual).<br />

Note: The amount of probe solution <strong>to</strong><br />

use in the hybridization reaction must<br />

be determined empirically. <strong>In</strong>itially,<br />

try using 2–5 µl of probe solution (out<br />

of the original 100 µl <strong>to</strong>tal) in 20 µl<br />

hybridization solution for each hybridization<br />

reaction (under a 24 x 24 mm<br />

coverslip). If the probe was dissolved<br />

in < 100 µl TE (in Step 3 above), add<br />

correspondingly less of the concentrated<br />

probe s<strong>to</strong>ck <strong>to</strong> the hybridization buffer.<br />

CONTENTS<br />

INDEX


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

C. PCR fluorescein labeling reaction for<br />

direct in situ probes<br />

Note: This labeling reaction produces<br />

100 µl of fluorescein-labeled probe solution.<br />

<strong>In</strong> a control experiment, 100 µl of fluorescein-labeled<br />

probe was enough <strong>to</strong> perform<br />

20–50 direct in situ detections of repetitive<br />

(human alphoid) sequences in metaphase<br />

chromosomes. To produce less probe, scale<br />

the reaction volume and components down<br />

proportionally.<br />

1 Place a sterile 1.5 ml microcentrifuge<br />

tube on ice and add <strong>to</strong> the tube:<br />

10 µl 10 x concentrated PCR buffer<br />

without MgCl2 (100 mM Tris-HCl,<br />

500 mM KCl, pH 8.3) (vial 2).<br />

Note: Numbered vials are included<br />

with the PCR Fluorescein Labeling<br />

Mix.<br />

12–20 µl 25 mM MgCl2 (vial 3).<br />

Note: The concentration of MgCl2<br />

must be determined empirically. We<br />

use 4 mM MgCl2 (16 µl vial 3) as our<br />

standard concentration.<br />

10 µl 10 x concentrated PCR<br />

Fluorescein Labeling Mix (2 mM each<br />

of dATP, dCTP, and dGTP; 1.5 mM<br />

dTTP; 0.5 mM fluorescein-dUTP;<br />

pH 7.0) (vial 1).<br />

0.1–1.0 µM PCR primer 1.<br />

0.1–1.0 µM PCR primer 2.<br />

Note: The concentration of PCR primers<br />

must be determined empirically (<strong>In</strong>nis<br />

et al., 1990). <strong>In</strong>itially, try a 0.3 mM<br />

concentration of each primer in the<br />

reaction mixture.<br />

Template DNA (1–100 ng human<br />

genomic DNA or 10–100 pg plasmid<br />

DNA).<br />

Note: The amount of template DNA<br />

must be determined empirically (<strong>In</strong>nis<br />

et al., 1990). <strong>In</strong>itially, try 50 ng human<br />

genomic DNA or 50 pg plasmid DNA.<br />

1–5 units Taq DNA Polymerase.<br />

CONTENTS<br />

INDEX<br />

Note: The amount of polymerase must<br />

be determined empirically. As a starting<br />

amount, try 2.5 units.<br />

Enough sterile, redistilled water <strong>to</strong><br />

make a <strong>to</strong>tal reaction volume of100 µl.<br />

2 Mix the reagents, overlay with oil, and<br />

perform PCR exactly as in Steps 2–5 of<br />

Procedure IIA above (for labeling of<br />

probes containing unique sequences).<br />

3 Precipitate the labeled probe by performing<br />

the following steps:<br />

Note: As an alternative <strong>to</strong> the ethanol<br />

precipitation procedure below, you may<br />

purify labeled probes which are 100 bp<br />

or longer with the High Pure PCR Product<br />

Purification Kit. See the procedure<br />

on page 50 in this chapter.<br />

To the labeled DNA, add 10 µl 4 M<br />

LiCl and 300 µl prechilled (–20°C)<br />

100% ethanol. Mix well.<br />

Let the precipitate form for at least<br />

30 min at –70°C or 2 h at –20°C.<br />

Centrifuge the tube (at 13,000 x g) for<br />

15 min at 4°C.<br />

Discard the supernatant.<br />

Wash the pellet with 100 µl ice-cold<br />

70% (v/v) ethanol.<br />

Centrifuge the tube (at 13,000 x g) for<br />

5 min at 4°C.<br />

Discard the supernatant.<br />

Dry the pellet under vacuum.<br />

Caution: Drying the pellet is important<br />

because small traces of residual ethanol<br />

will cause precipitation if the hybridization<br />

mixture contains dextran sulfate.<br />

Trace ethanol can also lead <strong>to</strong> serious<br />

background problems.<br />

Dissolve the pellet in 100 µl TE<br />

(10 mM Tris-HCl, 1 mM EDTA,<br />

pH 8.0) buffer.<br />

Note: If the hybridization buffer (used<br />

in Step 4 below) contains a high percentage<br />

formamide, dissolve the probe<br />

pellet in a smaller amount of TE buffer<br />

<strong>to</strong> form a more concentrated probe<br />

s<strong>to</strong>ck solution.<br />

39<br />

4


4<br />

40<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

4 Do one of the following:<br />

If you are not going <strong>to</strong> use the probe<br />

immediately, s<strong>to</strong>re the probe solution<br />

at –20°C.<br />

Caution: Avoid repeated freezing and<br />

thawing of the probe.<br />

If you are going <strong>to</strong> use the probe<br />

immediately, dilute an aliquot of the<br />

probe solution in the hybridization<br />

buffer <strong>to</strong> be used for the in situ experiment<br />

(as described in Chapters 2 and<br />

5 of this manual).<br />

Note: The amount of probe solution <strong>to</strong><br />

use in the hybridization reaction must<br />

be determined empirically. <strong>In</strong>itially, try<br />

using 2–5 µl of probe solution (out of the<br />

original 100 µl <strong>to</strong>tal) in 20 µl hybridization<br />

solution for each hybridization<br />

reaction (under a 24x24mm coverslip).<br />

If the probe was dissolved in < 100 µl<br />

TE (in Step 3 above), add correspondingly<br />

less of the concentrated probe<br />

s<strong>to</strong>ck <strong>to</strong> the hybridization buffer.<br />

Reagents available from Boehringer<br />

Mannheim for these procedures<br />

III. Nick-translation labeling of ds<br />

DNA with Nick Translation Mixes<br />

for in situ Probes<br />

The nick translation procedure was originally<br />

described by Rigby et al. (1977) and<br />

used for incorporating nucleotide analogs<br />

by Langer et al. (1981). The procedure<br />

described here incorporates one modified<br />

nucleotide (DIG-, biotin-, fluorescein-,<br />

AMCA-, or tetramethylrhodamine-dUTP)<br />

at approximately every 20–25th position in<br />

the newly synthesized DNA. This labeling<br />

density allows optimal enzymatic incorporation<br />

of the modified nucleotide and<br />

produces the most sensitive targets for<br />

indirect (immunological) detection.<br />

For in situ hybridization procedures, the<br />

length of the labeled fragments obtained<br />

from this procedure should be about<br />

200–500 bases.<br />

Note: DNA does not need <strong>to</strong> be denatured<br />

before it is labeled by nick translation.<br />

Reagent Description Cat. No. Pack size<br />

PCR DIG Probe Kit for 25 labeling reactions 1636 090 1 kit<br />

Synthesis Kit* which incorporate alkali-labile<br />

DIG-dUTP by PCR<br />

(25 reactions)<br />

PCR DIG Labeling Mix* dATP, dCTP, dGTP, 2 mM each; 1 585 550 for 2 x 25 PCR<br />

dTTP 1.9 mM; alkali-stable DIG-dUTP, reactions<br />

0.1 mM; pH 7.0<br />

PCR-Fluorescein Contents: dATP, dCTP, dGTP, 1 636 154 for 10 PCR<br />

Labeling Mix* (for rapid 2 mM each; dTTP, 1.5 mM; reactions<br />

and reliable synthesis of fluorescein-dUTP, 0.5 mM;<br />

fluorescein-dUTP labeled premixed<br />

probes that are particular 10x PCR buffer without MgCl2<br />

useful for fluorescence in 25 mM MgCl2 s<strong>to</strong>ck solution<br />

situ hybridization [FISH])<br />

Taq DNA Polymerase, 10 x concentrated PCR buffer included 1 146 165 100 U<br />

5 units/µl* 1 146 173 500 U<br />

1 418 432 1000 U<br />

1 596 594 2500 U<br />

1 435 094 3000 U<br />

Taq DNA Polymerase PCR buffer included 1 647 679 250 U<br />

1 unit/µl* 1 647 687 1000 U<br />

*These products are sold under licensing arrangements with Roche Molecular Systems and The Perkin-<br />

Elmer Corporation. Purchase of these products are accompanied by a license <strong>to</strong> use it in the Polymerase<br />

Chain Reaction (PCR) process in conjunction with an Authorized Thermal Cycler. For complete license<br />

disclaimer, see inside back cover page + .<br />

CONTENTS<br />

INDEX


4<br />

40<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

4 Do one of the following:<br />

If you are not going <strong>to</strong> use the probe<br />

immediately, s<strong>to</strong>re the probe solution<br />

at –20°C.<br />

Caution: Avoid repeated freezing and<br />

thawing of the probe.<br />

If you are going <strong>to</strong> use the probe<br />

immediately, dilute an aliquot of the<br />

probe solution in the hybridization<br />

buffer <strong>to</strong> be used for the in situ experiment<br />

(as described in Chapters 2 and<br />

5 of this manual).<br />

Note: The amount of probe solution <strong>to</strong><br />

use in the hybridization reaction must<br />

be determined empirically. <strong>In</strong>itially, try<br />

using 2–5 µl of probe solution (out of the<br />

original 100 µl <strong>to</strong>tal) in 20 µl hybridization<br />

solution for each hybridization<br />

reaction (under a 24x24mm coverslip).<br />

If the probe was dissolved in < 100 µl<br />

TE (in Step 3 above), add correspondingly<br />

less of the concentrated probe<br />

s<strong>to</strong>ck <strong>to</strong> the hybridization buffer.<br />

Reagents available from Boehringer<br />

Mannheim for these procedures<br />

III. Nick-translation labeling of ds<br />

DNA with Nick Translation Mixes<br />

for in situ Probes<br />

The nick translation procedure was originally<br />

described by Rigby et al. (1977) and<br />

used for incorporating nucleotide analogs<br />

by Langer et al. (1981). The procedure<br />

described here incorporates one modified<br />

nucleotide (DIG-, biotin-, fluorescein-,<br />

AMCA-, or tetramethylrhodamine-dUTP)<br />

at approximately every 20–25th position in<br />

the newly synthesized DNA. This labeling<br />

density allows optimal enzymatic incorporation<br />

of the modified nucleotide and<br />

produces the most sensitive targets for<br />

indirect (immunological) detection.<br />

For in situ hybridization procedures, the<br />

length of the labeled fragments obtained<br />

from this procedure should be about<br />

200–500 bases.<br />

Note: DNA does not need <strong>to</strong> be denatured<br />

before it is labeled by nick translation.<br />

Reagent Description Cat. No. Pack size<br />

PCR DIG Probe Kit for 25 labeling reactions 1636 090 1 kit<br />

Synthesis Kit* which incorporate alkali-labile<br />

DIG-dUTP by PCR<br />

(25 reactions)<br />

PCR DIG Labeling Mix* dATP, dCTP, dGTP, 2 mM each; 1 585 550 for 2 x 25 PCR<br />

dTTP 1.9 mM; alkali-stable DIG-dUTP, reactions<br />

0.1 mM; pH 7.0<br />

PCR-Fluorescein Contents: dATP, dCTP, dGTP, 1 636 154 for 10 PCR<br />

Labeling Mix* (for rapid 2 mM each; dTTP, 1.5 mM; reactions<br />

and reliable synthesis of fluorescein-dUTP, 0.5 mM;<br />

fluorescein-dUTP labeled premixed<br />

probes that are particular 10x PCR buffer without MgCl2<br />

useful for fluorescence in 25 mM MgCl2 s<strong>to</strong>ck solution<br />

situ hybridization [FISH])<br />

Taq DNA Polymerase, 10 x concentrated PCR buffer included 1 146 165 100 U<br />

5 units/µl* 1 146 173 500 U<br />

1 418 432 1000 U<br />

1 596 594 2500 U<br />

1 435 094 3000 U<br />

Taq DNA Polymerase PCR buffer included 1 647 679 250 U<br />

1 unit/µl* 1 647 687 1000 U<br />

*These products are sold under licensing arrangements with Roche Molecular Systems and The Perkin-<br />

Elmer Corporation. Purchase of these products are accompanied by a license <strong>to</strong> use it in the Polymerase<br />

Chain Reaction (PCR) process in conjunction with an Authorized Thermal Cycler. For complete license<br />

disclaimer, see inside back cover page + .<br />

CONTENTS<br />

INDEX


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

A. Labeling reaction with DIG-dUTP or<br />

Biotin-dUTP<br />

1 Place a 1.5 ml microcentrifuge tube on<br />

ice and add <strong>to</strong> the tube:<br />

16 µl sterile redistilled H2O containing<br />

1 µg template DNA (either linear<br />

or supercoiled).<br />

4 µl of either DIG-Nick Translation<br />

Mix for in situ Probes<br />

or<br />

Biotin-Nick Translation Mix for in<br />

situ Probes<br />

Note: Each Nick Translation Mix contains<br />

5 x concentrated reaction buffer;<br />

50% glycerol; DNA Polymerase I;<br />

DNase I; 0.25 mM each of dATP,<br />

dCTP, and dGTP; 0.17 mM dTTP; and<br />

0.08 mM X-dUTP (X = DIG or biotin).<br />

2 Mix ingredients and centrifuge tube<br />

briefly.<br />

3 <strong>In</strong>cubate at 15°C for 90 min.<br />

4 Chill the reaction tube <strong>to</strong> 0°C.<br />

5 Take a 3 µl aliquot from the tube and<br />

analyze it as follows:<br />

Mix the aliquot with enough gel loading<br />

buffer <strong>to</strong> make a sample which will<br />

fit in one well of an agarose minigel.<br />

Denature the sample (DNA aliquot +<br />

gel loading buffer) for 3 min at 95°C.<br />

Place the denatured sample on ice for<br />

3 min.<br />

Run the sample on an agarose minigel<br />

with a DNA molecular weight marker.<br />

6 Depending on the average size of the<br />

probe, do one of the following:<br />

If the probe is between 200 and 500<br />

nucleotides long, go <strong>to</strong> Step 7.<br />

If the probe is longer than 500<br />

nucleotides, incubate the reaction<br />

tube further at 15°C until the fragments<br />

are the proper size.<br />

Note: If the fragment is <strong>to</strong>o long, the<br />

labeled probe can also be sonicated <strong>to</strong><br />

the proper size.<br />

7 S<strong>to</strong>p the reaction as follows:<br />

Add 1 µl 0.5 M EDTA (pH 8.0) <strong>to</strong> the<br />

tube.<br />

Heat the tube <strong>to</strong> 65°C for 10 min.<br />

CONTENTS<br />

INDEX<br />

B. Labeling reaction with FluoresceindUTP,<br />

AMCA-dUTP, or Tetramethylrhodamine-dUTP<br />

1 Prepare 50 µl of a 5 x fluorophore labeling<br />

mixture (enough for about 12 labeling<br />

reactions) by mixing the following<br />

in a 1.5 ml microcentrifuge tube on ice:<br />

5 µl 2.5 mM dATP.<br />

5 µl 2.5 mM dCTP.<br />

5 µl 2.5 mM dGTP.<br />

3.4 µl 2.5 mM dTTP.<br />

4µlofeither 1mM Fluorescein-dUTP<br />

or<br />

1 mM AMCA-dUTP<br />

or<br />

1 mM Tetramethylrhodamine-dUTP<br />

27.6 µl sterile redistilled H2O.<br />

2 Place a 1.5 ml microcentrifuge tube on<br />

ice and add <strong>to</strong> the tube:<br />

12 µl sterile redistilled H2O containing<br />

1 mg template DNA (either linear<br />

or supercoiled).<br />

4 µl 5 x concentrated fluorophore<br />

labeling mixture (from Step 1).<br />

4 µl of Nick Translation Mix for in<br />

situ Probes.<br />

Note: Nick Translation Mix contains<br />

5x concentrated reaction buffer; 50%<br />

glycerol; DNA Polymerase I; and<br />

DNase I.<br />

3 Mix, incubate and s<strong>to</strong>p the reaction as in<br />

Steps 2–7 for DIG- and biotin-labeling<br />

above.<br />

C. Purification of labeled probe<br />

1 Precipitate the labeled probe (from either<br />

procedure above) by performing the following<br />

steps.<br />

As alternative <strong>to</strong> the ethanol precipitation<br />

procedure below, you may purify<br />

labeled probes which are 100 bp or<br />

longer with the High Pure PCR Product<br />

Purification Kit. See the procedure on<br />

page 50 in this chapter.<br />

To the labeled DNA, add 2.5 µl 4 M<br />

LiCl and 75 µl prechilled (–20°C)<br />

100% ethanol. Mix well.<br />

Let the precipitate form for at least<br />

30 min at –70°C or 2 h at –20°C.<br />

Centrifuge the tube (at 13,000 x g) for<br />

15 min at 4°C.<br />

41<br />

4


4<br />

42<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

Discard the supernatant.<br />

Wash the pellet with 50 µl ice-cold<br />

70% (v/v) ethanol.<br />

Centrifuge the tube (at 13,000 x g) for<br />

5 min at 4°C.<br />

Discard the supernatant.<br />

Dry the pellet under vacuum.<br />

Caution: Drying the pellet is important<br />

because small traces of residual ethanol<br />

will cause precipitation if the hybridization<br />

mixture contains dextran sulfate.<br />

Trace ethanol can also lead <strong>to</strong> serious<br />

background problems.<br />

2 Do one of the following:<br />

If you are not going <strong>to</strong> use the probe<br />

immediately, dissolve the pellet in a<br />

minimal amount of TE (10 mM Tris-<br />

HCl, 1 mM EDTA, pH 8.0) buffer<br />

and s<strong>to</strong>re the probe solution at –20°C.<br />

Caution: Avoid repeated freezing and<br />

thawing of the probe.<br />

If you are going <strong>to</strong> use the probe<br />

immediately, dissolve the pellet in a<br />

minimal amount of an appropriate<br />

buffer (TE, sodium phosphate, etc.),<br />

then dilute the probe solution <strong>to</strong> a<br />

convenient s<strong>to</strong>ck concentration (e.g.,<br />

10–40 ng/µl) in the hybridization<br />

buffer <strong>to</strong> be used for the in situ experiment<br />

(as described in Chapters 2 and<br />

5 of this manual).<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

IV. Nick-translation labeling of ds DNA<br />

with DIG-, Biotin-, or Fluorochromelabeled<br />

dUTP<br />

Department of Cy<strong>to</strong>chemistry and Cy<strong>to</strong>metry,<br />

University of Leiden, Netherlands,<br />

and Department of Genetics, Yale<br />

University, U.S.A.<br />

Note: For in situ hybridization procedures,<br />

the length of the labeled fragments obtained<br />

from this procedure should be about<br />

200–400 bases.<br />

1 Place a 1.5 ml microcentrifuge tube on<br />

ice and add <strong>to</strong> the tube:<br />

27 µl sterile, redistilled H2O.<br />

5 µl 10 x concentrated nick translation<br />

buffer [500 mM Tris-HCl (pH 7.8),<br />

50 mM MgCl2, 0.5 mg/ml Bovine<br />

Serum Albumin (nuclease-free)].<br />

5 µl 100 mM Dithiothrei<strong>to</strong>l.<br />

4 µl Nucleotide Mixture (0.5 mM each<br />

of dATP, dGTP, and dCTP; 0.1 mM<br />

dTTP).<br />

2 µl 1 mM DIG-dUTP<br />

or<br />

1 mM Biotin-dUTP<br />

or<br />

1 mM fluorochrome-labeled dUTP.<br />

1 µg template DNA.<br />

5 µl (5 ng) DNase I.<br />

1 µl (10 units) DNA Polymerase I.<br />

Reagent Description Cat. No. Pack size<br />

DIG-Nick Translation 5 x conc. stabilized reaction buffer in 1745 816 160 µl<br />

Mix* for in situ probes 50% glycerol (v/v) and DNA Polymerase I,<br />

DNase I, 0.25 mM dATP, 0.25 mM dCTP,<br />

0.25 mM dGTP, 0.17 mM dTTP and<br />

0.08 mM alkali-stable DIG-11-dUTP.<br />

Biotin-Nick Translation 5 x conc. stabilized reaction buffer in 1745 824 160 µl<br />

Mix* for in situ probes 50% glycerol (v/v) and DNA Polymerase I,<br />

DNase I, 0.25 mM dATP, 0.25 mM dCTP,<br />

0.25 mM dGTP, 0.17 mM dTTP and<br />

0.08 mM biotin-16-dUTP.<br />

Nick Translation Mix* 5 x conc. stabilized reaction buffer in 1745 808 200 µl<br />

for in situ probes 50% glycerol, DNA Polymerase I and DNase I.<br />

dNTP Set Set of dATP, dCTP, dGTP, dTTP 1 277 049 4 x10 µmol<br />

100 mM solutions, lithium salts. (100 µl)<br />

Fluorescein-12-dUTP Tetralithium salt, 1 mM solution 1 373 242 25 nmol (25 µl)<br />

Tetramethyl- Tetralithium salt, 1 mM solution 1 534 378 25 nmol (25 µl)<br />

rhodamine-6-dUTP<br />

AMCA-6-dUTP Tetralithium salt, 1 mM solution 1 534 386 25 nmol (25 µl)<br />

*These products or the use of these products may be covered by one or more patents of<br />

Boehringer Mannheim GmbH, including the following: EP patent 0 649 909 (application pending).<br />

CONTENTS<br />

INDEX


4<br />

42<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

Discard the supernatant.<br />

Wash the pellet with 50 µl ice-cold<br />

70% (v/v) ethanol.<br />

Centrifuge the tube (at 13,000 x g) for<br />

5 min at 4°C.<br />

Discard the supernatant.<br />

Dry the pellet under vacuum.<br />

Caution: Drying the pellet is important<br />

because small traces of residual ethanol<br />

will cause precipitation if the hybridization<br />

mixture contains dextran sulfate.<br />

Trace ethanol can also lead <strong>to</strong> serious<br />

background problems.<br />

2 Do one of the following:<br />

If you are not going <strong>to</strong> use the probe<br />

immediately, dissolve the pellet in a<br />

minimal amount of TE (10 mM Tris-<br />

HCl, 1 mM EDTA, pH 8.0) buffer<br />

and s<strong>to</strong>re the probe solution at –20°C.<br />

Caution: Avoid repeated freezing and<br />

thawing of the probe.<br />

If you are going <strong>to</strong> use the probe<br />

immediately, dissolve the pellet in a<br />

minimal amount of an appropriate<br />

buffer (TE, sodium phosphate, etc.),<br />

then dilute the probe solution <strong>to</strong> a<br />

convenient s<strong>to</strong>ck concentration (e.g.,<br />

10–40 ng/µl) in the hybridization<br />

buffer <strong>to</strong> be used for the in situ experiment<br />

(as described in Chapters 2 and<br />

5 of this manual).<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

IV. Nick-translation labeling of ds DNA<br />

with DIG-, Biotin-, or Fluorochromelabeled<br />

dUTP<br />

Department of Cy<strong>to</strong>chemistry and Cy<strong>to</strong>metry,<br />

University of Leiden, Netherlands,<br />

and Department of Genetics, Yale<br />

University, U.S.A.<br />

Note: For in situ hybridization procedures,<br />

the length of the labeled fragments obtained<br />

from this procedure should be about<br />

200–400 bases.<br />

1 Place a 1.5 ml microcentrifuge tube on<br />

ice and add <strong>to</strong> the tube:<br />

27 µl sterile, redistilled H2O.<br />

5 µl 10 x concentrated nick translation<br />

buffer [500 mM Tris-HCl (pH 7.8),<br />

50 mM MgCl2, 0.5 mg/ml Bovine<br />

Serum Albumin (nuclease-free)].<br />

5 µl 100 mM Dithiothrei<strong>to</strong>l.<br />

4 µl Nucleotide Mixture (0.5 mM each<br />

of dATP, dGTP, and dCTP; 0.1 mM<br />

dTTP).<br />

2 µl 1 mM DIG-dUTP<br />

or<br />

1 mM Biotin-dUTP<br />

or<br />

1 mM fluorochrome-labeled dUTP.<br />

1 µg template DNA.<br />

5 µl (5 ng) DNase I.<br />

1 µl (10 units) DNA Polymerase I.<br />

Reagent Description Cat. No. Pack size<br />

DIG-Nick Translation 5 x conc. stabilized reaction buffer in 1745 816 160 µl<br />

Mix* for in situ probes 50% glycerol (v/v) and DNA Polymerase I,<br />

DNase I, 0.25 mM dATP, 0.25 mM dCTP,<br />

0.25 mM dGTP, 0.17 mM dTTP and<br />

0.08 mM alkali-stable DIG-11-dUTP.<br />

Biotin-Nick Translation 5 x conc. stabilized reaction buffer in 1745 824 160 µl<br />

Mix* for in situ probes 50% glycerol (v/v) and DNA Polymerase I,<br />

DNase I, 0.25 mM dATP, 0.25 mM dCTP,<br />

0.25 mM dGTP, 0.17 mM dTTP and<br />

0.08 mM biotin-16-dUTP.<br />

Nick Translation Mix* 5 x conc. stabilized reaction buffer in 1745 808 200 µl<br />

for in situ probes 50% glycerol, DNA Polymerase I and DNase I.<br />

dNTP Set Set of dATP, dCTP, dGTP, dTTP 1 277 049 4 x10 µmol<br />

100 mM solutions, lithium salts. (100 µl)<br />

Fluorescein-12-dUTP Tetralithium salt, 1 mM solution 1 373 242 25 nmol (25 µl)<br />

Tetramethyl- Tetralithium salt, 1 mM solution 1 534 378 25 nmol (25 µl)<br />

rhodamine-6-dUTP<br />

AMCA-6-dUTP Tetralithium salt, 1 mM solution 1 534 386 25 nmol (25 µl)<br />

*These products or the use of these products may be covered by one or more patents of<br />

Boehringer Mannheim GmbH, including the following: EP patent 0 649 909 (application pending).<br />

CONTENTS<br />

INDEX


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

2 Mix ingredients and centrifuge tube<br />

briefly.<br />

3 <strong>In</strong>cubate at 15°C for 2 h.<br />

4 Chill the reaction tube <strong>to</strong> 0°C.<br />

5 Take a 3 µl aliquot from the tube and<br />

run the sample on an agarose minigel<br />

with a DNA Molecular Weight Marker.<br />

6 Depending on the average size of the<br />

probe, do one of the following:<br />

If the probe is between 200 and 400<br />

nucleotides long, go <strong>to</strong> Step 7.<br />

If the probe is longer than 400 nucleotides,<br />

incubate the reaction tube<br />

further at 15°C until the fragments are<br />

the proper size.<br />

Note: If the fragment is <strong>to</strong>o long, the<br />

labeled probe can also be sonicated <strong>to</strong><br />

the proper size.<br />

7 S<strong>to</strong>p the reaction as follows:<br />

To the tube, add carrier DNA (e.g.,<br />

50-fold excess of fragmented herring<br />

sperm DNA) and carrier RNA (e.g.,<br />

50-fold excess of yeast tRNA).<br />

Add 0.1 volume 3 M sodium acetate,<br />

pH 5.6.<br />

Add 2.5 volumes prechilled (–20°C)<br />

100% ethanol.<br />

Mix reagents well. Caution: Do not<br />

use a pipette tip <strong>to</strong> mix.<br />

Place tube on ice for 30 min.<br />

Centrifuge tube for 30 min in a<br />

microcentrifuge at 4°C.<br />

Discard the supernatant.<br />

Dry the pellet under vacuum.<br />

Caution: Drying the pellet is important<br />

because small traces of residual<br />

ethanol will cause precipitation if the<br />

hybridization mixture contains dextran<br />

sulfate. Trace ethanol can also lead <strong>to</strong><br />

serious background problems.<br />

8 Do one of the following:<br />

If you are not going <strong>to</strong> use the probe<br />

immediately, dissolve the pellet in a<br />

minimal amount of TE (10 mM Tris-<br />

HCl, 1 mM EDTA, pH 8.0) buffer<br />

and s<strong>to</strong>re the probe solution at –20°C.<br />

Caution: Avoid repeated freezing and<br />

thawing of the probe.<br />

If you are going <strong>to</strong> use the probe<br />

immediately, dissolve the pellet in a<br />

minimal amount of an appropriate<br />

buffer (TE, sodium phosphate, etc.),<br />

then dilute an aliquot of the probe<br />

solution <strong>to</strong> a convenient s<strong>to</strong>ck concentration<br />

(e.g., 10–40 ng/µl) in the<br />

hybridization buffer <strong>to</strong> be used for the<br />

in situ experiment (as described in<br />

Chapters 2 and 5 of this manual).<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

Digoxigenin-11-dUTP, Tetralithium salt, 1 mM solution 1 093 088 25 nmol (25 µl)<br />

alkali-stable 1 558 706 125 nmol (125 µl)<br />

1 570 013 5 x125 nmol<br />

(5 x125 µl)<br />

Fluorescein-12-dUTP Tetralithium salt, 1 mM solution 1 373 242 25 nmol (25 µl)<br />

Tetramethyl- Tetralithium salt, 1 mM solution 1 534 378 25 nmol (25 µl)<br />

rhodamine-6-dUTP<br />

AMCA-6-dUTP Tetralithium salt, 1 mM solution 1 534 386 25 nmol (25 µl)<br />

Biotin-16-dUTP Tetralithium salt, 1 mM solution 1 093 070 50 nmol (50 µl)<br />

DNase I Lyophilizate 104 159 100 mg<br />

DNA Polymerase I Nick Translation Grade 104 485 500 units<br />

104 493 1000 units<br />

CONTENTS<br />

INDEX<br />

43<br />

4


4<br />

44<br />

ProceduresforLabelingDNA,RNA,andOligonucleotideswithDIG,Biotin,orFluorochromes<br />

V. RNA labeling by in vitro transcription<br />

of DNA with DIG, Biotin or Fluorescein<br />

RNA Labeling Mix<br />

The DNA <strong>to</strong> be transcribed should be<br />

cloned in<strong>to</strong> the polylinker site of a transcription<br />

vec<strong>to</strong>r which contains a promoter<br />

for SP6,T7,orT3RNAPolymerase(Dunn<br />

andStudier,1983;Kassavetis,1982).Tosynthesize<br />

“run-off” transcripts, use a restriction<br />

enzyme that creates a 5'-overhang <strong>to</strong><br />

linearize the template before transcription.<br />

Alternatively, use the circular vec<strong>to</strong>r DNA as<br />

template <strong>to</strong> create “run-around” transcripts.<br />

A PCR fragment that has the appropriate<br />

promoter ligated <strong>to</strong> its 5'-ends can also<br />

serve as a transcription template.<br />

The procedure described here incorporates<br />

one modified nucleotide (DIG-, Biotin-, or<br />

Fluorescein-UTP) at approximately every<br />

20–25th position in the transcripts. Since<br />

the nucleotide concentration does not<br />

become limiting in the following reaction,<br />

1 µg linear plasmid DNA (with a 1 kb insert)<br />

can produce approximately 10 µg of<br />

full-length labeled RNA transcript in a<br />

two hour incubation. Larger amounts of<br />

labeled RNA can be synthesized by scaling<br />

up the reaction components.<br />

Note: The amount of newly synthesized<br />

labeled RNA depends on the amount, size,<br />

site of linearization, and purity of the<br />

template DNA.<br />

1 Purify template DNA in one of the<br />

following ways:<br />

Use phenol/chloroform extraction<br />

and ethanol precipitation <strong>to</strong> purify<br />

linearized plasmid DNA after the<br />

linearizing restriction digestion. Resuspend<br />

the pellet in 10 mM Tris-HCl,<br />

pH 8.0.<br />

Ethanol precipitate circular plasmid<br />

DNAand resuspend it in 10 mM Tris-<br />

HCl, pH 8.0.<br />

Use acrylamide gel electrophoresis<br />

and elution (in 10 mM Tris-HCl, pH<br />

8.0) <strong>to</strong> purify a PCR fragment which<br />

has an RNA polymerase promoter<br />

ligated <strong>to</strong> its 5'-ends.<br />

2 Add the following <strong>to</strong> a 1.5 ml microcentrifuge<br />

tube on ice:<br />

1µgpurified,linearizedplasmidDNA<br />

or<br />

1 µg purified, circular plasmid DNA<br />

or<br />

100–200 ng purified PCR fragment.<br />

2 µl of either 10 x concentrated DIG<br />

RNA Labeling Mix<br />

or<br />

10 x concentrated Biotin RNA Labeling<br />

Mix<br />

or<br />

10xconcentrated Fluorescein RNA<br />

Labeling Mix.<br />

Note: Concentrated RNA Labeling<br />

Mix contains 10 mM each of ATP,<br />

CTP,andGTP;6.5mMUTP;3.5mM<br />

X-UTP (X = DIG, Biotin or Fluorescein);<br />

pH 7.5 (20°C)].<br />

2 µl 10xconcentrated Transcription<br />

Buffer [400 mM Tris-HCl (pH 8.0,<br />

20°C),60mMMgCl2,100mMDithiothrei<strong>to</strong>l<br />

(DTT), 20 mM spermidine].<br />

Note: 10xconcentrated Transcription<br />

Buffer is supplied with SP6, T3, or T7<br />

RNA Polymerase.<br />

2µlRNAPolymerase(SP6,T7,orT3).<br />

Enough sterile, redistilled water <strong>to</strong><br />

make a <strong>to</strong>tal reaction volume of20µl.<br />

3 Mix the components and centrifuge the<br />

tube briefly.<br />

4 <strong>In</strong>cubate the tube for 2 h at 37°C.<br />

Note:Longerincubationsdonotincrease<br />

the yield of labeled RNA. To produce<br />

larger amounts of RNA, scale up the<br />

reaction components.<br />

5 Do one of the following:<br />

If you want <strong>to</strong> remove the template<br />

DNA, add 2 units DNase I, RNasefree<br />

<strong>to</strong> the tube and incubate for<br />

15 min at 37°C. Then, go <strong>to</strong> Step 6.<br />

If you do not want <strong>to</strong> remove the<br />

template DNA, go <strong>to</strong> Step 6.<br />

Note: Since the amount of labeled RNA<br />

transcript is far in excess of the template<br />

DNA (by a fac<strong>to</strong>r of approx. 10), it is<br />

usually not necessary <strong>to</strong> remove the template<br />

DNA by DNase treatment before<br />

an in situ hybridization experiment.<br />

CONTENTS<br />

INDEX


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

6 Add 2 µl 0.2 M EDTA (pH 8.0) <strong>to</strong> the<br />

tube <strong>to</strong> s<strong>to</strong>p the polymerase reaction.<br />

7 Precipitate the labeled RNA transcript<br />

by performing the following steps.<br />

Note: As an alternative <strong>to</strong> the ethanol<br />

procedure below you may purify labeled<br />

probes which are 100 bp or longer with<br />

the High Pure PCR Purification Kit. See<br />

the procedure on page 50 in this chapter.<br />

To the reaction tube, add 2.5 µl 4 M<br />

LiCl and 75 µl prechilled (–20°C)<br />

100% ethanol. Mix well.<br />

Let the precipitate form for at least<br />

30 min at –70°C or 2 h at –20°C.<br />

Centrifuge the tube (at 13,000 x g) for<br />

15 min at 4°C.<br />

Discard the supernatant.<br />

Wash the pellet with 50 µl ice-cold<br />

70% (v/v) ethanol.<br />

Centrifuge the tube (at 13,000 x g) for<br />

5 min at 4°C.<br />

Discard the supernatant.<br />

Dry the pellet under vacuum.<br />

Dissolve the RNA pellet for 30 min at<br />

37°C in 100 µl DEPC (diethylpyrocarbonate)-treated<br />

(or sterile) redistilled<br />

water.<br />

8 To estimate the yield of the transcript,<br />

do the following:<br />

Run an aliquot of the transcript on an<br />

agarose or acrylamide gel beside an<br />

RNA standard of known concentration.<br />

Stain with ethidium bromide.<br />

Compare the relative intensity of<br />

staining between the labeled transcripts<br />

and the known standard.<br />

9 Do one of the following:<br />

If you are not going <strong>to</strong> use the labeled<br />

probe immediately, s<strong>to</strong>re the probe<br />

solution at –70°C.<br />

Caution: Avoid repeated freezing and<br />

thawing of the probe.<br />

If you are going <strong>to</strong> use the probe<br />

immediately, dilute an aliquot of the<br />

probe solution <strong>to</strong> its working concentration<br />

(e.g., 0.2–10 ng/µl) in the<br />

hybridization buffer <strong>to</strong> be used for<br />

the in situ experiment (as described in<br />

Chapter 5 of this manual).<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Available as<br />

DIG RNA Labeling Mix 10 mM ATP, 10 mM CTP, 10 mM GTP, 6.5 mM UTP, • Vial 7, DIG RNA Labeling Kit (SP6/T7)*<br />

3.5 mM DIG-UTP; in Tris-HCl, pH 7.5 (+20°C) (Cat. No. 1175 025)<br />

• DIG RNA Labeling Mix (Cat. No. 1277073)<br />

or<br />

One of the following<br />

Biotin RNA Labeling Mix 10 mM ATP, 10 mM CTP, 10 mM GTP, 6.5 mM UTP, Cat. No. 1 685 597<br />

3.5 mM biotin-16-UTP; in Tris-HCl, pH 7.5 (+20°C)<br />

Fluorescein RNA Labeling Mix 10 mM ATP, 10 mM CTP, 10 mM GTP, 6.5 mM UTP, Cat. No. 1 685 619<br />

3.5 mM fluorescein-12-UTP<br />

CONTENTS<br />

INDEX<br />

*Sold under the tradename of Genius<br />

in the US.<br />

10x Transcription buffer 400 mM Tris-HCl, pH 8.0; 60 mM MgCl2, 100 mM • Vial 8, DIG RNA Labeling Kit (SP6/T7)*<br />

dithioerythri<strong>to</strong>l (DTE), 20 mM spermidine, (Cat. No. 1175 025)<br />

100 mM NaCl, 1 unit/ml RNase inhibi<strong>to</strong>r • Supplied with the RNA polymerase<br />

DNase I, RNase-free 10 units/µl DNase I, RNase-free • Vial 9, DIG RNA Labeling Kit (SP6/T7)*<br />

(Cat. No. 1175 025)<br />

• DNase I, RNase-free (Cat. No. 776785)<br />

RNase <strong>In</strong>hibi<strong>to</strong>r 20 units/µl RNase inhibi<strong>to</strong>r • Vial 10, DIG RNA Labeling Kit (SP6/T7)*<br />

(Cat. No. 1175 025)<br />

• RNase inhibi<strong>to</strong>r (Cat. Nos. 799 017, 799 025)<br />

One of the following<br />

SP6 RNA Polymerase 20 units/µl SP6 RNA Polymerase • Vial 11, DIG RNA Labeling Kit (SP6/T7)*<br />

(Cat. No. 1175 025)<br />

• SP6 RNA Polymerase (Cat. Nos. 810 274, 1487671)<br />

T7 RNA Polymerase 20 units/µl T7 RNA Polymerase • Vial 12, DIG RNA Labeling Kit (SP6/T7)*<br />

(Cat. No. 1175 025)<br />

• T7 RNA Polymerase (Cat. Nos. 881767, 881775)<br />

T3 RNA Polymerase 20 units/µl T3 RNA Polymerase • T3 RNA Polymerase (Cat. Nos. 1031163, 1031171)<br />

45<br />

4


4<br />

*Sold under the tradename of Genius<br />

in the US.<br />

46<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

VI. Oligonucleotide 3'-end labeling<br />

with DIG-ddUTP, Biotin-ddUTP, or<br />

Fluorescein-ddUTP<br />

Terminal Transferase is used <strong>to</strong> add a single<br />

modified dideoxyuridine-triphosphate (e.g.,<br />

DIG-ddUTP) <strong>to</strong> the 3' ends of an oligonucleotide<br />

(Schmitz et al., 1990).<br />

Note: HPLC- or gel-purified oligonucleotides<br />

from 14–100 nucleotides long can be<br />

labeled in this procedure.<br />

1 Dissolve the purified oligonucleotide in<br />

sterile H2O.<br />

2 Prepare a 1 mM solution of X-ddUTP<br />

(X = DIG, Biotin, or Fluorescein) in redistilled<br />

H2O.<br />

3 Add the following <strong>to</strong> a microcentrifuge<br />

tube on ice:<br />

4 µl of 5x concentrated reaction<br />

buffer [1 M potassium cacodylate,<br />

0.125 M Tris-HCl, 1.25 mg/ml Bovine<br />

Serum Albumin; pH 6.6 (25°C)]<br />

(vial1).<br />

Note: Numbered vials are included<br />

in the DIG Oligonucleotide 3'-End<br />

Labeling Kit*.<br />

4 µl of 25 mM CoCl2 (vial 2).<br />

100 pmol oligonucleotide.<br />

Note: Do not increase the concentration<br />

of oligonucleotide in this standard<br />

reaction. To make larger amounts<br />

of labeled oligonucleotide, scale up all<br />

reaction components and volumes.<br />

1 µl of either 1 mM DIG-ddUTP<br />

(vial 3)<br />

or<br />

1 mM Biotin-ddUTP<br />

or<br />

1 mM Fluorescein-ddUTP.<br />

1 µl (50 units) Terminal Transferase<br />

[supplied in 200 mM potassium cacodylate,<br />

1 mM EDTA, 200 mM KCl,<br />

0.2 mg/ml Bovine Serum Albumin,<br />

50% glycerol; pH 6.5 (25°C)] (vial 4).<br />

Enough redistilled H2O <strong>to</strong> make a<br />

final reaction volume of 20 µl.<br />

4 Mix the reaction components well and<br />

centrifuge briefly.<br />

5 <strong>In</strong>cubate the tube at 37°C for 15 min.<br />

6 Place the tube on ice.<br />

7 S<strong>to</strong>p the reaction by doing the following:<br />

Mix 200 µl 0.2 M EDTA (pH 8.0)<br />

with 1 µl of glycogen solution (20 mg/<br />

ml, in redistilled H2O) (vial 8).<br />

Add 2 µl of the glycogen-EDTA mixture<br />

<strong>to</strong> the reaction mixture.<br />

Note: Do not use phenol/CHCl3 extraction<br />

<strong>to</strong> s<strong>to</strong>p the reaction, since the labeled<br />

oligonucleotide will migrate <strong>to</strong> the organic<br />

layer during such extraction.<br />

8 Precipitate the labeled oligonucleotide<br />

by performing the following steps:<br />

To the reaction tube, add 2.5 µl 4 M<br />

LiCl and 75 µl prechilled (–20°C)<br />

100% ethanol. Mix well.<br />

Let the precipitate form for at least<br />

30 min at –70°C or 2 h at –20° C.<br />

Centrifuge the tube (at 13,000 x g) for<br />

15 min at 4°C.<br />

Discard the supernatant.<br />

Wash the pellet with 50 µl ice-cold<br />

70% (v/v) ethanol.<br />

Centrifuge the tube (at 13,000 x g) for<br />

5 min at 4°C.<br />

Discard the supernatant.<br />

Dry the pellet under vacuum.<br />

9 Do one of the following:<br />

If you are not going <strong>to</strong> use the labeled<br />

oligonucleotide probe immediately,<br />

dissolve the pellet in a minimal<br />

amount of sterile, redistilled H2O and<br />

s<strong>to</strong>re the probe solution at –20°C.<br />

Caution: Avoid repeated freezing and<br />

thawing of the probe.<br />

If you are going <strong>to</strong> use the labeled<br />

oligonucleotide probe immediately,<br />

dissolve the pellet in a minimal<br />

amount of sterile, redistilled H2O,<br />

then dilute an aliquot of the probe<br />

solution <strong>to</strong> a convenient s<strong>to</strong>ck concentration<br />

(e.g., 1–7 ng/µl) in the<br />

hybridization buffer <strong>to</strong> be used for<br />

the in situ experiment (as described in<br />

Chapters 2 and 5 of this manual).<br />

10 The efficiency of the labeling reaction<br />

can be checked by comparison with the<br />

labeled control-oligonucleotide (vial 6)<br />

in hybridization or direct detection. It is<br />

recommended <strong>to</strong> routinely check the<br />

labeling efficiency by direct detection<br />

(see page 51).<br />

11 The labeled oligonucleotide can be<br />

analyzed by polyacrylamide-gel electrophoresis<br />

and subsequent silver staining<br />

in comparison <strong>to</strong> the unlabeled oligonucleotide.<br />

DIG labeled oligonucleotides<br />

are shifted <strong>to</strong> higher molecular<br />

weight due <strong>to</strong> the addition of the label.<br />

The control oligonucleotide labeled in<br />

the standard reaction is completely<br />

shifted <strong>to</strong> the end labeled form.<br />

CONTENTS<br />

INDEX


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

12 It is not recommended <strong>to</strong> increase the<br />

amount of oligonucleotide in the<br />

labeling reaction. Larger amounts of<br />

oligonucleotide can be labeled by<br />

increas-ing the reaction volume and all<br />

components proportionally.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Available as<br />

5x Reaction buffer 1 M potassium cacodylate, 125 mM Tris-HCl, • Vial 1, DIG Oligonucleotide 3'-End Labeling Kit*<br />

1.25 mg/ml bovine serum albumin, pH 6.6 (+25°C) (Cat. No. 1 362 372)<br />

• Supplied with terminal transferase<br />

CoCl2 solution 25 mM cobalt chloride (CoCl2) • Vial 2, DIG Oligonucleotide 3'-End Labeling Kit*<br />

(Cat. No. 1 362 372)<br />

• Supplied with terminal transferase<br />

DIG-ddUTP 1 mM Digoxigenin-11-ddUTP (2',3'-dideoxyuridine-5'- • Vial 2, DIG Oligonucleotide 3'-End Labeling Kit*<br />

triphosphate, coupled <strong>to</strong> digoxigenin via an 11-a<strong>to</strong>m (Cat. No. 1 362 372)<br />

spacer arm) in redistilled water • DIG-ddUTP (Cat. No. 1363 905)<br />

Biotin-16-ddUTP 1 mM tetralithium salt, solution • Cat. No. 1 427 598, 25 nmol (25 µl)<br />

Fluorescein-12-ddUTP 1 mM tetralithium salt, solution • Cat. No. 1 427 849, 25 nmol (25 µl)<br />

Terminal Transferase 50 units/µl terminal transferase, in 200 mM potassium • Vial 4, DIG Oligonucleotide 3'-End Labeling Kit*<br />

cacodylate, 1 mM EDTA, 200 mM KCl, 0.2 mg/ml bovine (Cat. No. 1 362 372)<br />

serum albumin; 50% (v/v) glycerol; pH 6.5 (+25°C) • Terminal Transferase (Cat. No. 220 582,<br />

contains 5x reaction buffer and cobalt chloride)<br />

VII. Oligonucleotide tailing with a<br />

DIG-dUTP, Biotin-dUTP, or FluoresceindUTP<br />

mixture<br />

Terminal Transferase is used <strong>to</strong> add a mixture<br />

of labeled dUTP and dATP <strong>to</strong> the<br />

3' ends of an oligonucleotide in a templateindependent<br />

reaction (Schmitz et al., 1990).<br />

<strong>In</strong> the tailing reaction, the concentrations of<br />

labeled dUTP and unlabeled dATP are<br />

adjusted <strong>to</strong> produce the highest hapten<br />

incorporation, optimal spacing of the hapten,<br />

and (ultimately) the highest sensitivity.<br />

This procedure produces a tail which ranges<br />

in length from 10–100 nucleotides (average:<br />

50), and contains, on average, 5 labeled<br />

dUTP molecules. Alternatively, this procedure<br />

may be modified <strong>to</strong> add only 2–3 labeled<br />

dUTP molecules, without any intervening<br />

dATP. (For details on modifying the<br />

length and composition of the tail, see the<br />

pack insert from the DIG Oligonucleotide<br />

Tailing Kit*).<br />

Note: HPLC- or gel-purified oligonucleotides<br />

from 14–100 nucleotides long can be<br />

labeled in this procedure.<br />

CONTENTS<br />

INDEX<br />

1 Dissolve the purified oligonucleotide in<br />

sterile H2O.<br />

2 Prepare a 1 mM solution of X-dUTP<br />

(X = DIG, Biotin, or Fluorescein) in<br />

redistilled H2O.<br />

3 Add the following <strong>to</strong> a microcentrifuge<br />

tube on ice:<br />

4 µl of 5 x concentrated reaction buffer<br />

[1 M potassium cacodylate, 0.125 M<br />

Tris-HCl, 1.25 mg/ml Bovine Serum<br />

Albumin; pH 6.6 (25°C)] (vial 1)<br />

Note: Numbered vials are included in<br />

the DIG Oligonucleotide Tailing Kit*.<br />

4 µl of 25 mM CoCl2 (vial 2).<br />

100 pmol oligonucleotide.<br />

Note: Do not increase the concentration<br />

of oligonucleotide in this standard<br />

reaction. To make larger amounts<br />

of labeled oligonucleotide, scale up all<br />

reaction components and volumes.<br />

*Sold under the tradename of Genius<br />

in the US.<br />

47<br />

4


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

12 It is not recommended <strong>to</strong> increase the<br />

amount of oligonucleotide in the<br />

labeling reaction. Larger amounts of<br />

oligonucleotide can be labeled by<br />

increas-ing the reaction volume and all<br />

components proportionally.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Available as<br />

5x Reaction buffer 1 M potassium cacodylate, 125 mM Tris-HCl, • Vial 1, DIG Oligonucleotide 3'-End Labeling Kit*<br />

1.25 mg/ml bovine serum albumin, pH 6.6 (+25°C) (Cat. No. 1 362 372)<br />

• Supplied with terminal transferase<br />

CoCl2 solution 25 mM cobalt chloride (CoCl2) • Vial 2, DIG Oligonucleotide 3'-End Labeling Kit*<br />

(Cat. No. 1 362 372)<br />

• Supplied with terminal transferase<br />

DIG-ddUTP 1 mM Digoxigenin-11-ddUTP (2',3'-dideoxyuridine-5'- • Vial 2, DIG Oligonucleotide 3'-End Labeling Kit*<br />

triphosphate, coupled <strong>to</strong> digoxigenin via an 11-a<strong>to</strong>m (Cat. No. 1 362 372)<br />

spacer arm) in redistilled water • DIG-ddUTP (Cat. No. 1363 905)<br />

Biotin-16-ddUTP 1 mM tetralithium salt, solution • Cat. No. 1 427 598, 25 nmol (25 µl)<br />

Fluorescein-12-ddUTP 1 mM tetralithium salt, solution • Cat. No. 1 427 849, 25 nmol (25 µl)<br />

Terminal Transferase 50 units/µl terminal transferase, in 200 mM potassium • Vial 4, DIG Oligonucleotide 3'-End Labeling Kit*<br />

cacodylate, 1 mM EDTA, 200 mM KCl, 0.2 mg/ml bovine (Cat. No. 1 362 372)<br />

serum albumin; 50% (v/v) glycerol; pH 6.5 (+25°C) • Terminal Transferase (Cat. No. 220 582,<br />

contains 5x reaction buffer and cobalt chloride)<br />

VII. Oligonucleotide tailing with a<br />

DIG-dUTP, Biotin-dUTP, or FluoresceindUTP<br />

mixture<br />

Terminal Transferase is used <strong>to</strong> add a mixture<br />

of labeled dUTP and dATP <strong>to</strong> the<br />

3' ends of an oligonucleotide in a templateindependent<br />

reaction (Schmitz et al., 1990).<br />

<strong>In</strong> the tailing reaction, the concentrations of<br />

labeled dUTP and unlabeled dATP are<br />

adjusted <strong>to</strong> produce the highest hapten<br />

incorporation, optimal spacing of the hapten,<br />

and (ultimately) the highest sensitivity.<br />

This procedure produces a tail which ranges<br />

in length from 10–100 nucleotides (average:<br />

50), and contains, on average, 5 labeled<br />

dUTP molecules. Alternatively, this procedure<br />

may be modified <strong>to</strong> add only 2–3 labeled<br />

dUTP molecules, without any intervening<br />

dATP. (For details on modifying the<br />

length and composition of the tail, see the<br />

pack insert from the DIG Oligonucleotide<br />

Tailing Kit*).<br />

Note: HPLC- or gel-purified oligonucleotides<br />

from 14–100 nucleotides long can be<br />

labeled in this procedure.<br />

CONTENTS<br />

INDEX<br />

1 Dissolve the purified oligonucleotide in<br />

sterile H2O.<br />

2 Prepare a 1 mM solution of X-dUTP<br />

(X = DIG, Biotin, or Fluorescein) in<br />

redistilled H2O.<br />

3 Add the following <strong>to</strong> a microcentrifuge<br />

tube on ice:<br />

4 µl of 5 x concentrated reaction buffer<br />

[1 M potassium cacodylate, 0.125 M<br />

Tris-HCl, 1.25 mg/ml Bovine Serum<br />

Albumin; pH 6.6 (25°C)] (vial 1)<br />

Note: Numbered vials are included in<br />

the DIG Oligonucleotide Tailing Kit*.<br />

4 µl of 25 mM CoCl2 (vial 2).<br />

100 pmol oligonucleotide.<br />

Note: Do not increase the concentration<br />

of oligonucleotide in this standard<br />

reaction. To make larger amounts<br />

of labeled oligonucleotide, scale up all<br />

reaction components and volumes.<br />

*Sold under the tradename of Genius<br />

in the US.<br />

47<br />

4


4<br />

48<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

1 µl of either 1 mM DIG-dUTP<br />

(vial 3)<br />

or<br />

1 mM Biotin-dUTP<br />

or<br />

1 mM Fluorescein-dUTP.<br />

1 µl of 10 mM dATP [in Tris buffer,<br />

pH 7.5 (25°C)] (vial 4).<br />

1 µl (50 units) Terminal Transferase<br />

[supplied in 200 mM potassium cacodylate,<br />

1 mM EDTA, 200 mM KCl,<br />

0.2 mg/ml Bovine Serum Albumin,<br />

50% glycerol; pH 6.5 (25°C)] (vial 5).<br />

Enough redistilled H2O <strong>to</strong> make a<br />

final reaction volume of 20 µl.<br />

4 Mix the reaction components well and<br />

centrifuge briefly.<br />

5 <strong>In</strong>cubate the tube at 37°C for 15 min.<br />

6 Place the tube on ice.<br />

7 S<strong>to</strong>p the reaction by doing the following:<br />

Mix 200 µl 0.2 M EDTA (pH 8.0)<br />

with 1 µl of glycogen solution (20 mg/<br />

ml, in redistilled H2O) (vial 9).<br />

Add 2 µl of the glycogen-EDTA<br />

mixture <strong>to</strong> the reaction mixture.<br />

Note: Do not use phenol/CHCl3<br />

extraction <strong>to</strong> s<strong>to</strong>p the reaction, since the<br />

labeled oligonucleotide will migrate <strong>to</strong><br />

the organic layer during such<br />

extraction.<br />

8 Precipitate the labeled oligonucleotide<br />

by performing the following steps:<br />

To the reaction tube, add 2.5 µl 4 M<br />

LiCl and 75 µl prechilled (–20°C)<br />

100% ethanol. Mix well.<br />

Let the precipitate form for at least<br />

30 min at –70°C or 2 h at –20°C.<br />

Centrifuge the tube (at 13,000 x g) for<br />

15 min at 4°C.<br />

Discard the supernatant.<br />

Wash the pellet with 50 µl ice-cold<br />

70% (v/v) ethanol.<br />

Centrifuge the tube (at 13,000 x g) for<br />

5 min at 4°C.<br />

Discard the supernatant.<br />

Dry the pellet under vacuum.<br />

9 Do one of the following:<br />

If you are not going <strong>to</strong> use the labeled<br />

oligonucleotide probe immediately,<br />

dissolve the pellet in a minimal<br />

amount of sterile, redistilled H2O and<br />

s<strong>to</strong>re the probe solution at –20°C.<br />

Caution: Avoid repeated freezing and<br />

thawing of the probe.<br />

If you are going <strong>to</strong> use the labeled<br />

oligonucleotide probe immediately,<br />

dissolve the pellet in a minimal amount<br />

of sterile, redistilled H2O, then dilute<br />

an aliquot of the probe solution <strong>to</strong> a<br />

convenient s<strong>to</strong>ck concentration (e.g.,<br />

1–7 ng/µl) in the hybridization buffer<br />

<strong>to</strong> be used for the in situ experiment<br />

(as described in Chapters 2 and 5 of<br />

this manual).<br />

10 The efficiency of the tailing reaction<br />

can be checked by comparison with the<br />

tailed control-oligonucleotide (vial 8) in<br />

hybridization or direct detection. It is<br />

recommended <strong>to</strong> routinely check the<br />

tailing efficiency by direct detection (see<br />

DIG Nucleic Acid Detection Kit).<br />

11 The tailed oligonucleotide can be analyzed<br />

by polyacrylamide-gel electrophoresis and<br />

subsequent silver staining in comparison<br />

<strong>to</strong> the untailed oligonucleotide (vial 7).<br />

DIG-tailing of oligonucleotides results in<br />

a heterogeneous shift <strong>to</strong> higher molecular<br />

weight and is detectable as a smear in<br />

polyacrylamide gels. The control oligonucleotide<br />

tailed in the standard reaction is<br />

completely shifted <strong>to</strong> the labeled form.<br />

12 It is not recommended <strong>to</strong> increase the<br />

amount of oligonucleotide in the tailing<br />

reaction. Larger amounts of oligonucleotide<br />

may be labeled by increasing<br />

the reaction volume and all components<br />

proportionally.<br />

CONTENTS<br />

INDEX


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Available as<br />

5x Reaction buffer 1 M potassium cacodylate, 125 mM Tris-HCl, • Vial 1, DIG Oligonucleotide Tailing Kit*<br />

1.25 mg/ml bovine serum albumin, pH 6.6 (+25°C) (Cat. No. 1 417 231)<br />

• Supplied with terminal transferase<br />

CoCl2 solution 25 mM cobalt chloride (CoCl2) • Vial 2, DIG Oligonucleotide Tailing Kit*<br />

(Cat. No. 1 417 231)<br />

• Supplied with terminal transferase<br />

DIG-dUTP 1 mM Digoxigenin-11-dUTP (2'-dideoxyuridine-5'- • Vial 3, DIG Oligonucleotide Tailing Kit*<br />

triphosphate, coupled <strong>to</strong> digoxigenin via an 11-a<strong>to</strong>m (Cat. No. 1 417 231)<br />

spacer arm) in redistilled water • DIG-dUTP, alkali-labile<br />

• (Cat. Nos. 1573152, 1573179)<br />

• DIG-dUTP, alkali-stable<br />

(Cat. Nos. 1093 088, 1558706, 1570 013)<br />

dATP Lithium salt, 10 mM dATP solution; in Tris buffer, pH 7.5 • Vial 4, DIG Oligonucleotide Tailing Kit*<br />

(Cat. No. 1 417 231)<br />

• dATP [Cat. No. 1051440 (sold as a 100 mM<br />

solution; must be diluted before use)]<br />

Terminal Transferase 50 units/µl terminal transferase, in 200 mM potassium • Vial 5, DIG Oligonucleotide Tailing Kit*<br />

cacodylate, 1 mM EDTA, 200 mM KCl, 0.2 mg/ml bovine (Cat. No. 1 417 231)<br />

serum albumin; 50% (v/v) glycerol; pH 6.5 (+25°C) • Terminal Transferase [Cat. No. 220 582<br />

(contains 5x reaction buffer and cobalt chloride)]<br />

Stability of labeled probes<br />

DIG-labeled probes can be s<strong>to</strong>red at –20°C<br />

for at least 1 year.<br />

References<br />

Dunn, J. J.; Studier, F. W. (1983) Complete nucleotides<br />

sequence of bacteriophage T7 DNA and the<br />

locations of T7 genetic elements. J. Mol. Biol. 166,<br />

477–535.<br />

Feinberg, P.; Vogelstein, B. (1984) A technique for<br />

radiolabeling DNA restriction enzyme fragments <strong>to</strong><br />

high specific activity. Anal. Biochem. 137, 266–267.<br />

<strong>In</strong>nis, M. A.; Gelfand, D. H.; Sninsky, J. J.; White, T.<br />

J. (Eds.) (1990) PCR Pro<strong>to</strong>cols: A Guide <strong>to</strong> Methods<br />

and Applications. San Diego, CA: Academic Press.<br />

Kassavetis, G. A.; Butler, E. T.; Roulland, D.;<br />

Chamberlin, M. J. (1982) Bacteriophage SP6-specific<br />

RNA polymerase. J. Biol. Chem. 257, 5779–5788.<br />

Langer, P. R.; Waldrop, A. A.; Ward, D. C. (1981)<br />

Enzymatic synthesis of biotin-labeled polynucleotides:<br />

Novel nucleic acid affinity probes. Proc. Natl.<br />

Acad. Sci. USA 78, 6633–6637.<br />

Rigby, P. W. J.; Dieckmann, M.; Rhodes, C.; Berg, P.<br />

(1977) Labeling deoxyribonucleic acid <strong>to</strong> high<br />

specific activity in vitro by nick translation with<br />

DNA polymerase I. J. Mol. Biol. 113, 237–241.<br />

Schmitz, G. G.; Walter, T.; Seibl, R.; Kessler, C.<br />

(1991) Nonradioactive labeling of oligonucleotides<br />

in vitro with the hapten digoxigenin by tailing with<br />

terminal transferase. Anal. Biochem. 192, 222–231.<br />

CONTENTS<br />

INDEX<br />

*Sold under the tradename of Genius<br />

in the US.<br />

49<br />

4


4<br />

*This product is sold under licensing<br />

arrangements with Roche<br />

Molecular Systems and The Perkin-<br />

Elmer Corporation. Purchase of this<br />

product is accompanied by a<br />

license <strong>to</strong> use it in the Polymerase<br />

Chain Reaction (PCR) process in<br />

conjunction with an Authorized<br />

Thermal Cycler. For complete<br />

license disclaimer, see inside back<br />

cover page.<br />

50<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

VIII. Purification of labeled probes<br />

using the High Pure PCR Product<br />

Purification Kit<br />

The High Pure PCR Product Purification<br />

Kit is designed for the efficient and convenient<br />

isolation of PCR products from amplification<br />

reactions, but is also suited for the<br />

removal of unincorporated nucleotides from<br />

DIG DNA and RNA labeling reactions.<br />

The DNA binds specifically <strong>to</strong> the surface of<br />

glass fibres in the presence of chaotrope<br />

salts. Primers, unincorporated nucleotides,<br />

contaminating agarose particles and proteins<br />

are removed by a simple washing step. The<br />

bound DIG-labeled DNA is subsequently<br />

eluted in a low-salt buffer.<br />

Note: A minimum length of approx. 100 bp<br />

is required for efficient binding. The kit<br />

can therefore not be used for the removal<br />

of unincorporated nucleotides from oligonucleotide<br />

labeling reactions.<br />

Products required<br />

2 Add 500 µl binding buffer (vial 1, green<br />

cap) and mix well.<br />

Note: It is important that the volume<br />

ratio between sample and binding buffer<br />

is 1:5. When using other sample volumes<br />

than 100 µl, adjust the volume of binding<br />

buffer accordingly.<br />

3 <strong>In</strong>sert a High Pure filter in a collection<br />

tube and pipette the sample in<strong>to</strong> the upper<br />

buffer reservoir.<br />

4 Centrifuge at 13.000 x g in a microcentrifuge<br />

for 30 sec.<br />

5 Discard the flow through and combine<br />

the filter tube again with the same collection<br />

tube.<br />

6 Add 500 µl wash buffer (vial 2, blue cap)<br />

<strong>to</strong> the upper reservoir and centrifuge as<br />

in step 4.<br />

7 Discard the wash buffer flow through<br />

and recombine the filter tube again with<br />

the same collection tube.<br />

8 Add 200 µl wash buffer (vial 2, blue cap)<br />

<strong>to</strong> the upper reservoir and centrifuge as<br />

in step 4.<br />

Reagent Description Available as<br />

High Pure PCR Product Kit for 50 purifications Cat. No. 1 732 668<br />

Purification Kit* Kit for 250 purifications Cat. No. 1 732 676<br />

consisting of:<br />

• Binding buffer, nucleic acids binding buffer; 3 M guanidine-thiocyanate, • Vial 1<br />

green cap 10 mM Tris-HCl, 5% (v/v) ethanol, pH 6.6 (25°C)<br />

• Wash buffer, wash buffer; add 4 volumes of absolute ethanol • Vial 2<br />

blue cap before use! Final concentrations; 20 mM NaCl,<br />

2 mM Tris-HCl, pH 7.5 (25°C), 80% ethanol<br />

• Elution buffer elution buffer; 10 mM Tris-HCl, 1 mM EDTA, • Vial 3<br />

pH 8.5 (25°C)<br />

• High Pure filter tubes Polypropylene tubes, containing two layers of a<br />

specially pre-treated glass fibre fleece; maximum<br />

sample volume: 700 µl<br />

• Collection tubes 2 ml polypropylene tubes<br />

Procedure<br />

Note: Make sure that 4 volumes ethanol<br />

have been added <strong>to</strong> the wash buffer (vial 2,<br />

blue cap). The binding buffer (vial 1,<br />

green cap) contains guanidine-thiocyanate<br />

which is an irritant. Wear gloves and<br />

follow labora<strong>to</strong>ry safety conditions during<br />

handling.<br />

1 Fill up the labeling reaction <strong>to</strong> 100 µl<br />

with redistilled water.<br />

9 Discard the collection tube and insert<br />

the filter tube in a clean 1.5 ml reaction<br />

tube (not provided).<br />

10 Add 50–100 µl elution buffer (vial 3) or<br />

redist. water (pH 8.0–8.5) <strong>to</strong> the upper<br />

reservoir for the elution of the DNA.<br />

Centrifuge as in step 4.<br />

Note: The elution efficiency is increased<br />

with higher volume of elution buffer<br />

applied. At least 68% and 79% recovery<br />

are found with 50 and 100 µl elution<br />

buffer, respectively. Normally, almost<br />

quantitative recovery can be found, as can<br />

be determined in a direct detection assay.<br />

CONTENTS<br />

INDEX


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

IX. Estimating the Yield of<br />

DIG-labeled Nucleic Acids<br />

An accurate quantification of DIG-labeled<br />

DNA obtained in the labeling reaction is<br />

most important for optimal and reproducible<br />

results in various membrane or in situ<br />

hybridization techniques. Too high of a<br />

probe concentration in the hybridization<br />

mix usually causes background, while <strong>to</strong>o<br />

low of a concentration leads <strong>to</strong> weak<br />

signals.<br />

There are two ways <strong>to</strong> estimate the yield<br />

of DIG-labeling. The first option is a<br />

30 min procedure in which dilutions of<br />

the labeling reaction are spotted on DIG<br />

Quantification Teststrips. After detection<br />

the intensities are compared <strong>to</strong> a simultaneous<br />

detected DIG Control Teststrip,<br />

that has defined amounts of DIG-labeled<br />

DNA already spotted on it.<br />

<strong>In</strong> the second procedure dilution series of<br />

the labeling reaction and dilutions of an<br />

appropriate standard are both spotted on<br />

nylon membranes. The membrane is then<br />

processed in a short detection procedure.<br />

Estimating the yield with DIG<br />

Quantification and DIG Control Teststrips<br />

Quantification using teststrips consists of<br />

two basic steps. First, a series of dilutions<br />

of DIG-labeled DNA is applied <strong>to</strong> the<br />

squares on the DIG Quantification Teststrips.<br />

DIG Control Teststrips are already<br />

loaded with 5 defined dilutions of a control<br />

DNA and are used as standards.<br />

The teststrips are then subjected <strong>to</strong> immunological<br />

detection with Anti-Digoxigenin-AP<br />

and the color substrates NBT/BCIP. After<br />

approx. 30 min the test procedure is completed<br />

and the DIG-labeling efficiency can<br />

be determined by comparing the signal<br />

intensities of the spots on the quantification<br />

teststrip with the control teststrip.<br />

Note: The DIG control teststrips can be<br />

used for the estimation of yield for DIG<br />

DNA probes labeled by random primed<br />

labeling, nick translation or for DIG RNA<br />

probes. They are not recommended for the<br />

quantification of DIG-labeled PCR or<br />

oligonucleotide probes.<br />

Products required<br />

Reagent Description Available as<br />

DIG Quantification Teststrips of 0.6 x 8 cm, coated with positively charged • DIG Quantification Teststrips<br />

Teststrips nylon membrane, unloaded • (Cat. No. 1669 958)<br />

DIG Control Teststrips of 0.6 x 8 cm, coated with positively charged • DIG Control Teststrips (Cat. No. 1669 966)<br />

Teststrips nylon membrane, loaded with DIG labeled control DNA<br />

in the quantities 300, 10, 30, 10 and 3 pg<br />

DNA Dilution buffer 10 mM Tris-HCl, pH 8.0 (20°C), 50 µg/ml DNA from • Vial 3, DIG DNA Labeling Kit* (Cat. No. 1175 033)<br />

herring sperm • Vial 3, DIG DNA Labeling and Detection Kit*<br />

(Cat. No. 1093 657)<br />

• Vial 2, DIG Nucleic Acid Detection Kit* (Cat. No. 1175 041)<br />

• Vial 9, DIG Oligonucleotide 3'-End Labeling Kit*<br />

(Cat. No. 1362 372)<br />

• Vial 10, DIG Oligonucleotide Tailing Kit*<br />

(Cat. No. 1417 231)<br />

RNA Dilution buffer DMPC-treated H2O, 20 x SSC and formaldehyde, mixed<br />

in a volume ratio of 5 + 3 + 2<br />

CONTENTS<br />

INDEX<br />

*Sold under the tradename of Genius<br />

in the US.<br />

Blocking Reagent Blocking reagent for nucleic acid hybridization; • Vial 11, DIG DNA Labeling and Detection Kit*<br />

white powder • (Cat. No. 1093 657)<br />

• Vial 6, DIG Nucleic Acid Detection Kit* (Cat. No. 1175 041)<br />

• Blocking Reagent (Cat. No. 1096176)<br />

Anti-Digoxigenin-AP Anti-digoxigenin [Fab] conjugated <strong>to</strong> alkaline • Vial 8, DIG DNA Labeling and Detection Kit*<br />

phosphatase • (Cat. No. 1093 657)<br />

• Vial 3, DIG Nucleic Acid Detection Kit* (Cat. No. 1175 041)<br />

• Anti-Digoxigenin-AP, Fab fragments (Cat. No. 1093 274)<br />

NBT solution 75 mg/ml nitroblue tetrazolium salt in dimethylformamide • Vial 9, DIG DNA Labeling and Detection Kit*<br />

(Cat. No. 1093 657)<br />

• Vial 4, DIG Nucleic Acid Detection Kit* (Cat. No. 1175 041)<br />

• NBT [Cat. No. 1383 213) (dilute from 100 mg/ml)]<br />

BCIP solution 50 mg/ml 5-bromo-4-chloro-3-indolyl phosphate • Vial 10, DIG DNA Labeling and Detection Kit*<br />

(BCIP), <strong>to</strong>luidinium salt in dimethylformamide • (Cat. No. 1093 657)<br />

• Vial 5, DIG Nucleic Acid Detection Kit* (Cat. No. 1175 041)<br />

• BCIP (Cat. No. 1383 221)<br />

51<br />

4


4<br />

Additionally required solutions<br />

Except TE buffer, all of the following<br />

required solutions are available in a ready<strong>to</strong>-use<br />

form in the DIG Wash and Block<br />

Buffer Set (Cat. No. 1585762). Bottle<br />

numbers for this set are indicated in parentheses.<br />

Alternatively they can be prepared<br />

from separate reagents according <strong>to</strong> procedures<br />

described in the respective pack<br />

inserts.<br />

Additionally required solutions Description<br />

Washing buffer (Bottle 1; 100 mM maleic acid, 150 mM NaCl;<br />

dilute 1:10 with H2O) pH 7.5 (+20°C); 0.3% (v/v) Tween ® 20<br />

Maleic acid buffer (Bottle 2; 100 mM maleic acid, 150 mM NaCl;<br />

dilute 1:10 with H2O) pH 7.5 (+20°C)<br />

52<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

Blocking solution (Bottle 3; 1% (w/v) Blocking reagent for nucleic acid<br />

dilute 1:10 with 1 x hybridization, dissolved in Maleic acid buffer.<br />

maleic acid buffer) Blocking solution is cloudy and should not be<br />

filtered. It is stable for at least two weeks when<br />

s<strong>to</strong>red at +4°C, but must then be brought <strong>to</strong> room<br />

temperature before use<br />

Detection buffer (Bottle 4; 100 mM Tris-HCl, 100 mM NaCl;<br />

dilute 1:10 with H2O) pH 9.5 (+20°C)<br />

TE buffer 10 mM Tris-HCl, 0.1 mM EDTA;<br />

pH 8.0 (+20°C)<br />

Procedure<br />

Preparation of a dilution series<br />

1 Dilute your labeling reaction <strong>to</strong> an<br />

approximate concentration of 1 µg/ml.<br />

The approximate concentration of your<br />

DIG-labeled DNA can be estimated<br />

according <strong>to</strong> the standard yields of the<br />

respective labeling kit or reagent used,<br />

that are given in the pack insert. (Example:<br />

A DIG-High Prime reaction yields<br />

approx. 40 µg/ml of DIG-labeled DNA<br />

after 1 h incubation, starting from 1 µg<br />

template. Dilute 1 µl of your labeling<br />

reaction with 39 µl DNA dilution buffer<br />

<strong>to</strong> obtain a final concentration of 1 µg/ml).<br />

2 Dilute the 1 µg/ml predilution from step<br />

1 according <strong>to</strong> the following scheme:<br />

<br />

Dilution steps Dilution in DNA Final Name of<br />

dilution buffer Concentration dilution<br />

1. 1:3.3 10 µl + 23 µl buffer 300 pg/µl A<br />

2. 1:10 5 µl + 45 µl buffer 100 pg/µl B<br />

3. A diluted 1:10 5 µl A + 45 µl buffer 30 pg/µl C<br />

4. B diluted 1:10 5 µl B + 45 µl buffer 10 pg/µl D<br />

5. C diluted 1:10 5 µl C + 45 µl buffer 3 pg/µl E<br />

3 Apply a 1 µl spot of dilutions A–E on<strong>to</strong><br />

the marked squares of a DIG Quantification<br />

Teststrip.<br />

If you want <strong>to</strong> mark the teststrip use the<br />

polyester carrier area. Avoid writing on<br />

the membrane itself. Touch only with<br />

gloves.<br />

4 Airdry for approx. 2 min.<br />

Preparation for the detection procedure<br />

The small format of the teststrips allows<br />

that only very low volume of test solutions<br />

must be used.<br />

5 Prepare an antibody solution by diluting<br />

1 µl of Anti-Digoxigenin-alkaline<br />

phosphatase in 2 ml blocking solution.<br />

6 Prepare color-substrate by adding 9 µl<br />

NBT solution and 7 µl BCIP solution <strong>to</strong><br />

2 ml of detection buffer.<br />

7 Foreachdetectionseriesprepare5microcuvettes<br />

or 2.5 ml reaction vials and<br />

label them from 1 <strong>to</strong> 5.<br />

To vial 1: add 2 ml of blocking solution.<br />

To vial 2: add 2 ml of antibody solution<br />

(prepared under 5.).<br />

To vial 3: add 2 ml of washing buffer.<br />

To vial 4: add 2 ml of detection buffer.<br />

To vial 5: add 2 ml of color-substrate<br />

solution (prepared under 6.).<br />

Detection<br />

Note: This short detection pro<strong>to</strong>col is exclusively<br />

suited for the quantification of DIGlabeled<br />

nucleic acids. It cannot replace the<br />

standard detection pro<strong>to</strong>col given in this<br />

manual or in the pack inserts of the DIG<br />

detection kits or substrates. The limits of<br />

detection using the short pro<strong>to</strong>col are a fac<strong>to</strong>r<br />

10–30 below the sensitivity achieved with<br />

the standard detection pro<strong>to</strong>cols.<br />

8 Dip the prepared teststrips (one Quantification<br />

Teststrip and one Control Teststrip<br />

should be developed back <strong>to</strong> back<br />

in one vial) in the prepared solution in<br />

the following sequence and for the given<br />

incubation times. Between steps, let<br />

excessive fluid drip on<strong>to</strong> a paper tissue.<br />

vial 1 blocking 2 min<br />

vial 2 antibody binding 3 min<br />

vial 1 blocking 1 min<br />

vial 3 washing 1 min<br />

vial 4 equilibration 1 min<br />

vial 5 color reaction<br />

(in the dark)<br />

5–30 min<br />

CONTENTS<br />

INDEX


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

9 S<strong>to</strong>p the color reaction after a maximum<br />

of 30 min by briefly rinsing the teststrips<br />

in water. Air dry on Whatman 3 MM<br />

paper, protected from light. Extended<br />

color reaction time leads <strong>to</strong> increased<br />

background.<br />

Evaluation of results<br />

The first spots should be visible after 5–10<br />

min of the color reaction; the 30 pg spot<br />

should be visible by then. After 30 min<br />

incubation the 3 pg spot should be visible<br />

on both the Quantification and the<br />

Control Teststrip.<br />

You can now determine the quantity of<br />

DIG labeled DNA or RNA in the squares<br />

of the Quantification Teststrip by comparing<br />

the color intensity with the Control<br />

Teststrip. Calculate the quantity of DIGlabeled<br />

DNA in your labeling reaction by<br />

taking the dilution steps in<strong>to</strong> account.<br />

CONTENTS<br />

INDEX<br />

Estimating the yield in a spot test<br />

with a DIG-labeled control<br />

The estimation of yield can also be performed<br />

in a side by side comparison of the<br />

DIG-labeled sample nucleic acid with a<br />

DIG-labeled control, that is provided in<br />

the labeling kits. Dilution series of both<br />

are prepared and spotted on a piece of<br />

membrane. Subsequently, the membrane is<br />

colorimetrically detected. Direct comparison<br />

of the intensities of sample and control<br />

allows the estimation of labeling yield.<br />

Products required<br />

DIG-labeled controls for estimating the<br />

yield of DNA, RNA and end-labeled oligonucleotides<br />

are available as separate reagents<br />

or in the respective labeling kits. The<br />

DIG-dUTP/dATP-tailed Oligonucleotide<br />

Control is only available in the DIG Oligonucleotide<br />

Tailing Kit.<br />

Reagent Description Available as<br />

Labeled Control DNA Digoxigenin-labeled pBR328 DNA that has been random • Vial 4, DIG DNA Labeling and Detection Kit*<br />

primed labeled according <strong>to</strong> the standard labeling procedure; • (Cat. No. 1093 657)<br />

the <strong>to</strong>talDNA concentration in the vial is 25 µg/ml, but only • Vial 4, DIG DNA Labeling Kit*<br />

5 µg/ml of it is DIG-labeled DNA • (Cat. No. 1175 033)<br />

• Vial 1, DIG Nucleic Acid Detection Kit*<br />

(Cat. No. 1175 041)<br />

• DIG-labeled Control DNA** , ***<br />

(Cat. No. 1585738)<br />

Control Oligonucleotide, 2.5 pmol/µl oligonucleotide, labeled with Digoxigenin-11-ddUTP • Vial 6, DIG Oligonucleotide 3'-End Labeling Kit*<br />

DIG-ddUTP-labeled according <strong>to</strong> the standard labeling procedure • (Cat. No. 1362 372)<br />

• DIG-3'-End labeled Control<br />

Oligonucleotide** , *** (Cat. No. 1585754)<br />

Control Oligonucleotide, 2.5 pmol/µl oligonucleotide, tailed with Digoxigenin-11-dUTP • Vial 6, DIG Oligonucleotide Tailing Kit*<br />

DIG-dUTP/dATP tailed and dATP according <strong>to</strong> the standard labeling procedure • (Cat. No. 1417 231)<br />

Labeled Control RNA Digoxigenin-labeled “antisense”-Neo RNA, transcribed with • Vial 5, DIG RNA Labeling Kit*<br />

T7RNA polymerase from 1 µg template DNA, according <strong>to</strong> • (Cat. No. 1175 025)<br />

the standard labeling procedure. The solution contains approx. • DIG-labeled Control RNA ** , ***<br />

100 µg/ml DIG-labeled RNA and 10 µg/ml unlabeled DNA template. • (Cat. No. 1585746)<br />

***Sold under the tradename of Genius in the US.<br />

***EP Patent 0 324 474 granted <strong>to</strong> Boehringer<br />

Mannheim GmbH.<br />

***Licensed by <strong>In</strong>stitute Pasteur.<br />

<strong>In</strong> addition <strong>to</strong> the DIG-labeled control<br />

you will need the Reagents and the<br />

Additionally required reagents, listed<br />

above under “Estimating the yield with<br />

DIG Quantification and DIG Control<br />

Teststrips”.<br />

53<br />

4


4<br />

Dilutions A–E can be s<strong>to</strong>red at –20°C for at least 1 year.<br />

54<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

Dilution Scheme A (for DNA probes) <br />

DIG-labeled Control DNA Stepwise Final Concentration Total<br />

Starting Concentration Dilution (dilution name) Dilution<br />

1 ng/µl 5 µl/45 µl DNA dilution buffer 100 pg/µl (A) 1:10<br />

100 pg/µl (dilution A) 5 µl/45 µl DNA dilution buffer 10 pg/µl (B) 1:100<br />

10 pg/µl (dilution B) 5 µl/45 µl DNA dilution buffer 1 pg/µl (C) 1:1,000<br />

1 pg/µl (dilution C) 5 µl/45 µl DNA dilution buffer 0.1 pg/µl (D) 1:10,000<br />

0.1 pg/µl (dilution D) 5 µl/45 µl DNA dilution buffer 0.01 pg/µl (E) 1:100,000<br />

Concentration 1 ng/μl<br />

5 μl<br />

Procedure<br />

Dilution<br />

Prediluted DIG-labeled<br />

Control DNA<br />

A<br />

Volume of<br />

DNA Dilution<br />

Buffer in tube 45 μl<br />

1 Make a predilution of the DIG-labeled<br />

Control DNA by mixing 5 µl DIGlabeled<br />

Control DNA with 20 µl<br />

DNA dilution buffer (final concentration1ng/µl).<br />

or<br />

Make a predilution of the DIG-labeled<br />

Control DNA by mixing 5 µl DIGlabeled<br />

Control RNA with 20 µl<br />

DMPC-treated H2O (final concentration<br />

20 ng/µl).<br />

For the DIG-3'-end labeled or tailed<br />

control oligonucleotide a predilution is<br />

not required.<br />

2 Make serial dilutions of the (prediluted)<br />

controls, according <strong>to</strong> the appropriate<br />

dilution scheme. Mix thoroughly between<br />

dilution steps.<br />

100 pg/μl<br />

5 μl<br />

B<br />

10 pg/μl<br />

45 μl<br />

5 μl<br />

C<br />

1 pg/μl<br />

45 μl<br />

5 μl<br />

D<br />

0.1 pg/μl<br />

45 μl<br />

CONTENTS<br />

5 μl<br />

E<br />

0.01 pg/μl<br />

45 μl<br />

INDEX


Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

Dilution Scheme B (for Oligonucleotide probes) <br />

DIG-tailed- or end-labeled Control Stepwise Final Concentration Total<br />

Oligo Starting Concentration Dilution (dilution name) Dilution<br />

2.5 pmol/µl 2 µl/98 µl DNA dilution buffer 50 fmol/µl (A) 1:50<br />

50 fmol/µl (dilution A) 10 µl/40 µl DNA dilution buffer 10 fmol/µl (B) 1:250<br />

10 fmol/µl (dilution B) 10 µl/40 µl DNA dilution buffer 2 fmol/µl (C) 1:1,250<br />

2 fmol/µl (dilution C) 10 µl/40 µl DNA dilution buffer 0.4 fmol/µl (D) 1:6,250<br />

0.4 fmol/µl (dilution D) 10 µl/40 µl DNA dilution buffer 0.08 fmol/µl (E) 1:31,250<br />

Dilutions A–E can be s<strong>to</strong>red at –20°C for at least 1 year.<br />

Dilution<br />

DIG-labeled Control<br />

Oligo<br />

A<br />

Concentration 2.5 pmol/μl<br />

Dilution Scheme C (for RNA probes) <br />

DIG-labeled Control RNA Stepwise Final Concentration Total<br />

Starting Concentration Dilution (dilution name) Dilution<br />

20 ng/µl 2 µl/38 µl H2O 1 ng/µl (A) 1:20<br />

1 ng/µl (dilution A) 5 µl/45 µl H2O 100 pg/µl (B) 1:200<br />

100 pg/µl (dilution B) 5 µl/45 µl H2O 10 pg/µl (C) 1:2,000<br />

10 pg/µl (dilution C) 5 µl/45 µl H2O 1 pg/µl (D) 1:20,000<br />

1 pg/µl (dilution D) 5 µl/45 µl H2O 0.1 pg/µl (E) 1:200,000<br />

0.1 pg/µl (dilution E) 5 µl/45 µl H2O 0.01 pg/µl (F) 1:2,000,000<br />

Highly diluted solutions of RNA in H2O are not very<br />

stable. Spots have <strong>to</strong> be made immediately after<br />

preparing the dilutions. Alternatively the RNA can<br />

be diluted in RNA dilution buffer (DMPC-treated<br />

H2O, 20 x SSC and formaldehyde, mixed in a<br />

volume ratio of 5 + 3 + 2) for greater stability.<br />

Dilution<br />

Prediluted DIG-labeled<br />

Control RNA A<br />

Concentration 20 ng/μl<br />

CONTENTS<br />

2 μl<br />

2 μl<br />

Volume of<br />

DNA Dilution<br />

Buffer in tube 98 μl<br />

Volume of<br />

DMPC-treated<br />

H 2 O in tube 38 μl<br />

1 ng/μl<br />

INDEX<br />

50 fmol/μl<br />

5 μl<br />

5 μl<br />

B<br />

100 pg/μl<br />

B<br />

10 fmol/μl<br />

45 μl<br />

45 μl<br />

5 μl<br />

C<br />

10 pg/μl<br />

C<br />

2 fmol/μl<br />

45 μl<br />

D<br />

5 μl<br />

5 μl 5 μl 5 μl 5 μl<br />

45 μl 45 μl 45 μl 45 μl<br />

1 pg/μl<br />

D<br />

0.4 fmol/μl<br />

45 μl<br />

E<br />

0.1 pg/μl<br />

5 μl<br />

E<br />

0.08 fmol/μl<br />

F<br />

45 μl<br />

0.01 pg/μl<br />

55<br />

4


4<br />

Figure 1: Estimating the Yield of<br />

DIG-labeled DNA. Dilutions of the<br />

Labeled Control DNA and the newly<br />

labeled (experimental) DNA were<br />

spotted on, fixed <strong>to</strong>, and directly<br />

detected on a Boehringer Mannheim<br />

Nylon Membrane, with colorimetric<br />

(Panel A) or chemiluminescent<br />

detection (Panel B).<br />

56<br />

Procedures for Labeling DNA, RNA, and Oligonucleotides with DIG, Biotin, or Fluorochromes<br />

3 Use table 1 on page 34 <strong>to</strong> estimate the<br />

expected yield of DNA labeling reactions.<br />

Predilute an aliquot of the newly<br />

labeled experimental DNA probe <strong>to</strong> an<br />

expected final concentration of approx.<br />

1 ng/µl.<br />

or<br />

Predilute an aliquot of the newly labeled<br />

experimental oligonucleotide probe <strong>to</strong><br />

a final concentration of 2.5 pmol/µl.<br />

or<br />

Predilute an aliquot of the newly<br />

synthesized experimental RNA probe<br />

<strong>to</strong> an expected final concentration of<br />

approx. 20 ng/µl. <strong>In</strong> a standard RNA<br />

labeling reaction approx. 10 µg newly<br />

synthesized DIG-RNA probe is transcribed<br />

from 1 µg DNA template<br />

4 Make serial dilutions of the prediluted<br />

experimental probe, according <strong>to</strong> the<br />

appropriate dilution scheme:<br />

– for DNA probes, use dilution scheme A,<br />

– for oligonucleotide probes, use dilution<br />

scheme B,<br />

– for RNA probes, use dilution scheme C,<br />

5 Spot 1 µl of the diluted controls on a<br />

piece of nylon membrane:<br />

– for DNA probes, spot dilutions B–E,<br />

– for oligonucleotide probes, spot dilution<br />

A–E,<br />

– for RNA probes, spot dilutions C–F.<br />

6 <strong>In</strong> a second row, spot 1 µl of the corresponding<br />

dilutions of the experimental<br />

probe.<br />

7 Fix the nucleic acids <strong>to</strong> the membrane by<br />

cross-linking with UV-light or by baking<br />

for 30 min at +120°C (Boehringer<br />

Mannheim Nylon Membrane).<br />

8 Wash the membrane briefly in washing<br />

buffer.<br />

A<br />

B<br />

10 3 1 0.3 0.1 0.03 0.01 0 pg<br />

100 10 1 0.1 0.01 0 pg<br />

Control<br />

9 <strong>In</strong>cubate the membrane in blocking<br />

solution for 30 min at room temperature.<br />

10 Dilute Anti-DIG-alkaline phosphatase<br />

1:5,000 in blocking solution.<br />

11 <strong>In</strong>cubate the membrane in the diluted<br />

antibody solution for 30 min at room<br />

temperature. The diluted antibody solution<br />

must cover the entire membrane.<br />

12 Wash the membrane twice, 15 min per<br />

wash, in washing buffer at room temperature.<br />

13 <strong>In</strong>cubate the membrane in detection<br />

buffer for 2 min.<br />

14 Mix 45 µl NBT solution and 35 µl BCIP<br />

solution in 10 ml of detection buffer.<br />

This color substrate solution must be<br />

prepared freshly.<br />

Note: Alternatively, chemiluminescent<br />

detection can be performed, using the<br />

DIG Luminescent Detection Kit*.<br />

15 Pour off the detection buffer and add<br />

the color substrate solution. Allow the<br />

color development <strong>to</strong> occur in the dark.<br />

The color precipitate starts <strong>to</strong> form<br />

within a few minutes and continues for<br />

approx. 16 h.<br />

Do not shake while the color is developing.<br />

16 When the spots appear in sufficient<br />

intensity, s<strong>to</strong>p the reaction by washing<br />

the membrane with TE buffer or sterile<br />

H2O for 5 min.<br />

17 Compare spot intensities of the control<br />

and experimental dilutions <strong>to</strong> estimate<br />

the concentration of the experimental<br />

probe (See Figure 1).<br />

Experimental<br />

Control<br />

Experimental<br />

*Sold under the tradename of Genius in the US.<br />

CONTENTS<br />

INDEX


CONTENTS<br />

INDEX<br />

Procedures<br />

for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong><br />

<strong>to</strong> Chromosomes ,<br />

Cells, and Tissue Sections


5<br />

58<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong><br />

Chromosomes, Cells, and Tissue Sections<br />

This chapter includes contributions from<br />

several leading scientists, from researchers<br />

in molecular biology <strong>to</strong> clinical pathologists,<br />

who practice in situ hybridization.<br />

Pro<strong>to</strong>cols are given for in situ hybridizations<br />

on widely varying substrates, e.g.,<br />

chromosome spreads, chromosomes in<br />

suspension, single cells, paraffin-embedded<br />

tissue sections, ultrathin tissue sections, and<br />

whole mount preparations. <strong>Hybridization</strong><br />

methods are described for both DNA and<br />

RNA targets.<br />

Applications covered include gene mapping,<br />

gene expression, developmental biology,<br />

tumor biology, cell sorting, clinical cy<strong>to</strong>genetics,<br />

and analysis of infectious diseases.<br />

These procedures use digoxigenin, biotin,<br />

and fluorochromes for labeling DNA,<br />

RNA and oligonucleotides. Labeling techniques<br />

include the classical methods, such as<br />

random primed DNA labeling, nick translation,<br />

and oligonucleotide tailing with<br />

terminal transferase, as well as more modern<br />

methods such as PCR and “PRINS”, a<br />

novel and highly sensitive approach <strong>to</strong> in<br />

situ hybridization, in which the probe is<br />

labeled after its hybridization <strong>to</strong> the target<br />

nucleic acid.<br />

Please note that the pro<strong>to</strong>cols have been<br />

optimized by members of the individual<br />

labora<strong>to</strong>ries and can be varied if necessary.<br />

CONTENTS<br />

INDEX


Contents<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

<strong>In</strong> situ hybridization <strong>to</strong> human metaphase chromosomes using DIG-, biotin- or<br />

fluorochrome-labeled DNA probes and detection with fluorochrome conjugates. 62<br />

J. Wiegant, Department of Cy<strong>to</strong>chemistry and Cy<strong>to</strong>metry, University of Leiden, The<br />

Netherlands; U. Mathieu and P. Lichter, German Cancer Research Center,<br />

Heidelberg, Germany; J. Wienberg and N. Arnold, <strong>In</strong>stitute for Anthropology and<br />

Human Genetics, University of Munich, Germany; S. Popp and T. Cremer, <strong>In</strong>stitute<br />

for Human Genetics and Anthropology, University of Heidelberg, Germany; D. C.<br />

Ward, Human Genetics Department, Yale University, New Haven, Connecticut,<br />

USA; S. Joos and P. Lichter, German Cancer Research Center, Heidelberg, Germany.<br />

Detection of chromosomal imbalances using DOP-PCR<br />

and comparative genomic hybridization (CGH). 72<br />

S. Joos, B. Schütz, M. Bentz, and P. Lichter, German Cancer Research Center,<br />

Heidelberg, Germany.<br />

Identification of chromosomes in metaphase spreads and interphase nuclei<br />

with PRINS Oligonucleotide Primers and DIG- or rhodamine-labeled nucleotides. 79<br />

R. Seibl, Research Labora<strong>to</strong>ries, Boehringer Mannheim GmbH, Penzberg, Germany.<br />

Identification of chromosomes in metaphase spreads with DIG- or<br />

fluorescein-labeled human chromosome-specific satellite DNA probes. 88<br />

G.Sagner,ResearchLabora<strong>to</strong>ries, Boehringer Mannheim GmbH, Penzberg, Germany.<br />

Fluorescence in situ hybridization of a repetitive DNA probe <strong>to</strong> human<br />

chromosomes in suspension. 94<br />

D. Celeda, U. Bettag, and C. Cremer, <strong>In</strong>stitute for Applied Physics and <strong>In</strong>stitute for<br />

Human Genetics and Anthropology, University of Heidelberg, Germany.<br />

A simplified and efficient pro<strong>to</strong>col for nonradioactive in situ hybridization<br />

<strong>to</strong> polytene chromosomes with a DIG-labeled DNA probe. 97<br />

E. R. Schmidt, <strong>In</strong>stitute for Genetics, Johannes Gutenberg-University of Mainz,<br />

Germany.<br />

Multiple-target DNA in situ hybridization with enzyme-based cy<strong>to</strong>chemical<br />

detection systems. 100<br />

E. J. M. Speel, F. C. S. Rameaekers, and A. H. N. Hopman, Department of Molecular<br />

Cell Biology & Genetics, University of Limburg, Maastricht, The Netherlands.<br />

DNA in situ hybridization with an alkaline phosphatase-based<br />

fluorescent detection system. 108<br />

G. Sagner, Research Labora<strong>to</strong>ries, Boehringer Mannheim GmbH, Penzberg, Germany.<br />

CONTENTS<br />

INDEX<br />

59<br />

5


5<br />

60<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

Combined DNA in situ hybridization and immunocy<strong>to</strong>chemistry<br />

for the simultaneous detection of nucleic acid sequences, proteins,<br />

and incorporated BrdU in cell preparations. 110<br />

E. J. M. Speel, F. C. S. Rameaekers, and A. H. N. Hopman, Department of Molecular<br />

Cell Biology & Genetics, University of Limburg, Maastricht, The Netherlands.<br />

<strong>In</strong> situ hybridization <strong>to</strong> mRNA in in vitro cultured cells with DNA probes. 116<br />

Department of Cy<strong>to</strong>chemistry and Cy<strong>to</strong>metry, University of Leiden, The<br />

Netherlands.<br />

Identification of single bacterial cells using DIG-labeled oligonucleotides. 119<br />

B. Zarda, R. Amann, and K.-H. Schleifer, <strong>In</strong>stitute for Microbiology, Technical<br />

University of Munich, Germany.<br />

ISH <strong>to</strong> tissues<br />

Detection of HPV11 DNA in paraffin-embedded laryngeal tissue<br />

with a DIG-labeled DNA probe. 122<br />

J. Rolighed and H. Lindeberg, ENT-department and <strong>In</strong>stitute for Pathology Aarhus<br />

University Hospital, Denmark.<br />

Detection of mRNA in tissue sections using DIG-labeled RNA<br />

and oligonucleotide probes. 126<br />

P. Komminoth, Division of Cell and Molecular Pathology, Department of Pathology,<br />

University of Zürich, Switzerland.<br />

Detection of mRNA on paraffin embedded material of the central nervous<br />

system with DIG-labeled RNA probes. 136<br />

H. Breitschopf and G. Suchanek, Research Unit for Experimental Neuropathology,<br />

Austrian Academy of Sciences, Vienna, Austria.<br />

RNA-RNA in situ hybridization using DIG-labeled probes: the effect of high<br />

molecular weight polyvinyl alcohol on the alkaline phosphatase<br />

indoxyl-nitroblue tetrazolium reaction. 141<br />

M. De Block and D. Debrouwer, Plant Genetic Systems N.V., Gent, Belgium.<br />

Detection of neuropeptide mRNAs in tissue sections using<br />

oligonucleotides tailed with fluorescein-12-dUTP or DIG-dUTP. 146<br />

Department of Cy<strong>to</strong>chemistry and Cy<strong>to</strong>metry, University of Leiden, The<br />

Netherlands.<br />

<strong>In</strong> situ hybridization of DIG-labeled rRNA probes <strong>to</strong> mouse liver ultrathin sections. 148<br />

D. Fischer, D. Weisenberger, and U. Scheer, <strong>In</strong>stitute for Zoology I, University of<br />

Würzburg, Germany.<br />

RNA in situ hybridization using DIG-labeled cRNA probes. 152<br />

H. B. P. M. Dijkman, S. Mentzel, A. S. de Jong, and K. J. M. Assmann, Department of<br />

Pathology, Nijmegen University Hospital, Nijmegen, The Netherlands.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

Localization of the expression of the segmentation gene hunchback<br />

in Drosophila embryos with DIG-labeled DNA probes. 158<br />

D. Tautz, <strong>In</strong>stitute for Genetics and Microbiology, University of Munich, Germany.<br />

Detection of even-skipped transcripts in Drosophila embryos<br />

with PCR/DIG-labeled DNA probes. 162<br />

N. Patel and C. Goodman, Carnegie <strong>In</strong>stitute of Washing<strong>to</strong>n, Embryology<br />

Department, Baltimore, Maryland, USA.<br />

Whole mount fluorescence in situ hybridization (FISH) of repetitive DNA<br />

sequences on interphase nuclei of the small cruciferous plant Arabidopsis<br />

thaliana. 165<br />

Serge Bauwens and Patrick Van Oostveldt, Labora<strong>to</strong>ry for Genetics and Labora<strong>to</strong>ry<br />

for Biochemistry and Molecular Cy<strong>to</strong>logy, Gent University, Gent, Belgium.<br />

CONTENTS<br />

INDEX<br />

61<br />

5


5<br />

62<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

<strong>In</strong> situ hybridization <strong>to</strong> human metaphase<br />

chromosomes using DIG-, biotin-, or fluorochromelabeled<br />

DNA probes and detection with fluorochrome<br />

conjugates<br />

J. Wiegant, Department of Cy<strong>to</strong>chemistry and Cy<strong>to</strong>metry, Leiden University, Netherlands.<br />

<strong>In</strong> recent years, a number of improvements<br />

in chromosomal in situ hybridization pro<strong>to</strong>cols<br />

have been achieved. These have<br />

allowed a fairly high success rate for single<br />

copy gene localization as well as competition<br />

in situ hybridization. Here we present<br />

a detailed outline of the procedure that has<br />

been successfully applied in various<br />

labora<strong>to</strong>ries.<br />

The procedures have been optimized for<br />

fluorescent detection. For the second edition<br />

of this manual, we have included new<br />

procedures and new illustrations for multicolor,<br />

multitarget fluorescent detection.<br />

The procedures have also been used with<br />

slight modifications by the groups of Dr. P.<br />

Lichter, Dr. J. Wienberg, Dr. T. Cremer<br />

and Dr. D. Ward. The illustrative material<br />

they have provided below demonstrates<br />

the flexibility and wide applicability of the<br />

technique.<br />

At the end of the article, Dr. Lichter’s<br />

group has provided a troubleshooting<br />

guide <strong>to</strong> help solve hybridization problems<br />

that may occur.<br />

I. Pretreatment of metaphase<br />

spreads on slides (optional)<br />

1 <strong>In</strong>cubate metaphase spreads with 100 µl<br />

of 100 µg/ml RNase A (in 2 x SSC)<br />

under a coverslip for 1 h at 37°C.<br />

2 Wash slides 3 x 5 min with 2 x SSC.<br />

3 Dehydrate slides in an ethanol series<br />

(increasing ethanol concentrations).<br />

4 <strong>In</strong>cubate with 0.005–0.02% pepsin in<br />

10 mM HCl for 10 min at 37°C.<br />

5 Wash slides as follows:<br />

2 x 5 min with PBS.<br />

Once with PBS containing 50 mM<br />

MgCl2.<br />

6 Post-fix for 10 min at room temperature<br />

with a solution of PBS containing 50 mM<br />

MgCl2 and 1% formaldehyde.<br />

7 Wash with PBS and dehydrate (as in<br />

Step 3 above).<br />

II. Denaturation and hybridization<br />

For denaturation and hybridization three<br />

alternative pro<strong>to</strong>cols are given:<br />

A. For probes recognizing repetitive<br />

targets such as the alphoid sequences<br />

B. For probes recognizing unique<br />

sequences<br />

C. For probes or probe cocktails which<br />

contain repetitive sequences occurring<br />

throughout the genome (e.g., Alu<br />

sequences) [competition hybridization]<br />

A. For repetitive probes<br />

1 Using digoxigenin- (DIG-), biotin-, or<br />

any fluorochrome-labeled nucleotide,<br />

label 1 µg of DNA probe according <strong>to</strong><br />

the procedures described in Chapter 4<br />

of this manual.<br />

2 Precipitate the labeled probe with<br />

ethanol.<br />

3 Prepare a probe s<strong>to</strong>ck solution as follows:<br />

Resuspend the precipitated probe at a<br />

concentration of 10 ng/µl in a solution<br />

containing 60% deionized formamide,<br />

2 x SSC, 50 mM sodium<br />

phosphate; pH 7.0.<br />

<strong>In</strong>cubate the tube for 15 min at 37°C<br />

with occasional vortexing until the<br />

precipitated DNA dissolves.<br />

4 Dilute the probe from the s<strong>to</strong>ck <strong>to</strong> the<br />

desired concentration (typically 2 ng/µl)<br />

in a solution containing 60% deionized<br />

formamide, 2 x SSC, 50 mM sodium<br />

phosphate; pH 7.0.<br />

5 Apply 5 µl diluted probe under a coverslip<br />

on the object slide and place the<br />

slide in an oven at 80°C for 2–4 min <strong>to</strong><br />

denature the probe and target.<br />

Note: Sealing with rubber cement is not<br />

manda<strong>to</strong>ry.<br />

6 To hybridize, place the slides in a moist<br />

chamber at 37°C overnight.<br />

7 Wash the slide as follows:<br />

3 x 5 min at 37°C with 2 x SSC containing<br />

60% formamide.<br />

1 x 5 min with the buffer <strong>to</strong> be used<br />

for immunological detection.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

B. For unique probes<br />

1 Prepare the probe s<strong>to</strong>ck solution as<br />

described under Procedure IIA, but use<br />

a solution containing 50% deionized<br />

formamide, 2 x SSC, 10% dextran sulfate,<br />

50 mM sodium phosphate; pH 7.<br />

2 Dilute 2–5 µl of the probe s<strong>to</strong>ck solution<br />

<strong>to</strong> 10 µl with a solution containing<br />

50% deionized formamide, 2 x SSC,<br />

10% dextran sulfate, 50 mM sodium<br />

phosphate; pH 7. Mix well!<br />

3 To denature probe and target, do the<br />

following:<br />

Apply 10 µl of the dilute hybridization<br />

solution under a coverslip on the<br />

object slide.<br />

Seal coverslip <strong>to</strong> slide with rubber<br />

cement.<br />

Place the slide in an oven at 80°C for<br />

2–4 min.<br />

4 To hybridize, place the slides in a moist<br />

chamber at 37°C overnight.<br />

5 Wash the slide as follows:<br />

3 x 5 min at 45°C with 2 x SSC containing<br />

50% formamide.<br />

5 x 2 min with 2 x SSC.<br />

1 x 5 min with the buffer used in<br />

detection.<br />

C. For probes containing repetitive<br />

elements [competitive hybridization]<br />

1 Using DIG-, biotin-, or any fluorochrome-labeled<br />

nucleotides, label 1 µg<br />

of DNA probe according <strong>to</strong> the<br />

procedures described in Chapter 4 of<br />

this manual.<br />

2 To precipitate the labeled probe, do the<br />

following:<br />

Add a 50-fold excess of human Cot-1<br />

DNA (or 500-fold excess fragmented<br />

human placenta DNA), a 50-fold<br />

excess of fragmented herring sperm<br />

DNA, a 50-fold excess of yeast<br />

tRNA, 1/10th volume of 3 M sodium<br />

acetate ( pH 5.6), and 2.5 volumes of<br />

cold (–20°C) ethanol.<br />

<strong>In</strong>cubate for 30 min on ice.<br />

Centrifuge for 30 min at 4°C.<br />

Discard the supernatant and dry the<br />

pellet.<br />

CONTENTS<br />

INDEX<br />

3 Prepare a probe s<strong>to</strong>ck solution by<br />

dissolving the pellet in a solution of<br />

50% deionized formamide, 2 x SSC,<br />

10% dextran sulfate, 50 mM sodium<br />

phosphate; pH 7. Depending on the<br />

probe cocktail, the final concentration<br />

ranges from 10–40 ng/µl. Mix well!<br />

Examples: Prepare a 10 ng/µl s<strong>to</strong>ck<br />

solution of cosmid probes, a 20 ng/µl<br />

s<strong>to</strong>ck of chromosome specific libraries,<br />

or a 40 ng/µl s<strong>to</strong>ck of YAC probes.<br />

4 For hybridization, dilute the probe from<br />

the s<strong>to</strong>ck <strong>to</strong> the desired concentration in<br />

a solution of 50% deionized formamide,<br />

2 x SSC, 10% dextran sulfate, 50 mM<br />

sodium phosphate; pH 7.<br />

Examples: For hybridization, use<br />

2–5 ng/µl of cosmid probes, 10–20 ng/µl<br />

of chromosome specific libraries, or<br />

20–40 ng/µl of YAC probes.<br />

5 Denature the probe at 75°C for 5 min,<br />

chill on ice, and allow annealing of<br />

the repetitive elements at 37°C for<br />

either 30 min (if Cot-1 DNA is used as<br />

competi<strong>to</strong>r) or 2 h (if <strong>to</strong>tal human<br />

placenta DNA is used as competi<strong>to</strong>r).<br />

6 Prepare the chromosomes on the slide<br />

by performing the following steps:<br />

To the chromosomes, add a solution<br />

of 70% formamide, 2 x SSC, 50 mM<br />

sodium phosphate; pH 7. Cover with<br />

a coverslip.<br />

<strong>In</strong>cubate in an oven at 80°C for 2–4<br />

min <strong>to</strong> denature the chromosomes.<br />

Remove the coverslip and quench the<br />

chromosomes in chilled 70% ethanol.<br />

Dehydrate the slide by passing<br />

it through 90% ethanol, then 100%<br />

alcohol.<br />

Air dry the slide, preferably on a<br />

metal plate at 37°C.<br />

7 Hybridize the chromosomes overnight<br />

with 10 µl of the pre-annealed probe<br />

(from Step 5) under a sealed coverslip.<br />

8 Wash the slide as follows:<br />

3 x 5 min at 45°C with 2 x SSC containing<br />

50% formamide.<br />

3 x 5 min at 60°C with 0.1 x SSC.<br />

1 x 5 min with the buffer <strong>to</strong> be used in<br />

immunological detection.<br />

63<br />

5


5<br />

64<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

III. Single color fluorescent detection<br />

with immunological amplification<br />

A1. Biotin-labeled probe, low sensitivity<br />

1 Wash slides briefly with TNT buffer<br />

[100 mM Tris-HCl (pH 7.5), 150 mM<br />

NaCl, 0.05% Tween ® 20].<br />

2 <strong>In</strong>cubate for 30 min at 37°C with TNB<br />

buffer [100 mM Tris-HCl (pH 7.5),<br />

150 mM NaCl, 0.5% blocking reagent].<br />

3 <strong>In</strong>cubate for 30 min at 37°C with the<br />

proper dilution (typically 10 µg/ml) of a<br />

fluorescently labeled streptavidin conjugate<br />

in TNB.<br />

4 Wash the slides (3 x 5 min) with TNT.<br />

5 Prepare the slides for viewing by performing<br />

the following steps:<br />

Dehydrate through an ethanol series<br />

(70%, then 90%, then 100% ethanol;<br />

5 min each).<br />

Air dry.<br />

Stain with the appropriate DNA<br />

counterstain.<br />

Embed in Vectashield (Vec<strong>to</strong>r).<br />

6 View the slides by fluorescence microscopy,<br />

using appropriate filters.<br />

A2. Biotin-labeled probe, high sensitivity<br />

1 Wash slides briefly with TNT buffer<br />

[100 mM Tris-HCl (pH 7.5), 150 mM<br />

NaCl, 0.05% Tween ® 20].<br />

2 <strong>In</strong>cubate for 30 min at 37°C with TNB<br />

buffer [100 mM Tris-HCl (pH 7.5),<br />

150 mM NaCl, 0.5% blocking reagent].<br />

3 <strong>In</strong>cubate for 30 min at 37°C with the<br />

proper dilution (typically 10 µg/ml) of a<br />

fluorescently labeled streptavidin conjugate<br />

in TNB.<br />

4 Wash the slides (3 x 5 min) with TNT.<br />

5 <strong>In</strong>cubate the slides for 30 min at 37°C<br />

with the proper dilution of biotinylated<br />

goat anti-streptavidin (5 µg/ml) in TNB.<br />

6 Repeat the washes as in Step 4.<br />

7 Repeat Step 3.<br />

8 Repeat the washes as in Step 4.<br />

9 Prepare the slides for viewing as in the<br />

biotin low sensitivity procedure (Procedure<br />

IIIA1), Step 5.<br />

B1. Digoxigenin-labeled probe,<br />

low sensitivity<br />

1 Wash slides briefly with TNT buffer<br />

[100 mM Tris-HCl (pH 7.5), 150 mM<br />

NaCl, 0.05% Tween 20].<br />

2 <strong>In</strong>cubate for 30 min at 37°C with TNB<br />

buffer [100 mM Tris-HCl (pH 7.5),<br />

150 mM NaCl, 0.5% blocking reagent].<br />

3 <strong>In</strong>cubate for 30 min at 37°C with the<br />

proper dilution (typically 2 µg/ml, in<br />

TNB) of a fluorescently labeled sheep<br />

anti-DIG antibody.<br />

4 Wash the slides (3 x 5 min) with TNT.<br />

5 Prepare the slides for viewing as in the<br />

biotin low sensitivity procedure (Procedure<br />

IIIA1), Step 5.<br />

B2. Digoxigenin-labeled probe,<br />

high sensitivity<br />

1 Wash slides briefly with TNT buffer<br />

[100 mM Tris-HCl (pH 7.5), 150 mM<br />

NaCl, 0.05% Tween ® 20].<br />

2 Pipette 100 µl of TNB buffer [100 mM<br />

Tris-HCl (pH 7.5), 150 mM NaCl,<br />

0.5% blocking reagent] on<strong>to</strong> each slide<br />

and cover with a 24 x 50 mm coverslip.<br />

<strong>In</strong>cubate for 30 min at 37°C in a moist<br />

chamber (1 L beaker containing moistened<br />

tissues, covered with aluminum<br />

foil).<br />

3 Immerse the slides for 5 min in TNT <strong>to</strong><br />

loosen the coverslips.<br />

4 Prepare fresh working solutions of three<br />

antibodies:<br />

Antibody 1 working solution: mouse<br />

monoclonal anti-DIG, 0.5 µg/ml in<br />

TNB.<br />

Antibody 2 working solution: DIGconjugated<br />

sheep anti-mouse Ig,<br />

2µg/ml in TNB.<br />

Antibody 3 working solution: fluorescein-<br />

or rhodamine-conjugated sheep<br />

anti-DIG, 2 µg/ml in TNB.<br />

Note: The three antibodies used in<br />

this procedure are also available in the<br />

Fluorescent Antibody Enhancer Set<br />

for DIG Detection.<br />

5 Pipette 100 µl of antibody 1 working solution<br />

on<strong>to</strong> each slide and cover with a<br />

24 x50mmcoverslip.<strong>In</strong>cubatefor30min at<br />

37°C in a moist chamber.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

6 Wash the slides (3 x 5 min) at room<br />

temperature with TNT.<br />

7 Pipette 100 µl of antibody 2 working<br />

solution on<strong>to</strong> each slide and add a 24 x<br />

50 mm coverslip. <strong>In</strong>cubate for 30 min at<br />

37°C in a moist chamber.<br />

8 Repeat the washes as in Step 6.<br />

9 Pipette 100 µl of antibody 3 working<br />

solution on<strong>to</strong> each slide and add a 24 x<br />

50 mm coverslip. <strong>In</strong>cubate for 30 min at<br />

37°C in a moist chamber.<br />

Note: For even higher sensitivity, repeat<br />

Steps 5–8 before performing the incubation<br />

with antibody 3 (Step 9).<br />

10 Repeat the washes as in Step 6.<br />

11 Prepare the slides for viewing as in the<br />

biotin low sensitivity procedure (Procedure<br />

IIIA1), Step 5.<br />

C1. Fluorescently labeled probes<br />

(fluorescein, coumarin, CY3, rhodamine,<br />

Texas Red), low sensitivity<br />

After the posthybridization washes (Procedure<br />

II), prepare the slides for viewing as<br />

in the biotin low sensitivity procedure<br />

(Procedure IIIA1), Step 5.<br />

C2. Fluorescein-labeled probes,<br />

high sensitivity<br />

1 Wash slides briefly with TNT buffer<br />

[100 mM Tris-HCl (pH 7.5), 150 mM<br />

NaCl, 0.05% Tween ® 20].<br />

2 <strong>In</strong>cubate for 30 min at 37°C with TNB<br />

buffer [100 mM Tris-HCl (pH 7.5),<br />

150 mM NaCl, 0.5% blocking reagent].<br />

3 <strong>In</strong>cubate for 30 min at 37°C with the<br />

proper dilution of an anti-fluorescein<br />

antibody (either polyclonal or monoclonal)<br />

in TNB.<br />

4 Wash the slides (3 x 5 min) with TNT.<br />

5 Depending on the antibody used in Step 3,<br />

incubate with the proper dilution of a<br />

fluorescently labeled rabbit anti-mouse<br />

or goat anti-rabbit antibody in TNB for<br />

30 min at 37°C.<br />

6 Repeat the washes as in Step 4.<br />

7 Prepare the slides for viewing as in the<br />

biotin low sensitivity procedure (Procedure<br />

IIIA1), Step 5.<br />

CONTENTS<br />

INDEX<br />

IV. Multicolor fluorescence in situ<br />

hybridization (Multicolor FISH)<br />

For multicolor FISH, several sets of probes<br />

with different labels must be hybridized<br />

simultaneously <strong>to</strong> the target and visualized<br />

with combinations of antibodies.<br />

Table 1 lists an antibody-probe matrix<br />

which allows a triple color detection of<br />

three differently labeled chromosome<br />

specific libraries (so-called chromosome<br />

painting probes).<br />

<strong>In</strong>cubation Probe 1 Probe 2 Probe 3<br />

Biotin Digoxigenin Fluorescein<br />

1 Streptavidin- Mouse anti- Rabbit anti-<br />

Texas Red DIG antibody fluorescein antibody<br />

2 Biotin-labeled Sheep anti-mouse FITC-labeled goat<br />

anti-streptavidin antibody anti-rabbit antibody<br />

3 Streptavidin- AMCA-labeled<br />

Texas Red sheep anti-DIG<br />

antibody<br />

Note: Be careful that the selected antibodies<br />

do not cross-react.<br />

Outline of pro<strong>to</strong>col for multicolor FISH<br />

1 Simultaneously hybridize all probes<br />

listed in Table 1 <strong>to</strong> the target.<br />

2 For each of the 3 detection incubations,<br />

perform the following steps:<br />

Prepare the antibodies needed in the<br />

incubation (as listed in Table 1) at the<br />

proper dilution in the correct buffer.<br />

Note: Use the procedures in Section<br />

III above as a guideline.<br />

Mix all antibodies needed in the<br />

incubation and incubate simultaneously<br />

with the slide.<br />

Perform blocking and washing steps<br />

as in Section III above.<br />

3 Repeat Step 2 until all incubations are<br />

complete.<br />

4 Do not counterstain the slides, but<br />

dehydrate, air dry, and mount the slides<br />

as in the biotin low sensitivity procedure<br />

(Procedure IIIA1), Step 5.<br />

65<br />

5


5<br />

Figure 1: FISH of CY3-labeled<br />

satellite III probe pUC1.77 (chromosome<br />

1) <strong>to</strong> human lymphocyte<br />

metaphase and interphase cells.<br />

The slides were counterstained with<br />

YOYO-1. The pho<strong>to</strong>micrograph was<br />

taken with a double band-pass<br />

fluorescence filter <strong>to</strong> allow simultaneous<br />

visualization of fluorescein<br />

and Texas Red.<br />

66<br />

<br />

Figure 2: Triple color FISH of <br />

coumarin-labeled satellite III<br />

probe pUC1.77 (chromosome 1),<br />

fluorescein-labeled alphoid probe<br />

pBamX5 (chromosome X), and<br />

rhodamine-labeled alphoid probe<br />

p17H8 (chromosome 17) <strong>to</strong> human<br />

lymphocyte metaphase and<br />

interphase cells. The<br />

pho<strong>to</strong>micrograph was taken by<br />

superimposing the coumarin,<br />

fluorescein, and rhodamine images.<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

V. Results obtained with human<br />

metaphase chromosome spreads<br />

The following examples (from our<br />

labora<strong>to</strong>ry and other labora<strong>to</strong>ries) show<br />

different applications of the procedures<br />

described in this section .<br />

A. Multicolor FISH of human lymphocyte<br />

metaphase and interphase cells<br />

from the Department of Cy<strong>to</strong>chemistry<br />

and Cy<strong>to</strong>metry, Leiden University, Netherlands<br />

The techniques described above allow the<br />

detection of two, three, or many different<br />

probes simultaneously (Figures 1–4).<br />

<br />

Figure 3: Double color FISH of a biotin-labeled<br />

chromosome1-specific library and a digoxigeninlabeled<br />

chromosome 4-specific library <strong>to</strong> human<br />

lymphocyte metaphase and interphase cells.<br />

The libraries were visualized by a combined<br />

immunocy<strong>to</strong>chemical reaction using fluoresceinlabeled<br />

anti-digoxigenin and Texas Red-labeled<br />

streptavidin. The pho<strong>to</strong>micrograph was taken with a<br />

double band-pass fluorescence filter <strong>to</strong> allow<br />

simultaneous visualization of fluorescein and Texas<br />

B. Detection of a trisomy in a leukemia<br />

patient in interphase nuclei using double<br />

in situ hybridization<br />

from U. Mathieu and Dr. P. Lichter,<br />

German Cancer Research Center,<br />

Heidelberg, Germany.<br />

Nick translation was used <strong>to</strong> label a<br />

chromosome 17-specific alphoid DNA (with<br />

digoxigenin) and a chromosome 18-specific<br />

alphoid DNA (with biotin). Both the digoxigenin-labeled<br />

and the biotin-labeled<br />

probes were hybridized <strong>to</strong> a chromosome<br />

sample from a leukemia patient. The procedures<br />

described above for repetitive DNA<br />

(Procedure IIA of this article) were used for<br />

slide preparation, labeling, and hybridization,<br />

except the following minor modifications<br />

were necessary for alphoid DNA:<br />

1 After nick translation labeling, concentrate<br />

the probe (approx. 10–30 ng DNA)<br />

by drying the DNA directly in the tube.<br />

Note: Ethanol precipitation is not<br />

necessary.<br />

2 Dissolve the dried DNA pellet in 60%<br />

formamide, 2 x SSC.<br />

Note: Do not use dextran sulfate in the<br />

resuspension buffer. Omission of<br />

dextran sulfate reduces the chance of<br />

cross-hybridization.<br />

3 After hybridization, use the following<br />

washes:<br />

3 x 5 min at 42°C with 60% formamide,<br />

2 x SSC; pH 7.<br />

Note: Compared <strong>to</strong> the standard<br />

pro<strong>to</strong>col the concentration of formamide<br />

is increased up <strong>to</strong> 60%.<br />

Figure 4: Twelve color FISH of 12 different ratiolabeled<br />

chromosome-specific libraries <strong>to</strong> human<br />

lymphocyte metaphase and interphase cells.<br />

For details of the experiment, see Dauwerse et al.<br />

(1992). The pho<strong>to</strong>micrograph was created by superimposing<br />

the coumarin image and the image obtained<br />

with a double band-pass fluorescence filter<br />

(<strong>to</strong> allow simultaneous visualization of fluorescein<br />

and Texas Red).<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Figure 5 shows the result of the hybridization.<br />

The digoxigenin-labeled probe was<br />

visualized with anti-DIG-rhodamine; the<br />

biotin-labeled probe, with avidin-FITC.<br />

<br />

Figure 5: Double color FISH of a digoxigeninlabeled<br />

chromosome 17-specific probe and a<br />

biotin-labeled chromosome 18-specific probe<br />

<strong>to</strong> a human chromosome preparation containing<br />

a trisomy. Each alphoid DNA probe was specific<br />

for the centromere of its target chromosome. <strong>In</strong> the<br />

metaphase and in the interphase, the probes detected<br />

three signals (green) from chromosome 18<br />

and two signals (red) from chromosome 17. DAPI<br />

was used for counterstaining.<br />

C. Detection of a trisomy and a tetrasomy<br />

in interphase nuclei of a leukemia patient<br />

with two different cosmid probes<br />

from U. Mathieu and Dr. P. Lichter<br />

A digoxigenin-labeled cosmid probe specific<br />

for chromosome 14 and a biotin-labeled<br />

cosmid probe specific for chromosome 21<br />

were used <strong>to</strong> detect polyploidy in a<br />

leukemia patient (Figure 6). Probes were<br />

labeled by nick translation and visualized<br />

with either anti-DIG-rhodamine (chromosome<br />

14-specific probe) or avidin-FITC<br />

(chromosome 21-specific probe).<br />

<br />

Figure 6: Double color FISH of a digoxigeninlabeled<br />

chromosome 14-specific cosmid probe<br />

and a biotin-labeled chromosome 21-specific<br />

cosmid probe <strong>to</strong> a human chromosome preparation<br />

of a leukemia patient containing a trisomy<br />

and a tetrasomy. <strong>In</strong> the interphase nuclei, the<br />

cosmid DNA probes detected three copies (red) of<br />

chromosome 14 and four copies (green) of<br />

chromosome 21. DAPI was used for<br />

CONTENTS<br />

INDEX<br />

D. <strong>In</strong>terphase nuclei of a patient with<br />

Ph1-positive ALL (acute lymphoblastic<br />

leukemia)<br />

from M. Bentz, P. Lichter, H. Döhner and<br />

G. Cabot.<br />

The Philadelphia chromosome (Ph1) is the<br />

derivative of a translocation between<br />

chromosome 9 and chromosome 22 [(t9;22)<br />

(q34;q11)]. Figure 7 shows the use of two<br />

probes, one specific for chromosome 9 and<br />

the other specific for chromosome 22, <strong>to</strong><br />

detect Ph1.<br />

E. Chromosomal in situ suppression (CISS)<br />

hybridization of the human DNA library<br />

specific for chromosome 2 <strong>to</strong> chromosomes<br />

of Gorilla gorilla<br />

from Dr. J. Wienberg and Dr. N. Arnold,<br />

<strong>In</strong>stitute for Anthropology and Human<br />

Genetics, University of Munich, Germany.<br />

The hybridization pattern (Figure 8) obtained<br />

with specific DNA probe sets<br />

(Weinberg et al., 1990) confirms the<br />

assumed fusion of two submetacentric<br />

chromosomes during human evolution.<br />

<br />

Figure 8: FISH of a chromosome 2-specific library<br />

<strong>to</strong> chromosomes of Gorilla gorilla. Standard<br />

chromosome preparations were obtained from EBVtransformed<br />

lymphoblas<strong>to</strong>id cell lines. DNA probes<br />

were from flow-sorted human chromosomes cloned<br />

<strong>to</strong> phages or plasmids. Probes were labeled with<br />

digoxigenin by nick translation. Detection was performed<br />

with monoclonal mouse anti-DIG antibody,<br />

rabbit anti-mouse-TRITC, and goat anti-rabbit-TRITC.<br />

<br />

Figure 7: Double color FISH <strong>to</strong><br />

detect the Philadelphia<br />

chromosome (Ph1) in a patient<br />

with ALL. A cosmid probe specific<br />

for chromosome 9 and a YAC probe<br />

specific for chromosome 22 were<br />

hybridized <strong>to</strong> interphase nuclei<br />

(Bentz et al., 1994). These two<br />

probes detected two red<br />

(rhodamine) signals from<br />

chromosomes 22, one green (FITC)<br />

signal from chromosome 9 and one<br />

yellow signal caused by the<br />

overlapping of red (chromosome 22)<br />

and green (chromosome 9) signals<br />

on Ph1. DAPI was used for counterstaining.<br />

Reprinted from Bentz et al. (1994)<br />

Detection of Chimeric BCR–ABL genes on<br />

Bone Marrow Samples and Blood Smears<br />

in Chronic Myeloid and Acute<br />

Lymphoblastic Leukemia by <strong>In</strong> <strong>Situ</strong><br />

<strong>Hybridization</strong>,<br />

Blood 83 (7); 1922–1928 with permission<br />

of the Journal Permissions Department,<br />

W. B. Saunder’s Company.<br />

67<br />

5


5<br />

Figure 10: FISH of an ATPasespecific<br />

probe and a probe<br />

containing L1-repetitive<br />

sequences <strong>to</strong> female mouse<br />

chromosomes. Yellow color<br />

(banding) is due <strong>to</strong> the biotin-labeled<br />

probe containing L1-repetitive<br />

sequences, which was detected<br />

with FITC. Red „dots“ indicate a<br />

signal from each of the four (look<br />

closely) chromatids obtained with<br />

the digoxigenin-labeled ATPasespecific<br />

probe, which was detected<br />

with anti-DIG Fab fragments (from<br />

sheep) and Texas Red-conjugated<br />

anti-sheep Ig Fab. The blue color is<br />

the DAPI counterstain.<br />

68<br />

<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

F. Illustration of a chromosomal<br />

translocation from a patient with<br />

chronic myeloid leukemia<br />

from S. Popp and Dr. T. Cremer, <strong>In</strong>stitute<br />

for Human Genetics and Anthropology,<br />

University of Heidelberg, Germany.<br />

The chromosomal translocation was detected<br />

by using library probes from sorted<br />

chromosomes 9 and 22 (Figure 9). <strong>In</strong> Panel a,<br />

the chromosome 22-specific probe has<br />

➞<br />

clearly painted the normal chromosome 22<br />

(bot<strong>to</strong>m), the Philadelphia chromosome<br />

(triangle) and the translocated material<br />

22q11 → 22qter contained in the derivative<br />

chromosome 9 (arrow). <strong>In</strong> Panel b, the<br />

chromosome 9-specific probe has stained<br />

the normal chromosome 9 blue except for<br />

the centromeric region, while in the derivative<br />

chromosome 9, the region 9pter →<br />

9q34 is also painted. The arrow points <strong>to</strong><br />

the breakpoint on chromosome 9.<br />

<br />

Figure 9: Two-color chromosomal in situ suppression (CISS)-hybridization of a metaphase spread<br />

obtained from a patient with chronic myeloid leukemia 46, XY, t(9;22) (q34;q11). <strong>In</strong> Panel a, the probe<br />

was a digoxigenin-labeled chromosome 22-specific library, which was detected with a mouse anti-DIG<br />

antibody and a FITC-conjugated sheep anti-mouse antibody. The same metaphase spread was<br />

simultaneously painted (Panel b) with a biotin-labeled chromosome 9-specific library, which was detected<br />

with avidin conjugated <strong>to</strong> the fluorochrome AMCA (aminocoumarin). Chromosomes were counterstained with<br />

propidium iodide. Chromosomal analysis using GTG-banded chromosomes was kindly performed by<br />

R. Becher, Westdeutsches Tumorzentrum, Essen.<br />

➞<br />

<br />

➞<br />

➞<br />

a b<br />

G. Digitized images of female mouse<br />

chromosomes visualized with a Zeiss<br />

epifluorescent microscope equipped with a<br />

cooled CCD camera<br />

from Dr. D. C. Ward, Human Genetics<br />

Department, Yale University, New<br />

Haven, CT, USA.<br />

<strong>In</strong> Figure 10, a probe specific for Na + /K +<br />

ATPase alpha subunits and a probe containing<br />

an L1-repetitive sequence were hybridized<br />

<strong>to</strong> female mouse chromosomes.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Reagents available from Boehringer Mannheim for these procedures<br />

Reagent Description Cat. No. Pack size<br />

DIG-Nick Translation 5 x conc. stabilized reaction buffer in 50% 1745 816 160 µl<br />

Mix* for in situ probes glycerol (v/v) and DNA Polymerase I, DNase I, (40 labeling<br />

0.25 mM dATP, 0.25 mM dCTP, 0.25 mM dGTP,<br />

0.17 mM dTTP and 0.08 mM DIG-11-dUTP.<br />

reactions)<br />

Biotin-Nick Translation 5 x conc. stabilized reaction buffer in 50% 1745 824 160 µl<br />

Mix* for in situ probes glycerol (v/v) and DNA Polymerase I, DNase I, (40 labeling<br />

0.25 mM dATP, 0.25 mM dCTP, 0.25 mM dGTP, reactions)<br />

0.17 mM dTTP and 0.08 mM biotin-16-dUTP.<br />

Nick Translation Mix* 5 x conc. stabilized reaction buffer in 50% 1745 808 200 µl<br />

for in situ probes glycerol, DNA Polymerase I and DNase I.<br />

dNTP Set Set of dATP, dCTP, dGTP, dTTP, 1 277 049 4 x10 µmol<br />

100 mM solutions, lithium salts. (100 µl)<br />

Fluorescein-12-dUTP Tetralithium salt, 1 mM solution 1 373 242 25 nmol<br />

(25 µl)<br />

Tetramethyl- Tetralithium salt, 1 mM solution 1 534 378 25 nmol<br />

rhodamine-6-dUTP (25 µl)<br />

AMCA-6-dUTP Tetralithium salt, 1 mM solution 1 534 386 25 nmol<br />

(25 µl)<br />

RNase A Pyrimidine specific endoribonuclease 109 142 25 mg<br />

which acts on single-stranded RNA. 109 169 100 mg<br />

Pepsin Aspartic endopeptidase with broad 108 057 1 g<br />

specificity. 1 693 387 5 g<br />

DNA, COT-1, human COT-1 DNA is used in chromosomal in situ 1 581 074 500 µg<br />

suppression [CISS] hybridization. (500 µl)<br />

DNA, MB-grade The ready-<strong>to</strong>-use solution is directly 1 467 140 500 mg<br />

from fish sperm added <strong>to</strong> the hybridization mix. (50 ml)<br />

tRNA Lyophilizate, 1 mg of dry substance 109 495 100 mg<br />

from baker’s yeast corresponds <strong>to</strong> 16 A260 units. 109 509 500 mg<br />

Tween ® 20 Aqueous solution, 10% (w/v) 1 332 465 5 x10 ml<br />

Tris Powder 127 434 100 g<br />

708 968 500 g<br />

708 976 1 kg<br />

Blocking Reagent, Powder 1 096 176 50 g<br />

for nucleic acid<br />

hybridization<br />

Anti-Digoxigenin, For the detection of digoxigenin-labeled 1 333 062 100 µg<br />

clone 1.71.256, compounds<br />

mouse IgG1, <br />

Anti-Digoxigenin- For the detection of digoxigenin-labeled 1 207 741 200 µg<br />

Fluorescein, Fab compounds<br />

fragments from sheep<br />

Anti-Digoxigenin- For the detection of digoxigenin-labeled 1 207 750 200 µg<br />

Rhodamine, Fab compounds<br />

fragments from sheep<br />

Anti-Mouse Ig-Digoxi- Antibody for triple color FISH 1 214 624 200 µg<br />

genin, F(ab)2 fragment<br />

Streptavidin-AMCA For the detection of biotin-labeled compounds. 1 428 578 1 mg<br />

Streptavidin-Fluorescein For the detection of biotin-labeled compounds. 1 055 097 1 mg<br />

DAPI Fluorescence dye for staining of 236 276 10 mg<br />

4',6-Diamidine-2'-Phenyl- chromosomes<br />

indole Dihydrochloride<br />

CONTENTS<br />

INDEX<br />

*This product or the use of this<br />

product may be covered by one<br />

or more patents of Boehringer<br />

Mannheim GmbH, including the<br />

following: EP patent 0 649 909<br />

(application pending).<br />

69<br />

5


5<br />

70<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

VI. Troubleshooting guide<br />

for in situ hybridization on<br />

chromosome spreads<br />

from Stefan Joos and Peter Lichter, German<br />

Cancer Research Center, Heidelberg,<br />

Germany.<br />

Use the following tips <strong>to</strong> diagnose and<br />

correct commonly occurring problems in<br />

the FISH pro<strong>to</strong>cols described above.<br />

A. If no signal is observed, then:<br />

1 Amplify signal.<br />

2 Check probe labeling by performing the<br />

following dot blot assay:<br />

Spot serial dilutions of labeled<br />

control.<br />

Spot serial dilutions of labeled sample.<br />

Compare intensities of the spots.<br />

Note: For the detailed procedure on<br />

how <strong>to</strong> estimate the labeling efficiency<br />

please refer <strong>to</strong> Chapter 4, IX, page 51.<br />

3 After labeling the probe according <strong>to</strong><br />

Steps 1–4 of the nick translation<br />

procedure (Procedure III) in Chapter 4<br />

of this manual, check the size of the<br />

labeled probe molecules as follows:<br />

To a 5–10 µl aliquot of probe, add gel<br />

loading buffer and denature the probe<br />

by incubating it in a boiling water<br />

bath for 3 min, then cool it on ice for<br />

3 min.<br />

Note: Keep the remainder of the probe<br />

sample on ice while running the gel.<br />

Load the aliquot on a standard 1–2%<br />

agarose minigel along with a suitable<br />

size marker.<br />

Quickly run the gel (e.g. 15 volts per<br />

cm for 30 min) <strong>to</strong> avoid renaturation<br />

of the probe in the gel.<br />

Visualize DNA in the gel, e.g. by<br />

staining gel in 0.5 µg/ml ethidium<br />

bromide, and take pho<strong>to</strong>graph during<br />

UV illumination.<br />

Note: The probe molecules will be<br />

visible as a smear. The smear should<br />

contain only fragments smaller than<br />

500 nucleotides (nt) and larger than<br />

100 nt. A peak intensity at 250–<br />

300 nt seems optimal.<br />

Depending on the size of the probe<br />

molecules, do one of the following:<br />

If the DNA is between 100–500 nt,<br />

proceed with the EDTA inactivation<br />

of the reaction mixture (as in Step 7 of<br />

the nick translation procedure,<br />

Chapter 4).<br />

If the probe is larger than 500 nt,<br />

add more DNase I (roughly about<br />

1–10 ng) <strong>to</strong> the probe sample kept on<br />

ice, then incubate longer at 15°C.<br />

Note: Usually higher concentrations<br />

of DNase must be added for an<br />

additional 30 min incubation. After<br />

the incubation, analyze the probe on<br />

a gel as above.<br />

If the DNA is almost or completely<br />

undigested, purify the probe and<br />

repeat the labeling step.<br />

If part of the DNA is smaller than<br />

100 nt, repeat the labeling step using<br />

less DNase I.<br />

If all the DNA is smaller than 100 nt,<br />

repurify the probe (<strong>to</strong> remove any<br />

possible contaminating DNase) and<br />

repeat the labeling step.<br />

4 Check whether the fluorochromes have<br />

separated from the detecting molecules<br />

by passing the solution of fluorochromeconjugated<br />

molecules through a Quick<br />

Spin column (G-50). Then determine<br />

the state of the molecules:<br />

If color remains in flow through,<br />

fluorochromes are still conjugated.<br />

If color remains in the upper part<br />

of the column, fluorochromes have<br />

separated from the detecting molecules.<br />

5 Modify chromosome denaturation<br />

procedure (Procedure II in this article)<br />

by either varying the time and temperature<br />

of the denaturation step or by<br />

further pepsin digestion according <strong>to</strong> the<br />

following pro<strong>to</strong>col:<br />

Note: Digestion with pepsin can<br />

significantly improve probe penetration,<br />

but overdigestion can also occur.<br />

Pepsin treatment is often useful when<br />

specimen preparations are suboptimal,<br />

e.g., in many clinical samples.<br />

Mark the area of interest on the back<br />

of the slide using a diamond stylus.<br />

Wash slide in 2 x SSC at 37°C for<br />

5 min (in a Coplin jar).<br />

Apply 120 µl RNase A solution<br />

(100 µg/ml RNase A in 2 x SSC) <strong>to</strong><br />

slide, cover with larger coverslip (e.g.<br />

22 x 50 mm), and incubate for 1 h at<br />

37°C in a moist chamber.<br />

Wash slide in 2 x SSC (or PBS) for 3 x<br />

5 min (Coplin jar).<br />

Wash slide in prewarmed PBS for<br />

5 min at 37°C.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

<strong>In</strong>cubate slide in pepsin solution<br />

(10 mg pepsin in 100 ml 10 mM HCl)<br />

for 10 min at 37°C (in a water bath).<br />

Wash slide in PBS for 5 min at room<br />

temperature (RT).<br />

<strong>In</strong>cubate slide for 10 min at RT in a<br />

solution of 1% acid-free formaldehyde,<br />

PBS, 50 mM MgCl2.<br />

Wash slide again in PBS for 5 min at<br />

RT.<br />

Dehydrate slide in a series of ethanol<br />

baths (70%, then 90%, then 100%;<br />

≥ 5 min each) and air dry.<br />

6 Check quality of the formamide.<br />

Deionize formamide (several batches<br />

from several sources should be tested)<br />

using ion exchange resin (e.g. Donex<br />

XG8).<br />

7 Check microscope.<br />

Be sure that mercury (Hg2) lamp of the<br />

microscope is in good condition and<br />

well adjusted. Old lamps don’t have<br />

good excitation properties.<br />

8 Perform control experiments with<br />

alphoid DNA probes.<br />

B. If the hybridization signal fades, then:<br />

1 Change <strong>to</strong> a different batch of fluorochrome-conjugated<br />

antibody.<br />

2 Amplify with a secondary and/or<br />

tertiary antibody <strong>to</strong> increase the signal.<br />

Note: Be aware of the background,<br />

which will also be amplified. Before<br />

amplification, remove embedding medium<br />

by washing (2 x SSC, 37°–42°C, 4 x 10<br />

min).<br />

3 Try different antifading solutions [e.g.<br />

1,4-diazobicyclo-(2,2,2)-octane (DAPCO)<br />

or Vectastain (Vec<strong>to</strong>r)].<br />

C. If there is a milky background<br />

fluorescence, then: <br />

CONTENTS<br />

INDEX<br />

D. If there is a starry background<br />

fluorescence, then: <br />

Possible cause Remedy<br />

<strong>In</strong>adequate quality of Treat with pepsin <strong>to</strong> remove cell debris<br />

chromosome preparation (see pro<strong>to</strong>col in Step A5 above).<br />

<strong>In</strong>sufficient blocking Try <strong>to</strong> block with different reagents such as 3% BSA,<br />

human serum, or 3–5% dry milk.<br />

Dirty glass slides Wash the slide with ethanol and rinse with water before<br />

spreading chromosomes.<br />

Bad quality of embedding Change embedding medium.<br />

medium<br />

Possible cause Remedy<br />

Agglutination of Perform a control experiment in the absence of<br />

fluorochromes probe <strong>to</strong> see if you get a non-specific signal from<br />

coupled <strong>to</strong> anti- the fluorochrome-conjugated antibody alone.<br />

bodies If you do, spin the detection solution briefly and take<br />

only the supernatant.<br />

Alternatively pass the detection solution through a<br />

G-50 Quick Spin column <strong>to</strong> remove the agglutinates.<br />

Labeled probe Check the size of the probe as described in Step A3<br />

molecules are above and label again.<br />

<strong>to</strong>o long<br />

E. If there is a general strong staining of<br />

chromosomes and nuclei, then:<br />

Check the size of the labeled probe (as in<br />

Step A3 above). It is most likely <strong>to</strong>o<br />

small.<br />

If the probe is <strong>to</strong>o small, repurify (<strong>to</strong><br />

remove any contaminating DNase) and<br />

relabel the probe.<br />

References<br />

Bentz, M.; Cabot, G.; Moos, M.; Speicher, M. R.,<br />

Ganser, A.; Lichter, P.; Döhner, H. (1994) Detection<br />

of chimeric BCR-ABL genes on bone marrow<br />

samples and blood smears in chronic myeloid and<br />

acute lymphoblastic leukemia by in situ<br />

hybridization. Blood 83, 1922–1928.<br />

Dauwerse, J. G.; Wiegant, J.; Raap, A. K.; Breuning,<br />

M. H.; Van Ommen, G. J. B. (1992) Multiple colors<br />

by fluorescence in situ hybridization using ratiolabeled<br />

DNA probes create a molecular karyotype.<br />

Hum. Mol. Genet. 1, 593–598.<br />

Wienberg, J.; Jauch, A.; Stanyon, R.; Cremer, T.<br />

(1990) Molecular cy<strong>to</strong>taxonomy of primates by<br />

chromosomal in situ suppression hybridization.<br />

Genomics 8, 347–350.<br />

71<br />

5


5<br />

72<br />

<strong>to</strong>tal genomic DNA from cells <strong>to</strong> analyze<br />

(test DNA) labeled with biotin<br />

DNA from:<br />

cells with<br />

amplified DNA<br />

or polysomies<br />

cells with<br />

deletions or<br />

monosomies<br />

Figure 1: Schematic illustration<br />

of “comparative genomic hybridization”<br />

(CGH) for chromosome<br />

analysis. For explanation, see text.<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Detection of chromosomal imbalances using DOP-<br />

PCR and comparative genomic hybridization (CGH)<br />

Stefan Joos, Barbara Schütz, Martin Bentz, and Peter Lichter,<br />

German Cancer Research Center, Heidelberg, Germany.<br />

Recently, a new approach of fluorescence in<br />

situ hybridization was introduced, called<br />

“comparative genomic hybridization”<br />

(CGH) (Kallioniemi et al., 1992), which<br />

allows the comprehensive analysis of<br />

chromosomal imbalances in entire genomes<br />

(Du Manoir et al., 1993; Joos et al., 1993;<br />

Kallioniemi et al., 1992; Kallioniemi et al.,<br />

1993). The principle of CGH is shown in<br />

Figure 1. The genomic DNA from cell<br />

populations <strong>to</strong> be tested, such as fresh or<br />

paraffin-embedded tumor tissue, is labeled<br />

with modified nucleotides (e.g., biotinylated<br />

dUTP) and used as a probe for in situ<br />

hybridization <strong>to</strong> normal metaphase chromosomes.<br />

This probe is called “test DNA”. As an<br />

co-hybridization<br />

(normal chromosomes)<br />

<strong>to</strong>tal genomic DNA from normal cells<br />

(control DNA) labeled with digoxigenin<br />

detection<br />

results in signals on normal chromosomes (partial karyotype)<br />

signals from hybridized test DNA signals from co-hybridized control DNA<br />

internal control, genomic DNA derived from<br />

cells with a normal karyotype is differentially<br />

labeled and hybridized simultaneously<br />

(“control DNA”). For detection of the<br />

hybridized test and control DNA, different<br />

fluorochromes are used, and each is<br />

visualized by epifluorescence microscopy<br />

with selective filters. <strong>Hybridization</strong> with genomic<br />

DNA results in a general staining of all<br />

chromosomes. However, if the tissue<br />

analyzed harbors additional chromosomal<br />

material (e.g., a trisomy, amplifications etc.),<br />

hybridization reveals higher signal intensities<br />

at the corresponding target regions of the<br />

hybridized chromosomes (Figure 1). Correspondingly,<br />

deletions in the test sample are<br />

visible as lower signal intensities (Figure 1).<br />

By comparing the hybridization patterns of<br />

test and control DNA, the changes in signal<br />

intensities caused by imbalances within the<br />

analyzed tissue can be identified.<br />

Thus, CGH provides a comprehensive<br />

picture of all chromosomal gains and losses<br />

within a single experiment. <strong>In</strong> contrast <strong>to</strong><br />

banding analysis, CGH requires no preparation<br />

of metaphase chromosomes from<br />

the cells <strong>to</strong> be analyzed (which in certain<br />

tumor types may be difficult or even<br />

impossible).<br />

<strong>In</strong> many cases, only small amounts of<br />

tumor tissue are available for cy<strong>to</strong>genetic<br />

analysis. Therefore it is advantageous <strong>to</strong><br />

combine CGH with universal PCR<br />

pro<strong>to</strong>cols (as shown in Figures 4 and 5<br />

under “Results”) (Speicher et al., 1993).<br />

Both sequence independent amplification<br />

(“SIA”) (Bohlander et al., 1992) and<br />

“DOP-PCR” (degenerate oligonucleotide<br />

primer PCR) (Telenius et al., 1992) can be<br />

combined with CGH.<br />

As is shown in Figure 2, the DOP primer<br />

contains a central cassette of 6 degenerated<br />

nucleotides and is flanked by specific<br />

sequences at the 3' end (6 nucleotides) and<br />

at the 5' end (10 nucleotides). The amplification<br />

procedure is divided in<strong>to</strong> two steps.<br />

During the first step, five PCR cycles are<br />

performed at low stringency conditions<br />

(annealing temperature, Ta = 30°C). These<br />

conditions allow a frequent annealing of<br />

the DOP primer, which is primarily<br />

mediated by the short specific sequence at<br />

its 3' end and by the adjacent central cassette<br />

of degenerated nucleotides. Eventually a<br />

pool of many different DNA sequences is<br />

generated which should represent a statistically<br />

distributed subpopulation of the<br />

genomic DNA. During the second step (35<br />

cycles) the annealing temperature is raised<br />

<strong>to</strong> 62°C, allowing amplification only after<br />

specific base pairing of the full length primer<br />

sequence. Therefore, all the sequences<br />

that have been synthesized in the first step<br />

are now exponentially amplified, resulting<br />

in a large amount of DNA that can be used<br />

as probe for CGH.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Pro<strong>to</strong>cols for DOP-PCR and CGH analysis<br />

are described below. Amplified sequences<br />

can be detected directly by visual inspection<br />

using an epifluorescence microscope<br />

(“Results” Figures 3 and 4). However, the<br />

comprehensive analysis of gains and losses<br />

of single chromosomes (or parts thereof)<br />

requires digital image analysis with sophisticated<br />

software programs. For further<br />

description of the evaluation of CGH<br />

experiments as well as the different steps of<br />

the CGH pro<strong>to</strong>col, see the literature (Du<br />

Manoir et al., 1995; Kallioniemi et al., 1994;<br />

Lichter et al., 1994; Lundsteen et al., 1995;<br />

Piper et al., 1995).<br />

I. Preparation and labeling of<br />

DOP-PCR products<br />

1 Prepare a DNA template by isolating<br />

genomic DNA from small amounts of<br />

tissue (Maniatis, Fritsch, and Sambrook,<br />

1986). One mg of tissue results in about<br />

1 µg of genomic DNA.<br />

Note: See the literature (Kawasaki, 1990;<br />

Speicher et al., 1993) for pro<strong>to</strong>cols on<br />

DNA isolation from smaller amounts of<br />

tissue (down <strong>to</strong> only a few hundred cells)<br />

or from paraffin-embedded material.<br />

2 For each reaction, mix the following<br />

components in a PCR reaction tube on<br />

ice:<br />

5.0 µl 10 x concentrated DOP-PCR<br />

buffer (20 mM MgCl2; 500 mM KCl;<br />

100 mM Tris-HCl, pH 8.4; 1 mg/ml<br />

gelatin).<br />

5.0 µl 10 x concentrated nucleotide<br />

mix (dATP, dCTP, dGTP, dTTP,<br />

2 mM each).<br />

1–10 µl genomic DNA (0.1–1 ng/µl).<br />

5.0 µl 10 x concentrated DOP-PCR<br />

primer [5'-CCGACTCGAGNNNN<br />

NNATGTGG-3'(N=A,C,G, or T),<br />

20 µM].<br />

enough sterile water <strong>to</strong> make a final<br />

reaction volume of 50 µl.<br />

0.25 µlTaq DNA Polymerase (5 units/<br />

µl) (should be added last).<br />

3 Prepare a negative control by combining<br />

the same solutions as in Step 2, but<br />

omitting the template DNA.<br />

4 Overlay reaction mixtures with 50 µl<br />

mineral oil.<br />

CONTENTS<br />

INDEX<br />

1.<br />

5´<br />

DOP-PCR<br />

Telenius et al., 1992<br />

CCGACTCGAG NNNNNN ATGTGG 3´<br />

Low stringency PCR (Ta = 30°C; 5 cycles)<br />

➝ frequent priming at multiple sites<br />

5´<br />

3´<br />

5 Transfer the reaction tubes <strong>to</strong> a thermocycler<br />

and start the PCR. Use the following<br />

thermal profile:<br />

<strong>In</strong>itial denaturation: 10 min at 94°C.<br />

5 Cycles, each consisting of:<br />

1 min denaturation at 94°C<br />

1.5 min annealing (low stringency) at<br />

30°C<br />

3 min temperature ramping, from<br />

30°C <strong>to</strong> 72°C<br />

3 min elongation at 72°C.<br />

35 Cycles, each consisting of:<br />

1 min denaturation at 94°C<br />

1 min annealing (high stringency) at<br />

62°C<br />

3 min elongation at 72°C, with the<br />

elongation time increased by 1 second<br />

every cycle [i.e., the 1st high stringency<br />

cycle has an elongation time of 3 min;<br />

the 2nd, 3 min and 1 s; the 3rd, 3 min<br />

and 2 s, etc.]<br />

Final elongation: 10 min at 72°C.<br />

3´<br />

5´<br />

Higher stringency PCR (Ta = 62°C; 35 cycles)<br />

2. ➝ specific priming of pre-amplified sequences<br />

Figure 2:<br />

Schematic<br />

illustration of<br />

DOP-PCR.<br />

For explanation,<br />

see text.<br />

73<br />

5


5<br />

74<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

6 Analyze aliquots of the reaction mixtures<br />

on an agarose gel by performing<br />

the following steps:<br />

Mix the aliquots with gel loading<br />

buffer (0.25% bromophenol blue and<br />

30% glycerol).<br />

Load samples on a minigel. As a size<br />

marker use a 1 kb ladder or other<br />

suitable size standard.<br />

Run the gel in 1x TBE buffer (89 mM<br />

Tris base, 89 mM boric acid, 2 mM<br />

EDTA; pH 8.0) for 30 min at 100<br />

volts.<br />

7 Stain the gel with ethidium bromide and<br />

pho<strong>to</strong>graph. <strong>In</strong> the reaction samples, you<br />

should see a smear of DNA, ranging in<br />

size from about 200 bp <strong>to</strong> 2000 bp. No<br />

smear should be visible in the negative<br />

control.<br />

8 Collect the amplified DNA products<br />

from the reaction mix by using the High<br />

Pure PCR Product Purification Kit, see<br />

page 50.<br />

9 Label the amplified DNA by standard<br />

nick translation procedures (Lichter and<br />

Cremer; Lichter et al., 1994).<br />

II. Comparative genomic<br />

hybridization (CGH)<br />

1 Prepare slides of normal metaphase<br />

chromosomes as described in the<br />

literature (Lichter and Cremer; Lichter<br />

et al., 1990).<br />

2 Prepare the following solutions:<br />

3 M sodium acetate, pH 5.2.<br />

Deionized formamide (molecular<br />

biology grade): For deionization, use<br />

ion exchange resin. The conductivity<br />

of the formamide should be below<br />

100 µSiemens.<br />

<strong>Hybridization</strong> buffer (4 x SSC, 20%<br />

dextran sulfate): Prepare 20 x SSC.<br />

Carefully dissolve dextran sulfate in<br />

water <strong>to</strong> make a 50% dextran sulfate<br />

solution. Au<strong>to</strong>clave the dextran sulfate<br />

solution or filter it through a<br />

nitrocellulose filter. Mix 200 µl of<br />

20 x SSC, 400 µl of 50% dextran sulfate<br />

and 400 µl of double-distilled<br />

water. S<strong>to</strong>re the hybridization buffer<br />

at 4°C until you use it.<br />

3 To prepare probe DNA, combine 1 µg<br />

of each labeled test and control DNA<br />

with 50–100 µg of human Cot-1 DNA.<br />

4 Co-precipitate the probe DNAs in each<br />

tube by adding 1/20 volume of 3 M<br />

sodium acetate and 2.5 volumes of<br />

100% ethanol. Mix well and incubate at<br />

–70°C for 30 min.<br />

5 Spin the precipitated DNA in a<br />

microcentrifuge at 12,000 rpm for 10<br />

min at 4°C. Discard the supernatant and<br />

wash the pellet with 500 µl of 70%<br />

ethanol.<br />

6 Spin the precipitated DNA again (12,000<br />

rpm, 10 min, 4°C). Discard the<br />

supernatant and lyophilize the pellet.<br />

7 Add 6 µl deionized formamide <strong>to</strong> the<br />

lyophilizate and resuspend the probe<br />

DNA by vigorously shaking the tube<br />

for > 30 min at room temperature.<br />

8 Add 6 µl of hybridization buffer <strong>to</strong> the<br />

tube containing probe DNA and again<br />

shake for > 30 min.<br />

9 Denature and dehydrate normal metaphase<br />

chromosomal DNA on slides as<br />

described in the literature (Lichter and<br />

Cremer; Lichter et al., 1990).<br />

10 Prepare the probe (from Step 8) for<br />

hybridization by performing the<br />

following steps:<br />

Denature probe DNA at 75°C for<br />

5 min.<br />

Preanneal repetitive sequences by<br />

incubating the probe at 37°C for<br />

20–30 min.<br />

11 Add prepared probe (from Step 10) <strong>to</strong><br />

denatured chromosomal spreads (from<br />

Step 9). Proceed with in situ hybridization<br />

and probe detection as described<br />

in the literature (Lichter and Cremer;<br />

Lichter et al., 1990).<br />

12 Evaluate the CGH experiment with an<br />

epifluorescence microscope.<br />

Results<br />

The CGH procedure was used <strong>to</strong> reveal<br />

chromosomal imbalances (Figure 3) in a<br />

T-cell prolymphocytic leukemia (T-PLL).<br />

Chromosomal regions 6q, 8p, and 11qter<br />

are stained more weakly in the tumor<br />

DNA than in the control DNA, indicating<br />

deletions of all or part of the chromosomal<br />

arms in the tumor DNA. CGH also<br />

identified overrepresented chromosomal<br />

regions (6p, 8q, and 14q) which stain more<br />

heavily in the tumor than in the control.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

The DOP-PCR and CGH procedures<br />

described in this article were used <strong>to</strong> detect<br />

amplified sequences in genomic DNA from<br />

spinal fluid of patients who have a tumor of<br />

the central nervous system (Figure 4).<br />

DOP-PCR and CGH also revealed an<br />

amplification of the c-myc oncogene<br />

(which maps <strong>to</strong> chromosomal band 8q24)<br />

in cell line HL60 (Figure 5).<br />

CONTENTS<br />

<br />

INDEX<br />

<br />

<br />

<br />

Figure 3: Comparative genomic<br />

hybridization (CGH) experiment<br />

revealing chromosomal imbalances<br />

in a T-cell prolymphocytic<br />

leukemia (T-PLL).<br />

DNA from tumor cells was labeled<br />

with biotin and detected via a FITClabeled<br />

antibody (green) whereas<br />

the control DNA was labeled with<br />

digoxigenin and detected via a<br />

rhodamine-labeled antibody (red).<br />

For explanation, see the text.<br />

This pho<strong>to</strong>graph was taken by<br />

S. Joos and P. Lichter with<br />

permission of Springer Verlag,<br />

Heidelberg and New York.<br />

<br />

Figure 4: Detection of amplified<br />

sequences in the genomic DNA of<br />

patients with a central nervous<br />

system (CNS) tumor.<br />

Genomic DNA was isolated from a<br />

small number of cells harvested<br />

from the spinal fluid of the patients.<br />

The DNA was amplified by DOP-PCR<br />

and analyzed by CGH as described<br />

in the text. CGH reveals a strong<br />

amplification signal on both homologues<br />

of chromosome 8q (arrows).<br />

The image was pho<strong>to</strong>graphed<br />

directly using a conventional camera<br />

on an epifluorescence microscope.<br />

<br />

Figure 5: Detection of amplified<br />

c-myc oncogene sequences in<br />

cell line HL60.<br />

Genomic DNA (equivalent <strong>to</strong> the<br />

DNA from only 3– 4 HL60 cells) was<br />

diluted in TE buffer, amplified by<br />

DOP-PCR, and analyzed by CGH as<br />

described in the text. After CGH, the<br />

amplification signal is clearly visible<br />

on both chromosome 8 homologues<br />

(arrows). The image was captured<br />

as a gray scale image using a CCD<br />

camera (Pho<strong>to</strong>metrix), pseudocolored,<br />

and pho<strong>to</strong>graphed directly<br />

from the computer screen.<br />

75<br />

5


5<br />

**This product or the use of this<br />

product may be covered by one<br />

or more patents of Boehringer<br />

Mannheim GmbH, including the<br />

following: EP patent 0 649 909<br />

(application pending).<br />

**This product is sold under<br />

licensing arrangements with<br />

Roche Molecular Systems and<br />

The Perkin-Elmer Corporation.<br />

Purchase of this product is accompanied<br />

by a license <strong>to</strong> use it in the<br />

Polymerase Chain Reaction (PCR)<br />

process in conjunction with an<br />

Authorized Thermal Cycler. For<br />

complete license disclaimer, see<br />

inside back cover page + .<br />

76<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Reagents available from Boehringer Mannheim for these procedures<br />

Product Description Cat. No.<br />

DOP-PCR Master* , ** for 25 amplification reactions and 5 control reactions 1 644 963<br />

The DOP-PCR Master contains:<br />

Reagent Description Available as<br />

DOP-PCR mix, 25 units Taq DNA Polymerase/500 µl; 3 mM MgCl2; Three vials No. 1,<br />

2 x concentrated dATP, dGTP, dCTP, dTTP, 0.4 mM each; 100 mM KCl;<br />

20 mM Tris-HCl; 0.01% (v/v) Brij<br />

3 x 500 µl<br />

® 35; pH 8.3 (20°C)<br />

DOP-PCR primer (Sequence, 40 µM in double distilled H2O One vial No. 2,<br />

5'-CCG ACT CGA GNN NNN 150 µl<br />

NAT GTG G-3' (N = A, G, C,<br />

or T, in approximately<br />

equal proportions)<br />

Double distilled H2O, Two vials No. 3, 2 x 1000 µl<br />

PCR grade<br />

Control DNA Human genomic DNA from the lymphoblas<strong>to</strong>id One vial No. 4,<br />

cell line BJA, 1 ng/µl, in double distilled H2O 50 µl<br />

Other reagents:<br />

Reagent Description Cat. No. Pack size<br />

DIG-Nick Translation 5 x conc. stabilized reaction buffer in 50% 1745 816 160 µl<br />

Mix* for in situ probes glycerol (v/v) and DNA Polymerase I, DNase I,<br />

0.25 mM dATP, 0.25 mM dCTP, 0.25 mM dGTP,<br />

0.17 mM dTTP and 0.08 mM DIG-11-dUTP.<br />

Biotin-Nick Translation 5 x conc. stabilized reaction buffer in 50% 1745 824 160 µl<br />

Mix* for in situ probes glycerol (v/v) and DNA Polymerase I, DNase I,<br />

0.25 mM dATP, 0.25 mM dCTP, 0.25 mM dGTP<br />

0.17 mM dTTP and 0.08 mM biotin-16-dUTP.<br />

Streptavidin-Fluorescein 1 428 578 1 mg<br />

Anti-Digoxigenin-Rhodamine 1 207 750 200 µg<br />

Product Description Cat. No.<br />

High Pure PCR Product Kit for 50 purifications 1732 668<br />

Purification Kit** Kit for 250 purifications 1732 676<br />

The High Pure PCR Product Purification Kit contains:<br />

Reagent Description Available as<br />

• Binding buffer, • nucleic acids binding buffer; 3 M guanidine-thiocyanate, • Vial 1<br />

green cap 10 mM Tris-HCl, 5% (v/v) ethanol, pH 6.6 (25°C)<br />

• Wash buffer, • wash buffer; add 4 volumes of absolute ethanol • Vial 2<br />

blue cap before use! Final concentrations; 20 mM NaCl,<br />

2 mM Tris-HCl, pH 7.5 (25°C), 80% ethanol<br />

• Elution buffer • elution buffer; 10 mM Tris-HCl, 1 mM EDTA,<br />

pH 8.5 (25°C)<br />

• Vial 3<br />

• High Pure filter tubes • Polypropylene tubes, containing two layers of a<br />

specially pre-treated glass fibre fleece; maximum<br />

sample volume: 700 µl<br />

• Collection tubes • 2 ml polypropylene tubes<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Troubleshooting CGH experiments<br />

Control <strong>to</strong> detect CGH of<br />

insufficient quality<br />

<strong>Hybridization</strong> of a DOP-PCR probe <strong>to</strong><br />

normal human male metaphase chromosomes<br />

should show a markedly weaker<br />

staining of the X chromosome than of<br />

other chromosomes. If there is not a<br />

marked difference between the X chromosome<br />

and other chromosomes, the control<br />

indicates a defective or poor quality CGH<br />

experiment.<br />

Usually these poor hybridization results<br />

are accompanied by other hallmarks of poor<br />

quality, like a speckled, non-homogeneous<br />

staining pattern or high background fluorescence,<br />

both of which may considerably<br />

disturb the quantitative image analysis by<br />

causing high variability within the ratio<br />

profiles.<br />

Such poor hybridization results can be due<br />

<strong>to</strong> many causes. Several are listed below.<br />

Potential problems with chromosomal<br />

preparations<br />

<strong>In</strong> our experience, the most important<br />

fac<strong>to</strong>r for good hybridization experiments<br />

is the careful preparation of metaphase<br />

spreads. Therefore, every new batch of<br />

chromosomes needs <strong>to</strong> be tested. If good<br />

hybridization results are not obtained,<br />

discard the whole batch and start a new<br />

slide preparation procedure.<br />

Note: Although impaired hybridization is<br />

mainly due <strong>to</strong> residual cell debris on the<br />

slides, proteolytic digestion of the chromosomes<br />

will not lead <strong>to</strong> high quality CGH<br />

experiments. Although proteolytic digestion<br />

will improve the hybridization pattern on<br />

suboptimal slides, the results are considerably<br />

worse than those obtained on<br />

optimum slides which have not been<br />

pretreated with protease.<br />

Potential problems with probes<br />

Two important causes for granular and<br />

non-homogeneous staining patterns are:<br />

Probe DNA preparations may be contaminated<br />

with high amounts of protein.<br />

The size of the labeled probe fragments<br />

after nick translation may be inappropriate.<br />

Fragments which are <strong>to</strong>o large<br />

CONTENTS<br />

INDEX<br />

typically result in a starry background<br />

outside of the chromosomes. <strong>In</strong> contrast,<br />

probes which are <strong>to</strong>o small produce a<br />

homogeneous background distributed over<br />

all chromosomes. Smaller probes may also<br />

lead <strong>to</strong> a homogeneously strong staining<br />

pattern in regions which are over- or<br />

under-represented in the tumor genome.<br />

Problems which may hinder<br />

evaluation of CGH<br />

<strong>In</strong> contrast <strong>to</strong> conventional FISH experiments,<br />

strong fluorescence on the chromosomes<br />

and little or no fluorescence in the<br />

areas where no chromosomes or nuclei are<br />

located, are no guarantee that a hybridization<br />

experiment will be useful for a CGH<br />

analysis. Even in cases where a bright and<br />

smooth staining is observed, other fac<strong>to</strong>rs<br />

can severely impair evaluation of the<br />

hybridization experiment. Such impairment<br />

has two principal causes:<br />

<strong>In</strong>sufficient suppression of repetitive<br />

sequences may lead <strong>to</strong> incorrect measurements<br />

of ratios in chromosomal regions<br />

which contain many highly variable<br />

repetitive sequences, e.g., sequences on<br />

chromosome 19. Strong staining of the<br />

heterochromatin blocks on chromosomes<br />

1, 9, 16, and 19 can serve as an<br />

indica<strong>to</strong>r for poor suppression.<br />

Note: Good suppression will lead <strong>to</strong> very<br />

low FITC and rhodamine fluorescence<br />

intensities in the heterochromatic<br />

chromosome regions. Consequently, even<br />

very small variations of fluorescence<br />

intensities may cause gross ratio variations<br />

within these chromosomal regions.<br />

Thus, they are excluded from evaluation.<br />

Remedy: Either increase the amount of<br />

the Cot-1 DNA fraction or use longer<br />

preannealing times (the latter being less<br />

effective) <strong>to</strong> achieve adequate suppression<br />

of signals in such regions of the<br />

genome.<br />

Non-homogeneous illumination of the<br />

optical field leads <strong>to</strong> considerable regional<br />

variations within the ratio image.<br />

Such variations make a quantitative evaluation<br />

of the CGH experiment completely<br />

impossible.<br />

Remedy: Center the light source of the<br />

microscope carefully.<br />

77<br />

5


5<br />

78<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Problems inherent in sample composition<br />

Apart from the experimental fac<strong>to</strong>rs listed<br />

above, the validity of a CGH experiment<br />

critically depends on the percentage of cells<br />

carrying chromosomal imbalances. If no<br />

gains or losses of chromosomes are<br />

detected, the sample may contain only a<br />

low proportion of tumor cells. Therefore,<br />

adequate information from the his<strong>to</strong>logical<br />

labora<strong>to</strong>ry is crucial for any type of CGH<br />

analysis.<br />

References<br />

Bohlander, S. K.; Espinosa, R.; Le Beau, M. M.;<br />

Rowley, J. D.; Diaz, M. O. (1992) A method for the<br />

rapid sequence-independent amplification of<br />

microdissected chromosomal material. Genomics<br />

13, 1322–1324.<br />

Du Manoir, S.; Schröck, E.; Bentz, M.; Speicher,<br />

M. R.; Joos, S.; Ried, T.; Lichter, P.; Cremer, T. (1995)<br />

Quantitative analysis of comparative genomic<br />

hybridization. Cy<strong>to</strong>metry 19, 27–41.<br />

Du Manoir, S.; Speicher, M. R.; Joos, S.; Schröck,<br />

E.; Popp, S.; Döhner, H.; Kovacs, G.; Robert-Nicoud,<br />

M.; Lichter, P.; Cremer, T. (1993) Detection of<br />

complete and partial chromosome gains and losses<br />

by comparative genomic in situ hybridization.<br />

Hum. Genet. 90, 590–610.<br />

Joos, S.; Scherthan, H.; Speicher, M. R.; Schlegel, J.;<br />

Cremer, T.; Lichter, P. (1993) Detection of amplified<br />

genomic sequences by reverse chromosome<br />

painting using genomic tumor DNA as probe.<br />

Hum. Genet. 90, 584–589.<br />

Kallioniemi, A.; Kallioniemi, O.-P.; Sudar, D.;<br />

Ru<strong>to</strong>vitz, D.; Gray, J. W.; Waldman, F.; Pinkel, D.<br />

(1992) Comparative genomic hybridization for<br />

molecular cy<strong>to</strong>genetic analysis of solid tumors.<br />

Science 258, 818–821.<br />

Kallioniemi, O-P.; Kallioniemi, A; Piper, J.; Isola, J.;<br />

Waldman, F.; Gray, J. W.; Pinkel, D. (1994)<br />

Optimizing comparative genomic hybridization for<br />

analysis of DNA sequence copy number changes in<br />

solid tumors. Genes, Chromosomes and Cancer 10,<br />

231–243.<br />

Kallioniemi, O.-P.; Kallioniemi, A.; Sudar, D.;<br />

Ru<strong>to</strong>vitz, D.; Gray, J. W.; Waldman, F.; Pinkel, D.<br />

(1993) Comparative genomic hybridization: a rapid<br />

new method for detecting and mapping DNA<br />

amplification in tumors. Seminars in Cancer Biology<br />

4, 41–46.<br />

Kawasaki, E. S. (1990) Sample preparation from<br />

blood, cells, and other fluids. <strong>In</strong>: <strong>In</strong>nis, M. A.;<br />

Gelfand, D. H.; Sninsky, J. J.; White, T. J. (eds)<br />

PCR Pro<strong>to</strong>cols: A Guide <strong>to</strong> Methods and Applications.<br />

San Diego, CA: Academic Press, 146–152.<br />

Lichter, P.; Bentz, M.; du Manoir, S.; Joos, S. (1994)<br />

Comparative genomic hybridization. <strong>In</strong>: Verma, R;<br />

Babu S. (eds) Human Chromosomes. New York:<br />

McGraw Hill, 191–210.<br />

Lichter, P.; Cremer, T. Chromosome analysis by<br />

non-iso<strong>to</strong>pic in situ hybridization. <strong>In</strong>: Human<br />

Cy<strong>to</strong>genetics: Constitutional Analysis. IRL Press.<br />

Lichter, P.; Tang, C. C.; Call, K.; Hermanson, G.;<br />

Evans, G. A.; Housman, D.; Ward, D. C. (1990) High<br />

resolution mapping of human chromosome 11 by in<br />

situ hybridization with cosmid clones. Science 247,<br />

64–69.<br />

Lundsteen, C.; Maahr, J.; Christensen, B.; Bryndorf,<br />

T.; Bentz, M.; Lichter, P.; Gerdes, T. (1995) Image<br />

analysis in comparative genomic hybridization.<br />

Cy<strong>to</strong>metry 19, 42–50.<br />

Maniatis, T.; Fritsch, E. F.; Sambrook, J. (1986)<br />

Molecular Cloning: A Labora<strong>to</strong>ry Manual. Cold<br />

Spring Harbor, New York: Cold Spring Harbor<br />

Labora<strong>to</strong>ry Press.<br />

Piper, J.; Ru<strong>to</strong>vitz, D.; Sudar, D.; Kallioniemi, A.;<br />

Kallioniemi, O.-P.; Waldmann, F. M.; Gray, J. W.;<br />

Pinkel, D. (1995) Computer image analysis of<br />

comparative genomic hybridization. Cy<strong>to</strong>metry 19,<br />

10–26.<br />

Speicher, M. R.; du Manoir, S.; Schröck, E.; Holtgreve-<br />

Grez, H.; Schoell, B.; Lengauer, C.; Cremer, T.; Ried,<br />

T. (1993) Molecular cy<strong>to</strong>genetic analysis of<br />

formalin-fixed, paraffin-embedded solid tumors by<br />

comparative genomic hybridization after universal<br />

DNA amplification. Hum. Mol. Genet. 2, 1907–1914.<br />

Telenius, H.; Pelmear, A. H.; Tunnacliffe, A.; Carter,<br />

N. P.; Behmel, A.; Ferguson-Smith, M. A.;<br />

Nordenskjöld, M.; Pfragner, R. (1992) Ponder BAJP:<br />

Cy<strong>to</strong>genetic analysis by chromosome painting using<br />

DOP-PCR amplified flow-sorted chromosomes.<br />

Genes, Chromosomes and Cancer 4, 257–263.<br />

CONTENTS<br />

INDEX


5<br />

72<br />

<strong>to</strong>tal genomic DNA from cells <strong>to</strong> analyze<br />

(test DNA) labeled with biotin<br />

DNA from:<br />

cells with<br />

amplified DNA<br />

or polysomies<br />

cells with<br />

deletions or<br />

monosomies<br />

Figure 1: Schematic illustration<br />

of “comparative genomic hybridization”<br />

(CGH) for chromosome<br />

analysis. For explanation, see text.<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Detection of chromosomal imbalances using DOP-<br />

PCR and comparative genomic hybridization (CGH)<br />

Stefan Joos, Barbara Schütz, Martin Bentz, and Peter Lichter,<br />

German Cancer Research Center, Heidelberg, Germany.<br />

Recently, a new approach of fluorescence in<br />

situ hybridization was introduced, called<br />

“comparative genomic hybridization”<br />

(CGH) (Kallioniemi et al., 1992), which<br />

allows the comprehensive analysis of<br />

chromosomal imbalances in entire genomes<br />

(Du Manoir et al., 1993; Joos et al., 1993;<br />

Kallioniemi et al., 1992; Kallioniemi et al.,<br />

1993). The principle of CGH is shown in<br />

Figure 1. The genomic DNA from cell<br />

populations <strong>to</strong> be tested, such as fresh or<br />

paraffin-embedded tumor tissue, is labeled<br />

with modified nucleotides (e.g., biotinylated<br />

dUTP) and used as a probe for in situ<br />

hybridization <strong>to</strong> normal metaphase chromosomes.<br />

This probe is called “test DNA”. As an<br />

co-hybridization<br />

(normal chromosomes)<br />

<strong>to</strong>tal genomic DNA from normal cells<br />

(control DNA) labeled with digoxigenin<br />

detection<br />

results in signals on normal chromosomes (partial karyotype)<br />

signals from hybridized test DNA signals from co-hybridized control DNA<br />

internal control, genomic DNA derived from<br />

cells with a normal karyotype is differentially<br />

labeled and hybridized simultaneously<br />

(“control DNA”). For detection of the<br />

hybridized test and control DNA, different<br />

fluorochromes are used, and each is<br />

visualized by epifluorescence microscopy<br />

with selective filters. <strong>Hybridization</strong> with genomic<br />

DNA results in a general staining of all<br />

chromosomes. However, if the tissue<br />

analyzed harbors additional chromosomal<br />

material (e.g., a trisomy, amplifications etc.),<br />

hybridization reveals higher signal intensities<br />

at the corresponding target regions of the<br />

hybridized chromosomes (Figure 1). Correspondingly,<br />

deletions in the test sample are<br />

visible as lower signal intensities (Figure 1).<br />

By comparing the hybridization patterns of<br />

test and control DNA, the changes in signal<br />

intensities caused by imbalances within the<br />

analyzed tissue can be identified.<br />

Thus, CGH provides a comprehensive<br />

picture of all chromosomal gains and losses<br />

within a single experiment. <strong>In</strong> contrast <strong>to</strong><br />

banding analysis, CGH requires no preparation<br />

of metaphase chromosomes from<br />

the cells <strong>to</strong> be analyzed (which in certain<br />

tumor types may be difficult or even<br />

impossible).<br />

<strong>In</strong> many cases, only small amounts of<br />

tumor tissue are available for cy<strong>to</strong>genetic<br />

analysis. Therefore it is advantageous <strong>to</strong><br />

combine CGH with universal PCR<br />

pro<strong>to</strong>cols (as shown in Figures 4 and 5<br />

under “Results”) (Speicher et al., 1993).<br />

Both sequence independent amplification<br />

(“SIA”) (Bohlander et al., 1992) and<br />

“DOP-PCR” (degenerate oligonucleotide<br />

primer PCR) (Telenius et al., 1992) can be<br />

combined with CGH.<br />

As is shown in Figure 2, the DOP primer<br />

contains a central cassette of 6 degenerated<br />

nucleotides and is flanked by specific<br />

sequences at the 3' end (6 nucleotides) and<br />

at the 5' end (10 nucleotides). The amplification<br />

procedure is divided in<strong>to</strong> two steps.<br />

During the first step, five PCR cycles are<br />

performed at low stringency conditions<br />

(annealing temperature, Ta = 30°C). These<br />

conditions allow a frequent annealing of<br />

the DOP primer, which is primarily<br />

mediated by the short specific sequence at<br />

its 3' end and by the adjacent central cassette<br />

of degenerated nucleotides. Eventually a<br />

pool of many different DNA sequences is<br />

generated which should represent a statistically<br />

distributed subpopulation of the<br />

genomic DNA. During the second step (35<br />

cycles) the annealing temperature is raised<br />

<strong>to</strong> 62°C, allowing amplification only after<br />

specific base pairing of the full length primer<br />

sequence. Therefore, all the sequences<br />

that have been synthesized in the first step<br />

are now exponentially amplified, resulting<br />

in a large amount of DNA that can be used<br />

as probe for CGH.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Pro<strong>to</strong>cols for DOP-PCR and CGH analysis<br />

are described below. Amplified sequences<br />

can be detected directly by visual inspection<br />

using an epifluorescence microscope<br />

(“Results” Figures 3 and 4). However, the<br />

comprehensive analysis of gains and losses<br />

of single chromosomes (or parts thereof)<br />

requires digital image analysis with sophisticated<br />

software programs. For further<br />

description of the evaluation of CGH<br />

experiments as well as the different steps of<br />

the CGH pro<strong>to</strong>col, see the literature (Du<br />

Manoir et al., 1995; Kallioniemi et al., 1994;<br />

Lichter et al., 1994; Lundsteen et al., 1995;<br />

Piper et al., 1995).<br />

I. Preparation and labeling of<br />

DOP-PCR products<br />

1 Prepare a DNA template by isolating<br />

genomic DNA from small amounts of<br />

tissue (Maniatis, Fritsch, and Sambrook,<br />

1986). One mg of tissue results in about<br />

1 µg of genomic DNA.<br />

Note: See the literature (Kawasaki, 1990;<br />

Speicher et al., 1993) for pro<strong>to</strong>cols on<br />

DNA isolation from smaller amounts of<br />

tissue (down <strong>to</strong> only a few hundred cells)<br />

or from paraffin-embedded material.<br />

2 For each reaction, mix the following<br />

components in a PCR reaction tube on<br />

ice:<br />

5.0 µl 10 x concentrated DOP-PCR<br />

buffer (20 mM MgCl2; 500 mM KCl;<br />

100 mM Tris-HCl, pH 8.4; 1 mg/ml<br />

gelatin).<br />

5.0 µl 10 x concentrated nucleotide<br />

mix (dATP, dCTP, dGTP, dTTP,<br />

2 mM each).<br />

1–10 µl genomic DNA (0.1–1 ng/µl).<br />

5.0 µl 10 x concentrated DOP-PCR<br />

primer [5'-CCGACTCGAGNNNN<br />

NNATGTGG-3'(N=A,C,G, or T),<br />

20 µM].<br />

enough sterile water <strong>to</strong> make a final<br />

reaction volume of 50 µl.<br />

0.25 µlTaq DNA Polymerase (5 units/<br />

µl) (should be added last).<br />

3 Prepare a negative control by combining<br />

the same solutions as in Step 2, but<br />

omitting the template DNA.<br />

4 Overlay reaction mixtures with 50 µl<br />

mineral oil.<br />

CONTENTS<br />

INDEX<br />

1.<br />

5´<br />

DOP-PCR<br />

Telenius et al., 1992<br />

CCGACTCGAG NNNNNN ATGTGG 3´<br />

Low stringency PCR (Ta = 30°C; 5 cycles)<br />

➝ frequent priming at multiple sites<br />

5´<br />

3´<br />

5 Transfer the reaction tubes <strong>to</strong> a thermocycler<br />

and start the PCR. Use the following<br />

thermal profile:<br />

<strong>In</strong>itial denaturation: 10 min at 94°C.<br />

5 Cycles, each consisting of:<br />

1 min denaturation at 94°C<br />

1.5 min annealing (low stringency) at<br />

30°C<br />

3 min temperature ramping, from<br />

30°C <strong>to</strong> 72°C<br />

3 min elongation at 72°C.<br />

35 Cycles, each consisting of:<br />

1 min denaturation at 94°C<br />

1 min annealing (high stringency) at<br />

62°C<br />

3 min elongation at 72°C, with the<br />

elongation time increased by 1 second<br />

every cycle [i.e., the 1st high stringency<br />

cycle has an elongation time of 3 min;<br />

the 2nd, 3 min and 1 s; the 3rd, 3 min<br />

and 2 s, etc.]<br />

Final elongation: 10 min at 72°C.<br />

3´<br />

5´<br />

Higher stringency PCR (Ta = 62°C; 35 cycles)<br />

2. ➝ specific priming of pre-amplified sequences<br />

Figure 2:<br />

Schematic<br />

illustration of<br />

DOP-PCR.<br />

For explanation,<br />

see text.<br />

73<br />

5


5<br />

74<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

6 Analyze aliquots of the reaction mixtures<br />

on an agarose gel by performing<br />

the following steps:<br />

Mix the aliquots with gel loading<br />

buffer (0.25% bromophenol blue and<br />

30% glycerol).<br />

Load samples on a minigel. As a size<br />

marker use a 1 kb ladder or other<br />

suitable size standard.<br />

Run the gel in 1x TBE buffer (89 mM<br />

Tris base, 89 mM boric acid, 2 mM<br />

EDTA; pH 8.0) for 30 min at 100<br />

volts.<br />

7 Stain the gel with ethidium bromide and<br />

pho<strong>to</strong>graph. <strong>In</strong> the reaction samples, you<br />

should see a smear of DNA, ranging in<br />

size from about 200 bp <strong>to</strong> 2000 bp. No<br />

smear should be visible in the negative<br />

control.<br />

8 Collect the amplified DNA products<br />

from the reaction mix by using the High<br />

Pure PCR Product Purification Kit, see<br />

page 50.<br />

9 Label the amplified DNA by standard<br />

nick translation procedures (Lichter and<br />

Cremer; Lichter et al., 1994).<br />

II. Comparative genomic<br />

hybridization (CGH)<br />

1 Prepare slides of normal metaphase<br />

chromosomes as described in the<br />

literature (Lichter and Cremer; Lichter<br />

et al., 1990).<br />

2 Prepare the following solutions:<br />

3 M sodium acetate, pH 5.2.<br />

Deionized formamide (molecular<br />

biology grade): For deionization, use<br />

ion exchange resin. The conductivity<br />

of the formamide should be below<br />

100 µSiemens.<br />

<strong>Hybridization</strong> buffer (4 x SSC, 20%<br />

dextran sulfate): Prepare 20 x SSC.<br />

Carefully dissolve dextran sulfate in<br />

water <strong>to</strong> make a 50% dextran sulfate<br />

solution. Au<strong>to</strong>clave the dextran sulfate<br />

solution or filter it through a<br />

nitrocellulose filter. Mix 200 µl of<br />

20 x SSC, 400 µl of 50% dextran sulfate<br />

and 400 µl of double-distilled<br />

water. S<strong>to</strong>re the hybridization buffer<br />

at 4°C until you use it.<br />

3 To prepare probe DNA, combine 1 µg<br />

of each labeled test and control DNA<br />

with 50–100 µg of human Cot-1 DNA.<br />

4 Co-precipitate the probe DNAs in each<br />

tube by adding 1/20 volume of 3 M<br />

sodium acetate and 2.5 volumes of<br />

100% ethanol. Mix well and incubate at<br />

–70°C for 30 min.<br />

5 Spin the precipitated DNA in a<br />

microcentrifuge at 12,000 rpm for 10<br />

min at 4°C. Discard the supernatant and<br />

wash the pellet with 500 µl of 70%<br />

ethanol.<br />

6 Spin the precipitated DNA again (12,000<br />

rpm, 10 min, 4°C). Discard the<br />

supernatant and lyophilize the pellet.<br />

7 Add 6 µl deionized formamide <strong>to</strong> the<br />

lyophilizate and resuspend the probe<br />

DNA by vigorously shaking the tube<br />

for > 30 min at room temperature.<br />

8 Add 6 µl of hybridization buffer <strong>to</strong> the<br />

tube containing probe DNA and again<br />

shake for > 30 min.<br />

9 Denature and dehydrate normal metaphase<br />

chromosomal DNA on slides as<br />

described in the literature (Lichter and<br />

Cremer; Lichter et al., 1990).<br />

10 Prepare the probe (from Step 8) for<br />

hybridization by performing the<br />

following steps:<br />

Denature probe DNA at 75°C for<br />

5 min.<br />

Preanneal repetitive sequences by<br />

incubating the probe at 37°C for<br />

20–30 min.<br />

11 Add prepared probe (from Step 10) <strong>to</strong><br />

denatured chromosomal spreads (from<br />

Step 9). Proceed with in situ hybridization<br />

and probe detection as described<br />

in the literature (Lichter and Cremer;<br />

Lichter et al., 1990).<br />

12 Evaluate the CGH experiment with an<br />

epifluorescence microscope.<br />

Results<br />

The CGH procedure was used <strong>to</strong> reveal<br />

chromosomal imbalances (Figure 3) in a<br />

T-cell prolymphocytic leukemia (T-PLL).<br />

Chromosomal regions 6q, 8p, and 11qter<br />

are stained more weakly in the tumor<br />

DNA than in the control DNA, indicating<br />

deletions of all or part of the chromosomal<br />

arms in the tumor DNA. CGH also<br />

identified overrepresented chromosomal<br />

regions (6p, 8q, and 14q) which stain more<br />

heavily in the tumor than in the control.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

The DOP-PCR and CGH procedures<br />

described in this article were used <strong>to</strong> detect<br />

amplified sequences in genomic DNA from<br />

spinal fluid of patients who have a tumor of<br />

the central nervous system (Figure 4).<br />

DOP-PCR and CGH also revealed an<br />

amplification of the c-myc oncogene<br />

(which maps <strong>to</strong> chromosomal band 8q24)<br />

in cell line HL60 (Figure 5).<br />

CONTENTS<br />

<br />

INDEX<br />

<br />

<br />

<br />

Figure 3: Comparative genomic<br />

hybridization (CGH) experiment<br />

revealing chromosomal imbalances<br />

in a T-cell prolymphocytic<br />

leukemia (T-PLL).<br />

DNA from tumor cells was labeled<br />

with biotin and detected via a FITClabeled<br />

antibody (green) whereas<br />

the control DNA was labeled with<br />

digoxigenin and detected via a<br />

rhodamine-labeled antibody (red).<br />

For explanation, see the text.<br />

This pho<strong>to</strong>graph was taken by<br />

S. Joos and P. Lichter with<br />

permission of Springer Verlag,<br />

Heidelberg and New York.<br />

<br />

Figure 4: Detection of amplified<br />

sequences in the genomic DNA of<br />

patients with a central nervous<br />

system (CNS) tumor.<br />

Genomic DNA was isolated from a<br />

small number of cells harvested<br />

from the spinal fluid of the patients.<br />

The DNA was amplified by DOP-PCR<br />

and analyzed by CGH as described<br />

in the text. CGH reveals a strong<br />

amplification signal on both homologues<br />

of chromosome 8q (arrows).<br />

The image was pho<strong>to</strong>graphed<br />

directly using a conventional camera<br />

on an epifluorescence microscope.<br />

<br />

Figure 5: Detection of amplified<br />

c-myc oncogene sequences in<br />

cell line HL60.<br />

Genomic DNA (equivalent <strong>to</strong> the<br />

DNA from only 3– 4 HL60 cells) was<br />

diluted in TE buffer, amplified by<br />

DOP-PCR, and analyzed by CGH as<br />

described in the text. After CGH, the<br />

amplification signal is clearly visible<br />

on both chromosome 8 homologues<br />

(arrows). The image was captured<br />

as a gray scale image using a CCD<br />

camera (Pho<strong>to</strong>metrix), pseudocolored,<br />

and pho<strong>to</strong>graphed directly<br />

from the computer screen.<br />

75<br />

5


5<br />

**This product or the use of this<br />

product may be covered by one<br />

or more patents of Boehringer<br />

Mannheim GmbH, including the<br />

following: EP patent 0 649 909<br />

(application pending).<br />

**This product is sold under<br />

licensing arrangements with<br />

Roche Molecular Systems and<br />

The Perkin-Elmer Corporation.<br />

Purchase of this product is accompanied<br />

by a license <strong>to</strong> use it in the<br />

Polymerase Chain Reaction (PCR)<br />

process in conjunction with an<br />

Authorized Thermal Cycler. For<br />

complete license disclaimer, see<br />

inside back cover page + .<br />

76<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Reagents available from Boehringer Mannheim for these procedures<br />

Product Description Cat. No.<br />

DOP-PCR Master* , ** for 25 amplification reactions and 5 control reactions 1 644 963<br />

The DOP-PCR Master contains:<br />

Reagent Description Available as<br />

DOP-PCR mix, 25 units Taq DNA Polymerase/500 µl; 3 mM MgCl2; Three vials No. 1,<br />

2 x concentrated dATP, dGTP, dCTP, dTTP, 0.4 mM each; 100 mM KCl;<br />

20 mM Tris-HCl; 0.01% (v/v) Brij<br />

3 x 500 µl<br />

® 35; pH 8.3 (20°C)<br />

DOP-PCR primer (Sequence, 40 µM in double distilled H2O One vial No. 2,<br />

5'-CCG ACT CGA GNN NNN 150 µl<br />

NAT GTG G-3' (N = A, G, C,<br />

or T, in approximately<br />

equal proportions)<br />

Double distilled H2O, Two vials No. 3, 2 x 1000 µl<br />

PCR grade<br />

Control DNA Human genomic DNA from the lymphoblas<strong>to</strong>id One vial No. 4,<br />

cell line BJA, 1 ng/µl, in double distilled H2O 50 µl<br />

Other reagents:<br />

Reagent Description Cat. No. Pack size<br />

DIG-Nick Translation 5 x conc. stabilized reaction buffer in 50% 1745 816 160 µl<br />

Mix* for in situ probes glycerol (v/v) and DNA Polymerase I, DNase I,<br />

0.25 mM dATP, 0.25 mM dCTP, 0.25 mM dGTP,<br />

0.17 mM dTTP and 0.08 mM DIG-11-dUTP.<br />

Biotin-Nick Translation 5 x conc. stabilized reaction buffer in 50% 1745 824 160 µl<br />

Mix* for in situ probes glycerol (v/v) and DNA Polymerase I, DNase I,<br />

0.25 mM dATP, 0.25 mM dCTP, 0.25 mM dGTP<br />

0.17 mM dTTP and 0.08 mM biotin-16-dUTP.<br />

Streptavidin-Fluorescein 1 428 578 1 mg<br />

Anti-Digoxigenin-Rhodamine 1 207 750 200 µg<br />

Product Description Cat. No.<br />

High Pure PCR Product Kit for 50 purifications 1732 668<br />

Purification Kit** Kit for 250 purifications 1732 676<br />

The High Pure PCR Product Purification Kit contains:<br />

Reagent Description Available as<br />

• Binding buffer, • nucleic acids binding buffer; 3 M guanidine-thiocyanate, • Vial 1<br />

green cap 10 mM Tris-HCl, 5% (v/v) ethanol, pH 6.6 (25°C)<br />

• Wash buffer, • wash buffer; add 4 volumes of absolute ethanol • Vial 2<br />

blue cap before use! Final concentrations; 20 mM NaCl,<br />

2 mM Tris-HCl, pH 7.5 (25°C), 80% ethanol<br />

• Elution buffer • elution buffer; 10 mM Tris-HCl, 1 mM EDTA,<br />

pH 8.5 (25°C)<br />

• Vial 3<br />

• High Pure filter tubes • Polypropylene tubes, containing two layers of a<br />

specially pre-treated glass fibre fleece; maximum<br />

sample volume: 700 µl<br />

• Collection tubes • 2 ml polypropylene tubes<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Troubleshooting CGH experiments<br />

Control <strong>to</strong> detect CGH of<br />

insufficient quality<br />

<strong>Hybridization</strong> of a DOP-PCR probe <strong>to</strong><br />

normal human male metaphase chromosomes<br />

should show a markedly weaker<br />

staining of the X chromosome than of<br />

other chromosomes. If there is not a<br />

marked difference between the X chromosome<br />

and other chromosomes, the control<br />

indicates a defective or poor quality CGH<br />

experiment.<br />

Usually these poor hybridization results<br />

are accompanied by other hallmarks of poor<br />

quality, like a speckled, non-homogeneous<br />

staining pattern or high background fluorescence,<br />

both of which may considerably<br />

disturb the quantitative image analysis by<br />

causing high variability within the ratio<br />

profiles.<br />

Such poor hybridization results can be due<br />

<strong>to</strong> many causes. Several are listed below.<br />

Potential problems with chromosomal<br />

preparations<br />

<strong>In</strong> our experience, the most important<br />

fac<strong>to</strong>r for good hybridization experiments<br />

is the careful preparation of metaphase<br />

spreads. Therefore, every new batch of<br />

chromosomes needs <strong>to</strong> be tested. If good<br />

hybridization results are not obtained,<br />

discard the whole batch and start a new<br />

slide preparation procedure.<br />

Note: Although impaired hybridization is<br />

mainly due <strong>to</strong> residual cell debris on the<br />

slides, proteolytic digestion of the chromosomes<br />

will not lead <strong>to</strong> high quality CGH<br />

experiments. Although proteolytic digestion<br />

will improve the hybridization pattern on<br />

suboptimal slides, the results are considerably<br />

worse than those obtained on<br />

optimum slides which have not been<br />

pretreated with protease.<br />

Potential problems with probes<br />

Two important causes for granular and<br />

non-homogeneous staining patterns are:<br />

Probe DNA preparations may be contaminated<br />

with high amounts of protein.<br />

The size of the labeled probe fragments<br />

after nick translation may be inappropriate.<br />

Fragments which are <strong>to</strong>o large<br />

CONTENTS<br />

INDEX<br />

typically result in a starry background<br />

outside of the chromosomes. <strong>In</strong> contrast,<br />

probes which are <strong>to</strong>o small produce a<br />

homogeneous background distributed over<br />

all chromosomes. Smaller probes may also<br />

lead <strong>to</strong> a homogeneously strong staining<br />

pattern in regions which are over- or<br />

under-represented in the tumor genome.<br />

Problems which may hinder<br />

evaluation of CGH<br />

<strong>In</strong> contrast <strong>to</strong> conventional FISH experiments,<br />

strong fluorescence on the chromosomes<br />

and little or no fluorescence in the<br />

areas where no chromosomes or nuclei are<br />

located, are no guarantee that a hybridization<br />

experiment will be useful for a CGH<br />

analysis. Even in cases where a bright and<br />

smooth staining is observed, other fac<strong>to</strong>rs<br />

can severely impair evaluation of the<br />

hybridization experiment. Such impairment<br />

has two principal causes:<br />

<strong>In</strong>sufficient suppression of repetitive<br />

sequences may lead <strong>to</strong> incorrect measurements<br />

of ratios in chromosomal regions<br />

which contain many highly variable<br />

repetitive sequences, e.g., sequences on<br />

chromosome 19. Strong staining of the<br />

heterochromatin blocks on chromosomes<br />

1, 9, 16, and 19 can serve as an<br />

indica<strong>to</strong>r for poor suppression.<br />

Note: Good suppression will lead <strong>to</strong> very<br />

low FITC and rhodamine fluorescence<br />

intensities in the heterochromatic<br />

chromosome regions. Consequently, even<br />

very small variations of fluorescence<br />

intensities may cause gross ratio variations<br />

within these chromosomal regions.<br />

Thus, they are excluded from evaluation.<br />

Remedy: Either increase the amount of<br />

the Cot-1 DNA fraction or use longer<br />

preannealing times (the latter being less<br />

effective) <strong>to</strong> achieve adequate suppression<br />

of signals in such regions of the<br />

genome.<br />

Non-homogeneous illumination of the<br />

optical field leads <strong>to</strong> considerable regional<br />

variations within the ratio image.<br />

Such variations make a quantitative evaluation<br />

of the CGH experiment completely<br />

impossible.<br />

Remedy: Center the light source of the<br />

microscope carefully.<br />

77<br />

5


5<br />

78<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Problems inherent in sample composition<br />

Apart from the experimental fac<strong>to</strong>rs listed<br />

above, the validity of a CGH experiment<br />

critically depends on the percentage of cells<br />

carrying chromosomal imbalances. If no<br />

gains or losses of chromosomes are<br />

detected, the sample may contain only a<br />

low proportion of tumor cells. Therefore,<br />

adequate information from the his<strong>to</strong>logical<br />

labora<strong>to</strong>ry is crucial for any type of CGH<br />

analysis.<br />

References<br />

Bohlander, S. K.; Espinosa, R.; Le Beau, M. M.;<br />

Rowley, J. D.; Diaz, M. O. (1992) A method for the<br />

rapid sequence-independent amplification of<br />

microdissected chromosomal material. Genomics<br />

13, 1322–1324.<br />

Du Manoir, S.; Schröck, E.; Bentz, M.; Speicher,<br />

M. R.; Joos, S.; Ried, T.; Lichter, P.; Cremer, T. (1995)<br />

Quantitative analysis of comparative genomic<br />

hybridization. Cy<strong>to</strong>metry 19, 27–41.<br />

Du Manoir, S.; Speicher, M. R.; Joos, S.; Schröck,<br />

E.; Popp, S.; Döhner, H.; Kovacs, G.; Robert-Nicoud,<br />

M.; Lichter, P.; Cremer, T. (1993) Detection of<br />

complete and partial chromosome gains and losses<br />

by comparative genomic in situ hybridization.<br />

Hum. Genet. 90, 590–610.<br />

Joos, S.; Scherthan, H.; Speicher, M. R.; Schlegel, J.;<br />

Cremer, T.; Lichter, P. (1993) Detection of amplified<br />

genomic sequences by reverse chromosome<br />

painting using genomic tumor DNA as probe.<br />

Hum. Genet. 90, 584–589.<br />

Kallioniemi, A.; Kallioniemi, O.-P.; Sudar, D.;<br />

Ru<strong>to</strong>vitz, D.; Gray, J. W.; Waldman, F.; Pinkel, D.<br />

(1992) Comparative genomic hybridization for<br />

molecular cy<strong>to</strong>genetic analysis of solid tumors.<br />

Science 258, 818–821.<br />

Kallioniemi, O-P.; Kallioniemi, A; Piper, J.; Isola, J.;<br />

Waldman, F.; Gray, J. W.; Pinkel, D. (1994)<br />

Optimizing comparative genomic hybridization for<br />

analysis of DNA sequence copy number changes in<br />

solid tumors. Genes, Chromosomes and Cancer 10,<br />

231–243.<br />

Kallioniemi, O.-P.; Kallioniemi, A.; Sudar, D.;<br />

Ru<strong>to</strong>vitz, D.; Gray, J. W.; Waldman, F.; Pinkel, D.<br />

(1993) Comparative genomic hybridization: a rapid<br />

new method for detecting and mapping DNA<br />

amplification in tumors. Seminars in Cancer Biology<br />

4, 41–46.<br />

Kawasaki, E. S. (1990) Sample preparation from<br />

blood, cells, and other fluids. <strong>In</strong>: <strong>In</strong>nis, M. A.;<br />

Gelfand, D. H.; Sninsky, J. J.; White, T. J. (eds)<br />

PCR Pro<strong>to</strong>cols: A Guide <strong>to</strong> Methods and Applications.<br />

San Diego, CA: Academic Press, 146–152.<br />

Lichter, P.; Bentz, M.; du Manoir, S.; Joos, S. (1994)<br />

Comparative genomic hybridization. <strong>In</strong>: Verma, R;<br />

Babu S. (eds) Human Chromosomes. New York:<br />

McGraw Hill, 191–210.<br />

Lichter, P.; Cremer, T. Chromosome analysis by<br />

non-iso<strong>to</strong>pic in situ hybridization. <strong>In</strong>: Human<br />

Cy<strong>to</strong>genetics: Constitutional Analysis. IRL Press.<br />

Lichter, P.; Tang, C. C.; Call, K.; Hermanson, G.;<br />

Evans, G. A.; Housman, D.; Ward, D. C. (1990) High<br />

resolution mapping of human chromosome 11 by in<br />

situ hybridization with cosmid clones. Science 247,<br />

64–69.<br />

Lundsteen, C.; Maahr, J.; Christensen, B.; Bryndorf,<br />

T.; Bentz, M.; Lichter, P.; Gerdes, T. (1995) Image<br />

analysis in comparative genomic hybridization.<br />

Cy<strong>to</strong>metry 19, 42–50.<br />

Maniatis, T.; Fritsch, E. F.; Sambrook, J. (1986)<br />

Molecular Cloning: A Labora<strong>to</strong>ry Manual. Cold<br />

Spring Harbor, New York: Cold Spring Harbor<br />

Labora<strong>to</strong>ry Press.<br />

Piper, J.; Ru<strong>to</strong>vitz, D.; Sudar, D.; Kallioniemi, A.;<br />

Kallioniemi, O.-P.; Waldmann, F. M.; Gray, J. W.;<br />

Pinkel, D. (1995) Computer image analysis of<br />

comparative genomic hybridization. Cy<strong>to</strong>metry 19,<br />

10–26.<br />

Speicher, M. R.; du Manoir, S.; Schröck, E.; Holtgreve-<br />

Grez, H.; Schoell, B.; Lengauer, C.; Cremer, T.; Ried,<br />

T. (1993) Molecular cy<strong>to</strong>genetic analysis of<br />

formalin-fixed, paraffin-embedded solid tumors by<br />

comparative genomic hybridization after universal<br />

DNA amplification. Hum. Mol. Genet. 2, 1907–1914.<br />

Telenius, H.; Pelmear, A. H.; Tunnacliffe, A.; Carter,<br />

N. P.; Behmel, A.; Ferguson-Smith, M. A.;<br />

Nordenskjöld, M.; Pfragner, R. (1992) Ponder BAJP:<br />

Cy<strong>to</strong>genetic analysis by chromosome painting using<br />

DOP-PCR amplified flow-sorted chromosomes.<br />

Genes, Chromosomes and Cancer 4, 257–263.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Identification of chromosomes in metaphase spreads<br />

and interphase nuclei with PRINS oligonucleotide<br />

primers and DIG- or rhodamine-labeled nucleotides<br />

Dr. R. Seibl, Research Labora<strong>to</strong>ries, Boehringer Mannheim GmbH, Penzberg, Germany.<br />

PRimed IN <strong>Situ</strong> Labeling (PRINS) is a fast<br />

alternative <strong>to</strong> traditional in situ hybridization<br />

(Koch et al., 1989). PRINS starts<br />

with in situ hybridization (annealing) of an<br />

unlabeled synthetic oligonucleotide (e.g.,<br />

one of the PRINS oligonucleotide primers<br />

in Table 1) <strong>to</strong> denatured chromosomes in<br />

metaphase spreads or interphase nuclei on<br />

microscope slides. Then, the hybridized<br />

oligonucleotide serves as primer which a<br />

thermostable DNA polymerase (Gosden<br />

et al., 1991) elongates in situ. During the<br />

primer elongation reaction, the polymerase<br />

incorporates nonradioactively labeled<br />

nucleotides in<strong>to</strong> the newly synthesized<br />

DNA (Gosden and Hanratty, 1993).<br />

Depending on the label, the newly synthesized<br />

DNA may be detected by one of two<br />

methods:<br />

<strong>In</strong>direct detection using the DIG PRINS<br />

Reaction Set or direct detection using the<br />

Rhodamine PRINS Reaction Set.<br />

<strong>In</strong>direct detection uses a fluorochromeconjugated<br />

anti-DIG antibody (for<br />

example, Anti-Digoxigenin-Fluorescein<br />

from the DIG PRINS Reaction Set) <strong>to</strong><br />

locate digoxigenin-(DIG-)labeled DNA.<br />

For indirect detection, we offer the DIG<br />

PRINS Reaction Set, which combines<br />

the high sensitivity of digoxigenin labeling<br />

with the power of the PRINS<br />

reaction. <strong>In</strong> the Digoxigenin PRINS<br />

Reaction Set the sensitivity of the<br />

PRINS reaction can be optimized by<br />

adjusting the dTTP-concentration individually<br />

according <strong>to</strong> experimental<br />

requirements.<br />

Direct detection uses fluorochromelabeled<br />

nucleotides (e.g. RhodaminedUTP<br />

from the Rhodamine-PRINS<br />

Reaction Set) that are directly visible<br />

under a fluorescence microscope.<br />

For direct detection, we offer the<br />

Rhodamine PRINS Reaction Set, which<br />

combines the labeling intensity of our<br />

improved rhodamine which is the<br />

CONTENTS<br />

INDEX<br />

optimal fluorochrome for the PRINS<br />

reaction with the convenience of the<br />

PRINS reaction. This combination produces<br />

extremely rapid results as there is no<br />

conjugate incubation step required and the<br />

best sensitivity in direct detection comparable<br />

<strong>to</strong> indirect detection.<br />

<strong>In</strong> the Rhodamine PRINS Reaction Set,<br />

dTTP is provided at an optimized concentration<br />

in the Rhodamine Labeling Mix<br />

because dTTP variation has only minor<br />

influence on rhodamine labeling intensity.<br />

PRINS oligo- Specific for<br />

nucleotide<br />

primer<br />

Table 1: Specificity of PRINS oligonucleotide<br />

primers.<br />

1 Satellite II DNA in the pericentromeric heterochromatin<br />

on the long arm of human chromosome 1<br />

3 Centromere of human chromosome 3, Alpha satellite<br />

7 Centromere of human chromosome 7, Alpha satellite<br />

8 Centromere of human chromosome 8, Alpha satellite<br />

9 (Sat) Satellite III DNA in the pericentric heterochromatin<br />

on the proximal long arm of human chromosome 9<br />

10 Centromere of human chromosome 10, Alpha satellite<br />

11 Centromere of human chromosome 11, Alpha satellite<br />

12 Centromere of human chromosome 12, Alpha satellite<br />

14 + 22 Centromeres of human chromosomes 14 and 22,<br />

Alpha satellite<br />

1 + 16 Satellite II DNA of human chromosomes 1 and 16 in<br />

both cases located <strong>to</strong> the proximal long arm of that<br />

chromosome.<br />

17 Centromere of human chromosome 17, Alpha satellite<br />

18 Centromere of human chromosome 18, Alpha satellite<br />

X Centromere of human chromosome X, Alpha satellite<br />

Y Long arm of human chromosome Y. Stains most of the<br />

long arm of the Y-chromosome.<br />

T Telomeres of all human chromosomes 1<br />

Control primer All human chromosomes<br />

1 Please note the Telomere Primer is only for use with the Digoxigenin PRINS Reaction Set,<br />

because the Rhodamine PRINS Reaction Set contains dTTP in the Rhodamine Labeling Mix.<br />

79<br />

5


5<br />

80<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Compared <strong>to</strong> traditional ISH methods<br />

(where probe labeling is performed before<br />

the probe is added <strong>to</strong> the slide), PRINS has<br />

two advantages:<br />

Convenience. PRINS circumvents the<br />

laborious probe isolation and labeling<br />

needed in other approaches.<br />

Speed. Since high probe concentrations<br />

are possible, hybridization and chain<br />

elongation (in one reaction) usually takes<br />

30 min. For many PRINS primer the<br />

reaction time can even be reduced. The<br />

complete procedure, including fluorescent<br />

antibody detection, is complete in<br />

approximately 2 h. When using the<br />

Rhodamine PRINS Reaction Set for<br />

direct detection results are already available<br />

after 60 min.<br />

This article describes the use of the PRINS<br />

Reaction Set, the Rhodamine-PRINS<br />

Reaction Set, and PRINS oligonucleotide<br />

primers <strong>to</strong> rapidly identify human chromosomes.<br />

It also details how <strong>to</strong> combine<br />

PRINS and FISH (fluorescence in situ<br />

hybridization) for a multiple labeling<br />

experiment.<br />

I. Preparation of slides<br />

1 Using standard methods (e.g. Gosden,<br />

1994; Roonea and Czepulkowski, 1992),<br />

prepare fresh microscope slides containing<br />

fixed metaphase chromosomes and/<br />

or interphase nuclei.<br />

Caution: For best results, prepare the<br />

slides containing the fixed metaphase<br />

chromosomes either immediately before<br />

use or on the day before the PRINS<br />

reaction. If slides have been prepared a<br />

day early, s<strong>to</strong>re them at 4°C until use.<br />

Such slides may be used in the PRINS<br />

reaction without formamide pretreatment<br />

(Step 2 below).<br />

2 (Optional) If slides have been s<strong>to</strong>red for<br />

3 or more days at room temperature in<br />

70% ethanol at 4°C, denature the preparations<br />

with formamide directly before<br />

the PRINS reaction. For the formamide<br />

treatment, perform the following steps:<br />

Prepare a solution containing:<br />

– 70 ml deionized formamide<br />

– 10 ml 20 x SSC<br />

– 10 ml 500 mM sodium phosphate<br />

buffer, pH 7.0<br />

– 10 ml H2O<br />

Adjust the pH of the formamide solution<br />

<strong>to</strong> 7.0 with HCl.<br />

<strong>In</strong>cubate the slides for 45 s at 68°C in<br />

the formamide solution. Check the<br />

temperature of the formamide solution,<br />

as it is important that it be<br />

68°C.<br />

Wash the slides in a series of ice-cold<br />

ethanol solutions (70%, then 90%,<br />

then 100% ethanol).<br />

Caution: The ethanol solutions must<br />

be ice-cold during this step.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

II. Preparation of PRINS<br />

reaction mixes<br />

Note: For a single reaction under a 22 x<br />

22 mm coverslip, prepare 30 µl of DIG-<br />

PRINS reaction mix or Rhodamine-PRINS<br />

reaction mix. Adjust the volume of the<br />

reaction mix (but not the concentration of<br />

the components) if you are preparing more<br />

than one reaction, or if you use coverslips<br />

of a different size. For 18 x 18 mm coverslips,<br />

prepare 15 ml reaction mix per<br />

reaction; for 24 x 60 mm or 22 x 40 mm<br />

coverslips, prepare 60 ml per reaction.<br />

1 Depending on the type of PRINS<br />

reaction desired, do one of the following:<br />

A. If you want <strong>to</strong> use Digoxigenin for in<br />

situ labeling and detect the PRINS target<br />

by indirect fluorescence (immunological)<br />

methods, prepare 30 µl of DIG-PRINS<br />

reaction mix (for each reaction) by<br />

adding the following components <strong>to</strong> a<br />

sterile microcentrifuge tube (on ice):<br />

Note: Most of the components (numbered<br />

vials) used in the DIG-PRINS<br />

reaction mix are from the PRINS<br />

Reaction Set.<br />

13.5 µl sterile redistilled H2O.<br />

3.0 µl 10 x concentrated PRINS<br />

reaction buffer (PRINS vial 3).<br />

3.0 µl 10 x concentrated DIG-PRINS<br />

labeling mix (500 µM each of dATP,<br />

dCTP, and dGTP; 50 µM DIGdUTP;<br />

50% glycerol) (PRINS vial 1).<br />

5.0 µl PRINS oligonucleotide primer<br />

[either control primer (PRINS vial 4) or<br />

a human chromosome-specific PRINS<br />

oligonucleotide primer (Table 1).<br />

3.0 µl 450 mM dTTP (PRINS vial 2).<br />

Caution: The concentration of dTTP<br />

used in the DIG-PRINS reaction<br />

mix depends upon the PRINS oligonucleotide<br />

primer used.<br />

Using the PRINS Oligonucleotide<br />

Primer T, no -dTTP has <strong>to</strong> be added<br />

<strong>to</strong> the reaction mix.<br />

For the PRINS Oligonucleotide Primer<br />

9, the final concentration of dTTP in<br />

the DIG-PRINS reaction mix must be<br />

90 µM.<br />

For all other PRINS primers listed in<br />

Table 1 the final concentration of<br />

dTTP in the DIG-PRINS reaction<br />

mix must be 45 µM.<br />

The correct dTTP concentration for<br />

other primers must be determined<br />

empirically.<br />

CONTENTS<br />

INDEX<br />

The dTTP concentration can be<br />

adjusted individually <strong>to</strong> increase the<br />

signal strength by reducing the dTTP<br />

concentration or <strong>to</strong> decrease the<br />

signal strength by increasing the<br />

dTTP concentration.<br />

2.5 µl Taq DNA Polymerase (1 unit/µl).<br />

B. If you want <strong>to</strong> use rhodamine-labeled<br />

DNA and detect the PRINS target by<br />

direct fluorescence methods, prepare<br />

30 µl of Rhodamine-PRINS reaction<br />

mix (for each reaction) by adding the<br />

following components <strong>to</strong> a sterile<br />

microcentrifuge tube (on ice):<br />

Note: Most of the components (numbered<br />

vials) used in the Rhodamine-<br />

PRINS reaction mix are from the<br />

Rhodamine-PRINS Reaction Set.<br />

16.5 µl sterile redistilled H2O.<br />

3.0 µl 10 x concentrated PRINS<br />

reaction buffer (Rh-PRINS vial 2).<br />

3.0 µl 10 x concentrated Rhodamine-<br />

PRINS labeling mix (500 µM each of<br />

dATP, dCTP, and dGTP; 50 µM<br />

dTTP; 10 µM rhodamine-dUTP; 50%<br />

glycerol) (Rh-PRINS vial 1).<br />

Note: The correct dTTP concentration<br />

(5 µM) for most primers is provided<br />

as part of the Rhodamine-PRINS<br />

labeling mix (in the Rhodamine-<br />

PRINS Reaction Set). Variations in<br />

dTTP do not significantly affect the<br />

intensity of rhodamine labeling.<br />

Since dTTP is included in the<br />

Rhodamine-PRINS labeling mix and<br />

because for the PRINS Oligonucleotide<br />

Primer T, no dTTP has <strong>to</strong> be added<br />

<strong>to</strong> the reaction mix, the T primer is<br />

incompatible with the components of<br />

the Rhodamine-PRINS Reaction Set.<br />

5.0 µl PRINS oligonucleotide primer<br />

[either control primer (Rh-PRINS<br />

vial 3) or a human chromosomespecific<br />

PRINS oligonucleotide<br />

primer (Table 1).<br />

2.5 µl Taq DNA Polymerase (1 unit/µl).<br />

2 Gently vortex the reaction solution <strong>to</strong><br />

mix the components.<br />

3 Centrifuge the reaction mixture briefly<br />

<strong>to</strong> collect the liquid on the bot<strong>to</strong>m of<br />

the tube.<br />

81<br />

5


5<br />

82<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

III. Primer annealing and elongation<br />

1 Place the dry slides containing fixed<br />

chromosomes and/or interphase nuclei<br />

on either a heating block or a special<br />

thermal cycler for slides.<br />

Note: To guarantee specificity and<br />

sensitivity of the reaction, the denaturation<br />

step and the annealing/elongation<br />

step need precisely controlled elevated<br />

temperatures. For reproducible results,<br />

we recommend that, instead of a heating<br />

block, you use a temperature cycler that<br />

is specially designed for slides, such as the<br />

OmniSlide or OmniGene Temperature<br />

Cycler (Hybaid Ltd., Tedding<strong>to</strong>n,<br />

Middlesex, England) or an equivalent<br />

instrument from another manufacturer.<br />

2 Depending on the age of the slides, do<br />

one of the following:<br />

If slides are freshly prepared (one day<br />

old or less), incubate them at 94°C<br />

for 1 min.<br />

If slides are 3 or more days old and<br />

have been treated with formamide<br />

(Procedure I, Step 2 above), incubate<br />

them at 60°C for 1 min.<br />

3 Without removing the slides from the<br />

heating block, do the following:<br />

On<strong>to</strong> each sample, immediately<br />

pipette:<br />

– 25 µl of DIG-PRINS reaction mix<br />

or<br />

– 27 µl of Rhodamine-PRINS<br />

reaction mix<br />

Cover sample with a 22 x 22 mm<br />

coverslip.<br />

Caution: If you use coverslips of a<br />

different size than 22 x 22 mm, adjust<br />

the volume of the DIG-PRINS or<br />

Rhodamine-PRINS reaction mix in<br />

this step so it covers the sample well<br />

and completely wets the coverslip.<br />

4 Depending on the age of the slides, do<br />

one of the following:<br />

If slides are freshly prepared (1 day old<br />

or less), incubate them at 91°–94°C for<br />

3 min <strong>to</strong> denature the chromosomal<br />

DNA, then go <strong>to</strong> Step 5.<br />

Caution: The slides generally reach<br />

91°–94°C when the surface of a heating<br />

block reaches 94°–97°C. However,<br />

if you are using a temperature<br />

cycler designed for slides, the cycler<br />

may au<strong>to</strong>matically take in<strong>to</strong> account<br />

this temperature differential.<br />

If slides are 3 or more days old and<br />

have been treated with formamide,<br />

skip this step, leave the heating block<br />

set at 60°C and go <strong>to</strong> Step 5.<br />

5 Reduce the temperature of the heating<br />

block <strong>to</strong> 60°C and incubate the slides<br />

for 30 min at 60°C while the primer<br />

anneals and the polymerase elongates it.<br />

Caution: Be sure the temperature of the<br />

slides is exactly as indicated for the<br />

individual primers. Even a few seconds<br />

of exposure <strong>to</strong> a temperature below the<br />

stringent annealing temperature can<br />

lead <strong>to</strong> an unwanted background signal.<br />

The slides are usually at the correct<br />

temperature when the surface of the<br />

heating block reaches 60°C.<br />

Note: The stringent annealing/ elongation<br />

temperature for the PRINS reaction<br />

depends on the sequence of the primer<br />

used.<br />

The annealing temperature in the PRINS<br />

reaction using the Oligonucleotide<br />

Primer T is 60°C.<br />

The annealing temperature for all other<br />

PRINS Oligonucleotide Primer in the<br />

PRINS reaction is 60°–65°C.<br />

6 Remove the slides from the heating<br />

block and place them immediately in a<br />

Coplin jar containing s<strong>to</strong>p buffer which<br />

has been prewarmed <strong>to</strong> the temperature<br />

of the hybridization/elongation reaction<br />

(60°C).<br />

7 S<strong>to</strong>p the reaction by washing the slides<br />

for 3–5 min at the temperature of the hybridization/elongation<br />

reaction (60°C)<br />

with prewarmed s<strong>to</strong>p buffer.<br />

Note: Coverslips should drop off the<br />

slides during this step.<br />

Caution: Be sure the temperature remains<br />

the temperature of the hybridization/<br />

elongation reaction (60°C) throughout<br />

the wash.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

IV. Detection of hybridized sequences<br />

1 <strong>In</strong> a Coplin jar, wash the slides as follows:<br />

3 x 5 min at 37°C with wash buffer<br />

[0.2% Tween ® 20 in phosphate buffered<br />

saline (PBS)].<br />

About 1 min with PBS at room<br />

temperature.<br />

2 Depending on the label used in the<br />

PRINSreaction,dooneofthefollowing:<br />

If you produced DIG-labeled DNA<br />

in Procedure III, go <strong>to</strong> Step 3.<br />

If you produced rhodamine-labeled<br />

DNA in Procedure III, go <strong>to</strong> Step 6.<br />

3 Prepare the antibody working solution<br />

by diluting the Anti-Digoxigenin-<br />

Fluorescein conjugate (PRINS vial 5)<br />

1:1000 with PBS containing 1% blocking<br />

solution.<br />

Note: Anti-DIG-Fluorescein conjugate is<br />

a included in the PRINS Reaction Set.<br />

10 x blocking solution is included in the<br />

DIG Wash and Block Set*; it contains<br />

100 mM maleic acid (pH 7.5), 150 mM<br />

NaCl, and 10% blocking reagent. PBS<br />

containing 1% blocking solution can be<br />

prepared by diluting the 10 x blocking<br />

solution 1:10 with PBS.<br />

4 <strong>In</strong> a Coplin jar, incubate the slides with<br />

antibody working solution for 30 min<br />

in the dark at 37°C.<br />

5 Repeat Step 1 washes.<br />

6 For counterstaining, add the counterstain<br />

working solution (e.g., PBS containing<br />

either 20 ng/ml propidium iodide or<br />

20 ng/ml DAPI) <strong>to</strong> the Coplin jar and<br />

incubate the slides with the counterstain<br />

for 5 min in the dark at room temperature.<br />

Caution: If the target DNA is labeled<br />

with rhodamine-dUTP, do not use<br />

propidium iodide counterstain, since the<br />

emission of propidium iodide and rhodamine<br />

overlap. Use DAPI as a counterstain<br />

for rhodamine-labeled DNA.<br />

Wash the slides for 2–3 min under<br />

running water.<br />

7 Air-dry the slides in the dark.<br />

8 Prepare the slides for viewing by doing<br />

the following:<br />

Apply 20 µl antifade solution [e.g.,<br />

Vectashield (Vec<strong>to</strong>r) or Slow Fade-<br />

Light (Molecular Probes)] <strong>to</strong> each<br />

slide.<br />

Add a coverslip.<br />

Note: For long term s<strong>to</strong>rage of the slides<br />

seal the edges of the coverslip with nail<br />

polish and s<strong>to</strong>re in the dark at –20°C.<br />

9 Analyze the slides under a fluorescence<br />

microscope with the appropriate filters.<br />

CONTENTS<br />

INDEX<br />

V. Combining PRINS and FISH<br />

1 Label a DNA probe with digoxigenin,<br />

biotin, or any fluorochrome (except the<br />

one used in the PRINS procedure),<br />

according <strong>to</strong> procedures described in<br />

Chapter 4 of this manual.<br />

2 Perform the PRINS reaction as described<br />

in Procedure I–III of this article.<br />

3 After washing the PRINS slides in s<strong>to</strong>p<br />

buffer (Procedure III, Step 6), dehydrate<br />

the slides in an ethanol series (increasing<br />

concentrations of ice-cold ethanol).<br />

Caution: The ethanol solutions must be<br />

ice-cold during this step.<br />

4 Hybridize the labeled DNA probe<br />

(from Step 1) <strong>to</strong> the PRINS slides,<br />

according <strong>to</strong> FISH procedures described<br />

elsewhere (Procedure IIA, IIB, or IIC<br />

from the article “<strong>In</strong> situ hybridization <strong>to</strong><br />

human metaphase chromosomes using<br />

DIG-, biotin-, or fluorochrome-labeled<br />

DNA probes and detection with fluorochrome<br />

conjugates”, in Chapter 5 of this<br />

manual, pages 62, 63). Modify the<br />

hybridization procedure as follows:<br />

Denature the labeled probe DNA<br />

before adding it <strong>to</strong> the slides.<br />

Do not heat the slides <strong>to</strong> 80°C after<br />

adding the probe <strong>to</strong> the slides.<br />

5 After the incubation step, wash the slides<br />

with the formamide/SSC washes described<br />

in the FISH procedure, then perform a<br />

final wash in PBS.<br />

6 Depending on the label used in the<br />

PRINS reaction, do one of the following:<br />

For PRINS targets labeled with DIGdUTP,<br />

perform the PRINS antibody<br />

detection and wash steps as above<br />

(this article, Procedure IV, Steps 3–5).<br />

For PRINS targets labeled with<br />

rhodamine-dUTP, skip this step and<br />

go <strong>to</strong> Step 7.<br />

7 Depending on the label used in the FISH<br />

procedure, do one of the following:<br />

For biotin- or digoxigenin-labeled<br />

FISH probes, perform the immunological<br />

detection step according <strong>to</strong><br />

procedures described elsewhere (Procedure<br />

IIIA1/IIIA2 or IIIB1/IIIB2<br />

from the article “<strong>In</strong> situ hybridization<br />

<strong>to</strong> human metaphase chromosomes<br />

using DIG-, biotin-, or fluorochromelabeled<br />

DNA probes and detection<br />

with fluorochrome conjugates”, in<br />

Chapter 5 of this manual, page 64).<br />

For fluorochrome-labeled FISH<br />

probes, skip this step and go <strong>to</strong> Step 8.<br />

*Sold under the tradename of Genius<br />

in the US.<br />

83<br />

5


5<br />

84<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

8 Counterstain and prepare the slides as<br />

above (this article, Procedure IV, steps<br />

6–7).<br />

9 Analyze the slides under a fluorescence<br />

microscope with the appropriate filters.<br />

Possible cause Possible solution<br />

Denaturation temperature does not reach <strong>In</strong>crease the temperature of the block<br />

91°–94°C at the surface of the slide. slightly during denaturation.<br />

Annealing/elongation temperature Lower the annealing/elongation temperature<br />

is <strong>to</strong>o high. by 3°C and repeat experiment. If signal is<br />

inadequate, reduce the temperature further<br />

(in 3°C steps).<br />

(For DIG-labeling only) Not enough 1. Reduce the dTTP concentration in the<br />

DIG-dUTP was incorporated in<strong>to</strong> reaction solution <strong>to</strong> 30 µM, 15 µM or zero<br />

sample. by adding 2 µl, 1 µl, or no dTTP solution<br />

(DIG PRINS Reaction Set vial 2) <strong>to</strong> each<br />

30 µl reaction<br />

Primer concentration <strong>to</strong>o low 1. <strong>In</strong>crease the amount of primer in the<br />

reaction solution.<br />

Use the control primer (DIG PRINS<br />

Reaction Set vial 4) <strong>to</strong> check the sensitivity<br />

of the reaction.<br />

B. If signal is strong, then:<br />

Possible cause Possible solution<br />

VI. Troubleshooting guide for PRINS<br />

Use the following tips <strong>to</strong> diagnose and<br />

correct commonly occurring problems in<br />

the PRINS procedure described above.<br />

A. If signal is weak or missing, then:<br />

(For DIG-labeling only) Too much 1. <strong>In</strong>crease the dTTP concentration in the<br />

DIG-dUTP was incorporated in<strong>to</strong> reaction solution <strong>to</strong> 60 µM, 90 µM or<br />

sample. 135 µM by adding 4 µl, 6 µl, or 9 µl dTTP<br />

solution (DIG PRINS Reaction Set vial 2)<br />

<strong>to</strong> each 30 µl reaction<br />

Primer concentration <strong>to</strong>o high 1. Decrease the amount of primer in the<br />

reaction solution.<br />

Use the control primer (DIG PRINS<br />

Reaction Set vial 4) <strong>to</strong> check the sensitivity<br />

of the reaction.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

C. If chromosomes or nuclei contain<br />

unwanted background signals, then:<br />

Possible cause Possible solution<br />

The slide was exposed <strong>to</strong> temperatures Do not allow the temperature on the slide<br />

below the stringent annealing/ <strong>to</strong> ever fall below the stringent annealing/<br />

elongation temperature for a few<br />

seconds after the denaturation step.<br />

elongation temperature.<br />

Annealing/elongation temperature is Raise the annealing/elongation temperature<br />

<strong>to</strong>o low. by 3°C and repeat experiment. If background<br />

is still high, increase the temperature further<br />

(in 3°C steps) until the reaction is specific.<br />

The slide was exposed <strong>to</strong> temperatures Prewarm the s<strong>to</strong>p buffer <strong>to</strong> the stringent<br />

below the stringent annealing/elonga- annealing/elongation temperature and<br />

tion temperature for a few seconds transfer the slides directly from the heating<br />

between the elongation step and the block <strong>to</strong> the warm s<strong>to</strong>p solution.<br />

addition of s<strong>to</strong>p buffer.<br />

Primer-independent elongation of nicks Perform a control PRINS reaction without<br />

and chromosomal breaks occurred. added primer. If you obtain a signal, either<br />

Such nicks and breaks can occur during block the 3' ends of the chromosomal breaks<br />

long term s<strong>to</strong>rage of the chromosomal by incubating the chromosomal preparations<br />

preparation. with DNA polymerase and a mixture of<br />

ddNTPS or (preferably) discard the<br />

chromosomal preparations and prepare fresh<br />

chromosomes or fresh chromosomal spreads.<br />

(For DIG-labeling only) When the <strong>In</strong>crease the dTTP concentration in the<br />

primary signal is strong, minor primer- reaction solution <strong>to</strong> 60 µM, 90 µM or<br />

dependent signals may be seen at 135 µM by adding 4 µl, 6 µl, or 9 µl<br />

secondary binding sites for the primer. dTTP solution (DIG PRINS Reaction Set<br />

vial 2) <strong>to</strong> each 30 µl reaction<br />

or<br />

Decrease the amount of primer in the reaction<br />

solution.<br />

D. If the entire slide (not just the chromosomes and nuclei)<br />

contain unwanted background signals, then:<br />

Possible cause Possible solution<br />

(For DIG-labeling only) The antibody Perform a control detection reaction by<br />

conjugate (anti-digoxigenin-fluores- incubating an unhybridized sample slide<br />

cein) bound nonspecifically <strong>to</strong> the slide directly with the antibody conjugate, then<br />

or <strong>to</strong> cellular proteins and matrix in washing and analyzing the slide as in<br />

the chromosomal preparation. Procedure IV. If background is observed,<br />

either increase the number and duration of<br />

the washing steps or (preferably) repeat the<br />

chromosomal preparation <strong>to</strong> remove excess<br />

cellular proteins and matrix responsible for<br />

nonspecific binding.<br />

DIG-dUTP or rhodamine-dUTP Perform a control PRINS reaction in the<br />

bound nonspecifically during the absence of Taq polymerase and primer.<br />

PRINS reaction. If background is observed, either increase<br />

the number and duration of the washes or<br />

(preferably) repeat the chromosomal<br />

preparation <strong>to</strong> remove excess cellular proteins<br />

and matrix responsible for nonspecific binding.<br />

CONTENTS<br />

INDEX<br />

85<br />

5


5<br />

86<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Results<br />

a b<br />

<br />

Figure 1: PRINS labeling and indirect fluorescent detection of human chromosomes.<br />

The PRINS primers specific for (Panel a) human chromosome 11 and (Panel b) human chromosome 7 were<br />

hybridized <strong>to</strong> human chromosomal preparations. The hybridized primers were elongated in situ and the<br />

newly synthesized DNA labeled with DIG-dUTP according <strong>to</strong> the procedure described in the text. Labeled<br />

DNA was visualized with anti-DIG-fluorescein. Propidium iodide was used as a counterstain.<br />

a<br />

b2<br />

References<br />

Gosden, J. R., ed. (1994) Chromosome Analysis<br />

Pro<strong>to</strong>cols (Methods Mol. Biol., Vol. 29). To<strong>to</strong>wa, NJ:<br />

Humana Press.<br />

Gosden, J.; Hanratty, D.; Starling, J.; Fantes, J.;<br />

Mitchell, A.; Porteus, D. (1991) Oligonucleotide<br />

primed in situ DNA synthesis (PRINS): A method for<br />

chromosome mapping, banding and investigation of<br />

sequence organization. Cy<strong>to</strong>genet. Cell Genet. 57,<br />

100–104.<br />

b1<br />

<br />

Figure 2: Rhodamine PRINS labeling and direct<br />

fluorescent detection of human chromosomes.<br />

The PRINS primers specific for (Panel a) human<br />

chromosome 1 and (Panel b1, b2) human<br />

chromosome 9 were hybridized <strong>to</strong> human<br />

chromosomal preparations. The hybridized primers<br />

were used <strong>to</strong> label target DNA in situ with<br />

rhodamine-dUTP according <strong>to</strong> the procedure<br />

described in the text. Labeled DNA was viewed<br />

directly under a fluorescence microscope. DAPI was<br />

used as a counterstain.<br />

Gosden, J.; Hanratty, D. (1993) PCR in situ:<br />

A rapid alternative <strong>to</strong> in situ hybridization for<br />

mapping short, low-copy number sequences<br />

without iso<strong>to</strong>pes. BioTechniques 15, 78–80.<br />

Koch, J. E.; Kølvraa, S.; Petersen, K. B.; Gregersen,<br />

N.; Bolund, L. (1989) Oligonucleotide priming<br />

methods for the chromosome-specific labeling of<br />

alpha satellite DNA in situ. Chromosoma (Berl.) 98,<br />

259–265.<br />

Roonea, D. E.; Czepulkowski, B. H., eds. (1992)<br />

Human Cy<strong>to</strong>genetics, A Practical Approach, Vol. 1.<br />

Oxford, England: IRL Press.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Reagents available from Boehringer Mannheim for PRINS<br />

Product Description Cat. No.<br />

DIG PRINS Reaction Set For 40 PRINS labeling reactions and 5 control reactions 1 695 932<br />

The DIG PRINS Reaction Set includes a detailed working procedure and contains:<br />

Reagent Description Kit component<br />

10 x Concentrated<br />

PRINS labeling mix<br />

dNTPs including digoxigenin-11-dUTP One vial No. 1, 135 µl<br />

dTTP solution 450 µM dTTP One vial No. 2, 200 µl<br />

10 x Concentrated Buffer for 45 reactions One vial No. 3, 150 µl<br />

PRINS reaction buffer<br />

PRINS Control Primer for 5 control reactions One vial No. 4<br />

Oligonucleotide Primer<br />

Anti-Digoxigenin-Fluorescein Antibody (200 µg/ml) for 22 detection Two vials No. 5,<br />

Conjugate, Fab fragments reactions in a Coplin jar 2 x 550 µl<br />

Product Description Cat. No.<br />

Rhodamine PRINS Reaction Set For 40 PRINS labeling reactions and 5 control reactions 1 768 514<br />

The Rhodamine PRINS Reaction Set includes a detailed working procedure and<br />

contains:<br />

Reagent Description Kit component<br />

10 x Concentrated Rhodamine<br />

PRINS labeling mix<br />

dNTPs including Rhodamine-dUTP One vial No. 1, 135 µl<br />

10 x Concentrated Buffer for 50 reactions One vial No. 2, 150 µl<br />

PRINS reaction buffer<br />

PRINS Control Primer for 5 control reactions One vial No. 3, 25 µl<br />

Oligonucleotide Primer<br />

PRINS oligonucleotide primers<br />

The following PRINS oligonucleotide primers are available* (Pack size 100 µl each):<br />

Primer Cat. No.<br />

PRINS oligonucleotide primer 1, specific for human chromosome 1 1 695 959<br />

PRINS oligonucleotide primer 1+16, specific for human chromosome 1+16 1768 549<br />

PRINS oligonucleotide primer 3, specific for chromosome 3 1 695 967<br />

PRINS oligonucleotide primer 7, specific for human chromosome 7 1 695 975<br />

PRINS oligonucleotide primer 8, specific for human chromosome 8 1 695 983<br />

PRINS oligonucleotide primer 9 (Sat), specific for human chromosome 9 1768 565<br />

PRINS oligonucleotide primer 10, specific for human chromosome 10 1768 522<br />

PRINS oligonucleotide primer 11, specific for human chromosome 11 1 695 991<br />

PRINS oligonucleotide primer 12, specific for human chromosome 12 1 696 009<br />

PRINS oligonucleotide primer 14+22, specific for human chromosome 14+22 1768 557<br />

PRINS oligonucleotide primer 17, specific for human chromosome 17 1 696 017<br />

PRINS oligonucleotide primer 18, specific for human chromosome 18 1 696 025<br />

PRINS oligonucleotide primer X, specific for the human X chromosome 1 696 033<br />

PRINS oligonucleotide primer Y, specific for the human Y chromosome 1 696 041<br />

PRINS oligonucleotide primer T, specific for human telomeres 1 699 199<br />

PRINS control oligonucleotide primer, specific for all human chromosomes 1 699 172<br />

CONTENTS<br />

INDEX<br />

* Please note the Telomer Primer is<br />

only for use with the Digoxigenin<br />

PRINS Reaction Set because the<br />

Rhodamine PRINS Reaction Set<br />

contains dTTP in the Labeling Mix.<br />

87<br />

5


5<br />

88<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Identification of chromosomes in metaphase<br />

spreads with DIG- or fluorescein-labeled human<br />

chromosome-specific satellite DNA probes<br />

Dr. G. Sagner, Research Labora<strong>to</strong>ries, Boehringer Mannheim GmbH,<br />

Penzberg, Germany.<br />

Fluorescence in situ hybridization (FISH)<br />

with human chromosome-specific satellite<br />

DNA probes is a sensitive technique for<br />

identifying individual human chromosomes.<br />

Applications include:<br />

Analysis of aneuploidies in normal or<br />

tumor cells<br />

Identification of chromosomes in<br />

hybrid cells<br />

Production of genetic linkage maps<br />

Especially useful for such applications are<br />

fluorescein- or digoxigenin-labeled probes<br />

which recognize alphoid sequence variants<br />

that occur at the centromere of specific<br />

chromosomes (Willard and Waye, 1987;<br />

Choo, K. H. et al., 1991). Fluoresceinlabeled<br />

probes allow rapid, direct detection<br />

of a single chromosome. DIG-labeled<br />

probes allow sensitive, indirect detection<br />

of a chromosome with a variety of<br />

fluorochrome-labeled antibodies. Both<br />

fluorescein- and DIG-labeled probes can<br />

be combined in a multicolor labeling of<br />

different chromosomes on a single<br />

preparation.<br />

This article describes the use of such prelabeled<br />

probes <strong>to</strong> identify human chromosomes<br />

in chromosomal spreads from whole<br />

blood or from cell culture.<br />

I. Preparation of metaphase<br />

chromosomes<br />

1 Prepare chromosomes from either whole<br />

blood or cell culture as follows:<br />

For whole blood, do these steps:<br />

Mix 5 ml whole blood with 5 ml PBS.<br />

Pipette 7.5 ml of lymphocyte separation<br />

medium in<strong>to</strong> a 50 ml centrifuge<br />

tube.<br />

Carefully layer blood-PBS mixture<br />

a<strong>to</strong>p separation medium.<br />

Centrifuge for 30 min at 800 x g.<br />

Remove the interphase (middle part<br />

of the centrifuged mixture) that contains<br />

the lymphocytes.<br />

Place the lymphocytes in a fresh<br />

centrifuge tube.<br />

Mix lymphocytes with 50 ml PBS.<br />

Centrifuge for 10 min at 420 x g.<br />

Discard the supernatant and resuspend<br />

cells at approximately 10 6 cells per ml<br />

in chromosome medium (Gibco).<br />

Note: This step should require about<br />

5 ml chromosome medium.<br />

Go <strong>to</strong> Step 2.<br />

For cells in culture, do these steps:<br />

Harvest cells by centrifugation.<br />

Resuspend cells at approximately 10 6<br />

cells per ml in chromosome medium.<br />

Go <strong>to</strong> Step 2.<br />

2 <strong>In</strong>cubate cells in chromosome medium<br />

for 71 h in a CO2 incuba<strong>to</strong>r at 37°C and<br />

7% CO2.<br />

3 Add 12 µl Colcemid ® per ml medium.<br />

4 <strong>In</strong>cubate cells for 1 h at 37°C and 7%<br />

CO2.<br />

5 Centrifuge cells (210 x g) for 10 min at<br />

4°C.<br />

6 With a pipette, remove supernatant until<br />

only 1 ml remains a<strong>to</strong>p the cells.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

7 Resuspend the pellet in the remaining<br />

supernatant.<br />

8 Slowly add <strong>to</strong> the resuspended cells10ml<br />

of prewarmed (37°C) 75 mM KCl.<br />

9 Gently mix and incubate for 12–20 min<br />

at 37°C.<br />

10 To the mixture, add 7 drops of chilled<br />

methanol-acetic acid fixative (3 parts<br />

methanol <strong>to</strong> 1 part acetic acid, precooled<br />

<strong>to</strong> –20°C). Gently mix.<br />

11 Centrifuge mixture (210 x g) for 10 min<br />

at 4°C.<br />

12 With a pipette, remove supernatant until<br />

only 1 ml remains a<strong>to</strong>p the pellet.<br />

13 Carefully resuspend the pellet in the<br />

remaining supernatant and add 1 ml<br />

precooled (–20°C) methanol-acetic acid<br />

fixative. Gently mix.<br />

14 Add an additional 5–10 ml precooled<br />

(–20°C) methanol-acetic acid fixative.<br />

Mix thoroughly.<br />

15 Fix chromosomes for at least 30 min at<br />

–20°C.<br />

16 Repeat Steps 11–15 three <strong>to</strong> five times.<br />

17 S<strong>to</strong>re the metaphase chromosomes at<br />

least 24 h in methanol-acetic acid fixative<br />

at –20°C.<br />

18 Do either of the following:<br />

Go <strong>to</strong> Procedure II.<br />

S<strong>to</strong>re metaphase chromosomes in<br />

methanol-acetic acid fixative at –20°C<br />

up <strong>to</strong> several months.<br />

II. Preparation of chromosomal<br />

spreads<br />

1 Pretreat slides as follows:<br />

Wash slides briefly in a 1:1 mixture of<br />

100% ethanol and ether.<br />

Air dry slides.<br />

Wash briefly in redistilled H2O. (Do<br />

not dry.)<br />

2 Centrifuge metaphase chromosomes from<br />

Procedure I (210 x g) for 10 min at 4°C.<br />

3 Remove and discard all supernatant.<br />

4 Resuspend chromosomal pellet in1–2 ml<br />

of precooled (–20°C) methanol-acetic<br />

acid fixative.<br />

5 Drop the metaphase chromosomes on<strong>to</strong><br />

a moist, pretreated slide from a height of<br />

approximately 50 cm.<br />

6 Allow slides <strong>to</strong> air dry.<br />

7 For optimal metaphase spreads, s<strong>to</strong>re<br />

slides at least 5 days in 70% ethanol at<br />

4°C.<br />

Note: You may s<strong>to</strong>re slides up <strong>to</strong> several<br />

weeks in 70% ethanol at 4°C.<br />

CONTENTS<br />

INDEX<br />

III. <strong>In</strong> situ hybridization with chromosome-specific<br />

DNA probes<br />

Note: Perform the following procedure in<br />

a 50 ml Coplin jar which can hold a<br />

maximum of 8 slides.<br />

Caution: Prewarm all solutions in the<br />

following procedure <strong>to</strong> the appropriate<br />

temperature before using them.<br />

1 Remove slides from the 70% ethanol<br />

s<strong>to</strong>rage solution (from Procedure II,<br />

Step 7).<br />

2 Air dry slides completely (approximately<br />

30 min).<br />

3 For each slide, prepare 20 ml hybridization<br />

solution containing:<br />

10–13 µl deionized formamide (final<br />

concentration: 50–65% formamide)<br />

Note: Different probes require different<br />

concentrations of deionized formamide.<br />

See Table 1 for the correct formamide<br />

concentration <strong>to</strong> use with each probe.<br />

5 µl 4 x concentrated hybridization<br />

buffer [8 x SSC; 40% (v/v) dextran<br />

sulfate; 4 mg/ml MB-grade DNA<br />

(from fish sperm); pH 7.0].<br />

1–2 µl (20–40 ng) human chromosome-specific<br />

satellite DNA probe,<br />

either fluorescein- or DIG-labeled.<br />

Enough redistilled H2O <strong>to</strong> make a<br />

<strong>to</strong>tal volume of 20 µl.<br />

Caution: Twenty µl is enough hybridization<br />

solution if you are using a 24<br />

x 24 mm coverslip in Step 7 below. If<br />

you use a different size coverslip,<br />

adjust the volume of the hybridization<br />

solution (but not the concentration<br />

of the components) accordingly.<br />

4 Preheat a glass tray big enough <strong>to</strong> hold<br />

all slides in a 72°C oven.<br />

5 Prewarm a moist chamber <strong>to</strong> 37°C.<br />

6 Pipette 20 µl hybridization solution<br />

on<strong>to</strong> each slide, add a 24 x 24 mm coverslip,<br />

and seal the coverslip <strong>to</strong> the slide<br />

with rubber cement.<br />

7 Place the prepared slides on<strong>to</strong> the prewarmed<br />

glass tray in the oven and incubate<br />

5–10 min at 72°C <strong>to</strong> denature<br />

DNA.<br />

8 Transfer slides <strong>to</strong> the prewarmed moist<br />

chamber and incubate overnight at<br />

37°C.<br />

89<br />

5


5<br />

90<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

IV. Detection of hybridized sequences<br />

IVA. For detection of fluorescein-labeled<br />

chromosome-specific probes<br />

Note: Perform Steps 1 and 2 in a Coplin jar.<br />

1 After hybridization, wash slides according<br />

<strong>to</strong> one of the following wash<br />

schemes:<br />

15 min at 30°–48°C with 1 x SSC<br />

containing 50% formamide, pH 7.0;<br />

then: 2 x 5 min at room temperature<br />

with 2 x SSC, pH 7.0<br />

or<br />

15 min at 37°C with 2 x SSC, pH 7.0.<br />

Note: Different probes require different<br />

washes. See Table 1 for the correct<br />

washes <strong>to</strong> use with each probe.<br />

2 For counterstaining, add 50 ml of either<br />

propidium iodide solution (100 ng/ml<br />

propidium iodide in PBS) or DAPI<br />

solution (100 ng/ml DAPI in PBS) <strong>to</strong><br />

the slides, then incubate the slides for 2–5<br />

min in the dark at room temperature.<br />

3 Wash slides 2–3 min under running<br />

water.<br />

4 Air dry the slides in the dark.<br />

5 Apply 20 µl antifade solution [e.g., 2%<br />

DABCO (w/v) in PBS containing 50%<br />

glycerol] <strong>to</strong> each slide.<br />

6 Add a 24 x 24 mm coverslip.<br />

Note: For long term s<strong>to</strong>rage of the slides,<br />

seal the edges of the coverslip with nail<br />

polish and s<strong>to</strong>re in the dark at –20°C.<br />

7 Analyze the slides under a fluorescence<br />

microscope with the appropriate filters.<br />

Note: Maximum emission wavelength<br />

for fluorescein (FLUOS) is 523 nm; for<br />

propidium iodide, 610 nm; and for<br />

DAPI, 470 nm.<br />

IVB. For detection of DIG-labeled<br />

chromosome-specific probes<br />

1 After hybridization, wash slides in a<br />

Coplin jar according <strong>to</strong> one of the following<br />

wash schemes:<br />

15 min at 40°–48°C with 1 x SSC<br />

containing 50% formamide, pH 7.0;<br />

then: 2 x 5 min at room temperature<br />

with 2 x SSC, pH 7.0<br />

or<br />

15 min at 37°C with 2 x SSC, pH 7.0.<br />

Note: Different probes require different<br />

washes. See Table 1 for the correct<br />

washes <strong>to</strong> use with each probe.<br />

2 (Optional) <strong>In</strong>cubate slides for 30 min at<br />

37°C with 50 ml PBS containing 1%<br />

blocking reagent.<br />

3 Just before use, prepare 100 µl of a 1 µg/ml<br />

working solution of anti-DIG-fluorophore<br />

conjugate in PBS containing 1%<br />

blocking reagent.<br />

Note: Each slide <strong>to</strong> be analyzed requires<br />

100 µl of antibody working solution.<br />

Note: Anti-DIG-fluorophore conjugate<br />

can be Anti-DIG-Fluorescein, Anti-DIG-<br />

AMCA, or Anti-DIG-Rhodamine.<br />

4 Add 100 µl freshly prepared antibody<br />

working solution <strong>to</strong> each slide and cover<br />

the complete slide with a coverslip.<br />

5 <strong>In</strong>cubate slides for 30 min at 37°C in a<br />

moist chamber.<br />

6 <strong>In</strong> a Coplin jar, wash slides for 3 x 5 min<br />

at room temperature with 2 x SSC<br />

containing 0.1% Tween ® 20.<br />

7 Counterstain, mount and view slides<br />

as for fluorescein-labeled probes (Steps<br />

2–7, Procedure IVA).<br />

Exception: For experiments using anti-<br />

DIG-rhodamine conjugates, use DAPI<br />

rather than propidium iodide as a<br />

counterstain. The emission wavelength<br />

of propidium iodide is <strong>to</strong>o near that of<br />

rhodamine.<br />

Note: Maximum emission wavelength<br />

for AMCA is 474 nm; for rhodamine,<br />

570 nm.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Probe 1 for Labeled Formamide (%) in Posthybridization wash conditions<br />

chromosomes with hybridization solution Wash 1 (15 min) Wash 2 (2 x 5 min)<br />

1 DIG 2 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

2 DIG 65% 48°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 48°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

3 DIG 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

4 DIG 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

5 + 1 + 19 DIG 65% 46°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

6 DIG 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

7 DIG 65% 46°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

8 DIG 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

9 DIG 65% 46°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

10 DIG 65% 46°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

11 DIG 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

12 DIG 65% 46°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

13 + 21 DIG 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

14 + 22 DIG 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

15 DIG 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

16 DIG 65% 48°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

17 DIG 65% 48°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 30°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

18 DIG 65% 46°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 46°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

20 DIG 65% 48°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 43°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

22 DIG 65% 40°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

X DIG 65% 46°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

FLUOS 65% 46°C; 1x SSC + 50% formamide RT; 2 x SSC<br />

Y DIG 50% 37°C; 2 x SSC Omit<br />

FLUOS 50% 37°C; 2 x SSC Omit<br />

All human DIG 50% 37°C; 2 x SSC Omit<br />

FLUOS 50% 37°C; 2 x SSC Omit<br />

1 The probes all recognize a pattern of alphoid DNA on specific chromosomes, except for the chromosome 1<br />

probe (which recognizes satellite III DNA on chromosome 1) and the chromosome Y probe (which recognizes<br />

a repeat on the long arm of chromosome Y).<br />

2 Abbreviations used: DIG, digoxigenin; FLUOS, 5(6)-carboxyfluorescein-N-hydroxysuccinimide ester;<br />

1x SSC, buffer (pH 7.0) containing 150 mM NaCl and 15 mM sodium citrate; RT, room temperature.<br />

CONTENTS<br />

INDEX<br />

Table 1: <strong>Hybridization</strong> parameters<br />

for human chromosome-specific<br />

satellite DNA probes. Use the data<br />

given in this table in Procedures III<br />

and IV of this article. All probes are<br />

available from Boehringer<br />

Mannheim.<br />

91<br />

5


5<br />

92<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Results<br />

a<br />

c<br />

References<br />

Waye, J. S.; Willard, H. F. (1987) Nucleotide<br />

sequence heterogeneity of alpha satellite repetitive<br />

DNA: a survey of alphoid sequences from different<br />

human chromosomes. Nucl. Acids Res. 15,<br />

7549–7569.<br />

Choo, K. H.; Vissel, B.; Nagy, A.; Earle, E.; Kalitsis,<br />

P. (1991) A survey of the genomic distribution of<br />

alpha satellite DNA on all the human chromosomes,<br />

and derivation of a new consensus sequence.<br />

Nucl. Acids Res. 19, 1179–1182.<br />

b<br />

<br />

Figure 1: FISH of human chromosome-specific<br />

satellite DNA probes <strong>to</strong> metaphase spreads.<br />

Fluorescence signals have been pseudocolored<br />

with a CCD camera and a digital imaging system.<br />

<strong>In</strong> Panel a, a DIG-labeled probe specific for<br />

chromosomes 5 + 1 + 19 was detected with anti-<br />

DIG-rhodamine. Chromosomes were counterstained<br />

with DAPI. <strong>In</strong> Panel b, a DIG-labeled probe specific<br />

for chromosome 12 was detected with anti-DIGfluorescein.<br />

Chromosomes were counterstained<br />

with propidium iodide. Panel c shows the direct<br />

detection of chromosome 12 sequences with a<br />

fluorescein-labeled probe. Chromosomes were<br />

counterstained with propidium iodide.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DNA, MB-grade It prevents unspecific hybridization in all 1 467 140 500 mg<br />

from fish sperm types of membrane or in situ hybridization (50 ml)<br />

DAPI Fluorescence dye for staining of 236 276 10 mg<br />

chromosomes<br />

Anti-Digoxigenin- Fab Fragments from sheep 1 207 741 200 µg<br />

Fluorescein<br />

Anti-Digoxigenin- Fab Fragments from sheep 1 207 750 200 µg<br />

Rhodamine<br />

Anti-Digoxigenin- Fab Fragments from sheep 1 533 878 200 µg<br />

AMCA<br />

These DNA probes are plasmids containing<br />

human satellite DNAs. Clones were<br />

isolated from human-hamster hybrid cell<br />

lines containing the respective human<br />

chromosomes as the only human compo-<br />

CONTENTS<br />

INDEX<br />

nent. The fragment length distribution of<br />

the labeled probes shows a maximum at<br />

200–500 bases. 1 µg probe is sufficient for<br />

20–50 hybridizations on 24 x 24 mm<br />

coverslips.<br />

Reagent Cat. No. Pack size<br />

DNA probes, human chromosome<br />

1 specific, digoxigenin-labeled 1558 765 1 µg (50 µl)<br />

1 specific, fluorescein-labeled 1558 684 1 µg (50 µl)<br />

1 + 5 + 19 specific, digoxigenin-labeled 1690 507 1 µg (50 µl)<br />

1 + 5 + 19 specific, fluorescein-labeled 1690 647 1 µg (50 µl)<br />

2 specific, digoxigenin-labeled 1666 479 1 µg (50 µl)<br />

2 specific, fluorescein-labeled 1666 380 1 µg (50 µl)<br />

3 specific, digoxigenin-labeled 1690 515 1 µg (50 µl)<br />

4 specific, digoxigenin-labeled 1690 523 1 µg (50 µl)<br />

6 specific, digoxigenin-labeled 1690 531 1 µg (50 µl)<br />

7 specific, digoxigenin-labeled 1690 639 1 µg (50 µl)<br />

7 specific, fluorescein-labeled 1694 375 1 µg (50 µl)<br />

8 specific, digoxigenin-labeled 1666 487 1 µg (50 µl)<br />

8 specific, fluorescein-labeled 1666 398 1 µg (50 µl)<br />

9 specific, digoxigenin-labeled 1690 540 1 µg (50 µl)<br />

10 specific, digoxigenin-labeled 1690 558 1 µg (50 µl)<br />

10 specific, fluorescein-labeled 1690 655 1 µg (50 µl)<br />

11 specific, digoxigenin-labeled 1690 566 1 µg (50 µl)<br />

11 specific, fluorescein-labeled 1690 663 1 µg (50 µl)<br />

12 specific, digoxigenin-labeled 1690 574 1 µg (50 µl)<br />

12 specific, fluorescein-labeled 1690 671 1 µg (50 µl)<br />

13 + 21 specific, digoxigenin-labeled 1690 582 1 µg (50 µl)<br />

14 + 22 specific, digoxigenin-labeled 1666 495 1 µg (50 µl)<br />

14 + 22 specific, fluorescein-labeled 1666 401 1 µg (50 µl)<br />

15 specific, digoxigenin-labeled 1690 604 1 µg (50 µl)<br />

16 specific, digoxigenin-labeled 1699 091 1 µg (50 µl)<br />

17 specific, digoxigenin-labeled 1666 452 1 µg (50 µl)<br />

17 specific, fluorescein-labeled 1666 371 1 µg (50 µl)<br />

18 specific, digoxigenin-labeled 1666 509 1 µg (50 µl)<br />

18 specific, fluorescein-labeled 1666 428 1 µg (50 µl)<br />

20 specific, digoxigenin-labeled 1666 517 1 µg (50 µl)<br />

20 specific, fluorescein-labeled 1666 436 1 µg (50 µl)<br />

22 specific, digoxigenin-labeled 1690 612 1 µg (50 µl)<br />

X specific, digoxigenin-labeled 1666 525 1 µg (50 µl)<br />

X specific, fluorescein-labeled 1666 444 1 µg (50 µl)<br />

Y specific, digoxigenin-labeled 1558 196 1 µg (50 µl)<br />

Y specific, fluorescein-labeled 1558 692 1 µg (50 µl)<br />

Specific for all human chromosomes, digoxigenin-labeled 1558 757 1 µg (50 µl)<br />

Specific for all human chromosomes, fluorescein-labeled 1558 676 1 µg (50 µl)<br />

93<br />

5


5<br />

94<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Fluorescence in situ hybridization of a repetitive<br />

DNA probe <strong>to</strong> human chromosomes in suspension<br />

D. Celeda1, 2 , U. Bettag1 , and C. Cremer1 1 <strong>In</strong>stitute for Applied Physics, University of Heidelberg.<br />

2 <strong>In</strong>stitute for Human Genetics and Anthropology, University of Heidelberg, Germany.<br />

Fluorescence in situ hybridization (FISH)<br />

has found widespread application in the<br />

analysis of chromosomes and interphase<br />

nuclei fixed on slides (Anastasi et al., 1990;<br />

Cremer et al., 1988, 1990; Dekken et al.,<br />

1990; Devilee et al., 1988; Kolluri et al.,<br />

1990; Lichter et al., 1991; Pinkel et al., 1988;<br />

Schardin et al., 1985; Wienberg et al., 1990).<br />

However, hybridization of specific DNA<br />

probes <strong>to</strong> isolated metaphase chromosomes<br />

in suspension offers a new approach <strong>to</strong><br />

chromosome analysis and chromosome<br />

separation. <strong>In</strong>itial investigations were done<br />

on chromosomes obtained from a (Chinese<br />

hamster X human) hybrid cell line with biotinylated<br />

human genomic DNA as the<br />

probe (Dudin et al., 1987, 1988; Hausmann<br />

et al., 1991).<br />

So far the technique for FISH in suspension<br />

has been a modification of FISH techniques<br />

used for metaphase chromosomes<br />

and interphase nuclei fixed on slides. Formamide<br />

(and <strong>to</strong> some extent dextran sulfate)<br />

are obliga<strong>to</strong>ry components of this method.<br />

Thus, the technique requires a certain number<br />

of washing steps after hybridization.<br />

The washing steps for FISH in suspension,<br />

however, are based on centrifugal steps.<br />

These steps are responsible for a considerable<br />

reduction in the final amount of<br />

chromosomal material.<br />

Additionally, the existing method for<br />

FISH in suspension appears <strong>to</strong> favor an<br />

aggregation of the chromosomal material<br />

in suspension.<br />

We report here a hybridization technique<br />

which does not need formamide and<br />

dextran sulfate. As a model system, we used<br />

the repetitive specific human DNA probe<br />

pUC 1.77 (Cooke and Hindley, 1979;<br />

Emmerich et al., 1989), labeled it with<br />

digoxigenin-11-dUTP by nick-translation,<br />

and hybridized it <strong>to</strong> metaphase chromosomes<br />

in suspension. These chromosomes<br />

were isolated by standard techniques from<br />

human lymphocytes.<br />

<strong>In</strong> preliminary experiments, this technique<br />

produced a large number of isolated<br />

metaphase chromosomes with satisfac<strong>to</strong>ry<br />

morphology and clear hybridization<br />

signals (Figure 1).<br />

Adapting the same method and probe <strong>to</strong><br />

metaphase spreads (Figure 2) allowed us <strong>to</strong><br />

determine hybridization efficiency.<br />

Procedure<br />

Note: The DNA probe pUC 1.77 is a clone<br />

of the plasmid vec<strong>to</strong>r pUC 9 that contains<br />

a 1.77 kb human Eco RI fragment. The<br />

inserted DNA was isolated from human<br />

satellite DNA fraction II/III. This insert<br />

contains mainly a tandemly organized<br />

repetitive sequence in the region q12 of<br />

chromosome 1 (Cooke and Hindley, 1979;<br />

Gosden et al., 1981).<br />

1 Label the DNA probe pUC 1.77 with<br />

Digoxigenin-11-dUTP according <strong>to</strong><br />

standard nick translation procedures (as<br />

described in Chapter 4 of this manual).<br />

2 Cultivate human lymphocytes from<br />

peripheral blood.<br />

3 Prepare chromosomes from the<br />

lymphocytes by standard techniques.<br />

4 Resuspend the chromosomes and interphase<br />

nuclei in methanol/acetic acid<br />

(3:1) and s<strong>to</strong>re at –20°C.<br />

5 Perform fluorescence detection with<br />

Anti-DIG-Fluorescein, Fab fragments<br />

as described (Lichter et al., 1990), with<br />

the following modifications:<br />

<strong>In</strong>cubate for approx. 1 h at 37°C.<br />

After the blocking step, do not use<br />

bovine serum albumin in the rest of<br />

the procedure.<br />

Modify as necessary <strong>to</strong> allow FISH in<br />

suspension.<br />

6 After labeling and FISH procedures,<br />

pipette 10 µl of the suspension on a slide<br />

for microscopic analysis. Counterstain<br />

with 15 µM propidium iodide (PI) and<br />

5 µM DAPI.<br />

7 Analyze with an epifluorescence microscope<br />

(Orthoplan equipped with a<br />

Planapo oil 63 x objective and a 1.40<br />

aperture, Leitz, Wetzlar, Germany).<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

8 Pho<strong>to</strong>graph with, for instance, Fujichrome<br />

P1600 D film at a final image<br />

magnification of about 630 x, using Leitz<br />

filter system “I 2/3” for detection of<br />

FITC fluorescence.<br />

Results<br />

<br />

Figure 1: FISH of digoxigenin-labeled DNA probe<br />

pUC 1.77 <strong>to</strong> isolated human chromosomes in<br />

suspension. For details of the hybridization<br />

procedure, see the text. The sites of hybridization<br />

on the chromosomes appear as yellowish-green<br />

“spots” in the centromeric regions. Counterstaining<br />

was with propidium iodide (PI) and DAPI.<br />

Figure 2: FISH of a human metaphase spread<br />

according <strong>to</strong> the same hybridization technique<br />

used in Figure 1. <strong>In</strong> this case the pUC 1.77 DNA<br />

probe binds <strong>to</strong> major hybridization sites (q12 region<br />

of human chromosome 1) that appear as two large<br />

yellowish-green “spots” on two of the largest<br />

chromosomes (large arrowheads). Additionally, a<br />

minor binding site of the DNA probe (chromosome<br />

16; Gosden et al., 1981) is indicated by two minor<br />

yellowish-green “spots” on two of the smaller<br />

chromosomes (small arrowheads).<br />

CONTENTS<br />

INDEX<br />

<br />

95<br />

5


5<br />

*This product or the use of this<br />

product may be covered by one<br />

or more patents of Boehringer<br />

Mannheim GmbH, including the<br />

following: EP patent 0 649 909<br />

(application pending).<br />

96<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG-Nick Translation 5 x conc. stabilized reaction buffer in 50% 1745 816 160 µl<br />

Mix* for in situ probes glycerol (v/v) and DNA Polymerase I, DNase I,<br />

0.25 mM dATP, 0.25 mM dCTP, 0.25 dGTP,<br />

0.17 mM dTTP and 0.08 mM DIG-11-dUTP<br />

Anti-Digoxigenin- Fab Fragments from sheep 1 207 741 200 µg<br />

Fluorescein<br />

DAPI Fluorescence dye for staining of 236 276 10 mg<br />

chromosomes<br />

Acknowledgments<br />

We thank Prof. Dr. T. Cremer, <strong>In</strong>titute of<br />

Human Genetics and Anthropology,<br />

University of Heidelberg, for providing the<br />

plasmid pUC 9 and the human lymphocyte<br />

preparations. The work was supported by<br />

the Deutsche Forschungsgemeinschaft.<br />

References<br />

Anastasi, J.; Le Beau M. M.; Vardiman, J. W.;<br />

Westbrook, C. A. (1990) Detection of numerical<br />

chromosomal abnormalities in neoplastic<br />

hema<strong>to</strong>poietic cells by in situ hybridization with a<br />

chromosome-specific probe. Am. J. Pathol. 136,<br />

131–139.<br />

Cooke, H. J.; Hindley, J. (1979) Cloning of human<br />

satellite III DNA: different components are in<br />

different chromosomes. Nucleic Acids Res. 10,<br />

3177–3197.<br />

Cremer, T.; Lichter, P.; Borden, J.; Ward, D. C.;<br />

Manuelidis, L. (1988) Detection of chromosome<br />

aberrations in metaphase and interphase tumor<br />

cells by in situ hybridization using chromosomespecific<br />

library probes. Hum. Genet. 80, 235–246.<br />

Cremer, T.; Popp, S.; Emmerich, P.; Lichter, P.;<br />

Cremer, C. (1990) Rapid metaphase and interphase<br />

detection of radiation-induced chromosome<br />

aberrations in human lymphocytes by chromosomal<br />

suppression in situ hybridization. Cy<strong>to</strong>metry 11,<br />

110–118.<br />

Dekken van, H.; Pizzolo, J. G.; Reuter, V. E.;<br />

Melamed, M. R. (1990) Cy<strong>to</strong>genetic analysis of<br />

human solid tumors by in situ hybridization with<br />

a set of 12 chromosome specific DNA probes.<br />

Cy<strong>to</strong>genet. Cell Genet. 54, 103–107.<br />

Devilee, P.; Thierry, R. F.; Kievits, T.; Kolluri, R.;<br />

Hopman, A. H. N.; Willard, H. F.; Pearson, P. L.;<br />

Cornellisse, C. J. (1988) Detection of chromosome<br />

aneuploidy in interphase nuclei from human primary<br />

breast tumors using chromosome-specific repetitive<br />

DNA probes. Cancer Res. 48, 5825–5830.<br />

Dudin, G.; Cremer, T.; Schardin, M.; Hausmann, M.;<br />

Bier, F.; Cremer, C. (1987) A method for nucleic<br />

acid hybridization <strong>to</strong> isolated chromosomes in<br />

suspension. Hum. Genet. 76, 290–292.<br />

Dudin, G.; Steegmayer, E. W.; Vogt, P.; Schnitzer, H.;<br />

Diaz, E.; Howell, K. E.; Cremer, T.; Cremer, C. (1988)<br />

Sorting of chromosomes by magnetic separation.<br />

Human. Genet. 80, 111–116.<br />

Emmerich, P.; Loos, P.; Jauch, A.; Hopman, A. H. N.;<br />

Wiegant, J.; Higgins, M. J.; White, B. N.; van der<br />

Ploeg, M.; Cremer, C.; Cremer, T. (1989) Double in<br />

situ hybridization in combination with digital image<br />

analysis: a new approach <strong>to</strong> study interphase<br />

chromosome <strong>to</strong>pography. Exp. Cell Res. 181,<br />

126–149.<br />

Gosden, J. R.; Lawrie, S. S.; Cooke, H.J. (1981)<br />

A cloned repeated DNA sequence in human<br />

chromosome heteromorphisms. Cy<strong>to</strong>genet. Cell<br />

Genet. 29, 32–39.<br />

Hausmann, M.; Dudin, G.; Aten, J. A.; Heilig, R.;<br />

Diaz, E.; Cremer, C. (1991) Slit scan flow cy<strong>to</strong>metry<br />

of isolated chromosomes following fluorescence<br />

hybridization: an approach of online screening<br />

for specific chromosomes and chromosome translocations.<br />

Z. Naturforsch. 46c, 433–441.<br />

Kolluri, R. V.; Manuelidis, L.; Cremer, T.; Sait, S.;<br />

Gezer, S.; Raza, A. (1990) Detection of monosomy 7<br />

in interphase cells for patients with myeloid disorders.<br />

Am. J. Herma<strong>to</strong>l. 33 (2), 117–122.<br />

Lichter, P.; Boyle, A. L.; Cremer, T.: Ward, D. C.<br />

(1991) Analysis of genes and chromosomes by<br />

non-iso<strong>to</strong>pic in situ hybridization. Genet. Anal.<br />

Techn. Appl. 8, 24–35.<br />

Lichter, P.; Tang, C. C.; Call, K.; Hermanson, G.;<br />

Evans, H. J.; Housman, D.; Ward, D. C. (1990)<br />

High resolution mapping of human chromosome 11<br />

by in situ hybridization with cosmid clones.<br />

Science 247, 64–69.<br />

Pinkel, D.; Landegent, J.; Collins, C.; Fuscoe, J.;<br />

Segraves, R.; Lucas, J.; Gray, J. W. (1988)<br />

Fluorescence in situ hybridization with human<br />

chromosome-specific libraries: detection of trisomy<br />

21 and translocations of chromosome 4. Proc. Natl.<br />

Acad. Sci. USA 85, 9138–9142.<br />

Schardin, M.; Cremer, T.; Hager, H. D.; Lang, M.<br />

(1985) Specific staining of human chromosomes in<br />

Chinese hamster X human cell lines demonstrates<br />

interphase terri<strong>to</strong>ries. Hum. Genet. 71, 281–287.<br />

Wienberg, J.; Jauch, A.; Stanyon, R.; Cremer, T.<br />

(1990) Molecular cy<strong>to</strong>taxonomy of primates by<br />

chromosomal in situ suppression hybridization.<br />

Genomics 8, 347–350.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

A simplified and efficient pro<strong>to</strong>col for nonradioactive<br />

in situ hybridization <strong>to</strong> polytene chromosomes with<br />

a DIG-labeled DNA probe<br />

Prof. Dr. E. R. Schmidt, <strong>In</strong>stitute for Genetics,<br />

Johannes Gutenberg-University of Mainz, Germany.<br />

The pro<strong>to</strong>col given here is a derivative of<br />

several published methods (Langer-Safer et<br />

al., 1982; Schmidt et al., 1988) with some<br />

minor modifications that make the method<br />

of in situ hybridization easier, faster, more<br />

reliable, and available <strong>to</strong> anyone who can<br />

operate a microscope.<br />

I. Labeling the hybridization probe<br />

For best labeling results, follow the random<br />

primed DNA labeling procedure (Procedure<br />

IA) in Chapter 4 of this manual. We<br />

suggest a modification of this procedure as<br />

described below:<br />

1 Use 0.5–1 µg linearized DNA in 16 µl<br />

redistilled H2O.<br />

2 Denature in a boiling water bath for<br />

10 min and chill on ice.<br />

3 Add 4 µl DIG-High Prime reaction<br />

mix.<br />

4 Mix, centrifuge and incubate either 2 h at<br />

37°C or overnight at room temperature.<br />

5 S<strong>to</strong>p the labeling procedure by heating<br />

in boiling water for 10 min.<br />

6 Add water and 20 x SSC <strong>to</strong> give a final<br />

volume of 100 µl with a final concentration<br />

of 5 x SSC.<br />

Note: If a larger number of preparations<br />

is <strong>to</strong> be hybridized, increase the<br />

volume <strong>to</strong> 200 µl.<br />

7 Add 1 volume of 10% SDS <strong>to</strong> 100 volumes<br />

of the mixture in Step 6 (i.e., 1 µl SDS <strong>to</strong><br />

100 µl of mixture) <strong>to</strong> give a final concentration<br />

of 0.1% SDS.<br />

8 The mixture is ready for hybridization<br />

and can be s<strong>to</strong>red at –20°C for at least<br />

several years without any significant<br />

decrease in hybridization efficiency.<br />

Comment: <strong>In</strong> my experience, it is<br />

absolutely unnecessary <strong>to</strong> remove<br />

unincorporated dNTPs from the mixture<br />

before using the labeled probe. On the<br />

contrary, purification steps lead <strong>to</strong> the<br />

loss of hybridizable probe DNA and thus<br />

<strong>to</strong> a decrease in hybridization efficiency.<br />

CONTENTS<br />

INDEX<br />

II. Preparation and denaturation of<br />

polytene chromosomes from Drosophila,<br />

Chironomus, or other species<br />

Squash larval salivary glands in 40% acetic<br />

acid according <strong>to</strong> standard procedure.<br />

For long term s<strong>to</strong>rage, place slides with<br />

squashed chromosomes in 100% 2-propanol<br />

at –20°C.<br />

Prior <strong>to</strong> the in situ hybridization, denature<br />

the chromosomal DNA according <strong>to</strong> this<br />

procedure:<br />

1 Rehydrate the slides by incubating them,<br />

for 2 min each, in solutions containing<br />

decreasing amounts of ethanol: 70%<br />

ethanol, 50% ethanol, 30% ethanol,<br />

0.1 x SSC–2 x SSC.<br />

2 Digest with RNase if necessary.<br />

Note: This is usually not necessary.<br />

3 For better preservation of the chromosomes,<br />

include a “heat stabilization” step<br />

by incubating slides in 2 x SSC for at<br />

least 30 min at 80°C.<br />

4 <strong>In</strong>cubate the slides for 90 s in 0.1 N<br />

NaOH, at room temperature.<br />

5 Wash slides for 30 s in 2 x SSC.<br />

6 Dehydrate slides by incubating them,<br />

for 2 min each, in solutions containing<br />

increasing amounts of ethanol: 30%<br />

ethanol, 50% ethanol, 70% ethanol,<br />

95% ethanol.<br />

7 Air dry the slides for 5 min. The<br />

preparations are then ready for<br />

hybridization.<br />

Comment: If “denatured” chromosome<br />

preparations are <strong>to</strong> be s<strong>to</strong>red for a long<br />

time, s<strong>to</strong>re them in 95% ethanol or<br />

2-propanol at –20°C.<br />

97<br />

5


5<br />

98<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

III. <strong>Hybridization</strong> and detection<br />

1 Add 5 µl of the hybridization mixture<br />

containing the digoxigenin-labeled probe<br />

DNA (from Procedure I) <strong>to</strong> the chromosome<br />

preparation and cover with a<br />

coverslip (18 x 18 mm).<br />

2 Seal coverslip with rubber cement.<br />

3 <strong>In</strong>cubate slides at the appropriate<br />

hybridization temperature between<br />

50°C and 65°C (depending on the probe,<br />

AT-content, sequence homology, etc.)<br />

for 4–6 h (for single copy sequences) or<br />

for 1 h (for repetitive sequences).<br />

Note: Longer incubations do not markedly<br />

increase the hybridization signal!<br />

4 Remove rubber cement, then wash off<br />

the coverslip in 2 x SSC for 2–5 min at<br />

room temperature .<br />

5 Wash the slide in PBS for 2 min. Remove<br />

excess buffer from the slide by wiping<br />

with soft paper around the chromosome<br />

preparation.<br />

Note: Do not let the preparation dry<br />

completely; this produces background.<br />

6 Apply 5 µl of a 1:10 diluted solution of<br />

fluorescein- or rhodamine-labeled anti-<br />

DIG antibody. The antibodies should<br />

be diluted in PBS containing 1 mg/ml<br />

bovine serum albumin.<br />

Figure 1: Double in situ hybridization of a polytene chromosome of Chironomus with<br />

two different clones from a chromosomal walk within the sex-determining region of<br />

Chironomus piger. The two -clones contain genomic DNA fragments which are 60 kbp<br />

apart. One clone was labeled with digoxigenin and detected with rhodamine-labeled anti-DIG<br />

antibody (red); the second clone was labeled with biotin and detected with anti-biotin<br />

antibody and fluorescein-labeled secondary antibody (green). The red and green signals can<br />

be seen simultaneously if the fluorescence microscope is equipped with a filter system for<br />

simultaneous blue and green excitation (filter no. 513 803, Leica, Wetzlar). For the<br />

hybridization, the two probes are mixed 1:1, and the detection is performed with mixed<br />

antibody solutions. The method allows a very clear orientation for a chromosomal walk. We<br />

were able <strong>to</strong> discriminate the location of two clones which were only approximately 30 kb<br />

apart.<br />

<br />

7 <strong>In</strong>cubate 30 min with anti-DIG antibody<br />

at 37°C under a coverslip.<br />

8 Wash 5 min in PBS.<br />

9 Blot off excess buffer with paper.<br />

10 Finally, mount the chromosomal preparation<br />

in “glycerol-para-phenylenediamine-mixture”<br />

[1 mg p-phenylenediamine<br />

dissolved in 1 ml phosphate buffered<br />

saline (1 mM sodium phosphate, pH<br />

8.0; 15 mM NaCl) containing 50%<br />

glycerol].<br />

11 <strong>In</strong>spect with a fluorescence microscope<br />

with the appropriate set of filters.<br />

Comments: <strong>In</strong>stead of antibodies labeled<br />

with fluorescent dyes, any other antibody<br />

conjugates (enzyme conjugated, goldlabeled)<br />

can be used. <strong>In</strong> the case of<br />

biotin-labeled DNA, streptavidin can be<br />

used instead of antibodies <strong>to</strong> detect the<br />

hybridized DNA. I have tested a<br />

number of these possibilities, and all<br />

work very well (including gold-labeled<br />

anti-digoxigenin antibody followed by<br />

silver-enhancement). However, in my<br />

experience, the most precise localization<br />

is obtained with immunofluorescence. It<br />

seems <strong>to</strong> me that the sensitivity is also<br />

higher (or at least the signal/background<br />

ratio is improved) with fluorescently<br />

labeled antibodies. Admittedly, this<br />

might be a matter of personal preference.<br />

Results<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

<br />

Figure 2: Double hybridization of a single copy<br />

clone from the sex-determining region <strong>to</strong>gether<br />

with a highly repetitive DNA element. The single<br />

copy DNA fragment was labeled with digoxigenin<br />

and the repetitive element with biotin. The single<br />

copy DNA (red) hybridizes <strong>to</strong> a single band, while the<br />

repetitive element (green) produces signals over<br />

numerous chromosomal sites throughout the entire<br />

chromosome. <strong>Hybridization</strong> and detection of the<br />

hybridized DNA was essentially the same as in<br />

Figure 1.<br />

References<br />

Langer-Safer, P. R.; Levine, M.; Ward, D. C. (1982)<br />

Immunological method for mapping genes on<br />

Drosophila polytene chromosomes. Proc. Natl.<br />

Acad. Sci. USA 79, 4381–4385.<br />

Schmidt, E. R.; Keyl, H.-G.; Hankeln, T. (1988)<br />

<strong>In</strong> situ localization of two haemoglobin gene<br />

clusters in the chromosomes of 13 species of<br />

Chironomus. Chromosoma (Berl.) 96, 353–359.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG-High Prime* , ** , *** Complete reaction mixture for random 1 585 606 160 µl<br />

primed labeling of DNA with DIG-dUTP<br />

5 x solution with: 1 mM dATP, dCTP, dGTP<br />

(each), 0.65 mM dTTP, 0.35 mM<br />

DIG-11-dUTP, alkali-labile; random primer<br />

mixture; 1 unit/µl Klenow enzyme labeling<br />

grade, in reaction buffer, 50% glycerol (v/v)<br />

(40 reactions)<br />

Biotin-High Prime** Complete reaction mixture for random 1 585 649 100 µl<br />

primed labeling of DNA with Biotin-dUTP (25 reactions)<br />

5 x solution with: 1 mM dATP, dCTP, dGTP<br />

(each), 0.65 mM dTTP, 0.35 mM<br />

biotin-16-dUTP, random primer mixture,<br />

1 unit/µl Klenow enzyme labeling<br />

grade, in reaction buffer, 50% glycerol (v/v)<br />

RNase, DNase-free RNase, DNase-free, can be used directly 1119 915 500 µg (1 ml)<br />

without prior heat treatment in any DNA<br />

isolation technique<br />

Anti-Digoxigenin- Fab Fragments from sheep 1 207 750 200 µg<br />

Rhodamine<br />

CONTENTS<br />

INDEX<br />

Figure 3: Double in situ hybridization of biotinand<br />

digoxigenin-labeled DNA probes from two<br />

different “DNA puffs” in the salivary gland polytene<br />

chromosome C of Trichosia pubescens<br />

(Sciaridae, Diptera). The probes were hybridized<br />

simultaneously as described in Figure 1. The two<br />

sites of hybridization were detected with rhodamine-labeled<br />

anti-DIG and anti-biotin antibodies<br />

plus fluorescein-labeled secondary antibody. The<br />

two differentially labeled sites are so-called “DNA<br />

puffs”, which are chromosomal regions with a<br />

developmentally regulated DNA amplification. The<br />

double in situ hybridization method allows very<br />

rapid mapping of the chromosomes, even when<br />

the banding structure of the chromosome is not<br />

analyzed in detail.<br />

***EP Patent 0 324 474 granted<br />

<strong>to</strong> and EP Patent application<br />

0 371 262 pending for Boehringer<br />

Mannheim GmbH.<br />

***This product or the use of this<br />

product may be covered by one<br />

or more patents of Boehringer<br />

Mannheim GmbH, including the<br />

following: EP patent 0 649 909<br />

(application pending).<br />

***Licensed by <strong>In</strong>stitute Pasteur.<br />

99<br />

5


5<br />

100<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Multiple-target DNA in situ hybridization with<br />

enzyme-based cy<strong>to</strong>chemical detection systems<br />

E. J. M. Speel, F. C. S. Ramaekers, and A. H. N. Hopman, Department of Molecular<br />

Cell Biology & Genetics, University of Limburg, Maastricht, The Netherlands.<br />

Fluorescence in situ hybridization (ISH) is<br />

widely utilized because of its high sensitivity,<br />

resolution, and ability <strong>to</strong> detect<br />

multiple cellular nucleic acid sequences in<br />

different colors. Fluorescence ISH, however,<br />

has disadvantages, such as:<br />

Fluorescence signals fade when they are<br />

exposed <strong>to</strong> light.<br />

Au<strong>to</strong>fluorescence in, e.g., tissue sections<br />

can interfere with target analysis.<br />

Here we outline a multicolor enzyme-based<br />

cy<strong>to</strong>chemical detection pro<strong>to</strong>col for nucleic<br />

acids in situ. This pro<strong>to</strong>col produces permanent<br />

cell preparations with non-diffusible,<br />

nonfading reaction products. The reaction<br />

products can be analyzed with brightfield<br />

(Speel et al., 1994a), reflection-contrast<br />

(Speel et al., 1993), or, in one case (alkaline<br />

phosphatase-Fast Red reaction), fluorescence<br />

microscopy (Speel et al., 1992).<br />

We show examples of single- and multipletarget<br />

ISH experiments on standard human<br />

lymphocyte metaphase spreads, as well as on<br />

interphase cell preparations. These results<br />

demonstrate the potential of this detection<br />

methodology for metaphase and interphase<br />

cy<strong>to</strong>genetics, e.g., for studying chromosome<br />

aberrations in different cell types (Martini et<br />

al., 1995). <strong>In</strong> addition, this methodology can<br />

be applied in the area of pathology, since the<br />

universal detection pro<strong>to</strong>col described here<br />

can be combined with other sample preparation<br />

procedures, e.g., for tissue sections<br />

(Hopman et al., 1991, 1992).<br />

The procedures given below are modifications<br />

of previously published procedures<br />

(Speel et al., 1992, 1993, 1994a, 1994b).<br />

I. Cell preparations<br />

Lymphocytes: Prepare chromosomes from<br />

peripheral blood lymphocytes by standard<br />

methods. Fix in methanol:acetic acid (3:1,<br />

v/v), and drop chromosomes on<strong>to</strong> glass<br />

slides that have been cleaned with a 1:1 mix<br />

of ethanol and ether.<br />

Cultured cells: Make preparations from<br />

cultured normal diploid cells or tumor cell<br />

lines by one of the following methods:<br />

Ethanol suspension: Trypsinize cells (if<br />

necessary), harvest, wash in PBS, fix in<br />

cold 70% ethanol (–20°C), and drop<br />

on<strong>to</strong> glass slides that have been coated<br />

with poly-L-lysine.<br />

Slide and coverslip preparations: Grow<br />

cells on glass slides or coverslips. Fix in<br />

cold methanol (–20°C) for 5 s, then in<br />

cold ace<strong>to</strong>ne (4°C) for 3 x 5 s. Air dry<br />

samples and s<strong>to</strong>re at –20°C.<br />

Note: Alternatively, use other fixatives<br />

for the slide and coverslip preparations.<br />

Cy<strong>to</strong>spins: Cy<strong>to</strong>spin floating cells on<strong>to</strong><br />

glass slides at 1000 rpm for 5 min. Air<br />

dry samples for 1 h at room temperature.<br />

Fix and s<strong>to</strong>re as with slide and coverslip<br />

preparations above.<br />

II. Cell processing<br />

1 Decide whether samples need <strong>to</strong> be<br />

treated with RNase. Then do one of the<br />

following:<br />

If the cells need RNase, go <strong>to</strong> Step 2.<br />

If the cells do not need RNase, go <strong>to</strong><br />

Step 3.<br />

2 Treat slides with RNase as follows:<br />

Overlay each sample with 100 µl<br />

RNase solution (100 µg/ml RNase A<br />

in 2 x SSC) and a coverslip.<br />

<strong>In</strong>cubate cell samples for 1 h at 37°C.<br />

Remove coverslip and wash samples<br />

3 x 5 min with 2 x SSC.<br />

Go <strong>to</strong> Step 3.<br />

3 Treat slides with pepsin as follows:<br />

Overlay each sample with 100 µl pepsin<br />

solution (50–100 µg/ml pepsin in<br />

10 mM HCl) and a coverslip.<br />

<strong>In</strong>cubate cell samples for 10–20 min<br />

at 37°C.<br />

Wash samples as follows:<br />

– 2 min with 10 mM HCl<br />

– 2 x 5 min with PBS<br />

4 Post-fix samples as follows:<br />

<strong>In</strong>cubate samples with PBS containing<br />

1% (para)formaldehyde for either<br />

20 min at 4°C or 10 min at room<br />

temperature.<br />

Wash slides 2 x 5 min with PBS.<br />

Dehydrate samples by passing slides<br />

through a series of ethanol solutions<br />

(70%, then 96%, then 100% ethanol),<br />

incubating 10–60 s in each solution.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

III. Probe preparation<br />

1 Label the DNA probes (containing either<br />

repetitive or unique sequences) with<br />

Biotin-, Digoxigenin-, or FluoresceindUTP<br />

according <strong>to</strong> the nick translation<br />

procedure in Chapter 4 of this manual.<br />

2 Just before use, prepare hybridization<br />

buffer containing:<br />

50% or 60% formamide.<br />

10% dextran sulfate.<br />

2 x SSC.<br />

0.2 µg/µl sonicated herring sperm<br />

DNA.<br />

0.2 µg/µl yeast tRNA.<br />

1–2 ng labeled probe DNA/µl hybridization<br />

buffer [if the probe contains<br />

unique or highly repetitive (e.g.<br />

centromere probe) sequences]<br />

or<br />

2–4 ng labeled probe DNA/µl hybridization<br />

buffer, <strong>to</strong>gether with an excess<br />

(100–1000 fold) of <strong>to</strong>tal human DNA<br />

or Cot-1 DNA [if the probe contains<br />

repetitive(e.g.Alu)elements].<br />

3 Perform ISH by one of the following<br />

methods:<br />

If the probe contains unique or highly<br />

repetitive (e.g. centromere probe)<br />

sequences, follow procedure IVA.<br />

If the probe contains repetitive (e.g.<br />

Alu) elements, follow procedure IVB.<br />

For multiple-target in situ hybridization,<br />

prepare DNA probes labeled<br />

with different haptens (biotin, digoxigenin,<br />

or fluorescein), mix them<br />

<strong>to</strong>gether, and follow either Procedure<br />

IVA or Procedure IVB (depending on<br />

the nature of the probes).<br />

CONTENTS<br />

INDEX<br />

IV. Multiple-target in situ<br />

hybridization (ISH)<br />

IVA. ISH with simultaneous probe and target<br />

denaturation [for probes with unique or<br />

highly repetitive (e.g., centromere probe)<br />

sequences]<br />

1 On each sample, place 10 µl of hybridization<br />

buffer containing labeled probe<br />

DNA (prepared as in Procedure III,<br />

Step 2).<br />

2 Cover sample with a 20 x 20 mm coverslip<br />

and (if you wish) seal the coverslip<br />

<strong>to</strong> the slide with rubber cement.<br />

3 Denature probe and cellular DNA<br />

simultaneously by placing slides at 70°–<br />

75°C for 3–5 min on the bot<strong>to</strong>m of a<br />

metal box.<br />

4 <strong>In</strong>cubate hybridization samples overnight<br />

at 37°C.<br />

5 Go <strong>to</strong> Procedure V.<br />

IVB. ISH with separate probe and target<br />

denaturation [for probes with repetitive<br />

(e.g. Alu) elements]<br />

1 <strong>In</strong>cubate the probe mixture (labeled<br />

probe DNA, human or Cot-1 DNA,<br />

hybridization buffer; prepared as in<br />

Procedure III, Step 2) for 5 min at 75°C.<br />

2 Chill the denatured probe mixture on<br />

ice.<br />

3 <strong>In</strong>cubate the denatured probe mixture<br />

for 1–4 h at 37°C <strong>to</strong> pre-anneal the<br />

repetitive sequences in the mixture.<br />

4 Denature the cell samples as follows:<br />

Overlay the cell samples with 70%<br />

formamide in 2 x SSC.<br />

<strong>In</strong>cubate the slides for 2 min at 70°C<br />

<strong>to</strong> denature the cells.<br />

Dehydrate the cell samples in a series<br />

of chilled (–20°C) ethanol solutions<br />

(70%, then 96%, then 100% ethanol),<br />

incubating them for 5 min in each<br />

solution.<br />

Air dry the samples.<br />

5 On each denatured cell sample (from<br />

Step 4), place 10 µl denatured, preannealed<br />

probe mixture (from Step 3).<br />

6 <strong>In</strong>cubate hybridization samples overnight<br />

at 37°C.<br />

7 Go <strong>to</strong> Procedure V.<br />

101<br />

5


5<br />

Table 1: Frequently used detection<br />

systems for enzyme-based in situ<br />

hybridization.<br />

1 Abbreviations used: Ab, antibody;<br />

ABC, avidin-biotinylated enzyme<br />

(horseradish peroxidase or alkaline<br />

phosphatase) complex; E, enzyme<br />

(horseradish peroxidase or alkaline<br />

phosphatase).<br />

2 Hapten = biotin, digoxigenin, FITC,<br />

or DNP.<br />

3 Anti-hapten Ab raised in another<br />

species (e.g., rabbit, goat, swine)<br />

can also be used as primary Ab in<br />

probe detection schemes.<br />

102<br />

<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

V. Post-hybridization washes<br />

1 Perform the following stringent washes<br />

of the samples (from either Procedure<br />

IVA or Procedure IVB) at 42°C:<br />

2 x 5 min with 2 x SSC containing<br />

50% (or 60%) formamide and 0.05%<br />

Tween ® 20.<br />

2 x 5 min with 2 x SSC.<br />

2 Depending upon the nature of the<br />

probe, do one of the following:<br />

If the probe contains repetitive (e.g.<br />

Alu) elements, wash the samples 2 x<br />

5 min at 60°C with 0.01 x SSC.<br />

If the probe does not contain repetitive<br />

elements, skip this step.<br />

VI. Enzyme-based cy<strong>to</strong>chemical<br />

detection<br />

VIA. Single color detection<br />

6 Repeat Step 5 with the next incubation<br />

in the detection system (Table 1) until all<br />

incubations are complete.<br />

7 After all incubations in the detection system<br />

are complete, wash samples 5 min<br />

with PBS.<br />

8 Visualize according <strong>to</strong> one of the procedures<br />

in Section VII.<br />

9 If the detection procedure uses the same<br />

enzyme (peroxidase or alkaline phosphatase)<br />

<strong>to</strong> detect two different probes,<br />

do the following:<br />

<strong>In</strong>activate the enzyme on the first<br />

detecting molecule by incubating the<br />

sample for 10 min at room temperature<br />

with 10 mM HCl.<br />

Repeat Steps 5–8 with a second<br />

detection system that recognizes the<br />

sec-ond probe (Speel et al., 1994b).<br />

Probe <strong>In</strong>cubation<br />

label 1 2 3<br />

Biotin Avidin-E 1<br />

Biotin Avidin-E Biotinylated anti-avidin Ab Avidin-E<br />

Hapten 2 Anti-hapten Ab-E<br />

Hapten Mouse 3 anti-hapten Ab Anti-mouse Ab-E<br />

Hapten Mouse anti-hapten Ab Rabbit anti-mouse Ab-E Anti-rabbit Ab-E<br />

Hapten Mouse anti-hapten Ab Biotinylated anti-mouse Ab ABC<br />

Hapten Mouse anti-hapten Ab DIG-labeled anti-mouse Ab Anti-DIG Ab-E<br />

1 Wash samples briefly with 4 x SSC<br />

containing 0.05% Tween ® 20.<br />

2 <strong>In</strong>cubate samples for 10 min at 37°C<br />

with 4 x SSC containing 5% nonfat dry<br />

milk.<br />

3 Choose an appropriate enzyme-based<br />

detection system (Table 1).<br />

4 Dilute detecting molecules as follows:<br />

Dilute avidin conjugates in 4 x SSC<br />

containing 5% nonfat dry milk.<br />

Dilute antibody conjugates in PBS<br />

containing 2–5% normal serum and<br />

0.05% Tween ® 20.<br />

5 For the first incubation in the detection<br />

system (Table 1), do the following:<br />

<strong>In</strong>cubate samples with diluted detecting<br />

molecule for 30 min at 37°C.<br />

Wash samples 2 x 5 min in the appropriate<br />

wash buffer (4 x SSC for avidin;<br />

PBS for antibodies) containing 0.05%<br />

Tween ® 20.<br />

VIB. Multiple target, multicolor detection<br />

To detect multiple probes labeled with<br />

different haptens, use a combination of<br />

detection systems. For example, Table 2<br />

outlines a pro<strong>to</strong>col for triple-target in situ<br />

hybridization. For pro<strong>to</strong>cols with doubletarget<br />

in situ hybridizations, see Hopman<br />

et al. (1986), Emmerich et al. (1989),<br />

Mullink et al. (1989), Herring<strong>to</strong>n et al.<br />

(1989), Kerstens et al. (1994), and Speel et<br />

al. (1995).<br />

Note: Alternatively, if two peroxidase or<br />

phosphatase reactions are used in the<br />

detection pro<strong>to</strong>col (Speel et al., 1994b),<br />

inactivate the enzyme after the first<br />

detection reaction in 10 mM HCl for 10<br />

min at room temperature, then perform<br />

the second detection reaction (as in<br />

Procedure VIA above).<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Detection step <strong>In</strong>cubation <strong>In</strong>cubation<br />

time 2 temperature<br />

1. Detect biotin with AvPO1 (diluted 1:50) 20 min 37°C<br />

2. Visualize PO by Procedure VIIA<br />

(PO-DAB, brown signal)<br />

5 min 37°C<br />

3. <strong>In</strong>activate residual AvPO with 10 mM HCl. 10 min RT<br />

4. Detect digoxigenin and FITC with MADIG<br />

and RAFITC (each diluted 1:2000)<br />

30 min 37°C<br />

5. Detect anti-digoxigenin and anti-FITC with<br />

GAMAPase (diluted 1:25) and SWARPO<br />

(diluted 1:100)<br />

30 min 37°C<br />

6. Visualize APase activity by Procedure VIIC<br />

(APase-Fast Red, red signal)<br />

5–10 min 37°C<br />

7. Visualize PO activity by Procedure VIIB<br />

(PO-TMB, green signal)<br />

1–2 min 37°C<br />

8. Counterstain with hema<strong>to</strong>xylin 1 sec RT<br />

9. Air dry 10 min RT<br />

10. Embed in a protein matrix3 10 min 37°C<br />

VII. Visualization<br />

Enzyme label Substrate Precipitate colors in microscopy<br />

Brightfield Reflection-contrast Fluorescence<br />

PO 2 H2O2/DAB Brown White –<br />

H2O2/TMB Green Pink/Red –<br />

APase N-ASMX-P/FR Red Yellow Red<br />

BCIP/NBT Purple Yellow/Orange –<br />

Depending upon the type of microscopy<br />

<strong>to</strong> be used for analysis (Table 3) and the<br />

detecting molecule, choose one of the<br />

following procedures <strong>to</strong> visualize the<br />

hybrids. <strong>In</strong> our hands, each of these procedures<br />

is optimal for in situ hybridization.<br />

VIIA. Horseradish peroxidasediaminobenzidine<br />

(PO-DAB)<br />

1 Mix color reagent just before use:<br />

1 ml 3,3-diaminobenzidine tetrachloride<br />

(DAB; Sigma) s<strong>to</strong>ck (5 mg<br />

DAB/ml PBS).<br />

9 ml PBS containing 0.1 M imidazole,<br />

pH 7.6.<br />

10 µl 30% H2O2.<br />

2 Overlay each sample with 100 µl color<br />

reagent and a coverslip.<br />

3 <strong>In</strong>cubate samples for 5–15 min at 37°C.<br />

4 Wash samples 3 x 5 min with PBS and (if<br />

you wish) dehydrate them.<br />

5 Coverslip with an aqueous or organic<br />

mounting medium.<br />

CONTENTS<br />

INDEX<br />

VIIB. Horseradish peroxidasetetramethylbenzidine<br />

(PO-TMB)<br />

1 Dissolve 100 mg sodium tungstate<br />

(Sigma) in 7.5 ml 100 mM citratephosphate<br />

buffer (pH 5.1). Adjust the<br />

pH of the tungstate solution <strong>to</strong> pH<br />

5.0–5.5 with 37% HCl.<br />

2 Just before use, dissolve 20 mg dioctyl<br />

sodium sulfosuccinate (Sigma) and 6 mg<br />

3,3',5,5'-tetramethylbenzidine (TMB,<br />

Sigma) in 2.5 ml 100% ethanol at 80°C.<br />

3 Prepare 10 ml color reagent by combining<br />

the tungstate solution (Step 1), the<br />

TMB solution (Step 2), and 10 µl 30%<br />

H2O2.<br />

4 Overlay each sample with 100 µl color<br />

reagent and a coverslip.<br />

5 <strong>In</strong>cubate samples for 1–2 min at 37°C.<br />

6 Wash samples 3 x 1 min with ice-cold<br />

100 mM phosphate buffer (pH 6.0) and<br />

(if you wish) dehydrate them.<br />

7 Coverslip with an organic mounting<br />

medium or immersion oil.<br />

Table 2: Detection pro<strong>to</strong>col for<br />

triple-target in situ hybridization<br />

with a biotin-, digoxigenin-, and a<br />

FITC-labeled probe.<br />

1 Abbreviations used: Ab, antibody;<br />

APase, alkaline phosphatase;<br />

AvPO, PO-conjugated avidin<br />

(Vec<strong>to</strong>r); DAB, diaminobenzidine;<br />

GAMAPase, APase-conjugated<br />

goat anti-mouse Ab (DAKO);<br />

MADIG, mouse anti-digoxigenin<br />

Ab; PO, horseradish peroxidase;<br />

RAFITC, rabbit anti-FITC Ab<br />

(DAKO); RT, room temperature;<br />

SWARPO, PO-conjugated swine<br />

anti-rabbit Ab (DAKO).<br />

2 For details of detection reactions,<br />

see Procedure VIA. For details of<br />

visualization reactions, see<br />

Procedures VIIA–VIID.<br />

3 For details of protein matrix, see<br />

Procedure VIII.<br />

<br />

Table 3: Enzyme reaction<br />

pro<strong>to</strong>cols and colors in different<br />

types of light microscopy1 .<br />

1 Other enzyme reactions that have<br />

been used for ISH are described in<br />

Speel et al. (1993, 1995).<br />

2 Abbreviations used: APase, alkaline<br />

phosphatase; BCIP, bromochloro-indolyl<br />

phosphate; DAB,<br />

diaminobenzidine; FR, Fast Red<br />

TR; N-ASMX-P, naphthol-ASMXphosphate;<br />

NBT, nitroblue tetrazolium;<br />

PO, horseradish peroxidase;<br />

TMB, tetramethylbenzidine.<br />

103<br />

5


5<br />

104<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

VIIC. Alkaline phosphatase-Fast Red<br />

(APase-Fast Red)<br />

1 Mix color reagent just before use:<br />

4 ml TM buffer [200 mM Tris-HCl<br />

(pH 8.5), 10 mM MgCl2] containing<br />

5% polyvinyl alcohol (PVA, MW<br />

40,000; Sigma).<br />

250 µl TM buffer containing 1 mg<br />

naphthol-ASMX-phosphate (Sigma).<br />

750 µl TM buffer containing 5 mg<br />

Fast Red TR salt (Sigma).<br />

2 Overlay each sample with 100 µl color<br />

reagent and a coverslip.<br />

3 <strong>In</strong>cubate samples for 5–15 min at 37°C.<br />

4 Wash samples 3 x 5 min with PBS.<br />

5 Coverslip with an aqueous mounting<br />

medium.<br />

VIID. Alkaline phosphatase-bromochloroindolyl<br />

phosphate (APase-BCIP/NBT)<br />

Follow the standard procedure given in<br />

Chapter 2 of this manual.<br />

VIII. Embedding and light microscopy<br />

1 Prepare samples for microscopy by<br />

doing either of the following:<br />

If samples require a single mounting<br />

medium, embed stained samples as<br />

described in Procedure VII.<br />

If multiple precipitation reactions<br />

would require different (aqueous or<br />

organic) embedding mediums, apply<br />

instead a protein embedding layer by<br />

smearing 50 µl of a 1:1 mixture of<br />

BSA solution (40 mg/ml in deionized<br />

H2O) and 4% formaldehyde on<strong>to</strong> the<br />

slides. Air dry for 10 min at 37°C.<br />

Note: This protein embedding layer<br />

can be used <strong>to</strong> prevent solubilization<br />

of enzyme precipitates during all<br />

types of light microscopy (Speel et al.,<br />

1993, 1994a).<br />

2 Perform brightfield, fluorescence and<br />

reflection contrast microscopy as<br />

described in the literature (Speel et al.,<br />

1992, 1993, 1994b; Cornelese-Ten Velde et<br />

al., 1989).<br />

Results<br />

<br />

Figure 1: Single-target ISH on a normal human<br />

lymphocyte metaphase spread with a peroxidase<br />

detection system. The probe was a biotinylated<br />

cosmid that recognizes 40 kb of chromosome<br />

11q23. The detection system included monoclonal<br />

anti-biotin Ab (DAKO), rabbit anti-mouse Ab-PO,<br />

and the PO-DAB reaction. The sample was<br />

counterstained with hema<strong>to</strong>xylin and viewed by<br />

brightfield microscopy.<br />

<br />

Figure 2: Double-target ISH on normal human<br />

umbilical vein endothelial cells with brightfield<br />

viewing. The centromere of chromosome 1 (brown)<br />

was detected with a biotinylated probe; that of<br />

chromosome 7 (red), with a digoxigenin-labeled<br />

probe. The detection steps included (1) avidin-PO,<br />

(2) monoclonal anti-digoxigenin Ab and rabbit antimouse<br />

Ab-APase, (3) the APase-Fast Red reaction,<br />

and (4) the PO-DAB reaction. The sample was<br />

counterstained with hema<strong>to</strong>xylin and viewed by<br />

brightfield microscopy.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

<br />

Figure 3: Same ISH experiment as in Figure 1,<br />

but with a fluorescent alkaline phosphatase<br />

detection system. The detection system for the<br />

biotinylated cosmid probe included monoclonal<br />

anti-biotin, horse anti-mouse Ab-biotin, avidinbiotinylated<br />

APase complex, and the APase-Fast<br />

Red reaction (Speel et al., 1994a). The sample was<br />

counterstained with Thiazole Orange (Molecular<br />

Probes) and viewed by fluorescence microscopy.<br />

<br />

Figure 5: Triple-target ISH on human bladder<br />

tumor cell line T24. The probes and experimental<br />

procedures were the same as in Figure 4.<br />

Reprinted from Speel, E. J. M.; Kamps, M.; Bonnet, J.;<br />

Ramaekers, F. C. S.; Hopman, A. H. N.; (1993) Multicolor<br />

preparations for in situ hybridization using precipitating<br />

enzyme cy<strong>to</strong>chemistry in combination with reflection<br />

contrast microscopy. His<strong>to</strong>chemistry 100, 357–366 with<br />

permission of Springer-Verlag GmbH & Co. KG.<br />

CONTENTS<br />

INDEX<br />

Figure 4: Triple-target ISH on a normal human<br />

lymphocyte metaphase spread. Probes specific<br />

for the centromeres of chromosomes 1 (brown),<br />

7 (red), and 17 (green) were labeled with biotin,<br />

digoxigenin, and FITC, respectively. Detection,<br />

counterstaining, and embedding in a BSA protein<br />

layer was as outlined in the text (Table 2). The<br />

sample was viewed by brightfield microscopy.<br />

Figure 6: Double-target ISH on a normal human<br />

lymphocyte metaphase spread with reflection<br />

contrast viewing. The centromere of chromosome 1<br />

(yellow) was detected with a biotinylated probe;<br />

that of chromosome 17 (white), with a digoxigeninlabeled<br />

probe. The detection steps included (1)<br />

monoclonal anti-biotin Ab and rabbit anti-digoxigenin<br />

Ab, (2) horse anti-mouse Ab-biotin and swine<br />

anti-rabbit Ab-PO, (3) streptavidin-biotinylated<br />

APase complex, (4) the APase-Fast Red reaction,<br />

and (5) the PO-DAB reaction (Speel et al., 1993).<br />

The sample was not counterstained, but was<br />

embedded in a BSA protein layer and viewed by<br />

reflection contrast microscopy.<br />

105<br />

5


5<br />

106<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

References<br />

Cornelese-Ten Velde, I.; Wiegant, J.; Tanke, H. J.;<br />

Ploem, J. S. (1989) Improved detection and<br />

quantification of the (immuno)peroxidase product<br />

using reflection contrast microscopy. His<strong>to</strong>chemistry<br />

92, 153–160.<br />

Emmerich, P.; Loos, P.; Jauch, A.; Hopman, A. H. N.;<br />

Wiegant, J.; Higgins, M. J.; White, B. N.; Van der<br />

Ploeg, M.; Cremer, C.; Cremer, T. (1989) Double<br />

in situ hybridization in combination with digital<br />

image analysis: a new approach <strong>to</strong> study interphase<br />

chromosome <strong>to</strong>pography. Exp. Cell Res. 181,<br />

126–140.<br />

Herring<strong>to</strong>n, C. S.; Burns, J.; Graham, A. K.;<br />

Bhatt, B.; McGee, J. O’D. (1989) <strong>In</strong>terphase cy<strong>to</strong>genetics<br />

using biotin and digoxygenin labeled<br />

probes II: simultaneous differential detection of<br />

human and papilloma virus nucleic acids in<br />

individual nuclei. J. Clin. Pathol. 42, 601–606.<br />

Hopman, A. H. N.; Wiegant, J.; Raap, A. K.;<br />

Landegent, J. E.; Van der Ploeg, M.; Van Duijn, P.<br />

(1986) Bi-color detection of two target DNAs<br />

by non-radioactive in situ hybridization.<br />

His<strong>to</strong>chemistry 85, 1–4.<br />

Hopman, A. H. N.; Van Hooren, E.; Van de Kaa, C. A.;<br />

Vooijs, G. P.; Ramaekers, F. C. S. (1991) Detection<br />

of numerical chromosome aberrations using in situ<br />

hybridization in paraffin sections of routinely<br />

processed bladder cancers. Modern Pathol. 4,<br />

503–513.<br />

Hopman, A. H. N.; Poddighe, P. J.; Moesker, O.;<br />

Ramaekers, F. C. S. (1992) <strong>In</strong>terphase cy<strong>to</strong>genetics:<br />

an approach <strong>to</strong> the detection of genetic aberrations<br />

in tumours. <strong>In</strong>: McGee, J. O’D.; Herring<strong>to</strong>n, C. S.<br />

(Eds.) Diagnostic Molecular Pathology, A Practical<br />

Approach, 1st ed. New York: IRL Press, 141–167.<br />

Kerstens, H. M. J.; Poddighe, P. J.; Hanselaar,<br />

A. G. J. M. (1994) Double-target in situ hybridization<br />

in brightfield microscopy. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem.<br />

42, 1071–1077.<br />

Martini. E.; Speel, E. J. M.; Geraedts, J. P. M.;<br />

Ramaekers, F. C. S.; Hopman, A. H. N. (1995)<br />

Application of different in situ hybridization<br />

detection methods for human sperm analysis.<br />

Hum. Reprod. 10, 855–861.<br />

Mullink, H.; Walboomers, J. M. M.; Raap, A. K.;<br />

Meyer, C. J. L. M. (1989) Two colour DNA in situ<br />

hybridization for the detection of two viral genomes<br />

using non-radioactive probes. His<strong>to</strong>chemistry 91,<br />

195–198.<br />

Speel, E. J. M.; Schutte, B.; Wiegant, J.; Ramaekers,<br />

F. C. S.; Hopman, A. H. N. (1992) A novel fluorescence<br />

detection method for in situ hybridization,<br />

based on the alkaline phosphatase-Fast Red<br />

reaction. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 40, 1299–1308.<br />

Speel, E. J. M.; Kamps, M.; Bonnet, J.; Ramaekers,<br />

F. C. S.; Hopman, A. H. N. (1993) Multicolour<br />

preparations for in situ hybridization using<br />

precipitating enzyme cy<strong>to</strong>chemistry in combination<br />

with reflection contrast microscopy. His<strong>to</strong>chemistry<br />

100, 357–366.<br />

Speel, E. J. M.; Herbergs, J.; Ramaekers, F. C. S.;<br />

Hopman, A. H. N. (1994a) Combined immunocy<strong>to</strong>chemistry<br />

and fluorescence in situ hybridization<br />

for simultaneous tricolor detection of cell cycle,<br />

genomic, and phenotypic parameters of tumor cells.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 42, 961–966.<br />

Speel, E. J. M.; Jansen, M. P. H. M.; Ramaekers,<br />

F. C. S.; Hopman, A. H. N. (1994b) A novel triplecolor<br />

detection procedure for brightfield microscopy,<br />

combining in situ hybridization with immuocy<strong>to</strong>chemistry.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 42,<br />

1299–1307.<br />

Speel, E. J. M.; Ramaekers, F. C. S.; Hopman, A. H. N.<br />

(1995) Detection systems for in situ hybridization, and<br />

the combination with immunocy<strong>to</strong>chemistry.<br />

His<strong>to</strong>chem. J., in press.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

RNase A Dry powder 109 142 25 mg<br />

109 169 100 mg<br />

Pepsin Aspartic endopeptidase with broad 108 057 1 g<br />

specificity 1 693 387 5 g<br />

Digoxigenin-11-dUTP, Tetralithium salt, 1 mM solution 1 093 088 25 nmol<br />

alkali-stable (25 µl)<br />

1 558 706 125 nmol<br />

(125 µl)<br />

1 570 013 5 x125 nmol<br />

(5 x125 µl)<br />

Fluorescein-12-dUTP Tetralithium salt, 1 mM solution 1 373 242 25 nmol<br />

(25 µl)<br />

Tetramethyl- Tetralithium salt, 1 mM solution 1 534 378 25 nmol<br />

rhodamine-6-dUTP (25 µl)<br />

AMCA-6-dUTP Tetralithium salt, 1 mM solution 1 534 386 25 nmol<br />

(25 µl)<br />

Biotin-16-dUTP Tetralithium salt, 1 mM solution 1 093 070 50 nmol<br />

(50 µl)<br />

DNase I Lyophilizate 104 159 100 mg<br />

DNA Polymerase I Nick Translation Grade 104 485 500 units<br />

104 493 1000 units<br />

tRNA From baker’s yeast 109 495 100 mg<br />

109 509 500 mg<br />

DNA, Cot-1, human Solution in 10 mM Tris-HCl, 1 mM EDTA, 1 581 074 500 µg<br />

pH 7.4, Cot-1 DNA is used in chromosomal (500 µl)<br />

in situ suppression (CISS).<br />

Tween ® 20 1 332 465 5 x10 ml<br />

Anti-Digoxigenin Clone 1.71.256, mouse IgG 1, 1 333 062 100 µg<br />

Anti-Mouse Ig- F(ab)2 fragment 1 214 624 200 µg<br />

Digoxigenin<br />

Anti-Digoxigenin-POD Fab fragments from sheep 1 207 733 150 U<br />

Anti-Digoxigenin-AP Fab fragments from sheep 1 093 274 150 U<br />

NBT/BCIP, Solution of 18.75 mg/ml nitro-blue 1 681 451 8 ml<br />

(s<strong>to</strong>ck solution) tetrazolium chloride and 9.4 mg/ml<br />

5-bromo-4-chloro-3-indolyl phosphate,<br />

<strong>to</strong>luidine-salt in 67% DMSO (v/v)<br />

Tris Powder 127 434 100 g<br />

708 968 500 g<br />

708 976 1 kg<br />

BSA Highest quality, lyophilizate 238 031 1 g<br />

238 040 10 g<br />

CONTENTS<br />

INDEX<br />

107<br />

5


5<br />

108<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

DNA in situ hybridization with an alkaline<br />

phosphatase-based fluorescent detection system<br />

Dr. G. Sagner, Research Labora<strong>to</strong>ries, Boehringer Mannheim GmbH,<br />

Penzberg, Germany.<br />

We describe here a high sensitivity indirect<br />

detection procedure for DIG-labeled<br />

hybridization probes. The procedure uses<br />

the components of the HNPP Fluorescent<br />

Detection Set <strong>to</strong> form a fluorescent precipitate<br />

of HNPP (2-hydroxy-3-naphthoic<br />

acid-2'-phenylanilide phosphate) and Fast<br />

Red TR at the site of hybridization.<br />

This procedure can be used <strong>to</strong> detect single<br />

copy sequences as small as 1 kb on human<br />

metaphase chromosomes.<br />

I. <strong>In</strong> situ hybridization with<br />

DIG-labeled probes<br />

Prepare chromosomal spreads, label<br />

hybridization probes with digoxigenin<br />

(DIG), hybridize probes <strong>to</strong> chromosomes,<br />

and perform posthybridization washes of<br />

the sample according <strong>to</strong> standard procedures,<br />

e.g. those listed in Chapters 4 and 5<br />

of this manual.<br />

II. Detection of DIG-labeled probes<br />

1 Prepare a fresh 1:500 dilution of alkaline<br />

phosphatase-conjugated sheep anti-DIG<br />

antibody in blocking buffer [100 mM<br />

Tris-HCl, 150 mM NaCl, 0.5% blocking<br />

reagent; pH 7.5 (20°C)].<br />

Note: Do not s<strong>to</strong>re the diluted antibody<br />

conjugate more than 12 h at 4°C.<br />

2 Pipette 100 µl of diluted anti-DIG<br />

antibody conjugate on<strong>to</strong> each slide and<br />

add a coverslip.<br />

3 <strong>In</strong>cubate slides for 1 h at 37°C in a moist<br />

chamber.<br />

4 Wash the slides at room temperature as<br />

follows:<br />

3 x10 min with washing buffer<br />

[100 mM Tris-HCl, 150 mM NaCl,<br />

0.05% Tween ® 20; pH 7.5 (20°C)].<br />

2 x10 min with detection buffer<br />

[100 mM Tris-HCl,100 mM NaCl,<br />

10 mM MgCl2; pH 8.0 (20°C)].<br />

5 Prepare fresh HNPP/Fast Red TR mix<br />

as follows:<br />

Note: Numbered vials are components<br />

of the HNPP Fluorescent Detection Set.<br />

Prepare Fast Red TR s<strong>to</strong>ck solution<br />

by dissolving 5 mg Fast Red TR<br />

(vial 2) in 200 µl distilled H2O.<br />

Mix 10 µl HNPP s<strong>to</strong>ck solution (premixed,<br />

vial1),10 ml Fast Red TR s<strong>to</strong>ck<br />

solution, and 1 ml detection buffer<br />

[100 mM Tris-HCl, 100 mM NaCl,<br />

10 mM MgCl2; pH 8.0 (20°C)].<br />

Filter the HNPP/Fast Red TR mix<br />

through a 0.2 µm nylon filter.<br />

Caution: The Fast Red TR s<strong>to</strong>ck<br />

solution should be no more than 4<br />

weeks old. The HNPP/Fast Red TR<br />

mix should be no more than a few<br />

days old. Always filter the mix just<br />

before use.<br />

6 Cover each sample with 100 µl filtered<br />

HNPP/Fast Red TR mix and a coverslip,<br />

then incubate slides for 30 min at<br />

room temperature.<br />

7 Wash the slides 1x at room temperature<br />

with washing buffer [100 mM Tris-HCl,<br />

150 mM NaCl, 0.05% Tween ® 20; pH<br />

7.5 (20°C)].<br />

8 Repeat Steps 6 and 7 three times.<br />

Note: If you are detecting abundant or<br />

multiple copy sequences, skip Step 8.<br />

One incubation is enough.<br />

9 Wash the slides for 10 min with distilled<br />

H2O.<br />

III. Fluorescence microscopy<br />

1 <strong>In</strong> a Coplin jar, counterstain slides with<br />

50 ml DAPI solution (100 ng DAPI/ml<br />

PBS) for 5 min in the dark at room<br />

temperature.<br />

2 Wash slides under running water for<br />

2–3 min.<br />

3 Air dry slides in the dark.<br />

4 Add 20 µl DABCO antifading solution<br />

(PBS containing 50% glycerol and 2%<br />

DABCO) <strong>to</strong> each slide.<br />

5 Cover each slide with a 24 x 24 mm<br />

coverslip.<br />

Note: For long term s<strong>to</strong>rage of the slides,<br />

seal the edges of the coverslip with nail<br />

polish and s<strong>to</strong>re in the dark at –20°C.<br />

6 View the slides by fluorescence microscopy,<br />

using appropriate filters.<br />

CONTENTS<br />

INDEX


Note: The maximum emission wavelength<br />

of dephosphorylated HNPP/Fast<br />

Red TR is 562 nm. However, since the<br />

emission peak is broad (540–590 nm),<br />

you may use the filter sets for either<br />

fluorescein or rhodamine <strong>to</strong> analyze the<br />

HNPP/Fast Red TR product.<br />

a<br />

b<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> whole chromosomes<br />

CONTENTS<br />

INDEX<br />

<br />

Results<br />

The fluorescent signal obtained with the<br />

HNPP/Fast Red procedure described<br />

above is more intense than a direct signal<br />

from fluorescein. <strong>In</strong> a comparison experiment<br />

(Figure 1), the HNPP/Fast Red<br />

reaction product was visible after a 70-fold<br />

shorter exposure (0.2 sec exposure vs. 15 s<br />

exposure) than the fluorescein signal. Even<br />

when the HNPP/Fast Red signal is viewed<br />

under a less than optimal filter (Figure 2),<br />

the fluorescence is clearly visible.<br />

Figure 1: Comparison of fluorescein and HNPP signal intensity. A DIG-labeled painting<br />

probe specific for human chromosome 1 was hybridized <strong>to</strong> metaphase chromosomal<br />

spreads. The DIG-labeled probe was detected with (Panel a) anti-DIG-fluorescein conjugate or<br />

(Panel b) anti-DIG-alkaline phosphate conjugate and the HNPP/Fast Red detection reaction<br />

described in the text. The fluorescein signal (Panel a) required a 15 s exposure while the<br />

HNPP/Fast Red signal (Panel b) required a 0.2 s exposure. Fluorescent images were pseudocolored<br />

with a CCD camera and a digital imaging system. Chromosomes were counterstained<br />

with DAPI.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

Tris Powder 127 434 100 g<br />

708 968 500 g<br />

708 976 1 kg<br />

Blocking Reagent Powder 1 096 176 50 g<br />

Anti-Digoxigenin-AP Fab Fragments from sheep 1 093 274 150 U<br />

Tween ® 20 1 332 465 5 x10 ml<br />

HNPP Fluorescent For sensitive fluorescent detection of non- 1758 888 Set for 500<br />

Detection Set radioactively labeled nucleic acids in FISH reactions<br />

fluorescence in situ hybridization (FISH)<br />

and membrane hybridization<br />

DAPI Fluorescence dye for staining of 236 276 10 mg<br />

chromosomes<br />

<br />

Figure 2: HNPP/Fast Red<br />

fluorescence viewed with a filter<br />

for DAPI. A DIG-labeled painting<br />

probe specific for human<br />

chromosome 1 was hybridized <strong>to</strong><br />

metaphase chromosomal spreads,<br />

then detected with anti-DIG-alkaline<br />

phosphate conjugate and the<br />

HNPP/Fast Red detection reaction as<br />

in Figure 1. The HNPP/Fast Red<br />

signal was viewed under a filter that<br />

was optimal for DAPI (emission<br />

maximum, 470 nm), but not for<br />

HNPP (emission maximum, 562 nm).<br />

The fluorescence was pho<strong>to</strong>graphed<br />

directly without digital manipulation.<br />

Chromosomes were counterstained<br />

with DAPI.<br />

109<br />

5


5<br />

110<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

Combined DNA in situ hybridization and<br />

immunocy<strong>to</strong>chemistry for the simultaneous<br />

detection of nucleic acid sequences, proteins, and<br />

incorporated BrdU in cell preparations<br />

E. J. M. Speel, F. C. S. Ramaekers, and A. H. N. Hopman, Department of Molecular<br />

Cell Biology & Genetics, University of Limburg, Maastricht, The Netherlands.<br />

The combination of in situ hybridization<br />

(ISH) and immunocy<strong>to</strong>chemistry (ICC)<br />

enables us, e.g., <strong>to</strong> simultaneously demonstrate<br />

mRNA and its protein product in<br />

the same cell, <strong>to</strong> immunophenotype cells<br />

containing a specific chromosomal aberration<br />

or viral infection, or <strong>to</strong> characterize<br />

cy<strong>to</strong>kinetic parameters of tumor cell populations<br />

that are genetically or phenotypically<br />

aberrant. The fac<strong>to</strong>rs that<br />

determine the success and sensitivity of a<br />

combination ICC and nonradioactive ISH<br />

procedure include:<br />

Preservation of cell morphology and<br />

protein epi<strong>to</strong>pes<br />

Accessibility of nucleic acid targets<br />

Lack of cross-reaction between the<br />

different detection procedures<br />

Good color contrast<br />

Stability of enzyme cy<strong>to</strong>chemical precipitates<br />

and fluorochromes<br />

Since several steps in the ISH procedure<br />

(enzymatic digestion, post-fixation, denaturation<br />

at high temperatures, and hybridization<br />

in formamide) may destroy antigenic<br />

determinants, ICC usually precedes ISH in<br />

a combination procedure. A variety of such<br />

combined ICC/ISH procedures have been<br />

reported with either enzyme precipitation<br />

reactions (Mullink et al., 1989; Van den<br />

Brink et al., 1990; Knuutila et al., 1994;<br />

Speel et al., 1994b), fluorochromes (Van<br />

den Berg et al., 1991; Weber-Matthiesen et<br />

al., 1993), or a combination of both (Strehl<br />

& Ambros, 1993; Zheng et al., 1993;<br />

Herbergs et al., 1994; Speel et al., 1994a).<br />

The procedures can be subdivided in<strong>to</strong> two<br />

groups, those which use fluorochromes for<br />

ICC, and those which use enzyme reactions.<br />

Fluorochromes have been used mainly on<br />

ace<strong>to</strong>ne-fixed cell preparations, since the<br />

material can be mildly post-fixed (usually<br />

with paraformaldehyde) after antigen<br />

detection and used directly for fluorescence<br />

ISH without any further pretreatment<br />

(Weber-Matthiesen et al., 1993).<br />

However, amplification steps for both ICC<br />

and ISH signals are often necessary for<br />

clear visualization. <strong>In</strong> such cases, enzymatic<br />

ISH pre-treatment after ICC lowers<br />

fluorescent ICC staining dramatically<br />

(Speel et al., 1994a).<br />

Enzyme precipitation reactions have also<br />

been used efficiently for combined ICC/<br />

ISH staining of proteins in cell preparations<br />

and tissue sections. Enzyme precipitation<br />

products that withstand the<br />

proteolytic digestion and denaturation<br />

steps used in the ISH procedure include:<br />

Several precipitates (Fast Red, New<br />

Fuchsin, and BCIP/NBT) formed by<br />

alkaline phosphatase<br />

The diaminobenzidine precipitate formed<br />

by horseradish peroxidase<br />

The BCIG (X-Gal) precipitate formed<br />

by -galac<strong>to</strong>sidase<br />

<strong>In</strong> these cases, the digestion and denaturation<br />

steps of the ISH procedure remove<br />

the antibody and enzyme detection layers,<br />

but the precipitate remains firmly in place.<br />

The stability of the ICC precipitate thus<br />

prevents unwanted cross-reaction between<br />

the detection procedures for ISH and ICC.<br />

Here we present a combined ICC/ISH<br />

procedure which describes compatible<br />

detection systems for fluorescence or<br />

brightfield microscopy (Table 1). Additionally,<br />

this procedure allows the<br />

localization of incorporated BrdU by<br />

fluorescence microscopy.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

The procedures given below are<br />

modifications of previously published Table 1: Detection systems for combined<br />

procedures (Speel et al., 1994a, 1994b). ICC/ISH1 .<br />

<br />

For analysis by<br />

Fluorescence microscopy Brightfield microscopy<br />

ICC 2 Detection by Anti-antigen Ab-APase Anti-antigen--gal<br />

CONTENTS<br />

Visualization by APase-Fast Red -Gal-BCIG<br />

ISH Probe FITC- or AMCA-labeled DIG- or biotin-labeled<br />

nucleic acid nucleic acid<br />

Detection and Direct viewing PO- or APase-labeled antivisualization<br />

by DIG Ab or anti-biotin Ab<br />

plus<br />

PO-DAB, PO-TMB, or<br />

APase-Fast Red reaction<br />

BrdU Detection by AMCA- or FITC- –<br />

labeling labeled 3 anti-BrdU Ab<br />

Visualization by Direct viewing –<br />

I. Cell preparations and BrdU labeling<br />

1 (Optional) To label cells, add BrdU<br />

(final concentration, 10 µM) <strong>to</strong> the<br />

culture medium 30 min before<br />

harvesting the cells (Speel et al., 1994a).<br />

2 Prepare cultured normal diploid cells or<br />

tumor cell lines (labeled or unlabeled)<br />

by one of the following methods:<br />

Slide and coverslip preparations: Grow<br />

cells on glass slides or coverslips. Fix in<br />

cold methanol (–20°C) for 5 s, then in<br />

cold ace<strong>to</strong>ne (4°C) for 3 x 5 s. Air dry<br />

samples and s<strong>to</strong>re at –20°C.<br />

Note: Alternatively, use other fixatives<br />

for the slide and coverslip preparations.<br />

Cy<strong>to</strong>spins: Cy<strong>to</strong>spin floating cells<br />

on<strong>to</strong> glass slides at 1000 rpm for 5 min.<br />

Air dry samples for 1 h at room<br />

temperature. Fix and s<strong>to</strong>re as with<br />

slide and coverslip preparations above.<br />

II. Detection of antigen by<br />

immunocy<strong>to</strong>chemistry (ICC)<br />

1 <strong>In</strong>cubate slides for 10 min at room<br />

temperature with PBS-Tween-NGS (PBS<br />

buffer containing 0.05% Tween ® 20 and<br />

2–5% normal goat serum).<br />

2 <strong>In</strong>cubate slides for 45 min at room temperature<br />

with an appropriate dilution of<br />

antigen-specific primary antibody in<br />

PBS-Tween-NGS.<br />

3 Wash slides for 2 x 5 min with PBS<br />

containing 0.05% Tween ® 20.<br />

INDEX<br />

4 <strong>In</strong>cubate slides for 45 min at room<br />

temperature with an appropriate secondary<br />

antibody conjugate. Use the<br />

following <strong>to</strong> decide which antibody<br />

conjugate <strong>to</strong> use:<br />

If you wish <strong>to</strong> detect the ICC antigen,<br />

the ISH antigen, and (optionally)<br />

BrdU labeling by fluorescence microscopy,<br />

use a secondary antibody that is<br />

conjugated <strong>to</strong> alkaline phosphatase<br />

(APase).<br />

If you wish <strong>to</strong> detect the ICC antigen<br />

and the ISH antigen under brightfield<br />

microscopy, use a secondary antibody<br />

that is conjugated <strong>to</strong> -galac<strong>to</strong>sidase<br />

(-Gal).<br />

5 Wash slides as follows:<br />

5 min with PBS containing 0.05%<br />

Tween ® 20.<br />

5 min with PBS.<br />

Note: For amplification of the ICC<br />

signal, you may add a third antibody<br />

step after this wash. For details of<br />

possible antibodies <strong>to</strong> use in an amplified<br />

three-antibody detection procedure,<br />

see Table 1 of the article “Multiple<br />

target DNA in situ hybridization with<br />

enzyme-based cy<strong>to</strong>chemical detection<br />

systems” on page 102 of this manual.<br />

6 Visualize the antibody-antigen complexes<br />

according <strong>to</strong> either Procedure<br />

IIIA (for APase conjugates) or Procedure<br />

IIIB (for -Gal conjugates).<br />

1 Amplification steps may be<br />

necessary for detection of low<br />

amounts of antigen, nucleic acid<br />

target, or incorporated BrdU.<br />

2 Abbreviations used: Ab, antibody;<br />

AMCA, aminomethylcoumarin<br />

acetic acid; APase, alkaline<br />

phosphatase; BCIG,<br />

bromochloroindolyl-galac<strong>to</strong>side;<br />

BrdU, bromodeoxyuridine; DAB,<br />

diaminobenzidine; DIG,<br />

digoxigenin; FITC, fluorescein<br />

isothiocyanate; -Gal, galac<strong>to</strong>sidase;<br />

ICC,<br />

immunocy<strong>to</strong>chemistry; ISH, in situ<br />

hybridization; PO, peroxidase;<br />

TMB, tetramethylbenzidine<br />

3 The fluorochrome used in the BrdU<br />

visualization step should be different<br />

from the one used in the ISH<br />

visualization step.<br />

111<br />

5


5<br />

112<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

III. Visualization of ICC antigen<br />

IIIA. APase-Fast Red reaction (for producing<br />

a red precipitate visible under either<br />

fluorescence or brightfield microscopy)<br />

1 Mix color reagent just before use:<br />

4 ml TM buffer [200 mM Tris-HCl<br />

(pH 8.5), 10 mM MgCl2] containing<br />

5% polyvinyl alcohol (PVA, MW<br />

40,000; Sigma).<br />

250 µl TM buffer containing 1 mg<br />

naphthol-ASMX-phosphate (Sigma).<br />

750 µl TM buffer containing 5 mg<br />

Fast Red TR salt (Sigma).<br />

2 Overlay each sample with 100 µl color<br />

reagent and a coverslip.<br />

3 <strong>In</strong>cubate samples for 5–15 min at 37°C.<br />

Caution: Moni<strong>to</strong>r the enzyme reaction<br />

under a microscope and adjust the<br />

reaction time <strong>to</strong> keep the precipitate<br />

from becoming so dense that it shields<br />

nucleic acid sequences from the ISH<br />

detection step.<br />

4 Wash samples 3 x 5 min with PBS.<br />

Note: Do not dehydrate samples after<br />

washing.<br />

IIIB. -Gal-BCIG reaction (for producing<br />

a blue precipitate visible under brightfield<br />

microscopy)<br />

1 Mix color reagent:<br />

2.5 µl 5-bromo-4-chloro-3-indolyl-<br />

-D-galac<strong>to</strong>side (BCIG; X-Gal) s<strong>to</strong>ck<br />

solution [20 mg/ml BCIG (X-Gal) in<br />

N,N-dimethylformamide].<br />

100 µl diluent (PBS containing 0.9 mM<br />

MgCl2, 3 mM potassium ferricyanide,<br />

and 3 mM potassium ferrocyanide).<br />

2 Overlay each sample with 100 µl color<br />

reagent and a coverslip.<br />

3 <strong>In</strong>cubate samples for 15–60 min at 37°C.<br />

Caution: Moni<strong>to</strong>r the enzyme reaction<br />

under a microscope and adjust the<br />

reaction time <strong>to</strong> keep the precipitate<br />

from becoming so dense that it shields<br />

nucleic acid sequences from the ISH<br />

detection step.<br />

4 Wash samples 3 x 5 min with PBS.<br />

Note: If you wish, dehydrate the samples<br />

after washing.<br />

IV. Cell processing for in situ hybridization<br />

1 Wash slides for 2 min at 37°C with<br />

10 mM HCl.<br />

2 Digest samples with pepsin as follows:<br />

Overlay each sample with pepsin<br />

solution (100 µg/ml pepsin in 10 mM<br />

HCl).<br />

<strong>In</strong>cubate cell samples for 10–20 min<br />

at 37°C.<br />

3 Wash samples for 2 min at 37°C with<br />

10 mM HCl.<br />

Note: For cells stained with the -Gal-<br />

BCIG reaction, you may (if you wish)<br />

dehydrate the slides after washing them.<br />

4 Post-fix samples for 20 min at 4°C with<br />

PBS containing 1% paraformaldehyde.<br />

5 Wash samples as follows:<br />

5 min with PBS.<br />

5 min with 2 x SSC.<br />

V. <strong>In</strong> situ hybridization (ISH)<br />

1 Perform a standard ISH detection and<br />

visualization procedure on the slides as<br />

described elsewhere in this manual. Use<br />

either:<br />

Fluorescence-basedprocedures (FITC,<br />

AMCA) (when APase-conjugated<br />

antibodies were used for ICC).<br />

Enzyme-based procedures (PO-DAB,<br />

PO-TMB, APase-Fast Red) (when<br />

-Gal-conjugated antibodies were<br />

used for ICC).<br />

Example: For a detailed description<br />

of enzyme-based ISH procedures, see<br />

“Multiple target DNA in situ hybridization<br />

with enzyme-based cy<strong>to</strong>chemical<br />

detection systems” on page 100 of<br />

this manual.<br />

2 <strong>In</strong>clude appropriate controls in the ISH<br />

procedure <strong>to</strong> ensure the lack of crossreaction<br />

between ICC and ISH.<br />

Note: The ICC precipitate remains firmly<br />

in place during ISH. The stability of<br />

the ICC precipitate usually prevents<br />

unwanted cross-reaction between the<br />

detection procedures for ISH and ICC.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

VI. Fluorescence detection of BrdU<br />

(optional)<br />

1 After performing the APase-Fast Red<br />

ICC (Procedure IIIA) and fluorescence<br />

ISH (Procedure V) reactions on BrdUlabeled<br />

cells, incubate the cells for 45 min<br />

at room temperature with a specific anti-<br />

BrdU antibody.<br />

2 Wash slides for 2 x 5 min with PBS<br />

containing 0.05% Tween ® 20.<br />

3 <strong>In</strong>cubate samples with a secondary<br />

antibody that is conjugated <strong>to</strong> a fluorochrome<br />

not used in the ICC or ISH<br />

reactions.<br />

Example: Use an alkaline-phosphatase<br />

conjugated antibody and the APase-<br />

Fast Red for ICC; a FITC-conjugated<br />

antibody for ISH; and an AMCAconjugated<br />

antibody for BrdU detection.<br />

Note: If necessary, use an amplified<br />

three-antibody detection procedure as<br />

outlined in the article “Multiple target<br />

DNA in situ hybridization with enzymebased<br />

cy<strong>to</strong>chemical detection systems”<br />

on page 100 of this manual.<br />

4 Before embedding, wash slides as follows:<br />

2 x 5 min with PBS containing 0.05%<br />

Tween ® 20.<br />

5 min with PBS.<br />

5 <strong>In</strong>clude appropriate controls <strong>to</strong> ensure<br />

that the BrdU detection step does not<br />

cross-react with ISH detection.<br />

VII. Embedding<br />

For fluorescence microscopy (for detection<br />

of APase-Fast Red ICC, fluorescence<br />

ISH, and BrdU):<br />

Embed specimens in a Tris-glycerol mixture<br />

[1:9 (v/v) mix of 0.2 M Tris-HCl (pH<br />

7.6) and glycerol] containing 2% DABCO<br />

(Sigma) and (optionally) 0.5 µg/ml blue<br />

DAPI (Sigma).<br />

CONTENTS<br />

INDEX<br />

For brightfield microscopy (for detection<br />

of -Gal-BCIG ICC and enzyme-based<br />

ISH):<br />

Depending on the enzyme reactions used,<br />

embed specimens in one of the following:<br />

Aqueous, organic, or protein embedding<br />

medium, as described in the article<br />

“Multiple target DNA in situ hybridization<br />

with enzyme-based cy<strong>to</strong>chemical<br />

detection systems” on page 100 of this<br />

manual.<br />

Entellan (Merck) organic embedding<br />

medium and immersion oil (Zeiss) (for<br />

peroxidase-DAB or peroxidase-TMB<br />

reactions only).<br />

Tris-glycerol mixture [1:9 (v/v) mix of<br />

200 mM Tris-HCl (pH 7.6) and glycerol]<br />

(for peroxidase-DAB or phosphatase-<br />

Fast Red reactions only).<br />

Results<br />

a b<br />

<br />

Figure 1: Combined ICC and fluorescence<br />

ISH on lung tumor cell line EPLC 65, showing<br />

cy<strong>to</strong>keratin filaments, chromosome 1, and<br />

chromosome 17. The cy<strong>to</strong>keratins (red) were<br />

visualized with a monoclonal anti-cy<strong>to</strong>keratin<br />

antibody (Ab), an alkaline phosphatase-conjugated<br />

goat anti-mouse Ab, and the APase-Fast Red<br />

reaction. The centromere of chromosome 1 (blue)<br />

was visualized with a biotinylated probe, avidin-<br />

AMCA, a biotinylated goat anti-avidin Ab, and<br />

avidin-AMCA. The centromere of chromosome 17<br />

(green) was visualized directly with a FITC-labeled<br />

probe.<br />

<br />

Figure 2: Combined ICC and fluorescence<br />

ISH on EPLC 65 cells,<br />

showing the nuclear proliferation<br />

marker Ki67, chromosome 7, and<br />

incorporated BrdU. Panel a: The<br />

Ki67 antigen (red) was visualized<br />

with a rabbit anti-Ki67 Ab, alkaline<br />

phosphatase-conjugated swine antirabbit<br />

Ab, and the APase-Fast Red<br />

reaction. The centromere of<br />

chromosome 7 (green) was<br />

visualized directly with a FITClabeled<br />

probe. Panel b: <strong>In</strong>corporated<br />

BrdU (blue) was visualized with<br />

monoclonal anti-BrdU Ab,<br />

biotinylated horse anti-mouse Ab,<br />

and avidin-AMCA.<br />

113<br />

5


5<br />

114<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

<br />

Figure 3: Combined ICC and enzyme-based ISH on a human umbilical vein endothelial cell, showing<br />

the intermediate filament protein vimentin, chromosome 1, and chromosome 7. Vimentin (blue) was<br />

visualized with monoclonal anti-vimentin Ab, -galac<strong>to</strong>sidase-conjugated goat anti-mouse Ab, and the<br />

-galac<strong>to</strong>sidase-BCIG reaction. The centromeres of chromosome 1 (biotinylated probe, brown) and<br />

chromosome 7 (digoxigenin-labeled probe, red) were visualized with avidin-peroxidase, rabbit antidigoxigenin<br />

Ab and alkaline phosphatase-conjugated swine anti-rabbit Ab, the APase-Fast Red reaction, and<br />

the PO-DAB reaction. Samples were embedded in a Tris-glycerol mixture, but were not counterstained.<br />

Slides were viewed by brightfield microscopy.<br />

References<br />

Herbergs, J.; De Bruine, A. P.; Marx, P. T. J.;<br />

Vallinga, M. I. J.; S<strong>to</strong>ckbrügger, R. W.; Ramaekers,<br />

F. C. S.; Arends, J. W.; Hopman, A. H. N. (1994)<br />

Chromosome aberrations in adenomas of the<br />

colon. Proof of trisomy 7 in tumor cells by combined<br />

interphase cy<strong>to</strong>genetics and immunocy<strong>to</strong>chemistry.<br />

<strong>In</strong>t. J. Cancer 57, 781–785.<br />

Knuutila, S.; Nylund, S. J.; Wessman, M.;<br />

Larramendy, M. L. (1994) Analysis of genotype and<br />

phenotype on the same interphase or mi<strong>to</strong>tic cell.<br />

A manual of MAC (morphology antibody chromosomes)<br />

methodology. Cancer Genet. Cy<strong>to</strong>genet. 72,<br />

1–15.<br />

Mullink, H.; Walboomers, J. M. M.; Tadema, T. M.;<br />

Jansen, D. J.; Meijer, C. J. L. M. (1989) Combined<br />

immuno- and non-radioactive hybridocy<strong>to</strong>chemistry<br />

on cells and tissue sections: influence of fixation,<br />

enzyme pre-treatment, and choice of chromogen<br />

on detection of antigen and DNA sequences.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 37, 603–609.<br />

Speel, E. J. M.; Herbergs, J.; Ramaekers, F. C. S.;<br />

Hopman, A. H. N. (1994a) Combined immunocy<strong>to</strong>chemistry<br />

and fluorescence in situ hybridization for<br />

simultaneous tricolor detection of cell cycle,<br />

genomic, and phenotypic parameters of tumor cells.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 42, 961–966.<br />

Speel, E. J. M.; Jansen, M. P. H. M.; Ramaekers,<br />

F. C. S.; Hopman, A. H. N. (1994b) A novel triple-color<br />

detection procedure for brightfield microscopy,<br />

combining in situ hybridization with immunocy<strong>to</strong>chemistry.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 42, 1299–1307.<br />

Speel, E. J. M.; Ramaekers, F. C. S.; Hopman, A. H. N.<br />

(1995) Detection systems for in situ hybridization,<br />

and the combination with immunocy<strong>to</strong>chemistry.<br />

His<strong>to</strong>chem. J., in press.<br />

Strehl, S.; Ambros, P. F. (1993) Fluorescence in situ<br />

hybridization combined with immunohis<strong>to</strong>chemistry<br />

for highly sensitive detection of chromosome 1<br />

aberrations in neuroblas<strong>to</strong>ma. Cy<strong>to</strong>genet. Cell<br />

Genet. 63, 24–28.<br />

Van Den Berg, H.; Vossen, J. M.; Van Den Bergh,<br />

R. L.; Bayer, J.; Van Tol, M. J. D. (1991) Detection<br />

of Y chromosome by in situ hybridization in<br />

combination with membrane antigens by two-color<br />

immunofluorescence. Lab. <strong>In</strong>vest. 64, 623–628.<br />

Van Den Brink, W.; Van Der Loos, C.; Volkers, H.;<br />

Lauwen, R.; Van Den Berg, F.; Houthoff, H.; Das, P. K.<br />

(1990) Combined -galac<strong>to</strong>sidase and immunogold/<br />

silver staining for immunohis<strong>to</strong>chemistry and DNA in situ<br />

hybridization. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 38, 325–329.<br />

Weber-Matthiesen, K.; Deerberg, J.;<br />

Müller-Hermelink, A.; Schlegelberger, B.; Grote, W.<br />

(1993) Rapid immunophenotypic characterization of<br />

chromosomally aberrant cells by the new fiction<br />

method. Cy<strong>to</strong>genet. Cell. Genet. 63, 123–125.<br />

Zheng, Y.-L.; Carter, N. P.; Price, C. M.; Colman, S. M.;<br />

Mil<strong>to</strong>n, P. J.; Hackett, G. A.; Greaves, M. F.; Ferguson-<br />

Smith, M. A. (1993) Prenatal diagnosis from maternal<br />

blood: simultaneous immunophenotyping and FISH of<br />

fetal nucleated erythrocytes isolated by negative<br />

magnetic cell sorting. J. Med. Genet. 30, 1051–1056.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

5-Bromo-2'-deoxy- One tablet contains approx. 50 mg 586 064 50 tablets<br />

uridine 5-bromo-2'-deoxy-uridine and<br />

approx. 20 mg binder.<br />

Pepsin Aspartic endopeptidase with broad 108 057 1 g<br />

specificity 1 693 387 5 g<br />

Digoxigenin-11-dUTP, Tetralithium salt, 1 mM solution 1 093 088 25 nmol<br />

alkali-stable (25 µl)<br />

1 558 706 125 nmol<br />

(125 µl)<br />

1 570 013 5 x125 nmol<br />

(5 x125 µl)<br />

Fluorescein-12-dUTP Tetralithium salt, 1 mM solution 1 373 242 25 nmol<br />

(25 µl)<br />

Tetramethyl- Tetralithium salt, 1 mM solution 1 534 378 25 nmol<br />

rhodamine-6-dUTP (25 µl)<br />

AMCA-6-dUTP Tetralithium salt, 1 mM solution 1 534 386 25 nmol<br />

(25 µl)<br />

Biotin-16-dUTP Tetralithium salt, 1 mM solution 1 093 070 50 nmol<br />

(50 µl)<br />

DNase I Lyophilizate 104 159 100 mg<br />

DNA Polymerase I Nick Translation Grade 104 485 500 units<br />

104 493 1000 units<br />

Anti-Digoxigenin-AP Fab Fragments from sheep 1 093 274 150 U<br />

(200 µl)<br />

CONTENTS<br />

INDEX<br />

115<br />

5


5<br />

116<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

<strong>In</strong> situ hybridization <strong>to</strong> mRNA in in vitro cultured<br />

cells with DNA probes<br />

Department of Cy<strong>to</strong>chemistry and Cy<strong>to</strong>metry, University of Leiden, The Netherlands.<br />

The pro<strong>to</strong>col given below has been developed<br />

with a cell line (rat 9G) which has<br />

integrated in<strong>to</strong> its genome the major<br />

immediate early transcription unit 1 of<br />

human cy<strong>to</strong>megalovirus (Boom et al., 1986).<br />

The pro<strong>to</strong>col is written in general terms and<br />

is applicable <strong>to</strong> abundantly expressed<br />

mRNA species. More information concerning<br />

this specific in situ hybridization<br />

application can be found in Raap et al.<br />

(1991).<br />

I. Cell preparation, fixation and<br />

permeabilization<br />

Note: All solutions must be treated with<br />

RNase inhibi<strong>to</strong>rs.<br />

1 Culture cells at 37° C in a 5% CO2<br />

atmosphere on poly-L-lysine coated<br />

microscopic slides. As culture medium,<br />

use Dulbecco’s minimal essential medium<br />

without phenol red.<br />

2 Wash the cells with PBS at 37°C, then<br />

fix at room temperature for 30 min in a<br />

solution of 4% (w/v) formaldehyde, 5%<br />

(v/v) acetic acid, and 0.9% (w/v) NaCl.<br />

3 Wash the fixed cells with PBS at room<br />

temperature and s<strong>to</strong>re them in 70%<br />

ethanol at 4°C.<br />

4 Before in situ hybridization, treat the<br />

fixed cells as follows:<br />

Dehydrate by incubating successively<br />

in 70%, 90%, and 100% ethanol.<br />

Wash in 100% xylene <strong>to</strong> remove<br />

residual lipids.<br />

Rehydrate by incubating successively<br />

in 100%, 90%, and 70% ethanol.<br />

Finally, incubate in PBS.<br />

5 Treat the fixed cells at 37°C with 0.1%<br />

(w/v) pepsin in 0.1 N HCl, <strong>to</strong> increase<br />

permeability <strong>to</strong> macromolecular reagents.<br />

6 Finally, treat the fixed cells as follows:<br />

Wash with PBS for 5 min.<br />

Post-fix with 1% formaldehyde for<br />

10 min.<br />

Wash again with PBS.<br />

II. <strong>In</strong> situ hybridization<br />

1 Label a suitable probe DNA with digoxigenin<br />

(DIG), using any of the pro<strong>to</strong>cols<br />

given elsewhere in this manual.<br />

2 Prepare hybridization solution which<br />

contains 60% deionized formamide,<br />

300 mM NaCl, 30 mM sodium citrate,<br />

10 mM EDTA, 25 mM NaH2PO4 (pH<br />

7.4), 5% dextran sulfate, and 250 ng/µl<br />

sheared salmon sperm DNA.<br />

3 Denature the DIG-labeled probe DNA<br />

at 80°C shortly before use and add it <strong>to</strong><br />

the hybridization solution at a concentration<br />

of 5 ng/µl.<br />

4 Add 10 µl of the hybridization mixture<br />

(hybridization solution plus denatured<br />

probe) <strong>to</strong> the fixed, permeabilized cells<br />

and cover with an 18 x 18 mm coverslip.<br />

Note: An in situ denaturation step is<br />

optional. <strong>In</strong>clusion of such a step may<br />

intensify the RNA signal since it makes<br />

the sample more accessible <strong>to</strong> the probe.<br />

5 Hybridize at 37°C for 16 h.<br />

III. Washes<br />

1 After hybridization, remove coverslips<br />

by shaking the slides at room temperature<br />

in a solution of 60% formamide,<br />

300 mM NaCl, and 30 mM sodium<br />

citrate .<br />

2 Using the same formamide-salt solution<br />

as in Step 1, wash the slides as follows:<br />

Wash 3 x at room temperature.<br />

Wash 1x at 37°C.<br />

3 Finally, wash the slides 1 x 5 min in PBS.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

IV. Immunofluorescent detection<br />

Note: Other pro<strong>to</strong>cols for amplifying the<br />

signal may also be used. See the pro<strong>to</strong>cols<br />

under “Single color fluorescent detection<br />

with immunological amplification” on<br />

page 62.<br />

1 Block non-specific binding by the<br />

following steps:<br />

Add 100 µl blocking solution<br />

[100 mM Tris-HCl; pH 7.5, 150 mM<br />

NaCl, 0.5% (w/v) blocking reagent]<br />

<strong>to</strong> each slide.<br />

Cover with a 24 x 50 mm coverslip.<br />

Place slide in a moist chamber.<br />

2 To loosen the coverslips, wash the slides<br />

briefly with the buffer used for immunological<br />

detection.<br />

3 Detect the hybridized DIG-labeled<br />

probe by incubating the slides in a moist<br />

chamber for 45 min with a 1:500 dilution<br />

of anti-DIG-fluorescein in blocking<br />

solution (from Step 1) .<br />

4 Wash slides with a solution of 100 mM<br />

Tris-HCl, pH 7.5; 150 mM NaCl;<br />

0.05% Tween ® 20.<br />

5 To dehydrate the cell samples, incubate<br />

the slides for 5 min in each of a series<br />

of ethanol solutions: 70%, 90%, then<br />

100% ethanol.<br />

6 Air dry the slides.<br />

Figure 1: Nuclear staining of integrated IE viral<br />

DNA after induction with cycloheximide. The<br />

signal throughout the cy<strong>to</strong>plasm represents viral<br />

mRNA. The two panels show the same signal with<br />

different counterstains.<br />

CONTENTS<br />

INDEX<br />

<br />

7 Embed the cell samples in an anti-fading<br />

solution which contains:<br />

9 parts glycerol<br />

plus<br />

1 part staining mixture: 1 M Tris-<br />

HCl (pH 7.5), 2% 1,4-diaza-bicyclo-<br />

[2,2,2]-octane (DABCO), and a DNA<br />

counterstain [either propidium iodide<br />

(500 ng/ml) or DAPI (75 ng/µl)].<br />

Results<br />

Panel a: PI counterstain.<br />

Panel b: DAPI counterstain.<br />

References<br />

Boom, R.; Geelen, J. L.; Sol, C. J.; Raap, A. K.;<br />

Minnaar, R. P.; Klaver, B. P.; Noordaa, J. v. d. (1986)<br />

Establishment of a rat cell line inducible for the<br />

expression of human cy<strong>to</strong>megalovirus immediate –<br />

early gene products by protein synthesis inhibition.<br />

J. Virol. 58, 851–859.<br />

Raap, A. K.; Van de Rijke, F .M.; Dirks, R. W.; Sol, C. J.;<br />

Boom, R.; Van der Ploeg, M. (1991) Bicolor fluorescence<br />

in situ hybridization <strong>to</strong> intron- and exon<br />

mRNA sequences. Exp. Cell Res. 197, 319–322.<br />

117<br />

5


5<br />

118<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

Pepsin Aspartic endopeptidase with broad 108 057 1 g<br />

specificity 1 693 387 5 g<br />

Tween ® 20 1 332 465 5 x10 ml<br />

Blocking Reagent Powder 1 096 176 50 g<br />

Anti-Digoxigenin Fab Fragments from sheep 1 207 741 200 µg<br />

Fluorescein<br />

DAPI Fluorescence dye for staining of 236 276 10 mg<br />

chromosomes<br />

Digoxigenin-11-dUTP, Tetralithium salt, 1 mM solution 1 093 088 25 nmol<br />

alkali-stable (25 µl)<br />

1 558 706 125 nmol<br />

(125 µl)<br />

1 570 013 5 x125 nmol<br />

(5 x125 µl)<br />

Fluorescein-12-dUTP Tetralithium salt, 1 mM solution 1 373 242 25 nmol<br />

(25 µl)<br />

Tetramethyl- Tetralithium salt, 1 mM solution 1 534 378 25 nmol<br />

rhodamine-6-dUTP (25 µl)<br />

AMCA-6-dUTP Tetralithium salt, 1 mM solution 1 534 386 25 nmol<br />

(25 µl)<br />

Biotin-16-dUTP Tetralithium salt, 1 mM solution 1 093 070 50 nmol<br />

(50 µl)<br />

DNase I Lyophilizate 104 159 100 mg<br />

DNA Polymerase I Nick Translation Grade 104 485 500 units<br />

104 493 1000 units<br />

EDTA 808 261 250 g<br />

808 270 500 g<br />

808 288 1 kg<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

Identification of single bacterial cells using<br />

DIG-labeled oligonucleotides<br />

B. Zarda, Dr. R. Amann, and Prof. Dr. K.-H. Schleifer, <strong>In</strong>stitute for Microbiology,<br />

Technical University of Munich, Germany.<br />

Note: An earlier version of this procedure<br />

has been published (Zarda et al., 1991).<br />

I. Organisms and growth conditions<br />

1 To prepare cells needed for this experiment,<br />

do the following:<br />

Allow Escherichia coli (Deutsche<br />

Sammlung von Mikroorganismen und<br />

Zellkulturen GmbH, DSM 30083) <strong>to</strong><br />

grow aerobically in YT broth (tryp<strong>to</strong>ne,<br />

10 g/L; yeast extract, 5 g/L; glucose,<br />

5 g/L; sodium chloride, 8 g/L; pH 7.2)<br />

at 37°C.<br />

Cultivate Pseudomonas cepacia (DSM<br />

50181) aerobically in M1 broth<br />

(pep<strong>to</strong>ne, 5 g/L; malt extract, 3 g/L;<br />

pH 7.0) at 30°C.<br />

Note: Cells from Methanococcus vannielii<br />

(DSM1224) were a generous gift of<br />

Dr. R. Huber (Dept. of Microbiology,<br />

University of Regensburg, FRG).<br />

2 To guarantee a high cellular rRNA<br />

content, harvest all cells at midlogarithmic<br />

phase by centrifugation in a<br />

microcentrifuge (5000 x g, 1 min).<br />

3 Discard the growth medium from the<br />

cell pellet and resuspend cells thoroughly<br />

in phosphate buffered saline (130 mM<br />

sodium chloride, 10 mM sodium phosphate;<br />

pH 7.2).<br />

CONTENTS<br />

INDEX<br />

II. Cell fixation and preparation<br />

of cell smears<br />

Note: This procedure was adapted from<br />

Amann et al., 1990.<br />

1 Fix the cells by adding 3 volumes of paraformaldehyde<br />

solution (4% paraformaldehyde<br />

in PBS) <strong>to</strong>1volume of suspended<br />

cells.<br />

2 After 3 h incubation, do the following:<br />

Pellet cells by centrifugation.<br />

Remove the supernatant.<br />

Wash the cell pellet with PBS.<br />

Resuspending the cells in an aliquot<br />

of PBS.<br />

Note: After adding 1 volume ethanol <strong>to</strong><br />

the resuspended cells, you may s<strong>to</strong>re the<br />

cell suspension at –20°C for up <strong>to</strong> 3<br />

months without apparent influence on<br />

the hybridization results.<br />

3 Spot these fixed cell suspensions on<strong>to</strong><br />

thoroughly cleaned glass slides and<br />

allow <strong>to</strong> air dry for at least 2 h.<br />

4 Dehydrate the cell samples by immersing<br />

the slides successively in solutions of<br />

50% ethanol, then 80% ethanol, then<br />

98% ethanol (3 min for each solution).<br />

III. DIG labeling of oligonucleotides<br />

with DIG-ddUTP<br />

Label oligonucleotides either according <strong>to</strong><br />

the pro<strong>to</strong>cols in Chapter 4 of this manual<br />

or at the 5' end according <strong>to</strong> the pro<strong>to</strong>col<br />

of the DIG Oligonucleotide 5'-End Labeling<br />

Set*.<br />

*Sold under the tradename of Genius in the US.<br />

119<br />

5


5<br />

120<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

IV. <strong>In</strong> situ hybridization using<br />

digoxigenin-labeled oligonucleotides<br />

1 Prepare hybridization solution (900 mM<br />

sodium chloride, 20 mM Tris-HCl,<br />

0.01% sodium dodecyl sulfate; pH 7.2).<br />

2 Depending on the method of analysis,<br />

do either of the following:<br />

If you will use fluorescently-labeled<br />

antibodies (Procedure Va below),<br />

proceed directly <strong>to</strong> Step 3.<br />

If you will use peroxidase-conjugated<br />

antibodies (Procedure Vb below), then:<br />

Prior <strong>to</strong> hybridization, incubate fixed<br />

cells for 10 min at 0°C with 1 mg/ml<br />

of lysozyme in TE (100 mM Tris-<br />

HCl, 50 mM EDTA; pH 8.0).<br />

Remove lysozyme by thoroughly<br />

rinsing the slide with sterile H2O.<br />

Air dry the slide.<br />

Proceed <strong>to</strong> Step 3.<br />

3 Add 8 µl hybridization solution containing<br />

50 ng of labeled oligonucleotide<br />

probe <strong>to</strong> the prepared slide (from<br />

Procedure II).<br />

4 <strong>In</strong>cubate the slide for 2 h at 45°C in an<br />

iso<strong>to</strong>nically equilibrated humid chamber.<br />

Va. Detection of DIG-labeled<br />

oligonucleotides with fluorescently<br />

labeled anti-DIG Fab fragments<br />

1 Dilute fluorescein- or rhodamine-labeled<br />

anti-DIG Fab fragments 1:4 in blocking<br />

solution (150 mM sodium chloride;<br />

100 mM Tris-HCl, pH 7.5; 0.5% bovine<br />

serum albumin; and 0.5% blocking<br />

reagent).<br />

2 Add 10 µl of the diluted antibody <strong>to</strong> the<br />

slide and incubate the slide for another<br />

hour at 27°C in the humid chamber.<br />

3 Remove the slide from the humid chamber<br />

and immerse in 40 ml of a washing<br />

solution (150 mM sodium chloride,<br />

100 mM Tris-HCl, 0.01% SDS; pH 7.4)<br />

at 29°C for 10 min.<br />

4 Prepare the slides for viewing by doing<br />

the following:<br />

Rinse the slides briefly with sterile<br />

water (which has been filtered through<br />

a 0.2 µm filter).<br />

Air dry.<br />

Mount in Citifluor (Citifluor Ltd.,<br />

London, U.K.).<br />

5 View the cell smears with a Plan-<br />

Neofluar 100 x objective (oil immersion)<br />

on the following setup: a Zeiss Axioplan<br />

microscope fitted for epifluorescence<br />

microscopy with a 50 W mercury high<br />

pressure bulb and Zeiss filter sets 09 and<br />

15 (Zeiss, Oberkochen, FRG).<br />

6 For pho<strong>to</strong>micrographs, use Kodak Ektachrome<br />

P1600 color reversal film and<br />

an exposure time of 15 s for epifluorescence<br />

or 0.01 s for phase contrast<br />

micrographs.<br />

Vb. Detection of DIG-labeled<br />

oligonucleotides with peroxidaseconjugated<br />

anti-DIG Fab fragments<br />

1 Use the same conditions for hybridization<br />

and antibody binding as for fluorescent<br />

antibodies (Procedures IV and Va),<br />

except include a lysozyme pretreatment<br />

of the cell smears prior <strong>to</strong> hybridization.<br />

For details, see Procedure IV above.<br />

2 Visualize the bound antibody as follows:<br />

Prepare peroxidase substrate-nickle<br />

chloride solution [1.3 mM diaminobenzidine,<br />

0.02% (v/v) H2O2, 0.03%<br />

(w/v) nickel chloride, 5 mM Tris-HCl<br />

(pH 7.4)].<br />

<strong>In</strong>cubate slide with peroxidase substrate-nickle<br />

chloride solution until a<br />

purplish-blue precipitate forms.<br />

3 View slides under a light microscope and<br />

pho<strong>to</strong>graph with Kodak Ektachrome<br />

P1600 color reversal film.<br />

Results<br />

Using the techniques in this article, we<br />

could detect P. cepacia cells in a mixed<br />

sample of three bacteria (Figure 1). Additional<br />

experiments with a DIG-labeled<br />

oligonucleotide not complementary <strong>to</strong><br />

rRNA show no significant levels of nonspecifically<br />

bound DIG-labeled nucleic acid<br />

probes and anti-DIG antibodies.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> cells<br />

a b<br />

c d<br />

References<br />

Amann, R. I.; Binder, B. J.; Olson, R. J.; Chisholm,<br />

S. W.; Devereux, R.; Stahl, D. A. (1990) Combination<br />

of 16 S rRNA-targeted oligonucleotide probes with<br />

flow cy<strong>to</strong>metry for analyzing mixed microbial populations.<br />

Appl. Environ. Microbiol. 56, 1919–1925.<br />

Mühlegger, K.; Huber, E.; von der Eltz, H.; Rüger, R.;<br />

Kessler, C. (1990) Nonradioactive labeling and<br />

detection of nucleic acids. Biol. Chem. Hoppe-Seyler<br />

371, 953–965.<br />

CONTENTS<br />

INDEX<br />

Zarda, B.; Amann, R.; Wallner, G.; Schleifer, K. H.<br />

(1991) Identification of single bacterial cells using<br />

digoxigenin-labeled rRNA-targeted oligonucleotides.<br />

J. Gen. Microbiol. 137, 2823–2830.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG-Oligonucleotide 3'-end labeling of oligonucleotides from 1 362 372 1 Kit<br />

3'-End Labeling Kit* 14 <strong>to</strong> 100 nucleotides in length with (25 labeling<br />

DIG-11-ddUTP and terminal transferase reactions)<br />

DIG-Oligonucleotide With the DIG Oligonucleotide 5'-End Labeling 1 480 863 1 Set<br />

5'-End Labeling Set* Set, oligonucleotides can be labeled with (10 labeling<br />

digoxigenin at the 5’-end after synthesis that reactions)<br />

includes the addition of a phosphoramidite<br />

Anti-Digoxigenin- Fab Fragments from sheep 1 207 741 200 µg<br />

Fluorescein<br />

Anti-Digoxigenin- Fab Fragments from sheep 1 207 750 200 µg<br />

Rhodamine<br />

Anti-Digoxigenin-POD Fab Fragments from sheep 1 207 733 150 U<br />

Tris Powder 127 434 100 g<br />

708 968 500 g<br />

708 976 1 kg<br />

EDTA Powder 808 261 250 g<br />

808 270 500 g<br />

808 288 1 kg<br />

Blocking Reagent Powder 1 096 176 50 g<br />

BSA Highest quality lyophilizate 238 031 1 g<br />

238 040 10 g<br />

SDS Purify 99% 1 028 685 100 g<br />

1 028 693 500 g<br />

<br />

Figure 1: Specific identification<br />

of whole fixed cells of P. cepacia<br />

in a mixture of P. cepacia (chains<br />

of rods), E. coli (rods) and M.<br />

van-nielii (cocci) with a DIGlabeled<br />

oligonucleotide probe.<br />

Phase contrast (panel a) and<br />

epifluorescence (panel b) pho<strong>to</strong>s<br />

show detection with fluorescently<br />

labeled anti-DIG Fab fragments<br />

(Zarda et al., 1991). Phase contrast<br />

(panel c) and brightfield (panel d)<br />

pho<strong>to</strong>s show detection with<br />

peroxidase-conjugated anti-DIG Fab<br />

fragments<br />

Reprinted from Zarda, B.; Amann, R.;<br />

Wallner, G.; Schleifer, K. H. (1991) Identification<br />

of single bacterial cells using<br />

digoxigenin-labeled rRNA-targeted<br />

oligonucleotides. J. Gen. Microbiol. 137,<br />

2823–2830 with permission of the<br />

society for general microbiology.<br />

*Sold under the tradename of Genius<br />

in the US.<br />

121<br />

5


5<br />

*Sold under the tradename of Genius<br />

in the US.<br />

122<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Detection of HPV 11 DNA in paraffin-embedded<br />

laryngeal tissue with a DIG-labeled DNA probe<br />

Dr. J. Rolighed and Dr. H. Lindeberg, ENT-department and <strong>In</strong>stitute for Pathology,<br />

Aarhus University Hospital, Denmark.<br />

The technique of tissue in situ hybridization<br />

has become a powerful <strong>to</strong>ol in pathology,<br />

although it is still mainly used for research<br />

purposes. The most important application at<br />

the moment is probably the demonstration<br />

of viral DNA (or RNA) in biopsies. This<br />

technique has made it possible <strong>to</strong><br />

demonstrate infection with CMV (Grody et<br />

al., 1987; Unger et al., 1988), HBV (Blum et<br />

al., 1983; Negro et al., 1985), parvovirus<br />

(Proter et al., 1988), coxsackie B (Archard et<br />

al., 1987) EBV and HIV (Pezzella et al.,<br />

1989). <strong>In</strong> situ hybridization has been widely<br />

used <strong>to</strong> demonstrate HPV sequences in<br />

biopsies from the uterine cervix as well as<br />

from the head and neck (Lindeberg et al.,<br />

1990; Lindeberg et al., 1989; Shah et al.,<br />

1988). Although some of these viruses can be<br />

demonstrated by other methods, in situ<br />

hybridization is much faster than methods<br />

using infection of tissue cultures; for HPV<br />

tissue culture methods do not exist.<br />

Radioactively labeled probes were used<br />

originally, but in recent years nonradioactive<br />

probes have become increasingly<br />

popular for obvious reasons.<br />

<strong>In</strong> general, the use of radioactively labeled<br />

probes is considered superior <strong>to</strong> other<br />

methods. However, this is probably not<br />

correct (Nuevo and Richart, 1989). For<br />

instance, HPV type 16 was demonstrated in<br />

SiHa cells by in situ hybridization with<br />

digoxigenin-labeled probes (Heiles et al.,<br />

1988). As SiHa-cells contain only 1–2 HPV<br />

copies per cell, one can hardly ask for a<br />

further improvement in sensitivity.<br />

There is an increasing demand from his<strong>to</strong>pathologists<br />

for simple in situ hybridization<br />

methods, so that labora<strong>to</strong>ry technicians can<br />

perform, for example, typing of HPV as a<br />

daily routine. To answer this demand, we<br />

present here a pro<strong>to</strong>col for the detection of<br />

HPV DNA type 11 in laryngeal papillomas<br />

as well as in genital condyloma<strong>to</strong>us lesions.<br />

The method is used on routine material<br />

which has been fixed in formalin and<br />

embedded in paraffin. The method described<br />

has the following advantages:<br />

The method is fast; results are obtained in<br />

about 5–6 h, and the hands-on time is<br />

about 2 h.<br />

The method is economical; the DIG<br />

Labeling and Detection Kit* is sufficient<br />

for preparing 10 ml of DIG-labeled probe<br />

cocktail (1 µl labeled DNA/ml). This is<br />

enough for hybridizing 1000 sections.<br />

Problems linked <strong>to</strong> endogenous biotin are<br />

avoided, since endogenous digoxigenin<br />

apparently does not exist.<br />

The main steps in performing in situ hybridization<br />

on formalin-fixed, paraffinembedded<br />

specimens are:<br />

1 Exposure of target DNA. This is done<br />

with a carefully controlled proteolytic<br />

digestion step.<br />

2 Denaturation of ds DNA, followed by<br />

hybridization.<br />

3 Washing and detection of DNA hybrids.<br />

<strong>In</strong> our experience the most difficult step is<br />

optimization of the proteolytic digestion.<br />

I. Probe preparation<br />

1 Using standard methods, remove the viral<br />

insert from its vec<strong>to</strong>r by restriction<br />

enzyme cleavage and separate it on a<br />

submerged agarose gel.<br />

2 Recover the insert from the gel by<br />

electroelution or other methods.<br />

3 Label the 8 kb viral insert nonradioactively<br />

with digoxigenin acccording <strong>to</strong> the<br />

procedures given in Chapter 4 of this<br />

manual.<br />

4 To a tube, add the following ingredients<br />

of the probe cocktail:<br />

10 µl 50 x Denhart’s solution.<br />

50 µl dextran sulfate 50% (w/v).<br />

10 µl sonicated salmon sperm DNA<br />

(10 mg/µl).<br />

100 µl 20 x SSC.<br />

500 ng digoxigenin-labeled probe in<br />

50 µl TE.<br />

Enough distilled water <strong>to</strong> make a <strong>to</strong>tal<br />

volume of 250 µl.<br />

5 To complete the probe cocktail, add<br />

250 µl formamide <strong>to</strong> the tube.<br />

Tip: Use gloves when handling solutions<br />

containing formamide. Formamide<br />

should be handled in a fume hood.<br />

6 Mix the probe cocktail (by vortexing) and<br />

s<strong>to</strong>re it at –20°C.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

II. Pretreatment of slides<br />

1 Wash slides overnight in a detergent, followed<br />

by an intensive wash in tap water,<br />

and finally, a wash in demineralized water.<br />

2 After drying the slides, wash them for<br />

3 min in ace<strong>to</strong>ne.<br />

3 Transfer the washed slides <strong>to</strong> a 2%<br />

solution of 3-aminopropyltrithoxysilane<br />

in ace<strong>to</strong>ne and incubate for 5 min.<br />

4 Wash the slides briefly in distilled water<br />

and allow <strong>to</strong> dry.<br />

Note: The coated slides can be s<strong>to</strong>red dry<br />

under dust-free conditions for several<br />

months.<br />

III. Preparation of tissue sections<br />

1 Fix biopsies from condyloma<strong>to</strong>us lesions<br />

and from laryngeal papillomas in 4%<br />

phosphate-buffered formaldehyde and<br />

embed them in paraffin.<br />

2 Cut routine sections, float them on<br />

demineralized water and place them on<br />

the pretreated slides.<br />

3 Treat the sections on the slides as follows:<br />

Bake the sections for 30 min at 60°C.<br />

Dewax in xylene.<br />

Rehydrate them by dipping them in<br />

a graded ethanol series (2 x in 99%<br />

ethanol, 2 x in 96% ethanol, 1x in 70%<br />

ethanol, 1x in H2O).<br />

4 Immediately before use, prepare a working<br />

Proteinase K solution as follows:<br />

Thaw an aliquoted frozen s<strong>to</strong>ck<br />

solution of Proteinase K, 10 mg/ml, in<br />

H2O.<br />

Dilute the s<strong>to</strong>ck Proteinase K <strong>to</strong> the<br />

working concentration of 100 µg/ml in<br />

TES [50 mM Tris-HCl (pH 7.4),<br />

10 mM EDTA, 10 mM NaCl].<br />

5 Treat each section with 20–30 µl of the<br />

working solution of Proteinase K for<br />

15 min at 37°C. During the proteolytic<br />

digestion cover the sections with coverslips<br />

and place them in a humid chamber.<br />

Tip: We use only siliconized coverslips.<br />

Note: The proteolytic treatment is<br />

crucial and may need <strong>to</strong> be varied with<br />

different tissues.When <strong>to</strong>o much<br />

Proteinase K is used, the tissue <strong>to</strong>tally<br />

disintegrates, and if <strong>to</strong>o little is used<br />

positive signals may be <strong>to</strong>tally absent.<br />

CONTENTS<br />

INDEX<br />

IV. <strong>Hybridization</strong><br />

1 After the treatment with Proteinase K,<br />

remove the coverslips and fix the sections<br />

in 0.4% formaldehyde for 5 min at 4°C.<br />

2 Immerse the sections in distilled water for<br />

5 min.<br />

3 Allow the sections <strong>to</strong> drip and air dry for<br />

5 min.<br />

4 Distribute about 5–10 µl of the probe<br />

cocktail over each section.<br />

Note: Large biopsies may require larger<br />

volumes of probe cocktail.<br />

5 Prepare a negative control by covering<br />

one section from each block with a<br />

“blind” probe cocktail, i.e. a probe<br />

cocktail containing all the ingredients in<br />

Procedure I, except the labeled HPV<br />

DNA.<br />

6 Place coverslips over each section and<br />

denature the DNA by placing the slides<br />

on a heating plate at 95°C for 6 min.<br />

Tip: We use only siliconized coverslips.<br />

7 Cool the slides for 1 min on ice.<br />

8 Place the slides in a humid chamber and<br />

incubate for 3 h at 42°C in an oven.<br />

Tip: The hybridization time may be<br />

prolonged overnight when convenient.<br />

V. Washes<br />

Remove the coverslips and wash the sections<br />

as follows:<br />

2 x 5 min in 2 x SSC at 20°C.<br />

1 x 10 min in 0.1 x SSC at 42°C.<br />

123<br />

5


5<br />

124<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

VI. Detection of hybrids<br />

1 Dip each section in<strong>to</strong> buffer 1 [100 mM<br />

Tris-HCl,150mMNaCl;pH7.5 (20°C)].<br />

2 Cover each section with 20–40 µl buffer 2<br />

[0.5% (w/v) blocking reagent in buffer 1],<br />

then add a coverslip.<br />

3 <strong>In</strong>cubate sections at 20°C for 15 min.<br />

4 Remove the coverslips and dip the<br />

sections in buffer 1.<br />

5 Dilute the antibody conjugate 1:500 in<br />

buffer 2.<br />

6 Distribute 10–20 µl of the diluted conjugate<br />

over each section, including the<br />

negative controls.<br />

7 Place a coverslip over each section and<br />

place all sections in a humid chamber at<br />

room temperature for 1 h.<br />

8 Remove the coverslips, wash the sections<br />

2 x10 min in buffer 1, then equilibrate for<br />

5 min in buffer 3.<br />

9 Distribute approx. 20 µl color-solution<br />

(NBT/BCIP) on<strong>to</strong> each section, cover<br />

with a coverslip and leave in the dark<br />

overnight.<br />

Note: You may shorten the colorreaction<br />

<strong>to</strong> 30–60 min if you wish. <strong>In</strong><br />

fact, a positive reaction may be seen<br />

after a few minutes in the dark when<br />

HPV is present in a high copy-number.<br />

Hint: Use gloves when handling the<br />

color solution.<br />

a b<br />

10 After the incubation, do the following:<br />

Remove the coverslips.<br />

Wash the sections gently.<br />

Stain a few seconds with neutral red.<br />

Mount.<br />

Caution: Avoid dehydrating procedures<br />

since ethanol may remove or<br />

weaken the signal.<br />

Results<br />

The described method is applied <strong>to</strong> biopsies<br />

of multiple and solitary laryngeal papillomas<br />

and on a flat condyloma<strong>to</strong>us lesion of the<br />

uterine cervix (Figure 1). The positive results<br />

are obvious, and little background is<br />

observed in these examples. The procedure<br />

is extremely straightforward and can be<br />

performed in 5–6 h, including the 3 h<br />

hybridization. Consequently, the whole<br />

procedure can be performed in 1 day and<br />

the results recorded the next morning. If<br />

needed, the hybridization can be shortened;<br />

in our initial experiments, we were able <strong>to</strong><br />

detect HPV type 11 after only 1 h of<br />

hybridization.<br />

Acknowledgment<br />

Plasmids with HPV type 11 were kindly<br />

supplied by Prof. zur Hausen and co-workers,<br />

DKFZ, Heidelberg, Germany.<br />

c d<br />

<br />

Figure 1: Detection of HPV 11 DNA in biopsies of multiple and solitary laryngeal papillomas and<br />

on a flat condyloma<strong>to</strong>us lesion of the uterine cervix. Positive results are shown in Panels a and c.<br />

The negative controls (Panels b and d) show no signal.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG DNA Labeling and Random primed labeling of DNA probes 1 093 657 1 Kit (25 labeling<br />

Detection Kit* , ** , *** with DIG-11-dUTP, alkali-labile and color reactions and<br />

detection of DIG-labeled hybrids. detection of 50<br />

blots of 100 cm2 )<br />

Proteinase K Lyophilizate 161 519 25 mg<br />

745 723 100 mg<br />

1 000 144 500 mg<br />

1 092 766 1 g<br />

Tris Powder 127 434 100 g<br />

708 968 500 g<br />

708 976 1 kg<br />

EDTA Powder 808 261 250 g<br />

808 270 500 g<br />

808 288 1 kg<br />

Blocking Reagent Powder 1 096 176 50 g<br />

Anti-DIG-AP Fab Fragments from sheep 1 093 274 150 U (200 µl)<br />

NBT/BCIP S<strong>to</strong>ck solution 1 681 451 8 ml<br />

References<br />

Archard, L. C.; Bowles, N. E.; Olsen, E. G. J.;<br />

Richardson, P. J. (1987) Detection of persistent<br />

coxsachie B virus RNA in dilated cardiomyopathy<br />

and myocarditis. Eur. Heart J. (Suppl.) 8, 437–440.<br />

Blum, H. E.; S<strong>to</strong>wringer, L.; Figue, A. et al. (1983)<br />

Detection of Hepatitis B virus DNA in hepa<strong>to</strong>cytes,<br />

bile duct epithelium, and vascular elements by<br />

in situ hybridization. Proc. Natl. Acad. Sci. (USA)<br />

80, 6685–6688.<br />

Grody, W. W.; Cheng, L.; Lewin, K. J. (1987) <strong>In</strong> situ<br />

viral DNA hybridization in diagnostic surgical<br />

pathology. Hum. Pathol. 18, 535–543.<br />

Heiles, H. B. J.; Genersch, E.; Kessler, C.; Neumann,<br />

R.; Eggers, H. J. (1988) <strong>In</strong> situ hybridization with<br />

digoxigenin-labeled DNA of human papillomaviruses<br />

(HPV 16/18) in HeLa and SiHa cells. BioTechniques<br />

6 (10), 978–981.<br />

Lindeberg, H.; Johansen, L. (1990) The presence<br />

of human papillomavirus (HPV) in solitary adult<br />

laryngeal papillomas demonstrated by in situ<br />

DNA hybridization with sulphonated probes. Clin.<br />

O<strong>to</strong>laryngol. 15, 367–371.<br />

Lindeberg, J.; Syrjänen, S.; Karja, J.; Syrjänen, K.<br />

(1989) Human papillomavirus type 11 DNA in<br />

squamous cell carcinomas and preexisting multiple<br />

laryngeal papillomas. Acta O<strong>to</strong>-Laryngol. 107,<br />

141–149.<br />

Negro, F.; Berninger, M.; Chaiberge, E. et al. (1985)<br />

Detection of HBV-DNA by in situ hybridization using<br />

a biotin-labeled probe. J. Med. Virol. 15, 373–382.<br />

CONTENTS<br />

INDEX<br />

Nuevo, G. J.; Richart, R. M. (1989) A comparison of<br />

Biotin and 35S-based in situ hybridization methodologies<br />

for detection of human papillomavirus<br />

DNA. Lab. <strong>In</strong>vest. 61, 471–475.<br />

Pezzella, M.; Pezzella, F.; Rapicetta, M. et al. (1989)<br />

HBV and HIV expression in lymph nodes of HIV<br />

positive LAS patients: his<strong>to</strong>logy and in situ hybridization.<br />

Mol. Cell Probes 3, 125–132.<br />

Proter, H. J.; Quantrill, A. M.; Fleming, K. A. (1988)<br />

B19 parvovirus infection of myocardial cells.<br />

Lancet 1, 535–536.<br />

Shah, K. V.; Gupta, J. W.; S<strong>to</strong>ler, M. H. (1988)<br />

The in situ hybridization test in the diagnosis of<br />

human papillomaviruses. <strong>In</strong>: De Palo, G.; Rilke, F.;<br />

zur Hausen, H. (Eds.) Serono Symposia 46: Herpes<br />

and Papillomaviruses. New York: Raven Press,<br />

151–159.<br />

Unger, E. R.; Budgeon, L. R.; Myorson, B.; Brigati, D.<br />

J. (1988) Viral diagnosis by in situ hybridization.<br />

Description of a rapid simplified colorimetric<br />

method. Am J. Surg. Pathol. 18, 1–8.<br />

***Sold under the tradename of<br />

Genius in the US.<br />

***EP Patent 0 324 474 granted <strong>to</strong><br />

Boehringer Mannheim GmbH.<br />

***Licensed by <strong>In</strong>stitute Pasteur.<br />

125<br />

5


5<br />

126<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Detection of mRNA in tissue sections using<br />

DIG-labeled RNA and oligonucleotide probes<br />

P. Komminoth, Division of Cell and Molecular Pathology, Department of Pathology,<br />

University of Zürich, Switzerland.<br />

The pro<strong>to</strong>cols given below are modifications<br />

of recently published methods for noniso<strong>to</strong>pic<br />

in situ hybridization with digoxigenin-labeled<br />

probes (Komminoth, 1992;<br />

Komminoth et al., 1992). <strong>In</strong> those reports we<br />

demonstrated:<br />

Digoxigenin-labeled probes are as sensitive<br />

as 35S-labeled probes.<br />

Pro<strong>to</strong>cols with digoxigenin-labeled probes<br />

may also be applied <strong>to</strong> diagnostic in situ<br />

hybridization procedures.<br />

The following pro<strong>to</strong>cols have been successfully<br />

used in our labora<strong>to</strong>ries <strong>to</strong> detect<br />

mRNA in frozen and paraffin-embedded<br />

tissue sections with either RNA or oligonucleotide<br />

probes.<br />

RNA probes are best for high sensitivity<br />

detection procedures because:<br />

RNA probes are easily generated and<br />

labeled by in vitro transcription procedures.<br />

Hybrids between mRNA and RNA<br />

probes are highly stable.<br />

Pro<strong>to</strong>cols using stringent washing<br />

conditions and RNase digestion steps<br />

yield highly specific signals with low<br />

background.<br />

Synthetic oligonucleotide probes are an<br />

attractive alternative <strong>to</strong> RNA probes for the<br />

detection of abundant mRNA sequences in<br />

tissue sections, because:<br />

Any known nucleic acid sequence can<br />

rapidly be made by au<strong>to</strong>mated chemical<br />

synthesis.<br />

Such probes are more stable than RNA<br />

probes.<br />

Oligonucleotide probes are labeled during<br />

synthesis or by addition of reporter<br />

molecules at the 5' or 3' end after synthesis.<br />

The most efficient labeling method is<br />

addition of a “tail” of labeled nucleotides <strong>to</strong><br />

the 3' end. Oligonucleotide probes are<br />

generally less sensitive than RNA probes<br />

since fewer labeled nucleotides can be<br />

incorporated per molecule of probe.<br />

The pro<strong>to</strong>cols below are written in general<br />

terms. Additional information concerning<br />

the in situ hybridization methods and<br />

important technical details are provided in<br />

Komminoth (1992), Komminoth et al. (1992),<br />

Komminoth et al. (1995), Sambrook et al.<br />

(1989), and the Boehringer Mannheim<br />

DIG/Genius System User’s Guide for<br />

Membrane <strong>Hybridization</strong>.<br />

I. Preparation of slides<br />

Note: Gelatin-coated slides are excellent for<br />

large tissue sections obtained from frozen<br />

or paraffin-embedded specimens. Alternatively,<br />

silane-coated slides can be used, but<br />

are better suited for small tissue samples or<br />

cell preparations.<br />

IA. Gelatin-coated slides<br />

1 Clean slides by soaking for 10 min in<br />

Chromerge ® solution (Merck).<br />

2 Wash slides in running hot water.<br />

3 Rinse slides in distilled water.<br />

4 Prepare gelatin solution as follows:<br />

Dissolve 10 g gelatin (Merck) in 1 liter<br />

of distilled water which has been<br />

heated <strong>to</strong> 40°–50°C.<br />

Add 4 ml 25% chromium potassium<br />

sulfate (CPS) solution (Merck) <strong>to</strong> the<br />

gelatin <strong>to</strong> make a final concentration of<br />

0.1% CPS.<br />

5 Dip slides in gelatin solution for 10 min.<br />

6 Let the slides air dry.<br />

7 Soak slides for 10 min in PBS (pH 7.4)<br />

containing 1% paraformaldehyde.<br />

8 Let the slides air dry.<br />

9 Bake slides at 60°C overnight.<br />

IB. Silane-coated slides<br />

1 Soak clean glass slides for 60 min in silane<br />

solution [5 ml of 3-aminopropyltriethoxysilane<br />

(Sigma) in 250 ml of ace<strong>to</strong>ne].<br />

2 Wash the slides 2 x 10 min in distilled<br />

water.<br />

3 Dry slides overnight at 60°C.<br />

Note: Both gelatin- and silane-coated slides<br />

can be s<strong>to</strong>red for several months under dry<br />

and dust free conditions.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

II. Tissue preparation<br />

<strong>General</strong> guidelines: Fix or freeze tissue as<br />

soon as possible after surgical excision <strong>to</strong><br />

prevent degradation of mRNA.<br />

If possible, use cryostat sections of paraformaldehyde-fixed<br />

tissues which have been<br />

immersed in sucrose (as in Procedure IIA).<br />

These provide excellent conditions for<br />

mRNA localization and preservation of<br />

sample morphology.<br />

However, in surgical pathology, most tissues<br />

are routinely fixed in formalin. For mRNA<br />

localization, do not fix in formalin for more<br />

than 24 h. Prolonged s<strong>to</strong>rage of samples in<br />

formalin will cause covalent linkages<br />

between mRNA and proteins, making target<br />

sequences less accessible.<br />

Caution: Prepare all solutions for procedures<br />

IIA and IIB with distilled, deionized<br />

water (ddH2O) that has been treated<br />

with 0.1% diethylpyrocarbonate (DEPC)<br />

(Sambrook et al., 1989).<br />

IIA. Frozen sections<br />

1 Cut tissues in<strong>to</strong> 2 mm thick slices.<br />

2 <strong>In</strong>cubate cut tissues at 4°C for 2–4 h with<br />

freshly made, filtered fixative (DEPCtreated<br />

PBS containing 4% paraformaldehyde;<br />

pH 7.5).<br />

3 Decant fixative and soak tissues at 4°C<br />

overnight in sucrose solution [DEPCtreated<br />

PBS containing 30% sucrose<br />

(RNase-free)].<br />

Note: During this step, the tissues should<br />

sink <strong>to</strong> the bot<strong>to</strong>m of the container.<br />

4 S<strong>to</strong>re tissue samples in a freezing compound<br />

at –80°C, or, for long time s<strong>to</strong>rage,<br />

at –140°C (Naber et al., 1992).<br />

5 For sectioning, warm the samples <strong>to</strong><br />

–20°C and cut 10 µm sections in a cryostat.<br />

6 Place the sections on pretreated glass<br />

slides (from Procedure I).<br />

7 Dry slides in an oven at 40°C overnight.<br />

8 Do either of the following:<br />

Use the prepared slides immediately.<br />

or<br />

S<strong>to</strong>re the slides in a box at –80°C.<br />

Before processing, warm the s<strong>to</strong>red<br />

slides <strong>to</strong> room temperature and dry<br />

them in an oven at 40°C for a<br />

minimum of 2 h.<br />

Note: Slides with cryostat sections may<br />

be s<strong>to</strong>red at –80°C for several weeks.<br />

CONTENTS<br />

INDEX<br />

IIB. Paraffin sections<br />

1 Prepare formaldehyde-fixed and paraffinembedded<br />

material according <strong>to</strong> standard<br />

procedures.<br />

2 Cut 7 µm sections from the paraffinembedded<br />

material and place the sections<br />

on<strong>to</strong> coated glass slides (from Procedure I).<br />

3 Dry slides in an oven at 40°C overnight.<br />

4 Dewax sections 2 x 10 min with fresh<br />

xylene.<br />

5 Rehydrate sections in the following<br />

solutions:<br />

1 x 5 min in 100% ethanol.<br />

1 x 5 min in 95% ethanol.<br />

1 x 5 min in 70% ethanol.<br />

2 x in DEPC-treated ddH2O.<br />

IIIA. ISH pro<strong>to</strong>col for detection of mRNA<br />

with DIG-labeled RNA probes<br />

Caution: Prepare all solutions for procedures<br />

below (probe labeling through<br />

posthybridization) with distilled, deionized<br />

water (ddH2O) that has been treated<br />

with 0.1% diethylpyrocarbonate (DEPC)<br />

(Sambrook et al., 1989). To avoid RNase<br />

contamination, wear gloves throughout<br />

the procedures and use different glassware<br />

for pre- and posthybridization steps.<br />

Note: Perform all procedures below at<br />

room temperature unless a different<br />

temperature is stated.<br />

Probe labeling<br />

Note: To ensure tissue penetration, we<br />

prefer <strong>to</strong> work with RNA probes that are<br />

≤ 500 bases long.<br />

1 Clone a cDNA insert in<strong>to</strong> an RNA<br />

expression vec<strong>to</strong>r (plasmid) according <strong>to</strong><br />

standard procedures (Sambrook et al.,<br />

1989).<br />

2 Linearize the RNA expression vec<strong>to</strong>r<br />

with appropriate restriction enzymes <strong>to</strong><br />

allow in vitro run-off synthesis of both<br />

sense- and antisense-oriented RNA probes<br />

(Valentino et al., 1987).<br />

Note: As an alternative <strong>to</strong> linearized<br />

plasmids, use PCR-generated templates<br />

containing RNA polymerase promoter<br />

sequences for in vitro transcription<br />

(Young et al., 1991).<br />

127<br />

5


5<br />

*Sold under the tradename of Genius<br />

in the US.<br />

128<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

3 Purify linearized plasmid by phenolchloroform<br />

extraction and ethanol<br />

precipitation.<br />

Caution: Some plasmid purification kits<br />

contain RNase digestion steps for removing<br />

bacterial RNA. Traces of RNase may<br />

destroy transcribed probes. To ensure<br />

removal of residual RNase, perform<br />

multiple phenol-chloroform extractions of<br />

the linearized plasmid.<br />

4 To avoid RNA polymerase inhibition,<br />

resuspend the plasmid in EDTA-free<br />

buffer or DEPC-treated ddH2O.<br />

5 Generate digoxigenin-labeled RNA<br />

probes in both the sense and antisense<br />

direction by in vitro transcription with<br />

the DIG RNA Labeling Kit* or according<br />

<strong>to</strong> procedures in Chapter 4 of this<br />

manual.<br />

6 Purify labeled probes according <strong>to</strong><br />

procedures in the DIG/Genius System<br />

User’s Guide for Membrane <strong>Hybridization</strong><br />

or in Chapter 4 of this manual.<br />

Caution: Probes longer than 500 bases<br />

may not penetrate tissue. If probes are<br />

longer than 500 bases, shorten them<br />

by alkaline hydrolysis according <strong>to</strong><br />

procedures in the DIG/Genius System<br />

User’s Guide for Membrane <strong>Hybridization</strong>.<br />

7 Estimate the yield of labeled probes by<br />

direct blotting procedures as described in<br />

Chapter 4 of this manual.<br />

8 Aliquot labeled probes and s<strong>to</strong>re them at<br />

–80°C.<br />

Note: Probes are stable for up <strong>to</strong> one<br />

year.<br />

Prehybridization<br />

1 <strong>In</strong>cubate sections as follows:<br />

2 x 5 min with DEPC-treated PBS (pH<br />

7.4) (Sambrook et al., 1989).<br />

Note: PBS contains 140 mM NaCl,<br />

2.7 mM KCl, 10 mM Na2HPO4,<br />

1.8 mM KH2PO4.<br />

2 x 5 min with DEPC-treated PBS<br />

containing 100 mM glycine.<br />

2 Treat sections for 15 min with DEPCtreated<br />

PBS containing 0.3% Tri<strong>to</strong>n ®<br />

X-100.<br />

3 Wash 2 x 5 min with DEPC-treated PBS.<br />

4 Permeabilize sections for 30 min at 37°C<br />

with TE buffer (100 mM Tris-HCl,<br />

50 mM EDTA, pH 8.0) containing either<br />

1 µg/ml RNase-free Proteinase K (for<br />

frozen sections) or 5–20 µg/ml RNasefree<br />

Proteinase K (for paraffin sections).<br />

Caution: Permeabilization is the most<br />

critical step of the entire in situ hybridization<br />

procedure. <strong>In</strong> paraffin-embedded<br />

archival materials, optimal tissue permeabilization<br />

differs for each case,<br />

depending upon duration and type of<br />

fixation. We recommend titration of the<br />

Proteinase K concentration. Alternative<br />

permeabilization pro<strong>to</strong>cols for improved<br />

efficiency of digestion include incubation<br />

of slides for 20–30 min at 37°C with<br />

0.1% pepsin in 0.2 M HCl.<br />

5 Post-fix sections for 5 min at 4°C with<br />

DEPC-treated PBS containing 4% paraformaldehyde.<br />

6 Wash sections 2 x 5 min with DEPCtreated<br />

PBS.<br />

7 To acetylate sections, place slide containers<br />

on a rocking platform and incubate<br />

slides 2 x 5 min with 0.1 M triethanolamine<br />

(TEA) buffer, pH 8.0, containing<br />

0.25% (v/v) acetic anhydride (Sigma).<br />

Caution: Acetic anhydride is highly<br />

unstable. Add acetic anhydride <strong>to</strong> each<br />

change of TEA-acetic anhydride solution<br />

immediately before incubation.<br />

8 <strong>In</strong>cubate sections at 37°C for at least<br />

10 min with prehybridization buffer<br />

[4 x SSC containing 50% (v/v) deionized<br />

formamide].<br />

Note: Deionize formamide with<br />

Dowex ® MR 3 (Sigma) according <strong>to</strong><br />

pro<strong>to</strong>cols described in Sambrook et al.<br />

(1989).<br />

Note: 1 x SSC = 150 mM NaCl, 15 mM<br />

sodium citrate, pH 7.2.<br />

<strong>In</strong> situ hybridization<br />

1 Prepare hybridization buffer containing:<br />

40% deionized formamide.<br />

10% dextran sulfate.<br />

1 x Denhardt’s solution [0.02% Ficoll ® ,<br />

0.02% polyvinylpyrrolidone, 10 mg/ml<br />

RNase-free bovine serum albumin].<br />

4 x SSC.<br />

10 mM DTT.<br />

1 mg/ml yeast t-RNA.<br />

1 mg/ml denatured and sheared<br />

salmon sperm DNA.<br />

Caution: Denature and add salmon<br />

sperm DNA <strong>to</strong> buffer shortly before<br />

hybridization.<br />

Note: <strong>Hybridization</strong> buffer (minus<br />

salmon sperm DNA) can be s<strong>to</strong>red at<br />

–20°C for several months.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

2 Drain prehybridization buffer from the<br />

slides and overlay each section with<br />

30 µl of hybridization buffer containing<br />

5–10 ng of digoxigenin-labeled RNA<br />

probe.<br />

3 Cover samples with a 24 x 30 mm<br />

hydrophobic plastic coverslip (e.g. cut<br />

from Gel Bond Film, FMC BioProducts,<br />

Rockland, ME, USA).<br />

4 <strong>In</strong>cubate sections at 42°C overnight in a<br />

humid chamber.<br />

Posthybridization<br />

Caution: Use a separate set of glassware<br />

for posthybridization and prehybridization<br />

procedures <strong>to</strong> avoid RNase contamination<br />

in prehybridization steps.<br />

1 Remove coverslips from sections by<br />

immersing slides for 5–10 min in 2 x SSC.<br />

Caution: Do not place samples which<br />

are hybridized with different probes in<br />

the same container.<br />

2 <strong>In</strong> a shaking water bath at 37°C, wash<br />

sections as follows:<br />

2 x15 min with 2 x SSC.<br />

2 x15 min with 1x SSC.<br />

3 To digest any single-stranded (unbound)<br />

RNA probe, incubate sections for 30 min<br />

at 37°C in NTE buffer [500 mM NaCl,<br />

10 mM Tris, 1 mM EDTA, pH 8.0]<br />

containing 20 µg/ml RNase A.<br />

Caution: Be particularly careful with<br />

RNase. This enzyme is extremely stable<br />

and difficult <strong>to</strong> inactivate. Avoid<br />

contamination of any equipment or<br />

glassware which might be used for<br />

probe preparation or prehybridization<br />

procedures. Use separate glassware for<br />

RNase-contaminated solutions.<br />

4 <strong>In</strong> a shaking water bath at 37°C, wash<br />

sections 2 x 30 min with 0.1 x SSC.<br />

Note: If this procedure gives high background<br />

or nonspecific signals, try posthybridization<br />

washings at 52°C with<br />

2 x SSC containing 50% formamide.<br />

Immunological detection<br />

Note: This detection procedure uses components<br />

of the DIG Nucleic Acid Detection<br />

Kit*. Alternative detection procedures<br />

include the immunogold method with silver<br />

enhancement for enzyme-independent<br />

probe detection (Komminoth et al. 1992;<br />

Komminoth et al., 1995) and other detection<br />

procedures described in Chapter 5 of<br />

this manual.<br />

CONTENTS<br />

INDEX<br />

1 Using a shaking platform, wash sections<br />

2 x 10 min with buffer 1 [100 mM Tris-<br />

HCl (pH 7.5), 150 mM NaCl].<br />

2 Cover sections for 30 min with blocking<br />

solution [buffer 1 containing 0.1%<br />

Tri<strong>to</strong>n ® X-100 and 2% normal sheep<br />

serum (Sigma)].<br />

3 Decant blocking solution and incubate<br />

sections for 2 h in a humid chamber with<br />

buffer 1 containing 0.1% Tri<strong>to</strong>n ® X-100,<br />

1% normal sheep serum, and a suitable<br />

dilution of sheep anti-DIG-alkaline<br />

phosphatase [Fab fragments].<br />

Note: For optimal detection, incubate<br />

several sections (from the same sample)<br />

with different dilutions of the antibody<br />

(1:100; 1:500, and 1:1000).<br />

4 Using a shaking platform, wash sections<br />

2 x10 min with buffer 1.<br />

5 <strong>In</strong>cubate sections for 10 min with buffer 2<br />

[100 mM Tris-HCl (pH 9.5), 100 mM<br />

NaCl, 50 mM MgCl2].<br />

6 Prepare a color solution containing:<br />

10 ml of buffer 2.<br />

45 µl nitroblue tetrazolium (NBT)<br />

solution (75 mg NBT/ml in 70%<br />

dimethylformamide).<br />

35 µl 5-bromo-4-chloro-3-indolylphosphate<br />

(BCIP or X-phosphate)<br />

solution (50 mg X-phosphate/ml in<br />

100% dimethylformamide).<br />

1 mM (2.4 mg/10 ml) levamisole (Sigma).<br />

Note: For convenience, prepare a 1 M<br />

s<strong>to</strong>ck solution of levamisole in ddH2O<br />

(stable for several weeks, when s<strong>to</strong>red<br />

at 4°C) and add 10 µl of the s<strong>to</strong>ck <strong>to</strong><br />

10 ml of the color solution. If endogenous<br />

phosphatase activity is high,<br />

increase the concentration of<br />

levamisole <strong>to</strong> 5 mM (50 µl 1 M<br />

s<strong>to</strong>ck/10 ml solution) in the color<br />

solution.<br />

Note: NBT/BCIP produces a blue precipitating<br />

product. For other colors, use<br />

other alkaline phosphatase substrates.<br />

For example, use either Fast Red or<br />

INT/BCIP for red/brown precipitates.<br />

7 Cover each section with approximately<br />

200 µl color solution and incubate slides<br />

in a humid chamber for 2–24 h in the<br />

dark.<br />

8 When color development is optimal, s<strong>to</strong>p<br />

the color reaction by incubating the slides<br />

in buffer 3 [10 mM Tris-HCl (pH 8.1), 1<br />

mM EDTA].<br />

9 Dip slides briefly in distilled water.<br />

*Sold under the tradename of Genius<br />

in the US.<br />

129<br />

5


5<br />

*Sold under the tradename of Genius<br />

in the US.<br />

130<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

10 Counterstain sections for 1–2 min with<br />

0.02% fast green FCF or 0.1% nuclear<br />

Fast Red (Aldrich Chemical Corp.,<br />

Milwaukee, WI, USA) in distilled H2O.<br />

11 Wash sections 2 x 10 min in tap water.<br />

12 Mount sections using an aqueous mounting<br />

solution (e.g. Aqua-Mount from Lerner<br />

Labora<strong>to</strong>ries, Pittsburgh, PA, USA).<br />

Caution: Do not use xylene-based<br />

mounting solutions. These lead <strong>to</strong> crystal<br />

formation of color precipitates.<br />

IIIB. ISH pro<strong>to</strong>col for detecting mRNA<br />

with DIG-labeled oligonucleotide probes<br />

Probe labeling<br />

1 Label 100 pmol of oligonucleotide probe<br />

(20–30 mer) by tailing with the DIG<br />

Oligonucleotide Tailing Kit* according<br />

<strong>to</strong> the pro<strong>to</strong>col described in Chapter 4 of<br />

this manual.<br />

2 Purify labeled probes according <strong>to</strong> procedures<br />

in the DIG/Genius System<br />

User’s Guide for Membrane <strong>Hybridization</strong><br />

or in Chapter 4 of this manual.<br />

3 Estimate the yield of labeled probes by<br />

direct blotting procedures as described in<br />

Chapter 4 of this manual.<br />

4 Aliquot the labeled probes and s<strong>to</strong>re<br />

them at –20°C.<br />

Note: Probes are stable for up <strong>to</strong> one<br />

year.<br />

Note: To increase the sensitivity of in situ<br />

hybridization procedures, prepare several<br />

labeled probes that are complementary <strong>to</strong><br />

different regions of the target RNA, then<br />

use mixtures of the probes for the hybridization<br />

step below.<br />

Prehybridization<br />

1 Follow Steps 1–7 from the prehybridization<br />

section of Procedure IIIA (for<br />

RNA probes).<br />

2 Overlay each section with 40 µl<br />

prehybridization buffer (identical <strong>to</strong> the<br />

hybridization buffer <strong>to</strong> be used for in situ<br />

hybridization below, but containing no<br />

labeled probe).<br />

3 Add a 24 x 30 mm coverslip <strong>to</strong> each<br />

section and incubate slides in a humid<br />

chamber at 37°C for 2 h.<br />

4 Remove coverslips by immersing slides<br />

for 5 min in 2xSSC.<br />

<strong>In</strong> situ hybridization<br />

Note: To increase the sensitivity of in situ<br />

hybridization procedures, use mixtures of<br />

oligonucleotide probes that are complementary<br />

<strong>to</strong> different regions of the target<br />

RNA.<br />

1 Prepare hybridization buffer containing:<br />

2 x SSC.<br />

1 x Denhardt’s solution [0.02% Ficoll ® ,<br />

0.02% polyvinylpyrrolidone, 10 mg/ml<br />

RNase-free bovine serum albumin].<br />

10% dextran sulfate.<br />

50 mM phosphate buffer (pH 7.0).<br />

50 mM DTT.<br />

250 µg/ml yeast t-RNA.<br />

5 µg/ml polydeoxyadenylic acid.<br />

100 µg/ml polyadenylic acid.<br />

0.05 pM/ml Randomer Oligonucleotide<br />

<strong>Hybridization</strong> Probe (DuPont).<br />

500 µg/ml denatured and sheared<br />

salmon sperm DNA.<br />

Caution: Denature and add salmon<br />

sperm DNA <strong>to</strong> buffer shortly before<br />

hybridization.<br />

Enough deionized formamide (%dF,<br />

as calculated by the formula below) <strong>to</strong><br />

produce stringent hybridization conditions<br />

at 37°C [that is, <strong>to</strong> make 37°C<br />

= Tm (oligonucleotide probe) – 10°C]<br />

(Long et al., 1992).<br />

Caution: %dF should not exceed<br />

47% of the <strong>to</strong>tal volume of the<br />

hybridization buffer. If dF is less than<br />

47%, add ddH2O so that ddH2O plus<br />

dF equals 47% of the volume.<br />

Note: Use the following formula <strong>to</strong><br />

calculate the formamide concentration<br />

(%dF) in the hybridization buffer for<br />

each oligonucleotide probe:<br />

(–7.9) + 81.5 + 0.41 (%GC) – 675/L – % mismatch – (47)<br />

% dF = _______________________________________________<br />

0.65<br />

where, in this case:<br />

–7.9 = 16.6 log10 [Na+] (for 2 x SSC)<br />

%GC = %[G + C] base content of the oligonucleotide<br />

L = oligonucleotide length (in bases)<br />

% mismatch = %(bases in oligonucleotide not complementary <strong>to</strong><br />

target)<br />

47 = hybridization temperature + 10°C (for 37°C)<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Note: <strong>Hybridization</strong> buffer (minus dF,<br />

ddH2O, and salmon sperm DNA) can<br />

be s<strong>to</strong>red at –20° C for several months.<br />

2 Drain 2 x SSC (Step 4, Prehybridization)<br />

from the slides and overlay each section<br />

with 30 µl of hybridization buffer<br />

containing 10–30 ng of digoxigeninlabeled<br />

oligonucleotide probe.<br />

3 Cover sections with a 24 x 30 mm hydrophobic<br />

plastic coverslip (e.g. cut from Gel<br />

Bond Film, FMC BioProducts, Rockland,<br />

ME, USA).<br />

4 <strong>In</strong>cubate samples at 37°C overnight in a<br />

humid chamber.<br />

Posthybridization<br />

1 Remove coverslips from sections by<br />

immersing slides for 5–10 min in 2 x SSC.<br />

2 <strong>In</strong> a shaking water bath at 37°C, wash<br />

sections as follows:<br />

2 x 15 min with 2 x SSC.<br />

2 x 15 min with 1x SSC.<br />

2 x 15 min with 0.25 x SSC.<br />

Immunological detection<br />

Use the same immunological detection<br />

pro<strong>to</strong>col as in Procedure IIIA (for RNA<br />

probes) above.<br />

Controls for in situ hybridizations<br />

Adequate controls must always be included<br />

<strong>to</strong> ensure the specificity of detection signals.<br />

Controls should include positive and<br />

negative samples as well as technical controls<br />

<strong>to</strong> detect false positive and negative results<br />

(Herring<strong>to</strong>n and McGee, 1992).<br />

Positive controls<br />

1 Positive sample: Tissue or cell line known<br />

<strong>to</strong> contain mRNA of interest.<br />

2 Technical control <strong>to</strong> test quality of tissue<br />

mRNA and the procedure reagents:<br />

Labeled poly(dT) probe (for oligonucleotide<br />

in situ hybridization only); labeled<br />

RNA or oligonucleotide probes complementary<br />

<strong>to</strong> abundant “housekeeping<br />

genes” (such as -tubulin) <strong>to</strong> test quality<br />

of tissue mRNA and the procedure<br />

reagents (should give positive results).<br />

CONTENTS<br />

INDEX<br />

Negative controls<br />

1 Negative sample: Tissue or cell line<br />

known <strong>to</strong> lack the sequence of interest.<br />

2 Technical controls:<br />

Target: Digestion of mRNA with<br />

RNase prior <strong>to</strong> in situ hybridization<br />

(should give negative results).<br />

<strong>Hybridization</strong>:<br />

– <strong>Hybridization</strong> with sense probe<br />

– <strong>Hybridization</strong> with irrelevant probe<br />

(e.g. probe for viral sequences)<br />

– <strong>Hybridization</strong> in the presence of excess<br />

unlabeled antisense probe<br />

(all should give negative results).<br />

Detection:<br />

– <strong>Hybridization</strong> without probe<br />

– Omission of anti-DIG antibody<br />

(both should give negative results).<br />

Results<br />

A B<br />

Figure 1: Comparison of 35 <br />

S- and digoxigenin-labeled cRNA probes for the detection<br />

of seminal vesicle secretion protein II (SVS II) mRNA in cryostat sections of the<br />

dorsolateral rat prostate. Note the equal intensity of signals in acini of the lateral lobe<br />

obtained with iso<strong>to</strong>pic (Panel A) and non-iso<strong>to</strong>pic (Panel B) in situ hybridization procedures.<br />

Also note the absence of signal in the coagulating glands (arrows in Panel B) which serves as<br />

an internal negative control.<br />

131<br />

5


5<br />

Figure 2: SVS II mRNA detection<br />

in contiguous glands of the rat<br />

prostate with a digoxigeninlabeled<br />

antisense RNA probe.<br />

Panel A: Strong signals are present<br />

in epithelia of the ampullary gland<br />

and no signals are encountered<br />

in adjacent duct epithelia of the<br />

coagulating gland (arrow).<br />

Panel B: A higher magnification<br />

shows that the hybridization signal<br />

is restricted <strong>to</strong> the cy<strong>to</strong>plasmic<br />

portion of the glandular epithelial<br />

cells (cryostat sections).<br />

132<br />

<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

A<br />

B<br />

<br />

Figure 3: SVS II mRNA detection in contiguous<br />

glands of the rat prostate with a digoxigeninlabeled<br />

oligonucleotide antisense probe.<br />

<strong>Hybridization</strong> signals appear <strong>to</strong> be slightly less<br />

strong than with the SVS II RNA probe (Figure 2).<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Figure 4: Detection of parathyroid hormone<br />

(PTH) mRNA in formaldehyde-fixed, paraffinembedded<br />

tissue of a parathyroid gland with<br />

a digoxigenin-labeled antisense RNA probe.<br />

Panel A: Note the weaker signal in cells of an<br />

adenoma<strong>to</strong>us lesion (upper right part) compared<br />

with the normal parathyroid tissue. Panel B: Higher<br />

magnification shows the excellent resolution of<br />

hybridization signals, which are confined <strong>to</strong> the<br />

cy<strong>to</strong>plasmic portion of cells.<br />

Figure 5: Use of a digoxigenin-labeled antisense<br />

RNA probe and Fast Red chromogen <strong>to</strong> detect<br />

PTH mRNA in formaldehyde-fixed, paraffinembedded<br />

tissue of a parathyroid gland with<br />

chief cell hyperplasia.<br />

Panel A: PTH mRNA is marked by red precipitates.<br />

Panel B: Only weak signals are present when a<br />

sense PTH probe is used as a control.<br />

Figure 6: Detection of synap<strong>to</strong>physin mRNA in<br />

formaldehyde-fixed, paraffin-embedded tissue<br />

of a neuroendocrine carcinoma of the gut with<br />

digoxigenin-labeled oligonucleotide probes and<br />

immunogold-silver enhancement method for<br />

visualization.<br />

Note the strong hybridization signals (consisting of<br />

silver precipitates) over tumor cells in Panel A<br />

(where an antisense probe was used) and the much<br />

weaker signal in Panel B (where the appropriate<br />

sense probe was used as a control).<br />

CONTENTS<br />

INDEX<br />

<br />

<br />

<br />

A<br />

A B<br />

A B<br />

B<br />

133<br />

5


5<br />

134<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG RNA Labeling For RNA labeling with digoxigenin-UTP 1175 025 1 Kit (2 x10<br />

Kit* , ** , *** by in vitro transcription with SP6 and labeling<br />

T7 RNA polymerase. reactions)<br />

DIG Oligonucleotide For tailing oligonucleotides with 1 417 231 1 Kit (25 tailing<br />

Tailing Kit* , *** , **** digoxigenin-dUTP. reactions)<br />

DIG Nucleic Acid For detection of digoxigenin-labeled 1175 041 1 Kit<br />

Detection Kit* nucleic acids by an enzyme-linked<br />

immunoassay with a highly specific anti-<br />

DIG-AP antibody conjugate and the color<br />

substrate NBT and BCIP.<br />

Tri<strong>to</strong>n ® X-100 Vicous, liquid 789 704 100 ml<br />

EDTA Powder 808 261 250 g<br />

808 270 500 g<br />

808 288 1 kg<br />

Proteinase K Solution 1 413 783 1.25 ml<br />

1 373 196 5 ml<br />

1 373 200 25 ml<br />

Pepsin Lyophilizate 108 057 1 g<br />

1 693 387 5 g<br />

BSA Highest quality, lyophilizate 238 031 1 g<br />

238 040 10 g<br />

DTT Purity: > 97% 197 777 2 g<br />

708 984 10 g<br />

1 583 786 25 g<br />

708 992 50 g<br />

709 000 100 g<br />

Tris Powder 127 434 100 g<br />

708 968 500 g<br />

708 976 1 kg<br />

RNase A From bovine pancreas, dry powder 109 142 25 mg<br />

109 169 100 mg<br />

tRNA From baker’s yeast, lyophilizate 109 495 100 mg<br />

109 509 500 mg<br />

Poly(A) Polyadenylic acid 108 626 100 mg<br />

Poly(dA) Poly-deoxy-adenylic acid 223 581 5 A260 units<br />

****Sold under the tradename of Genius in the US.<br />

****EP Patent 0 324 474 granted <strong>to</strong> Boehringer Mannheim GmbH.<br />

****Licensed by <strong>In</strong>stitute Pasteur.<br />

****EP Patents 0 124 657/0 324 474 granted <strong>to</strong> Boehringer Mannheim GmbH.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Acknowledgments<br />

I am grateful <strong>to</strong> Ph. U. Heitz and J. Roth for<br />

general support; <strong>to</strong> A. A. Long, H. J. Wolfe,<br />

S. P. Naber, and W. Membrino for technical<br />

advice; <strong>to</strong> M. Machado, X. Matias-Guiu, F.<br />

B. Merck, I. Leav, and P. Saremaslani for<br />

technical support; and <strong>to</strong> N. Wey and H.<br />

Nef for pho<strong>to</strong>graphic reproductions. The<br />

projects – during which the pro<strong>to</strong>cols have<br />

been established – were supported in part by<br />

the Julius Müller-Grocholski Cancer<br />

Research Foundation, Zürich Switzerland.<br />

CONTENTS<br />

INDEX<br />

References<br />

Herring<strong>to</strong>n, C. S.; McGee, J. O. (1992) Principles<br />

and basic methodology of DNA/RNA detection by<br />

in situ hybridization. <strong>In</strong>: Herring<strong>to</strong>n, C. S.; McGee,<br />

J. O. (Eds.) Diagnostic molecular pathology:<br />

A practical approach. New York: IRL Press, Vol. 1,<br />

pp. 69–102.<br />

Komminoth, P. (1992) Digoxigenin as an alternative<br />

probe labeling for in situ hybridization. Diagn. Mol.<br />

Pathol. 1, 142–150.<br />

Komminoth, P.; Merk, F. B.; Leav, I.; Wolfe, H. J.;<br />

Roth, J. (1992) Comparison of 35S- and digoxigeninlabeled<br />

RNA and oligonucleotide probes for in situ<br />

hybridization. Expression of mRNA of the seminal<br />

vesicle secretion protein II and androgen recep<strong>to</strong>r<br />

genes in the rat prostate. His<strong>to</strong>chemistry 98,<br />

217–228.<br />

Komminoth, P.; Roth, J.; Saremaslani, P.; Schrödel,<br />

S., Heitz, P. U. (1995) Overlapping expression of<br />

immunohis<strong>to</strong>chemical markers and synap<strong>to</strong>physin<br />

mRNA in pheochromocy<strong>to</strong>mas and adrenocortical<br />

carcinomas. Implications for the differential<br />

diagnosis of adrenal gland tumors. Lab. <strong>In</strong>vest. 72,<br />

424–431.<br />

Long, A. A.; Mueller, J.; Andre-Schwartz, J.; Barrett,<br />

K.; Schwartz, R., Wolfe, H. J. (1992) High-specificity<br />

in situ hybridization: Methods and application.<br />

Diagn. Mol. Pathol. 1, 45–57.<br />

Naber, S.; Smith, L.; Wolfe, H. J. (1992) Role of the<br />

frozen tissue bank in molecular pathology. Diagn.<br />

Mol. Pathol. 1, 73–79.<br />

Sambrook, J.; Fritsch, E.; Maniatis, T. (1989)<br />

Molecular Cloning: A Labora<strong>to</strong>ry Manual. Cold<br />

Spring Harbor, NY: Cold Spring Harbor Labora<strong>to</strong>ry<br />

Press.<br />

Valentino, K. L.; Eberwine, J. H.; Barchas, J. D.<br />

(1987) <strong>In</strong> situ <strong>Hybridization</strong>: Applications To<br />

Neurobiology. Oxford, England: Oxford University<br />

Press.<br />

Young, I. D.; Ailles, L.; Deugau, K.; Kisilevsky, R.<br />

(1991) Transcription of cRNA for in situ hybridization<br />

from Polymerase Chain Reaction-amplified DNA.<br />

Lab. <strong>In</strong>vest. 64, 709–712.<br />

135<br />

5


5<br />

*Sold under the tradename of Genius<br />

in the US.<br />

136<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Detection of mRNA on paraffin embedded material<br />

of the central nervous system with DIG-labeled<br />

RNA probes<br />

H. Breitschopf and G. Suchanek, Research Unit for Experimental Neuropathology,<br />

Austrian Academy of Sciences, Vienna, Austria.<br />

The following pro<strong>to</strong>col was developed <strong>to</strong><br />

show mRNA in paraffin embedded material<br />

of the central nervous system. It also allows<br />

double staining of protein and mRNA. This<br />

method is sensitive enough <strong>to</strong> show mRNA<br />

expressed at very low levels (Breitschopf et<br />

al., 1992).<br />

I. Probe preparation<br />

1 Prepare plasmids by standard methods<br />

(Sambrook et al., 1989).<br />

2 Prepare RNA probes from the plasmids<br />

and label them with digoxigenin (DIG)<br />

either according <strong>to</strong> the methods in<br />

Chapter 4 of this manual or according <strong>to</strong><br />

the instructions in the DIG RNA<br />

Labeling Kit*.<br />

3 Remove unincorporated nucleotides<br />

from the labeled probes by passing the<br />

labeling mixture over a Quick Spin<br />

column for radiolabeled RNA preparation<br />

(Sephadex ® G-50).<br />

Caution: Omission of this column step<br />

may lead <strong>to</strong> background problems.<br />

4 Determine the amount of DIG-labeling<br />

with a dot blot according <strong>to</strong> the method<br />

in Chapter 4 of this manual.<br />

II. Tissue preparation<br />

1 Use samples fixed by standardized<br />

methods, such as:<br />

Perfusion-fixed samples.<br />

Caution: Before using perfusion-fixed<br />

samples, treat them further by immersion-fixing<br />

for 3–4 h at room temperature<br />

in 100 mM phosphate buffer<br />

containing 4% paraformaldehyde.<br />

Note: Samples fixed with 4% paraformaldehyde<br />

give the best results in<br />

this procedure.<br />

Routinely fixed au<strong>to</strong>psy samples.<br />

Samples fixed with 2.5% glutaraldehyde.<br />

2 After fixation, wash the samples in<br />

phosphate buffered saline (PBS).<br />

3 Embed the fixed samples in paraffin.<br />

4 Coat slides with a 2% solution of<br />

3-aminopropyltriethoxy-silane (Sigma) in<br />

ace<strong>to</strong>ne, then air dry them.<br />

Caution: Perform Step 4 under RNasefree<br />

conditions.<br />

5 Cut 4 µm thick sections from the fixed<br />

samples with disposable knifes and attach<br />

them <strong>to</strong> the prepared slides.<br />

Caution: Perform Step 5 under RNasefree<br />

conditions.<br />

6 Dry the sections overnight at 55°C.<br />

7 S<strong>to</strong>re the sample slides at room temperature<br />

until they are used.<br />

III. Pretreatment of sections<br />

Caution: Perform pretreatment and<br />

hybridization steps under RNase-free<br />

conditions. Prepare all solutions and<br />

buffers for these steps with DEPC-treated<br />

water (Sambrook et al., 1989). Bake all<br />

glassware for 4 h at 180°C. Assume that<br />

disposable plasticware is RNase-free.<br />

1 Dewax slides extensively by treating with<br />

xylene (preferably overnight) and a<br />

graded series of ethanol solutions.<br />

2 To preserve the mRNA during the<br />

following procedure, fix the sections once<br />

again with 4% paraformaldehyde (in<br />

100 mM phosphate buffer) for 20 min.<br />

3 Rinse the sections 3–5 times with TBS<br />

buffer [50 mM Tris-HCl (pH 7.5);<br />

150 mM NaCl].<br />

4 Treat the sections for 10 min with<br />

200 mM HCl <strong>to</strong> denature proteins.<br />

5 Rinse the sections 3–5 times with TBS.<br />

6 To reduce nonspecific background (Hayashi<br />

et al., 1978), incubate the sections<br />

for 10 min on a magnetic stirrer with a<br />

freshly mixed solution of 0.5% acetic<br />

anhydride in 100 mM Tris (pH 8.0).<br />

7 Rinse the sections 3–5 times with TBS.<br />

8 Treat the sections for 20 min at 37°C with<br />

Proteinase K (10–500 µg per ml in TBS<br />

which contains 2 mM CaCl2).<br />

The concentration of Proteinase K<br />

depends upon the degree of fixation. <strong>General</strong>ly,<br />

start with 20 µg/ml Proteinase K<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

for paraformaldehyde-fixed tissue. The<br />

concentration needed for glutaraldehydefixed<br />

or overfixed tissue is generally<br />

higher than for paraformaldehyde-fixed<br />

tissue.<br />

Caution: Determine the optimal concentration<br />

of Proteinase K empirically<br />

for each type of fixation. One of the<br />

most critical steps in the whole procedure<br />

is finding the balance between<br />

prior fixation and the proper concentration<br />

of Proteinase K. Proteinase K<br />

concentrations which are <strong>to</strong>o low or <strong>to</strong>o<br />

high may lead <strong>to</strong> false negative results.<br />

(See Figure 3 under “Results”.) Our<br />

experience shows that au<strong>to</strong>lysis causes<br />

fewer problems than overfixation does.<br />

Even after 30 hours au<strong>to</strong>lysis, we could<br />

demonstrate mRNA. (See Figure 4 under<br />

“Results”.) <strong>In</strong> overfixed material, we<br />

were not always successful in demonstrating<br />

mRNA, even when we increased<br />

Proteinase K <strong>to</strong> very high concentrations<br />

(up <strong>to</strong> 500 mg/ml).<br />

9 Rinse the sections 3–5 times with TBS.<br />

10 <strong>In</strong>cubate the sections at 4°C for 5 min<br />

with TBS (pH 7.5) <strong>to</strong> s<strong>to</strong>p the Proteinase<br />

K digestion.<br />

Caution: Do not postfix the sections<br />

with paraformaldehyde after protease<br />

digestion, since this reduces signal<br />

intensity.<br />

11 Dehydrate the sections in a graded series<br />

of ethanol solutions (increasing concentrations<br />

of ethanol).<br />

12 Rinse the sections briefly with<br />

chloroform.<br />

Note: At this point, you may, if necessary,<br />

s<strong>to</strong>re the sections under dust- and<br />

RNase-free conditions for several days.<br />

IV. <strong>Hybridization</strong><br />

Caution: Perform the hybridization step<br />

under RNase-free conditions. Prepare all<br />

solutions and buffers for this step with<br />

DEPC-treated water (Sambrook et al.,<br />

1989). Bake all glassware for 4 h at 180°C.<br />

Assume that disposable plasticware is<br />

RNase-free.<br />

1 Place the sections in a humid chamber at<br />

55°C for 30 min.<br />

2 Prepare a hybridization buffer by mixing<br />

the following components, then vortexing<br />

vigorously:<br />

2 x SSC (Sambrook et al., 1989).<br />

10% dextran sulfate.<br />

CONTENTS<br />

INDEX<br />

0.01% sheared salmon sperm DNA<br />

(Sambrook et al., 1989).<br />

0.02% SDS.<br />

50% formamide.<br />

Caution: The concentration of dextran<br />

sulfate is critical. Without appropriate<br />

amounts of dextran sulfate, the method<br />

loses sensitivity. However, excessive<br />

concentrations of dextran sulfate causes<br />

higher viscosity of the hybridization<br />

buffer. To prevent uneven distribution of<br />

the probe and uneven signals, always vortex<br />

the hybridization buffer extensively.<br />

3 Dilute the labeled antisense RNA probe<br />

<strong>to</strong> an appropriate degree in hybridization<br />

buffer. The diluted probe solution may<br />

contain as much as 1 part labeled probe <strong>to</strong><br />

4 parts hybridization buffer.<br />

Note: The amount of probe needed<br />

depends upon the degree of probe<br />

labeling (as determined in Procedure I,<br />

Step 4 above). <strong>General</strong>ly, use the lowest<br />

probe concentration that gives optimal<br />

response in that dot blot procedure.<br />

Example: <strong>In</strong> a serial dilution of the<br />

probe on a dot blot , if a 1:160 dilution<br />

gives a significantly stronger response<br />

than a 1:320 dilution, perform the initial<br />

hybridization experiments with both a<br />

1:200 and a 1:300 dilution of the probe.<br />

4 Pipette the diluted antisense probe<br />

solution on<strong>to</strong> each section at a volume of<br />

10 µl/cm 2 . Cover with a coverslip.<br />

Note: <strong>In</strong> our experience, a prehybridization<br />

step (with hybridization buffer<br />

alone) did not improve results.<br />

5 As a control serve sections treated in the<br />

same way whereby in steps 3 and 4 a<br />

labeled sense RNA probe is used.<br />

Caution: Control hybridization with<br />

sense probes is necessary <strong>to</strong> prove the<br />

specificity of the reaction. However,<br />

hybridization with sense probes sometimes<br />

gives unexpected hybridization<br />

signals or background staining.<br />

6 Place the slides on a hot plate at 95°C for<br />

4 min.<br />

Note: This step increases the signal from<br />

RNA/RNA hybrids.<br />

7 <strong>In</strong>cubate the slides in a humid chamber<br />

for 4–6 h at 55°–75°C.<br />

Note: <strong>Hybridization</strong> specificity can be<br />

increased by increasing the temperature<br />

of hybridization, if necessary, as high as<br />

75°C. <strong>In</strong>creasing the temperature can<br />

help <strong>to</strong> differentiate mRNAs of highly<br />

homologous proteins (Taylor et al.,<br />

1994).<br />

137<br />

5


5<br />

138<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

V. Washes and detection of mRNA<br />

Note: Stringency washings, often described<br />

as a method <strong>to</strong> remove nonspecifically<br />

bound probes, are helpful in reducing<br />

diffuse background staining, but do not<br />

significantly improve the specificity of the<br />

hybridization.<br />

1 <strong>In</strong>cubate the slides in 2 x SSC overnight.<br />

Note: The coverslips will float off during<br />

this incubation.<br />

2 Wash the slides as follows:<br />

3 x 20 min at 55°C with 50% deionized<br />

formamide in 1x SSC.<br />

2 x15 min at room temperature with<br />

1x SSC .<br />

3 Rinse the sections 3–5 times with TBS.<br />

4 <strong>In</strong>cubate the slides for 15 min with<br />

blocking mixture (blocking reagent<br />

containing 10% fetal calf serum).<br />

5 <strong>In</strong>cubate the slides for 60 min with<br />

alkaline-phosphatase-conjugated anti-<br />

DIG antibody [diluted 1: 500 in blocking<br />

mixture (from Step 4 above)].<br />

6 Rinse the sections 3–5 times with TBS.<br />

7 Prepare NBT/BCIP color reagent as recommended<br />

by the manufacturer.<br />

8 <strong>In</strong> a Coplin jar in the refrigera<strong>to</strong>r,<br />

incubate the sections with color reagent<br />

until sufficient color develops.<br />

Note: <strong>In</strong>cubation can be extended up <strong>to</strong><br />

120 h if the color reagent is replaced<br />

every time it precipitates or changes color.<br />

9 S<strong>to</strong>p the color reaction by rinsing the<br />

slides several times with tap water.<br />

10 Finally, rinse the slides with distilled<br />

water.<br />

11 Mount the slides directly with any watersoluble<br />

mounting medium.<br />

Note: Optionally, counterstain the slides<br />

or use immunocy<strong>to</strong>chemistry (as in Procedure<br />

VI below) <strong>to</strong> visualize proteins<br />

on the slides.<br />

VI. Detection of proteins by<br />

immunocy<strong>to</strong>chemistry<br />

Note: This pro<strong>to</strong>col describes a triple<br />

APAAP (alkaline phosphatase anti-alkaline<br />

phosphatase) reaction (Vass et al.,<br />

1989), which allows visualization of<br />

proteins on the same slide with the mRNA.<br />

See Figure 1 under “Results” for an<br />

example of double staining obtained with<br />

this technique.<br />

1 <strong>In</strong>cubate slide overnight at 4°C with<br />

primary antibody (either polyclonal or<br />

mouse monoclonal), diluted as necessary<br />

in TBS containing 10% fetal calf serum<br />

(TBS-FCS).<br />

Example: The polyclonal antibody for<br />

proteolipid protein used in Figure 1 was<br />

diluted 1:1000.<br />

2 Rinse the slide 3–5 times with TBS at<br />

room temperature.<br />

Note: Perform Step 2 as well as all the<br />

remaining incubation and wash steps of<br />

Procedure VI at room temperature.<br />

3 Depending upon the type of primary<br />

antibody used in Step 1, do one of the<br />

following:<br />

If the primary antibody was a polyclonal<br />

antibody from rabbit, incubate<br />

the slide for 60 min with anti-rabbit<br />

serum from mouse [Dakopatts], diluted<br />

1:100 in TBS-FCS, then rinse the<br />

slide 3–5 times with TBS. Go <strong>to</strong> Step 4.<br />

If the primary antibody was a mouse<br />

monoclonal antibody, skip this step<br />

and go <strong>to</strong> Step 4.<br />

4 <strong>In</strong>cubate slide for 60 min with anti-mouse<br />

serum (from rabbit [Dakopatts], diluted<br />

1:100 in TBS-FCS), then rinse the slide<br />

3–5 times with TBS.<br />

5 <strong>In</strong>cubate slide for 60 min with APAAP<br />

complex (mouse) (diluted 1:100 in TBS-<br />

FCS), then rinse the slide 3–5 times with<br />

TBS.<br />

6 <strong>In</strong>cubate slide for 30 min with anti-mouse<br />

serum (from rabbit) (diluted 1:100 in<br />

TBS-FCS), then rinse the slide 3–5 times<br />

with TBS.<br />

7 <strong>In</strong>cubate slide for 30 min with APAAP<br />

complex (mouse) (diluted 1:100 in TBS-<br />

FCS), then rinse the slide 3–5 times with<br />

TBS.<br />

8 Repeat Steps 6 and 7.<br />

Note: Repeating the APAAP steps will<br />

enhance the signal.<br />

9 Prepare APAAP substrate by dissolving<br />

200 mg naphthol-ASMX-phosphate,<br />

20 ml dimethylformamide, and 1 ml of<br />

1 M levamisole (all from Sigma) in 980 ml<br />

Tris-HCl (pH 8.2).<br />

10 Dissolve 50 mg Fast Red TR Salt in 50 ml<br />

of APAAP substrate, then filter the<br />

solution.<br />

11 <strong>In</strong> a Coplin jar at room temperature,<br />

incubate the slides with the Fast Red-<br />

APAAP substrate solution until the color<br />

develops.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Note: If you substitute PAP complex for<br />

APAAP complex, modify the above<br />

procedure as follows:<br />

Perform all rinses and all dilutions with<br />

PBS rather than TBS.<br />

For the color reaction, use filtered diaminobenzidine<br />

reagent (50 mg diaminobenzidine<br />

dissolved in 100 ml PBS<br />

which contains 0.01% H2O2)<br />

For an example of immunostaining with<br />

PAP complex, see Figure 2 under “Results”.<br />

Results<br />

<br />

Figure 1: Double staining of mRNA and protein<br />

(APAAP method) in a normal rat brain. The<br />

mRNA (black-blue) for proteolipid protein (PLP) was<br />

detected by the procedure described in the text and<br />

stained with NBT/BCIP color reagent. Proteolipid<br />

protein (red) was detected with a 1:1000-diluted<br />

rabbit polyclonal antibody and visualized with<br />

APAAP and Fast Red TR Salt.<br />

<br />

Figure 2: Double staining of mRNA and<br />

protein (PAP method) in a normal rat brain.<br />

The experiment is identical <strong>to</strong> that in Figure 1,<br />

except PLP (brown) was visualized with PAP and<br />

diaminobenzidine reagent.<br />

CONTENTS<br />

INDEX<br />

PFA GA<br />

0.002%<br />

0.005%<br />

0.02%<br />

0.05%<br />

a b<br />

<br />

Figure 3: Effect of paraformaldehyde and glutaraldehyde<br />

fixation on in situ hybridization of mRNA. PLP mRNA<br />

was detected in sections of rat spinal cord which had been fixed<br />

by different methods. Panel a: Sections were fixed with 4% paraformaldehyde<br />

and then treated with different concentrations of<br />

Proteinase K. From <strong>to</strong>p <strong>to</strong> bot<strong>to</strong>m the Proteinase K concentrations<br />

were: 0.002%, 0.005%, 0.02%, 0.05%. Panel b: Sections were<br />

fixed in 2.5% glutaraldehyde, then treated with the same<br />

concentrations of Proteinase K as in Panel a.<br />

139<br />

5


5<br />

Figure 4: Effect of au<strong>to</strong>lysis and<br />

overfixation on in situ hybridization<br />

of mRNA and immunocy<strong>to</strong>chemical<br />

staining. <strong>In</strong> spite of<br />

pronounced au<strong>to</strong>lytic changes that<br />

occur postmortem, a good PLP<br />

mRNA signal can be seen in human<br />

brain au<strong>to</strong>psy samples (Panel a).<br />

Although in well preserved and fixed<br />

experimental tissue (Panel b) both,<br />

the signal for in situ hybridization as<br />

well as the signal for immunocy<strong>to</strong>chemistry<br />

is much more distinct.<br />

Protein (red) and mRNA (blue-black)<br />

were stained as in Figure 1.<br />

140<br />

<br />

a<br />

b<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Acknowledgments<br />

The rabbit polyclonal antibody against<br />

proteolipid protein (PLP) was a gift from<br />

Dr. S. Piddlesden, University of Cardiff, UK.<br />

References<br />

Breitschopf, H; Suchanek, G; Gould, R. M.;<br />

Colman, D. R.; Lassmann, H. (1992) <strong>In</strong> situ<br />

hybridization with digoxigenin-labeled probes:<br />

Sensitive and reliable detection method applied<br />

<strong>to</strong> myelinating rat brain. Acta Neuropathol. 84,<br />

581–587.<br />

Hayashi, S; Gillam, I. C.; Delaney, A. D.;<br />

Tener, G. M. (1978) Acetylation of chromosome<br />

squashes of Drosophila melanogaster decreases<br />

the background in au<strong>to</strong>radiographs from<br />

hybridization with 125I-labeled RNA. J. His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 26, 677–679.<br />

Sambrook, J; Fritsch, E. F.; Maniatis, T. (1989)<br />

Molecular cloning: A Labora<strong>to</strong>ry Manual, 2nd ed.<br />

Cold Spring Harbor, N.Y.: Cold Spring Harbor<br />

Labora<strong>to</strong>ry Press.<br />

Taylor, V.; Miescher, G. C.; Pfarr, S.; Honegger, P.;<br />

Breitschopf, H.; Lassmann, H.; Steck, A. J. (1994)<br />

Expression and developmental regulation of Ehk-1,<br />

a neuronal Elk-like recep<strong>to</strong>r tyrosine kinase in brain.<br />

Neuroscience 63, 163–178.<br />

Vass, K.; Berger, M. L.; Nowak, T. S. Jr.; Welch,<br />

W. J.; Lassmann, H. (1989) <strong>In</strong>duction of stress<br />

protein HSP 70 in nerve cells after status<br />

epilepticus in the rat. Neurosci. Lett. 100, 259–264.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG RNA Labeling For RNA labeling with digoxigenin-UTP 1175 025 1 Kit (2 x10<br />

Kit* , ** , *** by in vitro transcription with SP6 and labeling<br />

T7 RNA polymerase. reactions)<br />

Proteinase K Lyophilizate 161 519 25 mg<br />

745 723 100 mg<br />

1 000 144 500 mg<br />

1 092 766 1 g<br />

Tris Powder 127 434 100 g<br />

708 968 500 g<br />

708 976 1 kg<br />

Blocking Reagent Powder 1 096 176 50 g<br />

Anti-DIG-AP Fab Fragments from sheep 1 093 274 150 U (200 µl)<br />

NBT/BCIP S<strong>to</strong>ck solution 1 681 451 8 ml<br />

***Sold under the tradename of Genius in the US.<br />

***EP Patent 0 324 474 granted <strong>to</strong> Boehringer Mannheim GmbH.<br />

***Licensed by <strong>In</strong>stitute Pasteur.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

RNA-RNA in situ hybridization using DIG-labeled<br />

probes: the effect of high molecular weight<br />

polyvinyl alcohol on the alkaline phosphatase<br />

indoxyl-nitroblue tetrazolium reaction<br />

Marc DeBlock and Dirk Debrouwer, Plant Genetic Systems N.V., Gent, Belgium.<br />

Note: The following article is reprinted<br />

with the permission of Academic Press<br />

(Copyright ® 1993 by Academic Press, <strong>In</strong>c.)<br />

and Harcourt Brace & Company and is<br />

based on the original article: DeBlock, M.,<br />

Debrouwer, D. (1993) RNA-RNA in situ<br />

hybridization using digoxigenin-labeled<br />

probes: the use of high molecular weight<br />

polyvinyl alcohol in the alkaline phosphatase<br />

indoxyl-nitroblue tetrazolium. Analytical<br />

Biochemistry 216; 88–89.<br />

The indoxyl-nitroblue tetrazolium (BCIP-<br />

NBT) reaction is relatively slow. During the<br />

reaction, intermediates (indoxyls) diffuse<br />

away in<strong>to</strong> the medium, making it difficult <strong>to</strong><br />

localize the site of hybridization (Van<br />

Noorden and Jonges, 1987) and reducing the<br />

hybridization signal.<br />

<strong>In</strong> this paper, an improved nonradioactive<br />

RNA-RNA in situ hybridization pro<strong>to</strong>col<br />

using alkaline phosphatase-conjugated digoxigenin-<br />

(DIG-) labeled probes is presented.<br />

The addition of polyvinyl alcohol (PVA) of<br />

high molecular weight (40–100 kD) <strong>to</strong> the<br />

BCIP-NBT detection system enhances the<br />

alkaline phosphatase reaction and prevents<br />

diffusion of reaction intermediates, resulting<br />

in a twentyfold increase in sensitivity without<br />

increasing the background. Due <strong>to</strong> the more<br />

localized precipitation of the formazan, the<br />

site of hybridization can be determined more<br />

precisely.<br />

CONTENTS<br />

INDEX<br />

I. Fixation, dehydration,<br />

and embedding<br />

Follow the pro<strong>to</strong>col described by Jackson<br />

(1992) <strong>to</strong> fix, dehydrate, and embed the<br />

tissue in paraffin, with the following<br />

modifications:<br />

1 For fixation, prepare either of the following<br />

solutions:<br />

100 mM phosphate buffer, pH 7,<br />

containing 0.25% gluteraldehyde and<br />

4% freshly depolymerized paraformaldehyde.<br />

Formalin-acetic acid (50% ethanol;<br />

10% formalin, containing 37% formaldehyde;<br />

5% acetic acid).<br />

2 Using either of the solutions from<br />

Step 1, fix the tissue for 4 h at room<br />

temperature. During the fixation:<br />

Vacuum infiltrate the tissue (with a<br />

water aspira<strong>to</strong>r) for 10 min once an<br />

hour.<br />

After each vacuum infiltration, renew<br />

the fixative solution.<br />

3 Depending on the fixative used in<br />

Step 2, wash the fixed tissue as follows:<br />

If gluteraldehyde-paraformaldehyde<br />

was the fixative, wash the fixed tissue<br />

2 x 30 min with 100 mM phosphate<br />

buffer, pH 7.<br />

If formalin-acetic acid was the fixative,<br />

wash the fixed tissue 2 x 30 min with<br />

50% ethanol.<br />

4 Dehydrate the tissue by incubating in the<br />

following series of ethanol solutions:<br />

Either 90 min (after gluteraldehydeparaformaldehyde<br />

fixation) or 30 min<br />

(after formalin-acetic acid fixation) at<br />

room temperature in 50% ethanol.<br />

90 min at room temperature in 70%<br />

ethanol.<br />

Overnight at 4°C in 85% ethanol.<br />

3 x 90 min at room temperature in<br />

100% ethanol.<br />

141<br />

5


5<br />

142<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

II. Sectioning<br />

1 Cut the paraffin-embedded tissues in<br />

10 µm sections.<br />

2 Attach the sections at 75°C for 1 h <strong>to</strong><br />

slides that have been treated with Vectabond<br />

(Vec<strong>to</strong>r Labora<strong>to</strong>ries, Burlingame,<br />

CA, U.S.A.).<br />

III. Prehybridization treatments<br />

1 Dewax and hydrate the sections as<br />

previously described (Jackson, 1992).<br />

2 <strong>In</strong>cubate the sections with a Proteinase K<br />

solution (100 mM Tris, pH 7.5;<br />

50 mM EDTA; 2 µg/ml Proteinase K) for<br />

30 min at 37°C.<br />

3 After the Proteinase K treatment, wash<br />

the slides 2 x in phosphate buffered saline<br />

(PBS).<br />

4 Dehydrate the sections in ascending<br />

concentrations of ethanol as previously<br />

described (Jackson, 1991).<br />

IV. <strong>Hybridization</strong><br />

1 Label the probe RNA with DIG-UTP<br />

according <strong>to</strong> the procedures given in<br />

Chapter 4 of this manual.<br />

2 Reduce the length of the probe <strong>to</strong><br />

approximately 200 bases as follows:<br />

To 50 µl of labeled probe RNA in<br />

a microcentrifuge tube, add 30 µl<br />

200 mM Na2CO3 and 20 µl 200 mM<br />

NaHCO3.<br />

Hydrolyze the probe at 60°C for t<br />

min, where:<br />

t = (L0 – Lf) / (K · L0 · Lf)<br />

L0 = starting length of probe RNA<br />

(in kb)<br />

Lf = length of probe RNA<br />

(in kb) (<strong>In</strong> this case, Lf = 0.2 kb.)<br />

K = rate constant<br />

(<strong>In</strong> this case, K = 0.11 kb/min.)<br />

t = hydrolysis time in min<br />

3 After hydrolysis, purify the probe RNA<br />

as follows:<br />

Add the following <strong>to</strong> the hydrolyzed<br />

probe solution:<br />

– 5 µl 10% acetic acid<br />

– 11 µl 3 M sodium acetate (pH 6.0)<br />

– 1 µl of a 10 mg/ml tRNA s<strong>to</strong>ck<br />

– 1.2 µl 1 M MgCl2<br />

– 300 µl (about 2.5 volumes) cold<br />

ethanol<br />

<strong>In</strong>cubate 4–16 h at –20°C.<br />

Centrifuge in a microcentrifuge for 15<br />

min at 4°C <strong>to</strong> pellet the RNA.<br />

Discard the supernatant and dry the<br />

RNA pellet in a vacuum desicca<strong>to</strong>r.<br />

Resuspend labeled probe RNA in<br />

DEPC-treated water at 10–50 µg/ml.<br />

4 Prepare a hybridization mixture containing<br />

the following:<br />

50% deionized formamide.<br />

2.25 x SSPE (300 mM NaCl; 20 mM<br />

NaH2PO4; 2 mM EDTA; pH 7.4).<br />

10% dextran sulfate.<br />

2.5 x Denhardt’s solution.<br />

100 µg/ml sheared and denatured<br />

herring sperm DNA.<br />

100 µg/ml tRNA.<br />

5 mM DTT.<br />

40 units/ml RNase inhibi<strong>to</strong>r.<br />

0.2–1.0 µg/ml hydrolyzed and denatured<br />

probe (200 bases long).<br />

5 Cover each section with 250–500 µl of<br />

hybridization mixture (depending on the<br />

size of the section) and incubate in a<br />

humidified box at 42°C overnight.<br />

Note: Do not use a coverslip during the<br />

hybridization incubation.<br />

6 After hybridization, wash the slides as<br />

follows:<br />

5 min at room temperature with<br />

3 x SSC.<br />

Note: 1x SSC contains 150 mM NaCl,<br />

15 mM Na-citrate; pH 7.<br />

5 min at room temperature with NTE<br />

(500 mM NaCl, 10 mM Tris-HCl,<br />

1 mM EDTA; pH 7.5).<br />

7 To remove unhybridized single-stranded<br />

RNA probe, put slides in<strong>to</strong> a humidified<br />

box and cover each section with<br />

500 µl of NTE buffer containing 50 µg/<br />

ml RNase A. <strong>In</strong>cubate for 30 min at<br />

37°C.<br />

8 After RNase treatment, wash the slides<br />

3 x 5 min at room temperature with NTE.<br />

9 To remove nonspecifically hybridized<br />

probe, wash the slides as follows:<br />

30 min at room temperature with<br />

2 x SSC.<br />

1 h at 57°C with 0.1 x SSC.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

V. Detection of DIG-labeled hybrids<br />

1 <strong>In</strong>cubate the slides first with blocking<br />

solution, then with blocking solution<br />

containing 1.25 units/ml of alkaline<br />

phosphatase-conjugated anti-DIG Fab<br />

fragments as recommended in the pack<br />

insert of the DIG Nucleic Acid Detection<br />

Kit*.<br />

2 After the antibody incubation, wash the<br />

slides <strong>to</strong> remove unbound antibody as<br />

recommended in the Boehringer<br />

Mannheim DIG/Genius System User’s<br />

Guide for Membrane <strong>Hybridization</strong>.<br />

3 Prepare the BCIP-NBT-PVA color development<br />

solution as follows:<br />

Prepare a Tris-NaCl-PVA s<strong>to</strong>ck solution<br />

by dissolving 10% (w/v) polyvinyl<br />

alcohol [PVA, either 40 kD<br />

or 70–100 kD (Sigma)] at 90°C in<br />

100 mM Tris-HCl (pH 9) containing<br />

100 mM NaCl.<br />

Cool the Tris-NaCl-PVA s<strong>to</strong>ck solution<br />

<strong>to</strong> room temperature.<br />

Add MgCl2, BCIP, and NBT <strong>to</strong> the<br />

Tris-NaCl-PVA s<strong>to</strong>ck <strong>to</strong> produce a<br />

final color development solution that<br />

contains:<br />

– 5 mM MgCl<br />

– 0.2 mM 5-bromo-4-chloro-3-indolyl<br />

phosphate (BCIP)<br />

– 0.2 mM nitroblue tetrazolium salt<br />

(NBT).<br />

4 After the washes in Step 2, perform the<br />

visualization step as follows:<br />

Place the slides in 30 ml of BCIP-<br />

NBT-PVA color development solution<br />

in a vertical staining dish suited for<br />

eight slides.<br />

<strong>In</strong>cubate the slides in the color development<br />

solution for 2–16 h at 30°C.<br />

Moni<strong>to</strong>r color formation visually.<br />

5 When the color on each slide is optimal,<br />

s<strong>to</strong>p the color reaction by washing the<br />

slide 3 x 5 min in distilled water.<br />

*Sold under the tradename of Genius in the US.<br />

CONTENTS<br />

INDEX<br />

6 Dehydrate the sections by incubating the<br />

slides without shaking in the following<br />

ethanol solutions:<br />

15 s in 70% ethanol.<br />

2 x15 s in 100% ethanol.<br />

7 Air dry the slides and mount them with<br />

Eukitt (O. Kindler GmbH, FRG).<br />

8 Examine the sections with a Dialux<br />

22 microscope (Leitz, Wetzlar, FRG)<br />

equipped with Normaski differential<br />

interference contrast.<br />

Results and discussion<br />

The direct influence of the polymers on the<br />

BCIP-NBT alkaline phosphatase reaction in<br />

a test tube is shown in Table 1. From these<br />

results it is clear that polyvinyl alcohol was<br />

the only polymer that enhanced formazan<br />

formation in the alkaline phosphatase<br />

reaction.<br />

This enhancement was even more pronounced<br />

in in situ hybridization experiments.<br />

Figure 1 shows the results of an<br />

in situ hybridization in which sections of<br />

<strong>to</strong>bacco pistils were hybridized with an<br />

antisense RNA probe from a pistil-specific<br />

cDNA clone (de S. Goldman et al., 1992).<br />

After three hours development no hybridization<br />

could be detected if no PVA had been<br />

added <strong>to</strong> the reaction buffer. A clear but still<br />

weak signal was visible after three h if 20%<br />

PVA (molecular weight, 10 kD) was used<br />

(Figure 1a). However, with 10% PVA<br />

(molecular weight, 70–100 kD), a strong<br />

hybridization signal appeared in the<br />

transmitting tissue of the pistil after a few h<br />

(Figure 1b). <strong>In</strong> the control with the sense<br />

RNA probe no signal could be detected,<br />

even after 24 h of development (Figure 1c).<br />

143<br />

5


5<br />

144<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Polymer Molecular Concentration b Effect on the alkaline<br />

weight phosphatase BCIP-NBT reaction e<br />

PVP 15 kD 10, 20, 30% Au<strong>to</strong>reduction of NBT<br />

25 kD 10, 20, 30%<br />

44 kD 10, 20, 30%<br />

PEG 6 kD 10, 20, 30% No enhancement<br />

20 kD 10, 20, 30% (0.01 mM formazan)<br />

PVA 10 kD 10, 20% c Approx. 4-fold enhancement<br />

(0.04 mM formazan)<br />

40 kD 10% d Approximately 6- <strong>to</strong> 8-fold enhance-<br />

70–100 kD 10% d ment (0.06 <strong>to</strong> 0.08 mM formazan)<br />

Table 1: <strong>In</strong>fluence of polymers on the alkaline phosphatase BCIP-NBT reactiona .<br />

a Each reaction was done with a <strong>to</strong>tal volume of 2 ml BCIP-NBT reaction mixture in a test tube.<br />

The BCIP-NBT reaction mixture was as described in the text, except that it contained 7.5 X 10 –3 <br />

units<br />

alkaline phosphatase/ml and the polymer indicated in the table. <strong>In</strong>cubation was for 30 min at 24°C.<br />

b The polymers were dissolved in the alkaline phosphatase reaction buffer in concentrations between 10%<br />

and 30%. The concentrations are given as a percentage of weight <strong>to</strong> volume.<br />

c A solution of 30% 10 kD PVA was <strong>to</strong>o viscous.<br />

d Solutions of 20 or 30% 40 kD PVA and 20 or 30% 70–100 kD PVA were <strong>to</strong>o viscous.<br />

e The amount of formazan formed was measured at 605 nm (Eadie et al., 1970). The enhancement fac<strong>to</strong>r<br />

is expressed with respect <strong>to</strong> the controls (no polymer added). If no polymer was added, about 0.01 mM<br />

formazan was formed.<br />

a b c<br />

<br />

Figure 1: The influence of PVA on the alkaline phosphatase BCIP-NBT reaction in in situ<br />

hybridizations. The hybridizations were carried out on 10 µm paraffin sections of stigmas and styles of<br />

<strong>to</strong>bacco with antisense and sense DIG-labeled RNA probes of pMG07 (de S. Goldman et al., 1992).<br />

C, cortex tissue; TT, transmitting tissue;<br />

V, vascular tissue. Bars = 200 µm.<br />

Panel a: <strong>Hybridization</strong> with antisense probe.<br />

Twenty percent 10 kD PVA was added <strong>to</strong> the alkaline phosphatase reaction buffer. Development was done for 4 h.<br />

Panel b: <strong>Hybridization</strong> with antisense probe. Ten percent 70–100 kD PVA was added <strong>to</strong> the alkaline<br />

phosphatase reaction buffer. Development was done for 2 h.<br />

Panel c: <strong>Hybridization</strong> with sense RNA probe. Ten percent 70–100 kD PVA was added <strong>to</strong> the alkaline<br />

phosphatase reaction buffer. Development was done for 20 h.<br />

CONTENTS<br />

INDEX


References<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

DeBlock, M.; Debrouwer, D. (1993) RNA-RNA in situ<br />

hybridization using digoxigenin-labeled probes:<br />

the use of high molecular weight polyvinyl alcohol<br />

in the alkaline phosphatase indoxyl-nitroblue<br />

tetrazolium reaction. Anal. Biochem. 215, 86–89.<br />

de S. Goldman, M. H.; Pezzotti, M.; Seurinck, J.;<br />

Mariani, C. (1992) Developmental expression of<br />

<strong>to</strong>bacco pistil-specific genes encoding novel<br />

extensin-like proteins. Plant Cell 4, 1041–1051.<br />

Eadie, M. J.; Tyrer, J. H.; Kukums, J. R.; Hooper,<br />

W. D. (1970) His<strong>to</strong>chemie 21, 170–180.<br />

Jackson, D. (1991) <strong>In</strong> situ hybridization in plants.<br />

<strong>In</strong>: Gurr, S. J.; McPherson; Bowles, D. J. (Eds.)<br />

Molecular Plant Pathology, A Practical Approach.<br />

Oxford, England: Oxford University Press, Vol. 1,<br />

pp. 163–174.<br />

Van Noorden, C. J. F.; Jonges, G. N. (1987)<br />

Quantification of the his<strong>to</strong>chemical reaction for<br />

alkaline phosphatase activity using the indoxyltetranitro<br />

BT method. His<strong>to</strong>chem. J. 19, 94–102.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG RNA Labeling For RNA labeling with digoxigenin-UTP 1175 025 1 Kit (2 x10<br />

Kit* , ** , *** by in vitro transcription with SP6 and labeling<br />

T7 RNA polymerase. reactions)<br />

Proteinase K Lyophilizate 161 519 25 mg<br />

745 723 100 mg<br />

1 000 144 500 mg<br />

1 092 766 1 g<br />

tRNA From baker’s yeast, lyophilizate 109 495 100 mg<br />

109 509 500 mg<br />

DNA from herring Lyophilized, sodium salt 223 646 1 g<br />

sperm<br />

DTT Purity: > 97% 197 777 2 g<br />

708 984 10 g<br />

1 583 786 25 g<br />

708 992 50 g<br />

709 000 100 g<br />

RNase A Powder 109 142 25 mg<br />

109 169 100 mg<br />

RNase <strong>In</strong>hibi<strong>to</strong>r From human placenta 799 017 2,000 units<br />

799 025 10,000 units<br />

DIG Nucleic Acid For detection of digoxigenin-labeled 1175 041 1 Kit<br />

Detection Kit* nucleic acids by an enzyme-linked<br />

immunoassay with a highly specific anti-<br />

DIG-AP antibody conjugate and the color<br />

substrates NBT and BCIP.<br />

***Sold under the tradename of Genius in the US.<br />

***EP Patent 0 324 474 granted <strong>to</strong> Boehringer Mannheim GmbH.<br />

***Licensed by <strong>In</strong>stitute Pasteur.<br />

CONTENTS<br />

INDEX<br />

145<br />

5


5<br />

146<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Detection of neuropeptide mRNAs<br />

in tissue sections using oligonucleotides tailed<br />

with fluorescein-12-dUTP or DIG-dUTP<br />

Department of Cy<strong>to</strong>chemistry and Cy<strong>to</strong>metry, University of Leiden, The Netherlands.<br />

The pro<strong>to</strong>col given below has been developed<br />

with the neuropeptidergic system of<br />

the pond snail Lymnaea stagnalis. More<br />

information concerning the application and<br />

in situ hybridization methodology can be<br />

found in Van Minnen et al. (1989), Dirks et<br />

al. (1988), Dirks et al. (1990), and Dirks et al.<br />

(1991).<br />

I. Tissue preparation<br />

1 Dissect the tissue, embed in O.C.T.<br />

compound (Miles Scientific, USA), and<br />

freeze in liquid nitrogen.<br />

2 Prepare sections as follows:<br />

Cut cryostat sections of 8 µm.<br />

Mount on poly-L-lysine-coated slides.<br />

Air dry.<br />

3 After mounting, do the following:<br />

Fix the sections for 30 min at 4°C with<br />

modified Carnoy’s [2% formalin,<br />

(from 37% s<strong>to</strong>ck), 75% ethanol, 23%<br />

acetic acid].<br />

Rinse the slides with water.<br />

Dehydrate the sections.<br />

II. Probe preparation<br />

Synthesize and purify the oligonucleotides<br />

according <strong>to</strong> routine procedures. Tail the<br />

oligonucleotide with DIG-dUTP or fluorescein-dUTP<br />

according <strong>to</strong> the procedures<br />

given in Chapter 4, but without using dATP.<br />

Note: If you use fluorescein-dUTP, add <strong>to</strong><br />

the labeling mixture equal amounts of<br />

unmodified dTTP and fluorescein-dUTP,<br />

then carry out the labeling procedure in<br />

the dark.<br />

III. <strong>In</strong> situ hybridization<br />

Note: 18-mers are used in this study. For<br />

oligonucleotides with other lengths and/<br />

or composition, you may have <strong>to</strong> alter the<br />

stringency of hybridization by changing<br />

the formamide concentration or the hybridization<br />

temperature listed below.<br />

1 Perform the hybridization as follows:<br />

Prepare hybridization mixture [25%<br />

formamide; 3 x SSC; 0.1% polyvinylpyrrolidone;<br />

0.1% ficoll, 1% bovine<br />

serum albumin; 500 µg/ml sheared<br />

salmon sperm DNA; 500 µg/ml yeast<br />

RNA].<br />

Note: 1x SSC contains 150 mM sodium<br />

chloride, 15 mM sodium citrate; pH 7.0.<br />

To the cryostat sections, add hybridization<br />

mixture containing 1 ng/µl<br />

labeled probe.<br />

<strong>In</strong>cubate for 2 h at room temperature.<br />

Note: If the probe contains a fluorochrome<br />

label, perform the hybridization<br />

incubation in the dark.<br />

2 After hybridization, do the following:<br />

Rinse the section 3 times in 4 x SSC at<br />

room temperature.<br />

Dehydrate the sections.<br />

Note: If the probe contains a fluorochrome<br />

label, perform the washes in<br />

the dark.<br />

IV. Hybrid detection<br />

Depending on the label used on the probe,<br />

follow one of these procedures:<br />

If sections are hybridized with fluoresceinlabeled<br />

oligonucleotides:<br />

Mount sections in PBS/glycerol (1:9;<br />

v/v) containing 2.3% 1,4-diazabicyclo-<br />

(2,2,2)-octane (DABCO, from Sigma)<br />

and 0.1 µg/µl 4',6'-diamidino-2phenylindole<br />

(DAPI).<br />

Evaluate under a fluorescence microscope.<br />

If sections are hybridized with DIGlabeled<br />

oligonucleotides:<br />

Make a 1:250 dilution of fluoresceinconjugated<br />

anti-DIG antibody (from<br />

sheep) in incubation buffer [100 mM<br />

Tris-HCl, pH 7.4; 150 mM NaCl; 1%<br />

blocking reagent].<br />

Overlay the sections with the diluted<br />

antibody in incubation buffer.<br />

<strong>In</strong>cubate sections at room temperature<br />

for 30 min.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Rinse sections 3 x 5 min in Tris-NaCl<br />

[100 mM Tris, pH 7.4; 150 mM NaCl].<br />

Mount and evaluate as for fluoresceinlabeled<br />

oligonucleotides.<br />

Results<br />

<br />

Figure 1: Direct detection of caudodorsal cells<br />

with fluorescein-labeled CDCH-I.<br />

References<br />

Dirks, R. W.; van Gijlswijk, R. P. M.; Vooijs, M. A.;<br />

Smit, A. B.; Bogerd, J.; Van Minnen, J.; Raap, A. K.;<br />

Van der Ploeg, M. (1991) 3'-end fluorochromized<br />

and haptenized oligonucleotides as in situ hybridization<br />

probes for multiple, simultaneous RNA<br />

detection. Exp. Cell Res. 194, 310–315.<br />

Dirks, R. W.; van Gijlswijk, R. P. M.; Tullis, R. H.;<br />

Smit, A. B.; Van Minnen, J.; Van der Ploeg, M.;<br />

Raap, A. K. (1990) Simultaneous detection of<br />

different mRNA sequences coding for neuropeptide<br />

hormones by double in situ hybridization using FITCand<br />

biotin-labeled oligonucleotides. J. His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 38, 467–473.<br />

CONTENTS<br />

INDEX<br />

Dirks, R. W.; Raap, A. K.; Van Minnen, J.;<br />

Vreugdenhil, E.; Smit, A. B.; Van der Ploeg, M.<br />

(1989) Detection of mRNA molecules coding for<br />

neuropeptide hormones of the pond snail Lymnaeae<br />

stagnalis by radioactive and nonradioactive in situ<br />

hybridization: a model study for mRNA detection.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 37, 7–14.<br />

Van Minnen, J.; Van de Haar, Ch.; Raap, A. K.;<br />

Vreugdenhil, E. (1988) Localization of ovulation<br />

hormone-like neuropeptide in the central nervous<br />

system of the snail Lymnaeae stagnalis by means of<br />

immunocy<strong>to</strong>chemistry and in situ hybridization.<br />

Cell Tissue Res. 251, 477–484.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG Oligonucleotide For tailing oligonucleotides with 1 417 231 1 Kit (25 tailing<br />

Tailing Kit* , ** , *** digoxigenin-dUTP. reactions)<br />

Fluorescein-12-dUTP Tetralithium salt, solution 1 373 242 25 nmol (25 µl)<br />

tRNA From baker’s yeast, lyophilizate 109 495 100 mg<br />

109 509 500 mg<br />

Anti-Digoxigenin- Fab Fragments from sheep 1 207 741 200 µg<br />

Fluorescein<br />

Anti-Digoxigenin- Fab Fragments from sheep 1 207 750 200 µg<br />

Rhodamine<br />

DAPI Fluorescence dye for staining of 236 276 10 mg<br />

chromosomes<br />

Blocking Reagent Blocking reagent for nucleic acid 1 096 176 50 g<br />

hybridization<br />

BSA Highest quality, lyophilizate 238 031 1 g<br />

238 040 10 g<br />

<br />

Figure 2: <strong>In</strong>direct detection of<br />

caudodorsal cells with DIG-labeled<br />

CDCH-I and sheep anti-DIG-fluorescein<br />

conjugate. The same cells<br />

are positive, but the hybridization<br />

signal is clearly more intense than<br />

that obtained with the direct technique<br />

(Figure 1).<br />

***Sold under the tradename of<br />

Genius in the US.<br />

***EP Patents 0 124 657/0 324 474<br />

granted <strong>to</strong> Boehringer Mannheim<br />

GmbH.<br />

***Licensed by <strong>In</strong>stitute Pasteur.<br />

147<br />

5


5<br />

148<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

<strong>In</strong> situ hybridization of DIG-labeled rRNA probes<br />

<strong>to</strong> mouse liver ultrathin sections<br />

Dr. D. Fischer, D. Weisenberger, and Prof. Dr. U. Scheer, <strong>In</strong>stitute for Zoology I,<br />

University of Würzburg, Germany.<br />

Thin section electron microscopy of nucleoli<br />

from mammalian cells reveals three<br />

nucleolar substructures. These are the<br />

fibrillar centers (FC), the dense fibrillar<br />

component, which forms a closely apposed<br />

layer upon the FCs, and the granular<br />

component, which constitutes the bulk of<br />

the nucleolar mass. Although there is no<br />

doubt that this ultrastructural organization<br />

somehow reflects the vec<strong>to</strong>rial process of<br />

ribosome formation, the exact structurefunction<br />

relationships have been a matter of<br />

much discussion and are still largely unclear.<br />

(For a review, see Scheer and Benavente,<br />

1990.)<br />

Here we describe an approach <strong>to</strong> localize<br />

specific intermediates for the pre-rRNA<br />

maturation process using in situ hybridization<br />

at the ultrastructural level. This<br />

approach will allow the correlation of each<br />

pre-rRNA processing step with the defined<br />

nucleolar substructures. The procedure<br />

described can also be applied <strong>to</strong> the<br />

localization of other RNA species involved<br />

in ribosome biogenesis, such as 5S rRNA or<br />

U3 snRNA (Fischer et al., 1991).<br />

I. Embedding in Lowicryl K4M<br />

(according <strong>to</strong> Carlemalm and Villiger,<br />

1989, with alterations)<br />

IA. Fixation of material<br />

1 Prepare the following fixation solutions<br />

and keep them on ice:<br />

4% paraformaldehyde (PFA) in PBS<br />

(137 mM NaCl, 2.7 mM KCl, 7 mM<br />

Na2HPO4, 1.5 mM KH2PO4).<br />

0.5% glutaraldehyde (GA) plus 4%<br />

PFA in PBS.<br />

2 Take a piece of freshly prepared mouse<br />

liver and submerge it in a petri dish filled<br />

with 4% PFA in PBS on ice.<br />

3 Cut the liver in<strong>to</strong> small cubes with a<br />

maximal side length of 1 mm.<br />

Note: The smaller the pieces, the better<br />

reagent penetrates them in the procedure<br />

below.<br />

4 Transfer the liver cubes <strong>to</strong> other petri<br />

dishes on ice, containing the fixatives (i)<br />

4% PFA and (ii) 0.5% GA plus 4% PFA.<br />

5 <strong>In</strong>cubate the cubes in the fixatives for<br />

about 2 h.<br />

6 To remove the fixative, wash the cubes<br />

3 x 5 min with ice cold PBS.<br />

IB. Dehydration of material<br />

Transfer the object cubes <strong>to</strong> preparative<br />

glasses and dehydrate them in a series of<br />

ethanol solutions according <strong>to</strong> the following<br />

scheme:<br />

2 x15 min in 30% ethanol at 4°C.<br />

1x 30 min in 50% ethanol at 4°C.<br />

1x 30 min in 50% ethanol at –20°C.<br />

2 x 30 min in 70% ethanol at –20°C.<br />

2 x 30 min in 90% ethanol at –20°C.<br />

2 x 30 min in 96% ethanol at –20°C.<br />

2 x 30 min in 100% ethanol at –20°C.<br />

Caution: Leave the objects in a small<br />

amount of liquid during changes from one<br />

ethanol solution <strong>to</strong> another. This prevents<br />

them from drying out, especially at higher<br />

ethanol concentrations.<br />

IC. <strong>In</strong>filtration<br />

After dehydration, ethanol must be infiltrated<br />

with the embedding medium Lowicryl K4M<br />

(Chemische Werke Lowi, Waldkraiburg,<br />

FRG). This resin <strong>to</strong>lerates a little residual water<br />

in the object and produces good results in<br />

immunocy<strong>to</strong>chemistry.<br />

Caution: When working with Lowicryl<br />

K4M, perform all steps:<br />

– At low temperatures<br />

– Under the fume hood<br />

– While wearing gloves<br />

– While excluding air (oxygen) from K4M as<br />

much as possible.<br />

To exclude air from the embedding medium,<br />

do one of the following:<br />

Fill all vessels which contain K4M with<br />

nitrogen.<br />

Perform all steps in a closed chamber<br />

cooled <strong>to</strong> constant temperature by liquid<br />

nitrogen, thus providing a nitrogen-saturated<br />

atmosphere in the closed preparation<br />

chamber (e.g., “CS-au<strong>to</strong>”, Reichert<br />

& Jung, Cambridge <strong>In</strong>str.).<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

1 Prepare Lowicryl K4M as follows (<strong>to</strong><br />

produce a medium hard plastic):<br />

Mix 2 g Crosslinker A, 13 g Monomer<br />

B, and 0.075 g <strong>In</strong>itia<strong>to</strong>r C.<br />

Dissolve <strong>In</strong>itia<strong>to</strong>r C by gentle stirring<br />

or by bubbling dry nitrogen through<br />

the mixture.<br />

Cool the mixture <strong>to</strong> –20°C in the<br />

freezer.<br />

2 Perform infiltration at about –20°C with<br />

suitably precooled material according <strong>to</strong><br />

the following scheme:<br />

1hwith100% ethanol:K4M (1:1, v/v).<br />

2 x1 h with K4M.<br />

Overnight with K4M.<br />

2 x 3 h with K4M.<br />

ID. Embedding<br />

Gelatin capsules (e.g. Capsulae Operculatae<br />

No. 2) are very suitable as molds for<br />

embedding because they are transparent <strong>to</strong><br />

UV-light and can afterwards easily be cut<br />

away.<br />

1 Cool the gelatin capsules <strong>to</strong> the<br />

appropriate temperature.<br />

2 Add a few drops of Lowicryl K4M <strong>to</strong><br />

each capsule.<br />

3 Drop one object cube in<strong>to</strong> each capsule.<br />

Caution: Do this transfer very carefully.<br />

Do not mechanically damage the cube,<br />

allow it <strong>to</strong> dry out, or allow it <strong>to</strong> warm up.<br />

4 Fill the capsules with the embedding<br />

medium.<br />

5 Let the capsules stand for about half an<br />

hour <strong>to</strong> allow the air bubbles <strong>to</strong> leave.<br />

IE. Polymerization<br />

1 Before switching on the UV light, turn<br />

the temperature a bit lower <strong>to</strong> compensate<br />

for the heat from the light.<br />

2 <strong>In</strong>duce polymerization of Lowicryl K4M<br />

by 360 nm long-wave UV radiation<br />

(“CS-UV”, Reichert & Jung, Cambridge<br />

<strong>In</strong>str.) over a five day period. During the<br />

polymerization, do the following:<br />

For about three days, keep the<br />

polymerization temperature constant<br />

at any temperature between 0°C and<br />

–40°C.<br />

After three days, allow the temperature<br />

<strong>to</strong> rise <strong>to</strong> room temperature with about<br />

8 K/h.<br />

Note: For troubleshooting, see<br />

Carlemalm and Villiger (1989).<br />

CONTENTS<br />

INDEX<br />

II. Sectioning<br />

The embedded mouse liver cubes can easily<br />

be recognized in the transparent resin<br />

Lowicryl K4M. Carlemalm and Villiger<br />

(1989) recommend trimming with the<br />

ultramicro<strong>to</strong>me and a glass knife <strong>to</strong> get<br />

smooth surfaces.<br />

1 Obtain semithin sections with a glass<br />

knife and ultrathin sections with a<br />

diamond knife, according <strong>to</strong> standard<br />

pro<strong>to</strong>cols.<br />

Caution: Because of the hydrophilicity<br />

of Lowicryl K4M, be careful not <strong>to</strong> wet<br />

the surface of the block.<br />

2 Transfer sections <strong>to</strong> 200 mesh nickel grids<br />

which have been coated with 0.5%<br />

parlodion.<br />

3 Air dry the sections.<br />

Note: Now the sections are ready for<br />

hybridization.<br />

III. Probe preparation<br />

1 Clone restriction fragments from mouse<br />

rDNA.<br />

2 Prepare in vitro transcripts from the<br />

rDNA clones and label them with DIG-<br />

UTP according <strong>to</strong> the pro<strong>to</strong>cols in<br />

Chapter 4 of this manual.<br />

3 Since probe length might influence the<br />

efficiency of in situ hybridization experiments,<br />

moni<strong>to</strong>r transcript length by<br />

electrophoresis (in formaldehyde-containing<br />

gels), blotting on<strong>to</strong> nitrocellulose,<br />

and detection with the anti-DIG-alkaline<br />

phosphatase conjugate.<br />

4 If necessary, reduce probe length <strong>to</strong><br />

approximately 150 nucleotides by limited<br />

alkaline hydrolysis of the transcripts<br />

according <strong>to</strong> Cox et al. (1984). Briefly, the<br />

procedure is:<br />

<strong>In</strong>cubate the transcripts with a solution<br />

of 40 mM NaHCO3 and 60 mM<br />

Na2CO3 at 60°C.<br />

Calculate the <strong>In</strong>cubation time as<br />

follows:<br />

L0 – Lf<br />

t = ________<br />

k · L0 · Lf<br />

L0 = initial length of transcript (in kb)<br />

Lf = desired probe length (in kb)<br />

k = constant = 0.11 kb/min<br />

S<strong>to</strong>p the hydrolysis by adding 3 M<br />

sodium acetate and acetic acid.<br />

Precipitate the hydrolyzate with ethanol.<br />

Dissolve the precipitate in water.<br />

149<br />

5


5<br />

150<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

IV. <strong>Hybridization</strong><br />

Note: Perform all the following steps<br />

(including the hybridization) in a moist<br />

chamber.<br />

1 Prepare hybridization mixture [5 x SSC;<br />

0.1 mg/ml tRNA; DIG-labeled antisense<br />

transcript at a final concentration of<br />

10 ng/µl].<br />

Note: 1 x SSC contains 0.15 M NaCl,<br />

0.015 M sodium citrate.<br />

2 To moni<strong>to</strong>r the specificity of binding,<br />

prepare a “negative” probe by substituting<br />

the sense transcript for the antisense<br />

transcript in the hybridization mixture<br />

above.<br />

3 Place a droplet of the appropriate hybridization<br />

mixture on<strong>to</strong> Parafilm ® .<br />

4 <strong>In</strong>cubate the ultrathin sections by putting<br />

the grid (section-side down) on <strong>to</strong>p of the<br />

droplet.<br />

5 Perform hybridization for at least 3 h at<br />

65°C.<br />

6 Wash the sections as follows, all at room<br />

temperature:<br />

3 x 5 min with 2 x SSC.<br />

2 x10 min with PBST (PBS containing<br />

0.1% Tween ® 20).<br />

V. Detection<br />

1 To block nonspecific sites, incubate each<br />

section for 15 min with PBST plus BG<br />

(PBST containing 1% bovine serum<br />

albumin, 0.1% CWFS-gelatin).<br />

2 Dilute 1 nm gold-conjugated anti-DIG<br />

antibody 1:30 in PBST plus BG.<br />

<br />

Figure 1: <strong>In</strong> situ hybridization of a digoxigeninlabeled<br />

RNA probe complementary <strong>to</strong> most of the<br />

28 S rRNA region <strong>to</strong> an ultrathin section of mouse<br />

liver fixed with 3% formaldehyde and embedded<br />

in Lowicryl K4M. The nucleolus as well as the<br />

cy<strong>to</strong>plasm are clearly marked. Label is essentially<br />

absent from the mi<strong>to</strong>chondria, demonstrating the<br />

specificity of the method. Cy<strong>to</strong>plasmic labeling is<br />

due <strong>to</strong> labeling of the ribosomes, especially the<br />

endoplasmatic reticulum-associated ones<br />

(Magnification: 25,200 x).<br />

3 Apply diluted antibody <strong>to</strong> section and<br />

incubate for 1 h.<br />

4 Wash the sections as follows:<br />

3 x 5 min with PBST.<br />

6 x 5 min with redistilled water.<br />

5 Perform silver enhancement by incubating<br />

sectionswithdeveloperandenhancer (from<br />

the set of silver enhancement reagents) at a<br />

ratio of 1:1 for 4–20 min (depending on the<br />

desired silver grain size).<br />

6 Wash the sections 6 x 5 min with redistilled<br />

water.<br />

7 Stain with 2% aqueous uranyl acetate<br />

(4 min) and Reynolds’ lead citrate for<br />

1 min (Reynolds, 1963) according <strong>to</strong><br />

standard procedures.<br />

8 Evaluate the specimen in the electron<br />

microscope.<br />

Results<br />

<strong>In</strong> Figure 1, the hybridized probe was<br />

detected with monoclonal anti-DIG antibody<br />

coupled <strong>to</strong> 1 nm gold particles. The<br />

signal was enhanced with silver staining for<br />

6 min at room temperature. Silver intensification<br />

facilitates visualization of the bound<br />

hybridization probe at low magnification.<br />

The silver grains scattered throughout the<br />

nucleoplasm might indicate transport of<br />

preribosomal particles from the nucleolus <strong>to</strong><br />

the cy<strong>to</strong>plasm.<br />

<strong>In</strong> Figure 2, a digoxigenin-labeled riboprobe<br />

complementary <strong>to</strong> the first 3 kb of the<br />

5' region of the ETS1 was hybridized <strong>to</strong> a<br />

Lowicryl section of mouse liver and<br />

detected as described in Figure 1.<br />

Figure 2: Localization of pre-rRNA molecules<br />

containing the 5' region of the ETS1. For details of<br />

the probe, see the text. The survey view shows<br />

selective labeling of the fibrillar components of the<br />

nucleolus<br />

(Magnification: 27,000x).<br />

CONTENTS<br />

INDEX


References<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Carlemalm, E.; Villiger, W. (1989) Low temperature<br />

embedding. <strong>In</strong>: Bullock, G. R.; Petrusz, P. (Eds)<br />

Techniques Immunocy<strong>to</strong>chem. 4, 29–44.<br />

Cox, K. H.; DeLeon, D. V.; Angerer, L. M.;<br />

Angerer, R. C. (1984) Detection of mRNAs in sea<br />

urchin embryos by in situ hybridization using<br />

asymmetric RNA probes. Dev. Biol. 101, 485–502.<br />

Fischer, D.; Weisenberger, D.; Scheer, U. (1991)<br />

Assigning functions <strong>to</strong> nucleolar structures.<br />

Chromosoma 101, 133–140.<br />

Reynolds, E. S. (1963) The use of lead citrate at<br />

high pH as an electron-opaque stain in electron<br />

microscopy. J. Cell Biol. 17, 208–212.<br />

Scheer, U.; Benavente, R. (1990) Functional and<br />

dynamic aspects of the mammalian nucleolus.<br />

BioEssays 12, 14–21.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG RNA Labeling For RNA labeling with digoxigenin-UTP 1175 025 1 Kit (2 x10<br />

Kit* , ** , *** by in vitro transcription with SP6 and labeling<br />

T7 RNA polymerase. reactions)<br />

Tween ® 20 1 332 465 5 x10 ml<br />

BSA Highest quality, lyophilizate 238 031 1 g<br />

238 040 10 g<br />

Anti-Digoxigenin- Affinity purified sheep IgG <strong>to</strong> digoxigenin 1 450 590 1 ml<br />

Gold conjugated with ultra small gold particles<br />

(average diameter ≤ 0.8 nm).<br />

Silver Enhancement Detection of colloidal gold particles 1 465 350 1 set<br />

Reagents (anti-DIG-gold) by silver deposition on<br />

the particle surface<br />

***Sold under the tradename of Genius in the US.<br />

***EP Patent 0 324 474 granted <strong>to</strong> Boehringer Mannheim GmbH.<br />

***Licensed by <strong>In</strong>stitute Pasteur.<br />

CONTENTS<br />

INDEX<br />

151<br />

5


5<br />

152<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

RNA in situ hybridization using DIG-labeled<br />

cRNA probes<br />

H. B. P. M. Dijkman, S. Mentzel, A. S. de Jong, and K. J. M. Assmann<br />

Department of Pathology, Nijmegen University Hospital, Nijmegen, The Netherlands.<br />

<strong>In</strong> recent years, the in situ hybridization<br />

(ISH) technique has found widespread<br />

application in both basic science and diagnostic<br />

clinical research. The ISH technique<br />

has frequently been used <strong>to</strong> localize specific<br />

genes on metaphase chromosomes and<br />

<strong>to</strong> detect viral and bacterial genomes in<br />

infected tissues. The RNA in situ hybridization<br />

(RISH) technique for the examination<br />

of mRNA expression has gained less<br />

attention due <strong>to</strong> the many technical problems<br />

associated with this technique.<br />

<strong>In</strong> this report, we present a step-by-step<br />

pro<strong>to</strong>col for a nonradioactive RISH technique<br />

on frozen sections using digoxigeninlabeled<br />

copy RNA (cRNA) probes. We<br />

demonstrate this technique on frozen<br />

sections of mouse kidney using DIG-labeled<br />

cRNA probes for the ec<strong>to</strong>enzyme aminopeptidase<br />

A, a low-copy RNA (Assmann et<br />

al., 1992). For a high-copy RNA, we studied<br />

human psoriatic epidermis using a DIGlabeled<br />

cRNA probe for elafin/SKALP, an<br />

inhibi<strong>to</strong>r of leukocyte elastase and proteinase<br />

3 (Alkemade et al., 1994). This pro<strong>to</strong>col has<br />

been optimized <strong>to</strong> give strong hybridization<br />

signals, even with low-copy mRNA<br />

molecules.<br />

For a full discussion of each step of this<br />

pro<strong>to</strong>col, along with more hints on enhancing<br />

the result of this often laborious and<br />

troublesome technique, see the previously<br />

published version of this report (Dijkman et<br />

al., 1995a; 1995b).<br />

I. Probe selection<br />

Choosing the type of probe (i.e., DNA,<br />

RNA, or oligonucleotide) is essential for<br />

a good final result. For the optimization of<br />

the probe labeling, we have tested four<br />

methods of incorporating the DIG label:<br />

Direct labeling of cDNA molecules using<br />

the DIG DNA Labeling Kit*.<br />

DIG labeling of oligonucleotides using<br />

the DIG Oligonucleotide Tailing Kit*.<br />

DIG labeling of PCR products according<br />

<strong>to</strong> the method of Hannon et al. (1993).<br />

DIG labeling of cRNA molecules using<br />

the DIG RNA Labeling Kit*.<br />

The RNA labeling method gave by far the<br />

best results. Therefore, we provide some<br />

hints on how <strong>to</strong> transcribe DIG-labeled<br />

cRNA molecules:<br />

For cRNA probe synthesis, subclone a<br />

cDNA molecule in an appropriate vec<strong>to</strong>r.<br />

The vec<strong>to</strong>r should have sequences<br />

flanking the insert that allow the insert <strong>to</strong><br />

be transcribed. Typically, commercially<br />

available vec<strong>to</strong>rs have SP6 and T7 RNA<br />

polymerase sites flanking the multiple<br />

cloning sites.<br />

Regulate the length of the cDNA<br />

molecule since this greatly affects the<br />

hybridization efficiency. Usually, a cDNA<br />

length between 200 and 500 nucleotides<br />

gives the best results, allowing efficient<br />

hybridization and good penetration of the<br />

tissue.<br />

When a molecule of interest is expressed as<br />

a high-copy RNA but the target RNA is<br />

masked by proteins, make probes between<br />

100 and 200 nucleotides long for better<br />

penetration (Figure 1).<br />

*Sold under the tradename of Genius in the US.<br />

CONTENTS<br />

INDEX


a<br />

b<br />

c<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

<br />

Figure 1: RNA in situ hybridization on a frozen<br />

section of human psoriatic epidermis with DIGlabeled<br />

cRNA probes coding for human SKALP.<br />

Panel a: An antisense cRNA probe (150 bp) was<br />

used on a 10 µm thick section (magnification x125).<br />

Panel b: An antisense cRNA probe (150 bp) was<br />

used on a 20 µm thick section (magnification x 500).<br />

Panel c: A sense cRNA probe (150 bp) was used on<br />

a 10 µm thick section (magnification x 270). <strong>In</strong>tense<br />

staining of both the stratum spinosum and stratum<br />

granulosum is observed with the antisense probe.<br />

CONTENTS<br />

INDEX<br />

II. Probe labeling<br />

1 After subcloning the cDNA molecule,<br />

linearize the circular vec<strong>to</strong>r with restriction<br />

enzymes that cut the multiple<br />

cloning site in 2 orientations, allowing<br />

sense and antisense synthesis.<br />

Caution: Control this linearization step<br />

carefully by moni<strong>to</strong>ring the digestion<br />

with agarose gel electrophoresis. Circular<br />

molecules that are left in the digestion<br />

mixture affect the transcription efficiency.<br />

2 Extract the linearized molecules from the<br />

digestion mixture by phenol extraction.<br />

3 Label the transcripts from the linearized<br />

molecules with DIG-labeled nucleotides<br />

and the DIG RNA Labeling Kit*<br />

according <strong>to</strong> the instructions given in the<br />

kit, but with the following modifications:<br />

Perform the SP6 polymerase incubation<br />

at 40°C instead of 37°C.<br />

Precipitate the labeled molecules overnight<br />

at –20°C, rather than 30 min at<br />

–70°C.<br />

Moni<strong>to</strong>r the transcription reaction by<br />

agarose gel electrophoresis <strong>to</strong> check for<br />

correct cRNA probe length.<br />

4 Moni<strong>to</strong>r probe labeling by spotting<br />

diluted aliquots of the labeled cRNA<br />

probes on nylon membranes and analyzing<br />

with the DIG Luminescent Detection<br />

Kit*. See also Chapter 4, page 51.<br />

Note: The sense and antisense cRNA<br />

probes should be labeled equally as<br />

efficiently as the control DNA included<br />

in the DIG RNA Labeling Kit*.<br />

5 If necessary, adjust the concentration of<br />

the labeled sense and antisense cRNA<br />

probes so they contain equal amounts of<br />

label.<br />

6 Aliquot the cRNA probes in polypropylene<br />

tubes at –70°C.<br />

Note: Repeated freezing and thawing<br />

affects the labeled cRNA probe.<br />

*Sold under the tradename of Genius in the US.<br />

153<br />

5


5<br />

154<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

III. Preparation of tissue sections<br />

Note: For detection of low-copy RNA<br />

molecules, always prepare frozen sections,<br />

since paraffin embedding causes a loss of<br />

approximately 30% of the RNA. The<br />

method described here has been optimized<br />

for frozen sections.<br />

1 For the processing of tissue, clean all<br />

knives and other materials with RNase<br />

ZAP (AMBION) and work as aseptically<br />

as possible.<br />

2 Remove the tissue from the animal,<br />

immediately snap-freeze the tissue, and<br />

s<strong>to</strong>re it in liquid nitrogen. Work quickly<br />

<strong>to</strong> avoid degradation of RNA (Bar<strong>to</strong>n et<br />

al., 1993).<br />

3 Cut 10 µm thick frozen sections.<br />

Note: To get a higher signal, cut sections<br />

thicker than 10 µm. For better signal<br />

localization, cut sections thinner than<br />

10 µm.<br />

4 Mount tissue directly on Superfrost Plus<br />

slides (Menzel Gläser, Omnilabo, Breda,<br />

The Netherlands) <strong>to</strong> prevent detachment<br />

of the section during the RISH<br />

procedure.<br />

Figure 2: RNA in situ hybridization on a frozen <br />

kidney section with a DIG-labeled cRNA probe for<br />

mouse aminopeptidase A (without delipidization).<br />

The section was 10 µM thick and was taken from<br />

a male BALB/c mouse. Note the many nonspecific<br />

lipid vesicles in the section. The specific hybridization<br />

signal appears in cells of the glomerulus<br />

(arrows). Magnification, 600 x.<br />

IV. Pretreatment of slides<br />

Caution: Prepare all solutions for<br />

Procedures IV with water that has been<br />

treated with 0.1% DEPC.<br />

1 Directly after mounting, heat the sections<br />

on a s<strong>to</strong>ve for 2 min at 50°C <strong>to</strong> fix the<br />

RNA in the tissue.<br />

Note: Vary the time (from 10–120 s) and<br />

temperature (from 50°–90°C) of the<br />

fixation step <strong>to</strong> accommodate different<br />

types of tissue and RNA.<br />

2 Dry the sections for 30 min.<br />

3 Circle the sections with a silicone pen<br />

(DAKO A/S, Glostrup, Denmark) <strong>to</strong><br />

prevent smudging of the substrate.<br />

4 Use the following criteria <strong>to</strong> decide the<br />

next step of the procedure:<br />

If the target tissue has lipid vesicles<br />

(Figure 2) that interfere with the RISH<br />

detection, go <strong>to</strong> Step 5.<br />

If the target tissue does not have lipid<br />

vesicles that interfere with the RISH<br />

detection, go <strong>to</strong> Step 6.<br />

➞<br />

5 (Optional) To minimize nonspecific<br />

background caused by lipid vesicles, do<br />

the following (all at room temperature):<br />

Delipidize the sections by extracting<br />

them for 5 min in chloroform.<br />

Dry the section <strong>to</strong> evaporate the<br />

chloroform.<br />

Note: This delipidation step may be<br />

omitted in pilot studies on a new tissue.<br />

6 Fix the tissue sections as follows (all at<br />

room temperature):<br />

<strong>In</strong>cubate tissue in PBS containing 4%<br />

paraformaldehyde for 7 min.<br />

Wash 1 x 3 min with PBS.<br />

Wash 2 x 5 min with 2 x SSC.<br />

Note: 1 x SSC contains 150 mM NaCl,<br />

15 mM sodium citrate; pH 7.2.<br />

CONTENTS<br />

➞<br />

➞<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

V. Prehybridization, hybridization,<br />

and posthybridization<br />

Caution: Prepare all solutions for<br />

Procedures V with water that has been<br />

treated with 0.1% DEPC.<br />

1 Prehybridize each section for 60 min at<br />

37°C in 100 µl hybridization buffer<br />

[4 x SSC; 10% dextran sulfate; 1 x<br />

Denhardt’s solution (0.02% Ficoll ® 400,<br />

0.02% polyvinyl pyrolidone, 0.02%<br />

bovine serum albumin); 2 mM EDTA;<br />

50% deionized formamide; 500 µg/ml<br />

herring sperm DNA].<br />

Note: You may vary the temperature of<br />

the prehybridization and hybridization<br />

steps between 37°C and 50°C.<br />

2 Perform hybridization as follows:<br />

Remove and discard the buffer from<br />

the prehybridization step.<br />

Cover each section with 100 µl hybridization<br />

buffer containing 200 ng/ml of<br />

DIG-labeled cRNA probe.<br />

Caution: Do not use coverslips, since<br />

they decrease the signal up <strong>to</strong> fourfold.<br />

Caution: A probe concentration of<br />

200 ng/ml holds only if the cRNA was<br />

labeled efficiently. If, in Procedure II,<br />

the cRNA probe was not labeled as<br />

efficiently as the controls from the<br />

DIG RNA Labeling Kit*, adjust the<br />

concentration of the cRNA probe in<br />

the hybridization mixture.<br />

<strong>In</strong>cubate for 16 h at 37°C.<br />

Note: You may vary the temperature<br />

of the prehybridization and hybridization<br />

steps between 37°C and 50°C.<br />

3 After the hybridization, wash unbound<br />

cRNA probe from the section as follows:<br />

1 x 5 min with 2 x SSC at 37°C.<br />

Note: To make the wash more<br />

stringent and wash away nonspecifically<br />

bound cRNA probe, lower the<br />

salt concentration or increase the<br />

formamide concentration in the<br />

washing buffer and perform the<br />

washing step at a temperature 5°C<br />

beneath the melting temperature of<br />

the probe.<br />

3 x 5 min with 60% formamide in<br />

0.2 x SSC at 37°C.<br />

2 x 5 min with 2 x SSC at room temperature.<br />

*Sold under the tradename of Genius in the US.<br />

CONTENTS<br />

INDEX<br />

VI. Immunological detection<br />

1 Wash the sections for 5 min at room<br />

temperature with 100 mM Tris-HCl (pH<br />

7.5), 150 mM NaCl.<br />

2 <strong>In</strong>cubate the sections for 30 min at room<br />

temperature with blocking buffer<br />

[100 mM Tris-HCl (pH 7.5), 150 mM<br />

NaCl; saturated with blocking reagent].<br />

3 Prepare a 1:200 dilution of alkaline phosphatase-conjugated<br />

anti-DIG antibody<br />

(polyclonal, Fab fragments, from sheep)<br />

in blocking buffer (from Step 2).<br />

4 <strong>In</strong>cubate the sections for 120 min at room<br />

temperature with the diluted anti-DIG<br />

antibody conjugate prepared in Step 3.<br />

5 Wash the sections as follows:<br />

2 x 5 min at room temperature with<br />

100 mM Tris-HCl (pH 7.5), 150 mM<br />

NaCl.<br />

1x10 min at room temperature with<br />

100 mM detection buffer [Tris-HCl<br />

(pH 9.5), 100 mM NaCl, 50 mM<br />

MgCl2].<br />

6 Cover the sections with detection buffer<br />

containing 0.18 mg/ml BCIP, 0.34 mg/ml<br />

NBT, and 240 µg/ml levamisole. <strong>In</strong>cubate<br />

for 16 h at room temperature (for<br />

detection of low abundance RNA).<br />

Note: This development should be<br />

carried out with the slides standing up<br />

in a small container <strong>to</strong> prevent nonspecifically<br />

converted substrate from<br />

falling on<strong>to</strong> the section.<br />

7 S<strong>to</strong>p the color reaction by washing the<br />

sections for 5 min in 10 mM Tris (pH 8),<br />

1 mM EDTA.<br />

VII. Counterstain<br />

1 Wash the sections for 5 min with distilled<br />

H2O at room temperature.<br />

2 Counterstain the sections for 5–10 min<br />

with 1% methylene green at 37°C.<br />

3 Repeat wash (from Step 1).<br />

4 Mount coverslips in Kaiser’s solution<br />

(available from Merck).<br />

155<br />

5


5<br />

156<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Results and discussion<br />

Figure 3 shows a typical RISH signal<br />

obtained with this pro<strong>to</strong>col and a labeled<br />

antisense cRNA probe coding for mouse<br />

aminopeptidase A. The pro<strong>to</strong>col included<br />

the optional delipidation step with chloroform<br />

(Procedure IV, Step 5). Figure 4 shows<br />

the control reaction with the labeled sense<br />

cRNA probe.<br />

We have provided a standard pro<strong>to</strong>col for<br />

RISH on low- and high-copy RNA<br />

molecules. Using this pro<strong>to</strong>col, one should<br />

be able <strong>to</strong> perform RISH on each RNA<br />

molecule of interest, with only minor<br />

modifications depending on the abundance<br />

of the RNA of interest.<br />

➞<br />

➞<br />

<br />

Figure 3: RNA in situ hybridization on a frozen<br />

kidney section with a DIG-labeled antisense<br />

cRNA probe for mouse aminopeptidase A (after<br />

delipidization). The section was 10 µm thick<br />

and was taken from a male BALB/c mouse.<br />

Pretreatment of the section with chloroform prior <strong>to</strong><br />

the hybridization delipidized the section and<br />

reduced<br />

a nonspecific signal previously observed in lipid<br />

vesicles (Figure 2). The specific hybridization signal<br />

(arrows) was undiminished by the chloroform<br />

➞<br />

Acknowledgments<br />

The cDNA clone coding for the mouse aminopeptidase<br />

A cDNA sequence was kindly<br />

provided by Dr. Max D. Cooper from the<br />

University of Alabama at Birmingham, USA<br />

(Wu et al., 1990). The cRNA probe for<br />

elafin/SKALP was kindly provided by Dr. J.<br />

Schalkwijk, department of Derma<strong>to</strong>logy,<br />

University Hospital Nijmegen, The<br />

Netherlands.<br />

Figure 4: RNA in situ hybridization on a frozen<br />

kidney section from the same mouse used in<br />

Figure 3 with a DIG-labeled sense cRNA probe<br />

for mouse aminopeptidase A. As in Figure 3,<br />

the section was 10 µm thick and was taken from a<br />

male BALB/c mouse. The section was pretreated<br />

with chloroform prior <strong>to</strong> the hybridization. No signal<br />

could be seen, indicating the specificity of the<br />

antisense hybridization signal seen in Figure 3.<br />

(magnification, 600 x).<br />

CONTENTS<br />

INDEX


References<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

Alkemade, J. A. C.; Molhuizen, H. O. F.; Ponec, M.;<br />

Kempenaar, J. A.; Zeeuwen, P. L. J. M.; de Jongh,<br />

G. J.; van Vlijmen-Willems, I. M. J. J.; van Erp, P. E. J.;<br />

van de Kerkhof, P. C. M.; Schalkwijk, J. (1994)<br />

SKALP/elafin is an inducible proteinase inhibi<strong>to</strong>r in<br />

human epidermal keratinocytes.<br />

J. Cell Sci. 107, 2335–2342.<br />

Assmann, K. J. M.; van Son, J. P. H. F.; Dijkman,<br />

H. B. P. M.; Koene, R. A. P. (1992) A nephri<strong>to</strong>genic<br />

rat monoclonal antibody <strong>to</strong> mouse aminopeptidase<br />

A. <strong>In</strong>duction of massive albuminuria after a single<br />

intravenous injection. J. Exp. Med. 175, 623–636.<br />

Dijkman, H. B. P. M.; Mentzel, S.; de Jong, A. S.;<br />

Assmann; K. J. M. (1995a) RNA <strong>In</strong> <strong>Situ</strong> hybridization<br />

using digoxigenin-labeled cRNA probes. Biochemica<br />

(U.S. version) No. 2 [1995], 23–27.<br />

CONTENTS<br />

INDEX<br />

Dijkman, H. B. P. M.; Mentzel, S.; de Jong, A. S.;<br />

Assmann; K. J. M. (1995b) RNA <strong>In</strong> <strong>Situ</strong> hybridization<br />

using digoxigenin-labeled cRNA probes. Biochemica<br />

(worldwide version) No. 2 [1995], 21–25.<br />

Bar<strong>to</strong>n, A. J. L.; Pearson, R. C. A.; Najlerahim, A.;<br />

Harrison, P. J. (1993) Pre- and postmortem<br />

influences on brain RNA. J. Neurochem. 61, 1–11.<br />

Hannon, K.; Johns<strong>to</strong>ne, E.; Craft, L. S.; Little, S. P.;<br />

Smith, C. K.; Heiman, M. L.; Santerre, R. F. (1993)<br />

Synthesis of PCR-derived, single-stranded DNA<br />

probes suitable for in situ hybridization.<br />

Anal. Biochem. 212, 421–427.<br />

Wu, Q.; Lahti, J. M.; Air, G. M.; Burrows, P. D.;<br />

Cooper, M. D. (1990) Molecular cloning of the murine<br />

BP-1/6C3 antigen: a member of the zinc-dependent<br />

metallopeptidase family. Proc. Natl. Acad. Sci. USA<br />

87, 993–997.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG RNA Labeling For RNA labeling with digoxigenin-UTP 1175 025 1 Kit (2 x10<br />

Kit* , ** , *** by in vitro transcription with SP6 and labeling<br />

T7 RNA polymerases. reactions)<br />

EDTA Powder 808 261 250 g<br />

808 270 500 g<br />

808 288 1 kg<br />

DNA, from herring lyophilized sodium salt 223 646 1 g<br />

sperm<br />

Blocking Reagent For nucleic acid hybridization 1 096 176 50 g<br />

Anti-Digoxigenin-AP Anti-Digoxigenin, Fab fragments 1 093 274 150 U<br />

conjugated with alkaline phosphatase (200 µl)<br />

Tris For preparation of buffer solutions 127 434 100 g<br />

708 968 500 g<br />

708 976 1 kg<br />

NBT solution 100 mg/ml nitroblue tetrazolium salt in 1 383 213 3 ml (300 mg)<br />

70% (v/v) dimethylformamide (dilute prior<br />

<strong>to</strong> use)<br />

BCIP solution 50 mg/ml 5-bromo-4-chloro-3-indolyl 1 383 221 3 ml (150 mg)<br />

phosphate (BCIP), <strong>to</strong>luidinium salt in<br />

100% dimethylformamide<br />

***Sold under the tradename of Genius in the US.<br />

***EP Patent 0 324 474 granted <strong>to</strong> Boehringer Mannheim GmbH.<br />

***Licensed by <strong>In</strong>stitute Pasteur.<br />

157<br />

5


5<br />

158<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

Localization of the expression of the segmentation<br />

gene hunchback in Drosophila embryos with<br />

DIG-labeled DNA probes<br />

Dr. D. Tautz, <strong>In</strong>stitute for Genetics and Microbiology, University of Munich, Germany.<br />

<strong>In</strong> situ hybridization <strong>to</strong> RNA on sections<br />

of early embryos provided one of the most<br />

significant advances for the analysis of<br />

spatially regulated transcripts of segmentation<br />

genes in Drosophila. It was therefore<br />

soon adapted <strong>to</strong> other systems. The<br />

procedure is, however, rather tedious and<br />

time-consuming. It depends on the quality<br />

of the sections and particularly on the<br />

quality of the probe.<br />

<strong>In</strong> contrast, antibody staining of the protein<br />

products from these genes in whole embryos<br />

simplified the procedure and allowed a much<br />

higher resolution. However, certain regula<strong>to</strong>ry<br />

events have <strong>to</strong> be analyzed at the RNA<br />

level. Also antibody production itself is<br />

somewhat time consuming. We have therefore<br />

sought <strong>to</strong> develop an in situ hybridization<br />

technique which offers the same advantages as<br />

antibody staining. We found the use of<br />

digoxigenin-labeled probes <strong>to</strong> be highly<br />

successful for this purpose. These probes<br />

allow a resolution which is directly comparable<br />

<strong>to</strong> antibody staining in embryos, and<br />

both the sensitivity and the speed is superior<br />

<strong>to</strong> conventional radioactive methods.<br />

The method is not limited <strong>to</strong> applications in<br />

Drosophila, but is apparently suitable for all<br />

kinds of tissues, at least for those in which<br />

antibody staining has been successful. We<br />

have already developed a pro<strong>to</strong>col for the<br />

staining of specific cells in whole Hydra<br />

animals, which required only minor<br />

modifications (E. Kurz and C. David,<br />

University of Munich, Dept. of Zoology).<br />

The procedure given below has been published<br />

(Tautz and Pfeiffle, 1989).<br />

I. Preparation of embryos<br />

Note: All embryos in this study came from<br />

wild-type Drosophila flies and were collected<br />

on apple juice agar plates at<br />

intervals of 0–4 h at 25°C (Wieschaus and<br />

Nüsslein-Volhard, 1986)<br />

1 Collect the embryos in small baskets.<br />

2 Wash embryos with water.<br />

3 Dechorionate embryos for about 2–3 min<br />

in a solution of 50% commercial bleach<br />

(about 5% sodium hypochlorite) in water.<br />

4 Wash the embryos with 0.1% Tri<strong>to</strong>n ® X-<br />

100.<br />

5 Fix the embryos either with formaldehyde<br />

(Procedure IIA) or paraformaldehyde<br />

(Procedure IIB).<br />

IIA. Formaldehyde fixation<br />

1 Transfer each embryo in<strong>to</strong> a glass<br />

scintillation vial containing 4 ml of<br />

fixation buffer [0.1 M Hepes, pH 6.9;<br />

2 mM magnesium sulfate, 1 mM EGTA<br />

(from a 0.5 M s<strong>to</strong>ck EGTA solution that<br />

has been adjusted <strong>to</strong> pH 8 with NaOH)].<br />

2 Add <strong>to</strong> the scintillation vial 0.5 ml 37%<br />

formaldehyde solution and 5 ml heptane.<br />

3 Shake the vial vigorously for 15–20 min<br />

<strong>to</strong> maintain an effective emulsion of the<br />

organic and the water phase.<br />

4 Remove the lower phase and add 10 ml<br />

methanol.<br />

If the embryos sink <strong>to</strong> the bot<strong>to</strong>m at<br />

this stage, proceed <strong>to</strong> Step 5.<br />

If the embryos do not sink <strong>to</strong> the<br />

bot<strong>to</strong>m at this stage, remove the upper<br />

phase (heptane) and add more methanol.<br />

5 S<strong>to</strong>re the fixed embryos in methanol (up<br />

<strong>to</strong> several weeks) in the refrigera<strong>to</strong>r.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

IIB. Paraformaldehyde fixation<br />

Note: This pro<strong>to</strong>col is more laborious, but<br />

leads, in some cases, <strong>to</strong> a lower background<br />

and <strong>to</strong> better preservation of the morphology.<br />

1 Transfer the embryos in<strong>to</strong> a glass<br />

scintillation vial containing 1.6 ml of<br />

fixation buffer [100 mM Hepes, pH 6.9;<br />

2 mM magnesium sulfate, 1 mM EGTA<br />

(from a 500 mM s<strong>to</strong>ck EGTA solution<br />

that has been adjusted <strong>to</strong> pH 8 with<br />

NaOH)].<br />

2 Liquify a 20% s<strong>to</strong>ck solution of paraformaldehyde<br />

in water as follows:<br />

Remove the s<strong>to</strong>ck 20% paraformaldehyde<br />

from its s<strong>to</strong>rage at –20°C.<br />

Heat the s<strong>to</strong>ck <strong>to</strong> 65°C.<br />

Neutralize with a little NaOH.<br />

3 From the liquified s<strong>to</strong>ck 20% solution of<br />

paraformaldehyde, remove 0.4 ml and<br />

add it <strong>to</strong> the scintillation vial.<br />

4 Also add 8 ml heptane <strong>to</strong> the vial.<br />

5 Shake the vial and treat with methanol as<br />

in Steps 3 and 4 in Procedure IIA above.<br />

6 Transfer each embryo <strong>to</strong> a 1.5 ml microcentrifuge<br />

tube containing ME [90%<br />

methanol, 10% 0.5 M EGTA] .<br />

7 Prepare PP solution (4% paraformaldehyde<br />

in PBS).<br />

Note: PBS contains 130 mM NaCl and<br />

10 mM sodium phosphate; pH 7.2.<br />

8 Refix the embryos and dehydrate by<br />

passage through the following series of<br />

solutions containing ME and PP:<br />

5 min in ME:PP (7:3).<br />

5 min in ME:PP (1:1).<br />

5 min in ME:PP (3:7).<br />

20 min in PP alone.<br />

9 Wash the embryos in PBS for 10 min and<br />

do either of the following:<br />

Use the fixed embryos in Procedure<br />

III.<br />

or<br />

If the fixed embryos are not <strong>to</strong> be used<br />

immediately, dehydrate them in a<br />

series of ethanol solutions (30%, 50%,<br />

then 70% ethanol) and s<strong>to</strong>re them at<br />

–20°C.<br />

Caution: Dehydrated, s<strong>to</strong>red embryos<br />

must be rehydrated before they can<br />

be used in Procedure III.<br />

CONTENTS<br />

INDEX<br />

III. Pretreatment<br />

Caution: <strong>In</strong> the steps below, use the<br />

normal precautions for avoiding potential<br />

RNase contamination.<br />

1 Treat the PBS for the following steps with<br />

diethylpyrocarbonate (20 µl per 500 ml<br />

PBS), then au<strong>to</strong>clave the treated PBS.<br />

2 Place each fixed embryo in a 1.5 ml<br />

microcentrifuge tube. Perform the incubations<br />

in Steps 3–8 below at room<br />

temperature on a revolving wheel.<br />

3 Wash each embryo 3 x 5 min in 1 ml PBT<br />

(PBS plus 0.1% Tween ® 20).<br />

Note: Tween reduces non-specific adhesion<br />

of the embryos <strong>to</strong> the plastic surfaces.<br />

4 <strong>In</strong>cubate the embryo for 3–5 min in 1 ml of<br />

PBS containing 50 µg/ml Proteinase K.<br />

5 S<strong>to</strong>p the digestion by removing the<br />

Proteinase K solution, adding 1 ml PBT<br />

containing 2 mg/ml glycine <strong>to</strong> the<br />

embryo. <strong>In</strong>cubate for 2 min.<br />

Caution: The proteinase digestion time<br />

is critical. If it is <strong>to</strong>o short, the background<br />

increases and sensitivity is lost.<br />

If it is <strong>to</strong>o long, the embryos burst<br />

during the subsequent steps.<br />

6 After the Proteinase K digestion, wash<br />

the embryo 2 x 5 min in 1 ml PBT.<br />

7 Refix for 20 min in 1 ml PP (4%<br />

paraformaldehyde in PBS).<br />

8 Wash 3 x 10 min in 1 ml PBT.<br />

IV. Probe labeling<br />

The probes are DNA restriction fragments<br />

isolated from agarose gels. Label them<br />

according <strong>to</strong> the random priming method<br />

described in Chapter 4 of this manual.<br />

159<br />

5


5<br />

160<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

V. <strong>Hybridization</strong><br />

1 Prepare the hybridization solution (HS)<br />

[50% formamide; 5 x SSC (where 1 x SSC<br />

contains 150 mM NaCl, 15 mM sodium<br />

citrate); 50 µg/ml heparin, 0.1% Tween ®<br />

20; and 100 µg/ml sonicated and denatured<br />

salmon sperm DNA].<br />

Note: HS may be s<strong>to</strong>red at –20°C.<br />

2 Wash the embryos as follows:<br />

20 min in 1:1 HS:PBT.<br />

20–60 min in HS.<br />

3 Prehybridize for 20–60 min in HS at<br />

45°C in a water bath.<br />

4 Heat denature the probe in the presence<br />

of 10 µg sonicated salmon sperm DNA.<br />

Note: The salmon sperm DNA should<br />

effectively compete out simple sequences<br />

and thus reduce the background.<br />

5 Dilute the probe <strong>to</strong> approximately 0.5 µg<br />

labeled probe per ml in HS.<br />

6 Remove most of the prehybridization<br />

supernatant from the embryo, then add<br />

the heat-denatured probe and thoroughly<br />

mix.<br />

7 Hybridize overnight at 45°C in a water<br />

bath without shaking.<br />

8 Wash the embryos at room temperature<br />

in each of the following solutions:<br />

20 min in HS.<br />

20 min in 4:1 HS:PBT.<br />

20 min in 3:2 HS:PBT.<br />

20 min in 2:3 HS:PBT.<br />

20 min in 1:4 HS:PBT.<br />

2 x 20 min in PBT.<br />

Note: Use a less extensive washing<br />

pro<strong>to</strong>col if probe produces a low background.<br />

VI. Detection<br />

1 Prepare a fresh dilution (1:2000 <strong>to</strong><br />

1:5000) of alkaline phosphataseconjugated<br />

anti-DIG-antibody in PBT.<br />

Note: The antibody may be preabsorbed<br />

for 1 h with fixed embryos <strong>to</strong><br />

reduce the background.<br />

2 <strong>In</strong>cubate each embryo with 500 µl freshly<br />

diluted antibody conjugate for 1 h at<br />

room temperature on a revolving wheel.<br />

3 Wash the embryo as follows:<br />

4x20 min in PBT.<br />

3x5 min in color buffer [100 mM<br />

NaCl, 50 mM MgCl2, 100 mM Tris<br />

(pH 9.5), 1 mM levamisole, 0.1%<br />

Tween ® 20].<br />

Note: Levamisole is a potent<br />

inhibi<strong>to</strong>r of lysosomal phosphatases.<br />

4 Bring the embryos in<strong>to</strong> a small dish with<br />

1 ml of color buffer. Add <strong>to</strong> this<br />

4.5 µl NBT and 3.5 µl BCIP with thorough<br />

mixing.<br />

4 Develop the color for 10–60 min in the<br />

dark.<br />

Note: Color development may<br />

occasionally be controlled under the<br />

binocular microscope and s<strong>to</strong>pped in<br />

PBT before background develops.<br />

6 Dehydrate the embryos in a series of<br />

ethanol solutions and mount in GMM<br />

(Lawrence et al., 1986).<br />

Results<br />

Figure 1 shows typical results obtained with<br />

the above pro<strong>to</strong>col. Panel a shows three<br />

embryos at different developmental stages<br />

which represent the dynamic expression<br />

pattern of hunchback. The embryo on the<br />

<strong>to</strong>p right in Panel a shows the maternal<br />

gradient of hunchback RNA distribution;<br />

the embryo at the left the primary zygotic<br />

expression in two domains; and the middle<br />

embryo, the late zygotic expression.<br />

<strong>In</strong> Panel b, an enlarged section of an embryo<br />

shows the predominant cy<strong>to</strong>plasmic location<br />

of the hybridization signal. The section<br />

of the embryo corresponds <strong>to</strong> the frame<br />

depicted in Panel a although the pho<strong>to</strong> was<br />

taken of a different embryo.<br />

Panel c shows an embryo after gastrulation,<br />

where individual cells of the developing<br />

nervous system express hunchback.<br />

CONTENTS<br />

INDEX


References<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

ISH <strong>to</strong> Tissues<br />

a c<br />

Lawrence, P. A.; Johns<strong>to</strong>n, P.; Morata, G. (1986)<br />

Methods of marking cells. <strong>In</strong>: Roberts, D. B. (ed.)<br />

Drosophila, A Practical Approach. Oxford: IRL Press,<br />

pp. 229–242.<br />

Tautz, D.; Pfeiffle, C. (1989) A nonradioactive in situ<br />

hybridization method for the localization of specific<br />

RNAs in Drosophila embryos reveals a translational<br />

control of the segmentation gene hunchback.<br />

Chromosoma (Berl.) 98, 81–85.<br />

CONTENTS<br />

INDEX<br />

Wieschaus, E.; Nüsslein-Vollhard, C. (1986)<br />

Looking at embryos. <strong>In</strong>: Roberts, D. B. (ed.)<br />

Drosophila, A Practical Approach. Oxford: IRL<br />

Press, pp. 199–228.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

Tri<strong>to</strong>n ® X-100 Vicous, liquid 789 704 100 ml<br />

Hepes Purity: 98% (from N) 223 778 100 g<br />

737 151 500 g<br />

242 608 1 kg<br />

EGTA Purity: > 98% 1 093 053 50 g<br />

Tween ® 20 1 332 465 5 x10 ml<br />

Proteinase K Lyophilizate 161 519 25 mg<br />

745 723 100 mg<br />

1 000 144 500 mg<br />

1 092 766 1 g<br />

DIG-High Prime* , ** , *** Premixed solution for 40 random-primed 1 585 606 160 µl<br />

DNA labeling reactions with DIG-11-dUTP, (40 labeling<br />

alkali-labile reactions)<br />

Anti-Digoxigenin-AP 750 units/ml Anti-Digoxigenin, Fab 1 093 274 150 U<br />

fragments conjugated <strong>to</strong> alkaline (200 µl)<br />

phosphatase<br />

NBT solution 100 mg/ml nitroblue tetrazolium salt in 1 383 213 3 ml (300 mg)<br />

70% (v/v) dimethylformamide (dilute prior<br />

<strong>to</strong> use)<br />

BCIP solution 50 mg/ml 5-bromo-4-chloro-3-indolyl 1 383 221 3 ml (150 mg)<br />

phosphate (BCIP), <strong>to</strong>luidinium salt in<br />

100% dimethylformamide<br />

b<br />

nuclei<br />

cy<strong>to</strong>plasm<br />

yolk<br />

<br />

Figure 1: <strong>In</strong> situ hybridization on<br />

whole Drosophila embryos using<br />

a probe for the segmentation gene<br />

hunchback. Optical sections were<br />

obtained by appropriate focusing.<br />

For details of the panels, see text.<br />

Panel a (The bar at the <strong>to</strong>p<br />

represents approx. 100 µm.)<br />

Panel b (The bar at the <strong>to</strong>p<br />

represents approx. 5 µm.)<br />

***EP Patent 0 324 474 granted <strong>to</strong><br />

and EP Patent application<br />

0 371 262 pending for Boehringer<br />

Mannheim GmbH.<br />

***This product or the use of this<br />

product may be covered by one<br />

or more patents of Boehringer<br />

Mannheim GmbH, including the<br />

following: EP patent 0 649 909<br />

(application pending).<br />

***Licensed by <strong>In</strong>stitute Pasteur.<br />

161<br />

5


5<br />

162<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

Detection of even-skipped transcripts in Drosophila<br />

embryos with PCR/DIG-labeled DNA probes<br />

Dr. N. Patel and Dr. C. Goodman, Carnegie <strong>In</strong>stitute of Washing<strong>to</strong>n,<br />

Embryology Department, Baltimore, Maryland, USA.<br />

This pro<strong>to</strong>col has been used <strong>to</strong> detect the<br />

transcript distribution of a number of genes<br />

by in situ hybridization, including evenskipped<br />

and seven-up, in whole mount<br />

Drosophila embryos, and engrailed<br />

Antennapedia in whole mount grasshopper<br />

embryos. The in situ hybridization and<br />

detection was performed essentially<br />

according <strong>to</strong> the pro<strong>to</strong>col of Tautz and<br />

Pfeiffle (1989).<br />

This labora<strong>to</strong>ry uses PCR rather than<br />

random primed labeling <strong>to</strong> prepare DIGlabeled<br />

probes because:<br />

A much larger quantity of probe can be<br />

made with the same amount of starting<br />

nucleotide.<br />

The ratio of labeled DNA <strong>to</strong> unlabeled<br />

starting material is much higher<br />

(especially important when transcripts <strong>to</strong><br />

be detected are not very abundant).<br />

PCR can produce strand-specific copies.<br />

Disadvantage:<br />

It is more difficult <strong>to</strong> control the probe<br />

size.<br />

This labora<strong>to</strong>ry has also found that biotin-<br />

16-dUTP incorporated in the same way and<br />

detected with streptavidin-alkaline phosphatase<br />

is about three- <strong>to</strong> fivefold less<br />

sensitive than DIG-labeled probes in in situ<br />

hybridization experiments.<br />

I. Probe labeling<br />

1 Prepare the following s<strong>to</strong>ck solutions:<br />

10 x concentrated reaction mix: 500 mM<br />

KCl; 100 mM Tris-HCl, pH 8.3;<br />

15 mM MgCl2; 0.01% (w/v) gelatin.<br />

5 x concentrated dNTP mix: 1 mM<br />

dATP, 1 mM dCTP, 1 mM dGTP,<br />

0.65 mM dTTP, 0.35 mM digoxigenin-<br />

11-dUTP.<br />

A primer s<strong>to</strong>ck solution containing<br />

either 30 ng/µl (approx. 5.3 mmol)<br />

primer 1 (e.g. generated by SP6 RNA<br />

polymerase) or 30 ng/µl (approx.<br />

5.3 mmol) primer 2 (e.g. generated by<br />

T7 RNA polymerase).<br />

2 With a restriction enzyme, linearize “dual<br />

promo<strong>to</strong>r vec<strong>to</strong>r DNA” containing the<br />

insert, as one would <strong>to</strong> make run-off<br />

RNA transcripts.<br />

Note: The two different primers can be<br />

used <strong>to</strong> create an antisense strand and a<br />

sense strand (as control).<br />

3 Heat inactivates the restriction enzyme.<br />

4 Dilute the linearized DNA with water <strong>to</strong><br />

a final concentration of about 100–<br />

200 ng/µl.<br />

Note: If the insert is much over 3 kb,<br />

the probe produced will probably not<br />

represent the entire insert.<br />

5 Set up the following reaction mix:<br />

9.25 µl water.<br />

2.5 µl 10 x concentrated reaction<br />

mixture.<br />

5.0 µl 5 x concentrated dNTP mix.<br />

5.0 µl primer 1 or 2 (from 30 ng/µl<br />

s<strong>to</strong>ck).<br />

2.0 µl linearized DNA (100–200 ng/µl).<br />

6 Add 40 µl mineral oil, centrifuge, then<br />

boil the mix for 5 min.<br />

7 To the mix, add 1.25 µl of 1 unit/µl Taq<br />

DNA Polymerase (1.25 units of Taq<br />

Polymerase). [Final volume of reaction<br />

mix with Taq is 25 ml.]<br />

8 Mix the contents of the reaction tube and<br />

then centrifuge for 2 min.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

9 <strong>In</strong>cubate for 30 cycles in the PCR thermal<br />

cycler under the following conditions:<br />

Denaturation at 95°C for 45 s.<br />

Annealing at 50°–55°C for 30 s.<br />

Note: Annealing temperature depends<br />

on length of primer. Use 55°C for a<br />

21-mer.<br />

Elongation at 72°C for 1.0–1.5 min.<br />

Note: Elongation time depends on<br />

length of insert. Use 1 min for 1.0 kb<br />

or less, 1.5 min for 2.5 kb or more.<br />

10 After the PCR run, add 75 µl distilled H2O<br />

<strong>to</strong> the reaction tube, then centrifuge it.<br />

11 Remove 90–95 µl of the reaction mix<br />

from beneath the oil.<br />

12 To recover the DNA, do an ethanol<br />

precipitation as follows:<br />

Add NaCl <strong>to</strong> a final concentration of<br />

0.1 M.<br />

Add 10 µg of glycogen or tRNA as a<br />

carrier (0.5 µl of a 20 mg/ml s<strong>to</strong>ck).<br />

Add 3 volumes of 100% EtOH.<br />

Mix well and leave at –70°C for<br />

30 min.<br />

Centrifuge.<br />

Wash pellet with 70% ethanol.<br />

Dry under vacuum.<br />

Optional: Perform a second ethanol<br />

precipitation as above.<br />

13 Resuspend DNA pellet in 300 µl of<br />

hybridization buffer [50% formamide;<br />

5 x SSC (where 1 x SSC contains 150 mM<br />

NaCl, 15 mM sodium citrate); 50 µg/ml<br />

heparin, 0.1% Tween ® 20; and 100 µg/<br />

ml sonicated and denatured salmon<br />

sperm DNA] (according <strong>to</strong> Tautz and<br />

Pfeifle, 1989).<br />

14 To reduce the size of the single-stranded<br />

DNA, boil the probe for 40–60 min.<br />

Note: For efficient penetration of and<br />

hybridization <strong>to</strong> the embryos, the<br />

average probe length should be about<br />

50–200 bp.<br />

15 Dilute the probe as much as tenfold<br />

before use.<br />

Note: Optimal dilution varies depending<br />

on the abundance of the transcript<br />

and background staining. We recommend<br />

using the probe either undiluted<br />

(original 300 µl) or diluted up <strong>to</strong> threefold<br />

for the initial experiment.<br />

CONTENTS<br />

INDEX<br />

II. Evaluation of labeling reaction<br />

1 Prepare an aliquot of the probe as follows:<br />

Remove 1 µl of probe from the<br />

reaction mix.<br />

Add 5 µl of 5 x SSC.<br />

Boil 5 min.<br />

Quick cool on ice.<br />

Centrifuge.<br />

2 Spot 1–2 µl of the probe aliquot on<strong>to</strong> a<br />

small nitrocellulose strip cut <strong>to</strong> fit in<strong>to</strong> a<br />

1.5 ml microcentrifuge tube or a 5 ml<br />

snap cap tube.<br />

3 Bake the filter between two sheets of<br />

filter paper in an 80°C vacuum oven for<br />

30 min.<br />

Caution: The residual formamide may<br />

cause the nitrocellulose <strong>to</strong> warp. If this<br />

is a problem, reduce the time in the<br />

baking oven or do this spot test before<br />

the second precipitation (Procedure I,<br />

Step 12).<br />

Note: Unincorporated nucleotide binds<br />

only slightly <strong>to</strong> the nitrocellulose.<br />

4 Treat the baked filter as follows:<br />

Wet the filter with 2 x SSC.<br />

Wash filter 2 x 5 min in PBT (1 x PBS,<br />

0.2% BSA, 0.1% Tri<strong>to</strong>n ® X-100).<br />

Place filter in<strong>to</strong> a 1.5 ml microcentrifuge<br />

tube or 5 ml snap cap tube.<br />

5 Detect the labeled probe as follows:<br />

Block the filter by incubating it<br />

30 min in PBT.<br />

<strong>In</strong>cubate in PBT for 30–60 min with a<br />

1:2000 dilution (in PBT) of alkaline<br />

phosphatase-conjugated anti-DIG antibody.<br />

Wash 4 x 15 min in PBT.<br />

Wash 2 x 5 min in a solution containing<br />

100 mM NaCl; 50 mM MgCl2;<br />

100 mM Tris, pH 9.5; 0.1% Tween ® 20.<br />

Note: Levamisole is not needed.<br />

6 Develop color with NBT and BCIP as<br />

described in the appropriate Boehringer<br />

Mannheim pack insert.<br />

7 S<strong>to</strong>p the reaction when the spots are<br />

visible.<br />

Note: Spots should be visible within a<br />

few minutes and dark after 10–15 min.<br />

163<br />

5


5<br />

*This product is sold under licensing<br />

arrangements with Roche<br />

Molecular Systems and The Perkin-<br />

Elmer Corporation. Purchase of this<br />

product is accompanied by a<br />

license <strong>to</strong> use it in the Polymerase<br />

Chain Reaction (PCR) process in<br />

conjunction with an Authorized<br />

Thermal Cycler. For complete<br />

license disclaimer, see inside back<br />

164<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

III. Preparation of embryos,<br />

hybridization and detection<br />

Perform the preparation of the embryos,<br />

subsequent hybridization of the DIG-PCR<br />

probe, and immunological detection as<br />

described in the Tautz article, “Localization<br />

of the expression of the segmentation gene<br />

hunchback in Drosophila embryos with<br />

digoxigenin-labeled DNA probes,” page<br />

158 in this manual.<br />

Results<br />

a b<br />

Reference<br />

Tautz, D.; Pfeiffle, C. (1989) A nonradioactive in situ<br />

hybridization method for the localization of specific<br />

RNAs in Drosophila embryos reveals a translational<br />

control of the segmentation gene hunchback.<br />

Chromosoma (Berl.) 98, 81–85.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

<br />

Figure 1: Detection of the even-skipped<br />

phenotype on blas<strong>to</strong>derm stage Drosophila<br />

embryos. Panel a shows an in situ hybridization<br />

using the Drosophila even-skipped gene as probe.<br />

Panel b demonstrates the even-skipped product<br />

using the specific antibody as probe. The seven<br />

stripe pattern is associated with the even-skipped<br />

phenotype.<br />

Reagent Description Cat. No. Pack size<br />

PCR DIG Probe For generating highly sensitive probes 1 636 090 1 Kit<br />

Synthesis Kit* labeled with DIG-dUTP (alkali-labile) in<br />

the polymerase chain reaction (PCR)<br />

using a ratio of 1+2 (DIG-dUTP:dTTP)<br />

(25 reactions)<br />

Tween ® 20 1 332 465 5 x10 ml<br />

Glycogen From rabbit liver 106 089 500 mg<br />

BSA Highest quality, lyophilizate 238 031 1 g<br />

238 040 10 g<br />

Tri<strong>to</strong>n ® X-100 Vicous, liquid 789 704 100 ml<br />

Anti-Digoxigenin-AP 750 units/ml Anti-Digoxigenin, Fab 1 093 274 150 U<br />

fragments conjugated <strong>to</strong> alkaline (200 µl)<br />

phosphatase<br />

NBT solution 100 mg/ml nitroblue tetrazolium salt in 1 383 213 3 ml (300 mg)<br />

70% (v/v) dimethylformamide (dilute prior<br />

<strong>to</strong> use)<br />

BCIP solution 50 mg/ml 5-bromo-4-chloro-3-indolyl 1 383 221 3 ml (150 mg)<br />

phosphate (BCIP), <strong>to</strong>luidinium salt in<br />

100% dimethylformamide<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

Whole mount fluorescence in situ hybridization (FISH)<br />

of repetitive DNA sequences on interphase nuclei of<br />

the small cruciferous plant Arabidopsis thaliana<br />

Serge Bauwens 1 and Patrick Van Oostveldt 2<br />

1 Labora<strong>to</strong>ry for Genetics, Gent University, Gent, Belgium<br />

2 Labora<strong>to</strong>ry for Biochemistry and Molecular Cy<strong>to</strong>logy, Gent University, Gent, Belgium<br />

Hybridizing fluorescently labeled DNA<br />

probes in situ <strong>to</strong> the chromatin of interphase<br />

nuclei in whole mounts allows the study of<br />

nuclear architecture in morphologically well<br />

preserved specimens. Fluorescent labeling of<br />

the DNA probes (either directly or<br />

indirectly) allows the simultaneous, but<br />

differential, detection of several sequences<br />

(e.g. Lengauer et al., 1993; Nederlof et al.,<br />

1990). Also, fluorescent signals can be<br />

imaged by confocal microscopy so that<br />

stacks of optical section images can be<br />

recorded through the whole mounts.<br />

Multiple labeling FISH on whole mounts<br />

therefore allows the study of the relative<br />

positions of different chromosomes or<br />

chromosome segments in individual<br />

interphase nuclei as well as between nuclei of<br />

related cells.<br />

<strong>In</strong> the experiments presented here, two<br />

tandemly repeated sequences, rDNA and a<br />

500 bp repeat sequence, were hybridized <strong>to</strong><br />

interphase nuclei of seedlings and flowers<br />

(inflorescences) of the small cruciferous<br />

plant Arabidopsis thaliana. The procedure<br />

used in the experiments, based on the<br />

pro<strong>to</strong>cols published by Ludevid et al. (1992)<br />

and Tautz and Pfeifle (1989), was described<br />

earlier by Bauwens et al. (1994).<br />

I. Seed sterilization and germination<br />

Note: Procedure I is based on the pro<strong>to</strong>col<br />

of Valvekens et al. (1988).<br />

1 Surface sterilize seeds of Arabidopsis<br />

thaliana (C24) by immersing them as<br />

follows:<br />

2 min in 70% (v/v) ethanol.<br />

15 min in a solution of 5% (v/v)<br />

NaOCl and 0.05% (v/v) Tween ® 20.<br />

2 Wash seeds 5 times in sterile, distilled<br />

water.<br />

CONTENTS<br />

INDEX<br />

3 Pipette on<strong>to</strong> germination medium (1x<br />

Murashige and Skoog salt mixture (Flow<br />

Labora<strong>to</strong>ries, USA); 0.5 g/L 2-(Nmorpholino)ethane<br />

sulphonic acid<br />

(MES), pH 5.7 (adjusted with 1 M<br />

KOH); 0.8% (w/v) Bac<strong>to</strong>-agar (Difco<br />

Labora<strong>to</strong>ries, USA).<br />

4 Allow the seeds <strong>to</strong> germinate at room<br />

conditions for 4 days.<br />

5 Transfer part of the seedlings <strong>to</strong> soil.<br />

6 Grow plants under continuous light<br />

conditions at desk temperature.<br />

7 Harvest flowers and inflorescences after<br />

3–4 weeks.<br />

II. Tissue fixation<br />

1 Place approximately 30–40 seedlings or a<br />

few flowers or inflorescences in a glass<br />

vial containing:<br />

4.365 ml fixation buffer [1.1 x PBS;<br />

0.067 M EGTA, pH 7.5 (adjusted with<br />

NaOH)].<br />

Note: 10 x PBS contains 1.3 M NaCl,<br />

0.0027 M KCl, 0.07 M Na2HPO4, 0.03 M<br />

NaH2PO4; pH 7.2.<br />

0.135 ml 37% formaldehyde (Sigma,<br />

USA).<br />

0.5 ml DMSO.<br />

Note: Final concentrations in vial are<br />

1% formaldehyde and 10% DMSO.<br />

2 Rock the glass vial for 25 min at room<br />

temperature.<br />

3 Remove the fixative and rinse as follows:<br />

2 x with 5 ml methanol.<br />

4 x with 5 ml ethanol.<br />

4 Discard the last ethanol wash, then cover<br />

sample with a final 5 ml ethanol.<br />

5 Leave sample at –20°C for 2–4 days.<br />

Caution: Keeping the material for<br />

longer periods of time in ethanol makes<br />

it brittle.<br />

165<br />

5


5<br />

166<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

III. Labeling of the probe DNA<br />

1 Use the following as hybridization<br />

probes:<br />

A mixture of three ribosomal DNA<br />

(rDNA) inserts, each cloned in<strong>to</strong> pBS<br />

(I)KS + (Stratagene, USA) from A.<br />

thaliana. The inserts contain the 5.8S,<br />

18S and 25S rRNA genes, as well as the<br />

intergenic region (IGR) (Unfried and<br />

Gruendler, 1990; Unfried et al., 1989).<br />

A 500 bp repeat DNA sequence,<br />

cloned in<strong>to</strong> pGem-2 (Promega, USA).<br />

The repeat is one of three classes of<br />

highly repetitive, tandemly arranged<br />

DNA sequences in A. thaliana<br />

(Simoens et al., 1988).<br />

2 Label undigested samples of both probes<br />

according <strong>to</strong> the nick translation procedures<br />

in Chapter IV of this manual. Use<br />

the following labels:<br />

Label the rDNA with either DIGdUTP<br />

or fluorescein-dUTP.<br />

Note: The concentration of substituted<br />

nucleotide in the nick translation<br />

labeling mixture should be the<br />

same for either fluorescein-dUTP or<br />

DIG-dUTP.<br />

Label the 500 bp repeat DNA with<br />

DIG-dUTP.<br />

3 After nick translation, treat each labeled<br />

probe as follows:<br />

Co-precipitate 1 µg of labeled DNA<br />

with 55 µg of sonicated salmon sperm<br />

DNA (Sigma, USA).<br />

Redissolve probe in 25 µl H2O <strong>to</strong> a<br />

concentration of 40 ng labeled DNA<br />

per µl.<br />

IV. Pretreatment<br />

1 Remove ethanol from seedlings or flowers<br />

(or inflorescences) and transfer<br />

material <strong>to</strong> microcentrifuge tubes.<br />

2 Fix each sample as follows:<br />

Rinse 2 x with 1 ml ethanol.<br />

Replace ethanol with 1 ml ethanol/<br />

xylene (1:1) and incubate for 30 min.<br />

Rinse 2 x with 1 ml ethanol.<br />

Rinse 2 x with 1 ml methanol.<br />

Replace methanol with 1 ml of a 1:1<br />

mixture of methanol and [PBT<br />

containing 1% (v/v) formaldehyde].<br />

Rock for 5 min.<br />

Note: PBT contains 1 x PBS and<br />

0.1% (v/v) Tween ® 20.<br />

3 Post-fix sample for 25 min in 1 ml PBT<br />

containing 1% formaldehyde.<br />

4 Remove fixative and rinse sample with<br />

5 x1 ml PBT.<br />

5 Wash sample 3 x 1 ml of 2 x SSC (each<br />

wash, 5 min).<br />

Note: 1 x SSC contains 150 mM NaCl<br />

and 15 mM sodium citrate, pH 7.0.<br />

6 Digest with RNase A (100 µg/ml in<br />

2 x SSC) for 1 h at 37°C.<br />

7 Wash 3 x 5 min with 1 ml PBT.<br />

8 Digest with Proteinase K (40 µg/ml in<br />

PBT) for 8 min at 37°C.<br />

9 After the Proteinase K digestion, do the<br />

following:<br />

Rinse 2 x with 1 ml PBT.<br />

Wash 2 x 2 min with 1 ml PBT.<br />

Rinse 2 x with 1 ml PBT.<br />

10 Postfix a second time for 25 min with<br />

1 ml PBT containing 1% formaldehyde.<br />

11 Remove fixative and rinse 5 x with 1 ml<br />

PBT.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

V. <strong>In</strong> situ hybridization<br />

1 Wash each sample 10 min with 1 ml of a<br />

1:1 mixture of PBT and hybridization<br />

solution [hybridization solution contains<br />

50% formamide (Ultra Pure from USB,<br />

USA) in 2 x SSC].<br />

2 Rinse sample with 2 x1 ml hybridization<br />

solution.<br />

3 Remove the hybridization solution and<br />

add the following <strong>to</strong> each sample (<strong>to</strong><br />

produce a final volume of 500 µl of<br />

hybridization solution):<br />

250 µl formamide.<br />

50 µl 20 x SSC.<br />

Enough H2O <strong>to</strong> make a <strong>to</strong>tal volume,<br />

including probes, of 500 µl.<br />

25 µl of each labeled rDNA probe (for<br />

single or double labeling experiments).<br />

25 µl labeled 500 bp repeat probe (for<br />

double labeling experiments only).<br />

Note: Each labeled probe has a final<br />

concentration of 2 ng/µl.<br />

Note: This incubation mixture can be<br />

used for either a single label hybridization<br />

(fluorescein-labeled probe) with<br />

direct detection; a single label hybridization<br />

(DIG-labeled probe) with indirect<br />

detection; or a double label hybridization<br />

(both fluorescein- and digoxigeninlabeled<br />

probes). See Procedure VIII below<br />

for details on these different types of<br />

experiments.<br />

4 Treat the sample as follows:<br />

Denature target and probe in hybridization<br />

solution for 4 min at 100°C.<br />

Place immediately on ice for 3 min.<br />

Centrifuge very briefly.<br />

<strong>In</strong>cubate overnight at 37°C <strong>to</strong> hybridize<br />

probe and target.<br />

Caution: If using a directly labeled<br />

(i.e., fluorescent) probe, perform the<br />

hybridization incubation and the rest<br />

of the procedure in the dark.<br />

CONTENTS<br />

INDEX<br />

VI. Pre-absorption of antibodies<br />

(for indirect detection only)<br />

1 Prepare powdered A. thaliana root or<br />

seedling extract as follows:<br />

Grind the root or seedling under liquid<br />

nitrogen.<br />

Extract the ground powder with<br />

ace<strong>to</strong>ne under liquid nitrogen.<br />

Decant the ace<strong>to</strong>ne supernatant.<br />

Let the residual ace<strong>to</strong>ne evaporate<br />

from the precipitate.<br />

Use the dry, powdered precipitate in<br />

the pre-absorption procedure below.<br />

2 Dilute each detection antibody, in 4 x SSC<br />

containing 1% (w/v) BSA, <strong>to</strong> the<br />

working dilution suggested by the manufacturers<br />

and a final volume of 500 µl.<br />

3 Add approximately 2 mg of powdered<br />

A. thaliana root or seedling extract (from<br />

Step 1 above) <strong>to</strong> the diluted antibody.<br />

4 Pre-absorb the antibodies overnight at<br />

15°C, in the dark.<br />

5 Centrifuge the pre-absorption mixture.<br />

6 Use the supernatant in the immunocy<strong>to</strong>chemical<br />

detection reaction.<br />

VII. Posthybridization washes<br />

1 After overnight hybridization at 37°C<br />

(Procedure V, Step 4), treat the hybridization<br />

sample as follows:<br />

Remove the hybridization solution.<br />

Wash the sample for 1 h in fresh<br />

hybridization solution at 37°C.<br />

Wash the sample 4 x 30 min in hybridization<br />

solution at 37°C.<br />

If performing an in situ hybridization<br />

experiment with directly labeled probe<br />

DNA (rDNA) in a single labeling experiment,<br />

proceed <strong>to</strong> procedure VIII a.<br />

If performing an in situ hybridization<br />

experiment requiring indirect detection<br />

with antibodies, proceed <strong>to</strong> step 2.<br />

2 Bring the seedlings or flowers (or inflorescences)<br />

gradually <strong>to</strong> 4 x SSC through<br />

the following washes (all at room<br />

temperature):<br />

20 min with a 3:1 mix of hybridization<br />

solution and 4 x SSC.<br />

20 min with a 1:1 mix of hybridization<br />

solution and 4 x SSC.<br />

20 min with a 1:3 mix of hybridization<br />

solution and 4 x SSC.<br />

4 x 5 min with 4 x SSC.<br />

167<br />

5


5<br />

<br />

Table 1: Immunocy<strong>to</strong>chemical<br />

detection schemes for single and<br />

double labeling experiments<br />

a All antibodies should be preabsorbed,<br />

according <strong>to</strong> Procedure<br />

VI above.<br />

b Fab fragments.<br />

c Fab fragments, from Sigma, USA.<br />

d Fab fragments.<br />

e Whole molecule, from Chemicon,<br />

USA.<br />

168<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

VIII. Immunocy<strong>to</strong>chemical detection<br />

Use the immunocy<strong>to</strong>chemical detection<br />

schemes detailed in Table 1 <strong>to</strong> analyze the<br />

single and double labeling in situ hybridization<br />

experiments.<br />

Antibodya Type of Experiment Probe Label 1st (detecting) 2nd (amplifying) Procedure <strong>to</strong> Follow<br />

Single label, rDNA Fluorescein- – – VIIIa<br />

direct detection dUTP<br />

Single label, rDNA DIG-dUTP Fluorescein-conju- Fluorescein-conju- VIIIb<br />

indirect detection gated anti-DIG anti- gated anti-sheep antibody<br />

(from sheep) b body (from donkey) c<br />

Double label rDNA Fluorescein- – – VIIIb<br />

dUTP<br />

500 bp DIG-dUTP Tetramethylrhoda- Tetramethylrhodamine-conjugated<br />

mine-conjugated<br />

anti-DIG antibody anti-sheep antibody<br />

(from sheep) d body (from rabbit) e<br />

VIIIa. Direct detection<br />

1 Bring the samples <strong>to</strong> 1 x PBS gradually<br />

through the following washes (all at room<br />

temperature):<br />

20 min with a 3:1 mix of hybridization<br />

solution and 1 x PBS.<br />

20 min with a 1:1 mix of hybridization<br />

solution and 1 x PBS.<br />

20 min with a 1:3 mix of hybridization<br />

solution and 1 x PBS.<br />

4 x 15 min in 1 ml 1 x PBS.<br />

2 Proceed <strong>to</strong> the staining and mounting<br />

procedure (Procedure IX).<br />

VIIIb. <strong>In</strong>direct detection<br />

1 After the posthybridizationwashes (Procedure<br />

VII), remove the 4 x SSC solution<br />

from the samples.<br />

2 Add the first pre-absorbed antibody<br />

(from Table 1) <strong>to</strong> the sample and incubate<br />

overnight at 15°C in the dark.<br />

3 Remove the first antibody and wash the<br />

material 4 x15 min in 1 ml 4 x SSC<br />

containing 0.05% (v/v) Tween ® 20.<br />

4 Depending on whether you are using an<br />

amplifying (second antibody), do either<br />

of the following:<br />

If you use an amplifying antibody,<br />

proceed <strong>to</strong> Step 5.<br />

If you do not use an amplifying<br />

antibody, proceed <strong>to</strong> Step 7.<br />

5 If amplifying the signal, wash the sample<br />

4 x 15 min with 4 x SSC containing 1%<br />

bovine serum albumin.<br />

6 Remove the wash solution; add the<br />

second pre-absorbed antibody (from<br />

Table 1) <strong>to</strong> the sample, and incubate<br />

overnight at 15°C in the dark.<br />

7 After the last (first or second) antibody<br />

incubation, remove the antibody and<br />

wash the sample 4 x 15 min in 1 ml 1 x<br />

PBS.<br />

8 Proceed <strong>to</strong> the staining and mounting<br />

procedure (Procedure IX).<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

IX. Staining and mounting<br />

1 Counterstain the sample as follows:<br />

For single labeling experiments with<br />

fluorescein-conjugated antibodies or<br />

nucleotides: Counterstain the chromatin<br />

of the interphase nuclei with 0.5 µg/ml<br />

propidium iodide (in 1 x PBS) for 1 h in<br />

the dark.<br />

For double labeling experiments with<br />

fluorescein- and tetramethylrhodamineconjugated<br />

nucleotides and antibodies:<br />

Counterstain the chromatin of the<br />

interphase nuclei with 0.2 µg/ml DAPI<br />

(in 1 x PBS) for 1 h in the dark.<br />

Note: DAPI is 4,6'-diamidino-2phenylindole.<br />

2 Place a few seedlings or flowers (or part<br />

of an inflorescence) on a slide.<br />

3 Apply some tape <strong>to</strong> the slides <strong>to</strong> create a<br />

support for the cover slip, so as not <strong>to</strong><br />

crush the seedlings or flowers.<br />

4 Apply a drop of antifade reagent<br />

(Vectashield, Vec<strong>to</strong>r Labora<strong>to</strong>ries, USA)<br />

and cover with a cover slip.<br />

X. Fluorescence microscopy<br />

Xa. Conventional fluorescence microscopy<br />

1 Visually inspect the slides on a<br />

DIAPHOT 300 inverted microscope<br />

(Nikon, Japan), fitted with either a 60 x,<br />

NA 1.40 oil immersion lens (Olympus,<br />

Japan) or an NPL FLUOTAR, 40 x, NA<br />

1.30 oil immersion lens (Leitz, FRG).<br />

2 Use the following filter combinations<br />

(Chroma Technology Corp., USA):<br />

To localize propidium iodide-stained<br />

nuclei and tetramethylrhodaminelabeled<br />

hybrids: filter block 31014 404.<br />

To localize DAPI-stained nuclei: filter<br />

block 31000 404.<br />

To localize fluorescein-labeled hybrids:<br />

filter block 31 001 404.<br />

3 As light source, use a mercury arc lamp<br />

(100 W).<br />

CONTENTS<br />

INDEX<br />

Xb. Confocal fluorescence microscopy<br />

1 Record images with the MRC-600<br />

Confocal Scanning Laser Microscope<br />

(CSLM) System (Bio-Rad, USA). Attach<br />

the CSLM <strong>to</strong> the DIAPHOT 300<br />

inverted microscope fitted with appropriate<br />

lenses (same microscope and lenses<br />

as described in Procedure Xa, Step 1<br />

above).<br />

2 Use the K1/K2 filter block combinations<br />

(Bio-Rad, USA) and either:<br />

The 568 nm line from a Kryp<strong>to</strong>n-<br />

Argon laser (Ion Laser Technology,<br />

Utah, USA), <strong>to</strong> image the propidium<br />

iodide-stained interphase nuclei and<br />

the tetramethylrhodamine-labeled<br />

hybrids.<br />

The 488 nm line from the same<br />

Kryp<strong>to</strong>n-Argon laser, <strong>to</strong> image the<br />

fluorescein-labeled hybrids.<br />

Results and discussion<br />

Figures 1 and 2 show some of the results<br />

obtained by FISH of rDNA and the 500 bp<br />

repeat on whole mounts of flowers and<br />

seedlings from A. thaliana.<br />

The rDNA from A. thaliana covers about<br />

5.7 Mbp per haploid genome (Meyerowitz<br />

and Pruitt, 1985), and is distributed over two<br />

large tandem repeats on chromosomes 2 and<br />

4 (Maluszynska and Heslop-Harrison, 1991;<br />

Murata et al. 1990). Diploid interphase<br />

nuclei from A. thaliana exhibit, however, a<br />

number of rDNA-loci ranging from two <strong>to</strong><br />

more than four (Bauwens et al. 1991) as can<br />

clearly be seen from the merged image in<br />

Figure 1.<br />

The 500 bp repeat sequence covers about<br />

0.3–0.6 Mbp per haploid genome (Bauwens<br />

et al., 1991; Simoens et al., 1988) and exhibits a<br />

chromosome-specific large cluster (Bauwens<br />

and Van Oostveldt, 1991; Bauwens et al.,<br />

1991), resulting in two distinct signals in<br />

diploid interphase nuclei as can be seen from<br />

the merged image in Figure 2.<br />

Some helpful remarks should be made about<br />

confocal observation of fluorescent signals<br />

in whole mounts.<br />

169<br />

5


5<br />

170<br />

Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

Figure 1: Whole mount FISH with rDNA on a<br />

developing flower from A. thaliana. The image is<br />

a merged image representing part of the pistil of a<br />

developing flower, showing fluorescein-labeled<br />

rDNA loci (yellow-green) and propidium iodidestained<br />

interphase nuclei (red). An extended focus<br />

image of 15 optical sections through the pistil<br />

was created by maximum brightness projection<br />

before merging the ‘green’ (rDNA) and ‘red’ (nuclei)<br />

images. Bar 25 µm ^=<br />

<br />

17 mm.<br />

Figure 2: Whole mount double labeling FISH with<br />

rDNA and the 500 bp repeat on a seedling from<br />

A. thaliana. This merged image represents part of<br />

the meristematic zone of a seedling roottip. It shows<br />

fluorescein-labeled rDNA loci (green) and tetramethylrhodamine-labeled<br />

500 bp repeat loci (red).<br />

An extended focus image of 20 optical sections<br />

through the meristematic zone of the roottip was<br />

created by maximum brightness projection before<br />

merging the ‘green’ (rDNA) and ‘red’ (500 bp repeat)<br />

images. Bar 25 µm ^=<br />

<br />

15 mm.<br />

Sequential excitation with the 568 nm and<br />

the 488 nm lines of the Kr-Ar-laser and the<br />

K1/K2 filter combinations from the Bio-<br />

Rad MRC-600 CSLM, allowed a clear<br />

separation of the red (tetramethylrhodamine)<br />

and the green (fluorescein) signal. [See<br />

the signals from the 500 bp repeat (red) and<br />

the rDNA (green) probes in Figure 2.].<br />

Especially, the yellow 568 nm line allows<br />

specific excitation of the red fluorescing dyes<br />

such as tetramethylrhodamine or, preferably,<br />

Texas Red with almost no excitation of<br />

fluorescein.<br />

Confocal observation of the preparations<br />

appeared <strong>to</strong> be absolutely necessary <strong>to</strong><br />

obtain clear images of the signals, especially<br />

in the very dense meristematic tissues of the<br />

seedling roottips and the developing flowers<br />

in the inflorescences. This was especially<br />

true for the weaker signal of the 500 bp<br />

repeat that, in many cases, could not be<br />

observed through the au<strong>to</strong>fluorescence haze<br />

by conventional fluorescence microscopy.<br />

Acquiring digital images through confocal<br />

microscopy has the added advantage that<br />

images recorded at different wavelengths can<br />

be easily and accurately merged and<br />

compared.<br />

Finally, the development of FISH pro<strong>to</strong>cols<br />

on whole mounts for localizing mRNA<br />

sequences, as already suggested by de<br />

Almeida Engler et al. (1994), will make it<br />

possible <strong>to</strong> follow the expression of different<br />

genes simultaneously at the cellular level, in<br />

three dimensions, through confocal<br />

observation.<br />

References<br />

Bauwens, S.; Katsanis, K.; Van Montagu, M.;<br />

Van Oostveldt, P.; Engler, G. (1994) Procedure for<br />

whole mount fluorescence in situ hybridization<br />

of interphase nuclei on Arabidopsis thaliana.<br />

Plant J. 6, 123–131.<br />

Bauwens, S.; Van Oostveldt, P. (1991) Cy<strong>to</strong>genetic<br />

analysis on interphase nuclei with non-iso<strong>to</strong>pic<br />

in situ hybridization and confocal microscopy.<br />

Med. Fac. Landbouww. Rijksuniv. Gent. 56/3a,<br />

753–758.<br />

Bauwens, S.; Van Oostveldt, P.; Engler, G.;<br />

Van Montagu, M. (1991) Distribution of the rDNA<br />

and three classes of highly repetitive DNA in the<br />

chromatin of interphase nuclei of Arabidopsis<br />

thaliana. Chromosoma 101, 41–48.<br />

de Almeida Engler, J.; Van Montagu, M.; Engler, G.<br />

(1994) <strong>Hybridization</strong> in situ of whole-mount<br />

messenger RNA in plants. Plant Mol. Biol. Reporter<br />

12, 321–331.<br />

CONTENTS<br />

INDEX


Procedures for <strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> <strong>to</strong> Chromosomes, Cells, and Tissue Sections<br />

Whole mount ISH<br />

Lengauer, C.; Speicher, M. R.; Popp, S.; Jauch, A.;<br />

Taniwaki, M.; Nagaraja, R.; Riethman, H. C.;<br />

Donis-Keller, H.; D’Urso, M.; Schlessinger, D.;<br />

Cremer, T. (1993) Chromosomal bar codes produced<br />

by multicolor fluorescence in situ hybridization with<br />

multiple YAC clones and whole chromosome<br />

painting probes. Hum. Mol. Gen. 2, 505–512.<br />

Ludevid, D.; Höfte, H.; Himelblau, E.; Chrispeels,<br />

M. J. (1992) The expression pattern of the <strong>to</strong>noplast<br />

intrinsic protein -TIP in Arabidopsis thaliana is<br />

correlated with cell enlargement. Plant Physiol.<br />

100, 1633–1639.<br />

Maluszynska, J.; Heslop-Harrison, J. S. (1991)<br />

Localization of tandemly repeated DNA sequences<br />

in Arabidopsis thaliana. Plant J. 1, 159–166.<br />

Meyerowitz, E. M.; Pruitt, R. E. (1985) Arabidopsis<br />

thaliana and plant molecular genetics. Science 229,<br />

1214–1218.<br />

Murata, M.; Varga, F.; Maluszynska, J.;<br />

Gruendler, P.; Schweitzer, D. (1990) Chromosomal<br />

localization of the ribosomal RNA genes in<br />

Arabidopsis thaliana by in situ hybridization.<br />

<strong>In</strong>: Schweitzer, D.; Peuker, K.; Loidl, J. (Eds) Fourth<br />

<strong>In</strong>ternational Conference on Arabidopsis Research,<br />

Vienna, Abstracts, 5.<br />

Nederlof, P. M.; van der Ploeg, S.; Wiegant, J.;<br />

Raap, A. K.; Tanke, H. J.; Ploem, J. S.; van der<br />

Ploeg, M. (1990) Multiple fluorescence in situ<br />

hybridization. Cy<strong>to</strong>metry 11, 126–131.<br />

Simoens, C. R.; Gielen, J.; Van Montagu, M.;<br />

<strong>In</strong>zé, D. (1988) Characterization of highly repetitive<br />

sequences of Arabidopsis thaliana. Nucleic Acids<br />

Res. 16, 6753–6766.<br />

Tautz, D.; Pfeifle, C. (1989) A nonradioactive in situ<br />

hybridization method for the localization of specific<br />

RNAs in Drosophila embryos reveals translational<br />

control of the segmentation gene hunchback.<br />

Chromosoma 98, 81–85.<br />

Unfried, I.; Gruendler, P. (1990) Nucleotide sequence<br />

of the 5.8S and 25S rRNA genes and of the internal<br />

transcribed spacers from Arabidopsis thaliana.<br />

Nucleic Acids Res. 18, 4011.<br />

Unfried, I.; S<strong>to</strong>cker, U.; Gruendler, P. (1989)<br />

Nucleotide sequence of the 18S rRNA gene from<br />

Arabidopsis thaliana Co 10. Nucleic Acids Res 7,<br />

7513.<br />

Valvekens, D.; Van Lijsebettens, M.; Van Montagu,<br />

M. (1988) Agrobacterium tumefaciens-mediated<br />

transformation of Arabidopsis thaliana root explants<br />

by using kanamycin selection. Proc. Natl. Acad. Sci.<br />

USA 85, 5536–5540.<br />

Reagents available from Boehringer<br />

Mannheim for this procedure<br />

Reagent Description Cat. No. Pack size<br />

DIG-Nick Translation For generation of highly sensitive probes for 1745 816 160 µl<br />

Mix* in situ hybridization with digoxigenin-11-dUTP.<br />

Premixed solution for 40 labeling reactions<br />

Nick Translation Mix* For generation of highly sensitive probes for 1745 808 200 µl<br />

fluorescence in situ hybridization. The Nick<br />

Translation Mix for in situ probes is designed<br />

for direct fluorophore-labeling of in situ probes.<br />

Fluorescein-12-dUTP Tetralithium salt, solution, 1 mmol/l 1 373 242 25 nmol (25 µl)<br />

dNTP Set Set of dATP, dCTP, dGTP, dTTP, lithium salts, 1 277 049 1 set,<br />

solutions 4 x10 µmol<br />

(100 µl)<br />

Anti-Digoxigenin- Fab Fragments from sheep 1 207 750 200 µg<br />

Rhodamine<br />

Anti-Digoxigenin- Fab Fragments from sheep 1 207 741 200 µg<br />

Fluorescein<br />

Tween ® 20 1 332 465 5 x10 ml<br />

EGTA Purity: > 98% 1 093 053 50 g<br />

Proteinase K Lyophilizate 161 519 25 mg<br />

745 723 100 mg<br />

1 000 144 500 mg<br />

1 092 766 1 g<br />

RNase A Dry powder 109 142 25 mg<br />

109 169 100 mg<br />

*This product or the use of this product may be covered by one or more patents of Boehringer Mannheim<br />

GmbH, including the following: EP patent 0 649 909 (application pending).<br />

CONTENTS<br />

INDEX<br />

171<br />

5


CONTENTS<br />

INDEX<br />

References


6<br />

174<br />

References<br />

<strong>In</strong> this chapter general references of<br />

publications on the use of digoxigenin in in<br />

situ hybridization experiments are listed<br />

alphabetically <strong>to</strong> give <strong>to</strong> the reader an<br />

overview on the wide range of applications<br />

presently available.<br />

1. mRNA target<br />

A. DNA probe<br />

a. RPL<br />

Aida, T.; Yamada, H.; Asano, G. (1990) Expression<br />

of type VI procollagen and prolyl-4-hydroxylase<br />

mRNA in carbon tetra-chloride induced liver fibrosis<br />

studied by in situ hybridization. Acta His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 23 (6), 817–824.<br />

Ayoubi, T. A. Y.; van Duijnhoven, H. L. P.; Coenen, A.<br />

J. M.; Jenks, B. G.; Roubos, E. W.; Martens, G. J. M.<br />

(1991) Coordinated expression of 7B2 and MSH in<br />

the melanotrope cells of Xenopus laevis. Cell Tissue<br />

Res. 264, 329–334.<br />

Bier, E.; Jan, L. Y.; Nung Jan, Y. (1990) Rhomboid,<br />

a gene required for dorsoventral axis establishment<br />

and peripheral nervous system development in<br />

Drosophila melanogaster. Genes & Development 4,<br />

190–203.<br />

Bland, Y. S.; Critchlow, M. A.; Ashhurst, D. E. (1991)<br />

Digoxigenin as a probe label for in situ hybridization<br />

on skeletal tissue. His<strong>to</strong>chem. J. 23, 415–418.<br />

Blochlinger, K.; Bodmer, R.; Jan, L. Y.; Jan, Y. N.<br />

(1990) Patterns of expression of cut, a protein<br />

required for external sensory organ development<br />

in wild-type and cut mutant Drosophila embryos.<br />

Genes & Development 8, 1322–1331.<br />

Bochenek, B.; Hirsch, A. (1990) <strong>In</strong> situ hybridization<br />

of nodulin mRNAs in root nodules using nonradioactive<br />

probes. Plant Mol. Biol. Reporter 8 (4),<br />

237–248.<br />

Breitschopf, H.; Suchanek, G.; Gould, R. M.; Colman,<br />

D. R.; Lassmann, H. (1992) <strong>In</strong> situ hybridization with<br />

digoxigenin-labeled probes: sensitive and reliable<br />

detection method applied <strong>to</strong> myelinating rat brain.<br />

Acta Neuropathol. 84, 581–587.<br />

Brown, D. W.; Welsh, R. M.; Like, A. A. (1993)<br />

<strong>In</strong>fection of peripancreatic lymph nodes but not<br />

islets precedes kilham rat virus-induced diabetes<br />

in BB/Wor rats. J. Virol. 67 (10), 5873–5878.<br />

Casanova, J.; Struhl, G. (1993) The <strong>to</strong>rso recep<strong>to</strong>r<br />

localizes as well as transduces the spatial signal<br />

specifying terminal body pattern in Drosophila.<br />

Nature 362, 152–155.<br />

Cohen, B.; Wimmer, E. A.; Cohen, S. M. (1991)<br />

Early development of leg and wing primordia in<br />

the Drosophila embryo. Mechan. Develop. 33,<br />

229–240.<br />

Cohen, S. M. (1990) Specification of limb development<br />

in the drosophila embryo by positional cues<br />

from segmentation genes. Nature 343, 173–177.<br />

Corbin, V.; Michelson, A. M.; Abmayr, S. M.; Neel, V.;<br />

Alcamo, E.; Maniatis, T.; Young, M. W. (1991)<br />

A role for the drosophila neurogenic genes in<br />

mesoderm differentiation. Cell Vol. 67, 311–323.<br />

Crespo, P.; Angeles-Ros, M.; Ordovas, J. M.;<br />

Rodriguez, J. C.; Ortiz, J. M.; Leon, J. (1992) Foam<br />

cells from aorta and spleen overexpress apolipoprotein<br />

E in the absence of hypercholesterolemia.<br />

Biochem. & Biophys. Res. Communications 183 (2),<br />

514–523.<br />

Crowley, T. E.; Hoey, T.; Liu, J.-K.; Jan, Y. N.;<br />

Jan, L. Y.; Tjian, R. (1993) A new fac<strong>to</strong>r related<br />

<strong>to</strong> TATA-binding protein has highly restricted<br />

expression patterns in Drosophila. Nature 361,<br />

557–561.<br />

Donly, B. C.; Ding, Q.; Tobe, S. S.; Bendena, W. G.<br />

(1993) Molecular cloning of the gene for the alla<strong>to</strong>statin<br />

family of neuropeptides from the cockroach<br />

Diploptera punctata. Proc. Natl. Acad. Sci. USA 90,<br />

8807–8811.<br />

Doria-Medina, C. L.; Lund, D. D.; Pasley, A.;<br />

Sandra, A.; Sivitz, W .I. (1993) Immunolocalization<br />

of GLUT-1 glucose transporter in rat skeletalmuscle<br />

and in normal and hypoxic cardia tissue. Am. J.<br />

Physiol. 265, E454–E464.<br />

Durham, S. K.; Goller, N. L.; Lynch, J. S.; Fisher,<br />

S. M.; Rose, P. M. (1993) Endothelin recep<strong>to</strong>r B<br />

expression in the rat and rabbit lung as determined<br />

by in situ hybridization using noniso<strong>to</strong>pic probes.<br />

J. Cardiovas. Pharm. 22 (Suppl. 8), S1–S3.<br />

Fasano, L.; Röder, L.; Coré, N.; Alexandre, E.; Vola,<br />

C.; Jacq, B.; Kerridge, S. (1991) The gene teashirt<br />

is required for the development of Drosophila<br />

embryonic trunk segments and encodes a protein<br />

with widely spaced zinc finger motifs. Cell 64,<br />

63–79.<br />

Frasch, M. (1991) The maternally expressed<br />

Drosophila gene encoding the chromatin-binding<br />

protein BJ1 is a homolog of the vertebrate gene<br />

regula<strong>to</strong>r of chromatin condensation, RCC1.<br />

EMBO J. 10 (5), 1225–1236.<br />

CONTENTS<br />

INDEX


Fukuda, T.; Nakajima, H.; Fukushima, Y.; Akutsu, I.;<br />

Numao, T.; Majima, K.; Mo<strong>to</strong>jima, S.; Sa<strong>to</strong>, Y.;<br />

Takatsu, K.; Makino, S. (1994) Detection of<br />

interleukin-5 messenger RNA and interleukin-5<br />

protein in bronchial biopsies from asthma by<br />

nonradioactive in situ hybridization and<br />

immunohis<strong>to</strong>chemistry. J. Allergy Clin. Immunol.<br />

94, 584–593.<br />

Grabner, M.; Bachmann, A.; Rosenthal, F.;<br />

Striessnig, J.; Schulz, C.; Tautz, D.; Glossmann, H.<br />

(1994) <strong>In</strong>sect calcium channels. Molecular cloning<br />

of an 1-subunit from housefly (Musca domestica)<br />

muscle. FEBS Letters 339, 189–194.<br />

Haenlin, M.; Kramatschek, B.; Campos-Ortega,<br />

J. A. (1990) The pattern of transcription of the<br />

neurogenic gene delta of Drosophila melanogaster.<br />

Develop. 110, 905–914.<br />

Heemskerk, J.; DiNardo, S.; Kostriken, R.; O’Farell,<br />

P. H. (1991) Multiple modes of engrailed regulation<br />

in the progression <strong>to</strong>wards cell fate determination.<br />

Nature 352, 404–410.<br />

Hülskamp, M.; Pfeifle, C.; Tautz, D. (1990)<br />

A morphogenetic gradient of hunchback protein<br />

organizes the expression of the gap genes krüppel<br />

and knirps in the early Drosophila embryo.<br />

Nature 346, 577–580.<br />

Hukkanen, V.; Heino, P.; Sears, A. E.; Roizman, B.<br />

(1990) Detection of Herpes Simplex Virus latencyassociated<br />

RNA in mouse trigeminal ganglia by in<br />

situ hybridization using nonradioactive digoxigeninlabeled<br />

DNA and RNA probes. Methods Mol.<br />

Cell. Biol. 2, 70–81.<br />

Kellerman, K. A.; Mattson, D. M.; Duncan, I. (1990)<br />

Mutations affecting the stability of the fushi tarazu<br />

protein of Drosophila. Genes & Development 4,<br />

1936–1950.<br />

Krauss, S.; Johansen, T.; Korzh, V.; Fjose, A. (1991)<br />

Expression pattern of zebrafish pax genes suggest<br />

a role in early brain regionalization. Nature 353,<br />

267–270.<br />

Kumar, G.; Patel, D.; Naz, R. K. (1993) c-MYC mRNA<br />

is present in human sperm cells. Cell. & Mol. Biol.<br />

Res. 39, 111–117.<br />

Levine, P. H.; Jahan, N.; Murari, P.; Manak, M.;<br />

Jaffe, E. S. (1992) Detection of human herpesvirus<br />

6 in tissues involved by sinus histiocy<strong>to</strong>sis with<br />

massive lymphadenopathy (Rosai-Dorfman<br />

Disease). J. <strong>In</strong>fect. Dis. 166, 291–295.<br />

Maggiano, N.; Larocca, L. M.; Piantelli, M.;<br />

Ranelletti, F. O.; Lauriola, L.; Ricci, R.; Capelli, A.<br />

(1991) Detection of mRNA and hnRNA using a<br />

digoxigenin labeled cDNA probe by in situ<br />

hybridization on frozen tissue sections. His<strong>to</strong>chem.<br />

J. 23, 69–74.<br />

Masucci, J. D.; Miltenberger, R. J.; Hoffman, F. M.<br />

(1990) Pattern-specific expression of the Drosophila<br />

decapentaplegic gene in imaginal disks is regulated<br />

by 3’cisregula<strong>to</strong>ry elements. Genes & Development<br />

4, 2011–2023.<br />

CONTENTS<br />

INDEX<br />

References<br />

Mlodzik, M.; Baker, N. E.; Rubin, G. M. (1990)<br />

Isolation and expression of scabrous, a gene<br />

regulating neurogenesis in Drosophila. Genes &<br />

Development 4, 1848–1861.<br />

Nakano, Y.; Guerrero, I.; Hidalgo, A.; Taylor, A.;<br />

Whittle, J. R. S.; <strong>In</strong>gham, P. W. (1989) A protein<br />

with several possible membrane-spanning domains<br />

encoded by the Drosophila segment polarity gene<br />

patched. Nature 341, 508–513.<br />

Noiri, E.; Kuwata, S.; Nosaka, K.; Tokunaga, K.;<br />

Juji, T.; Shibata, Y.; Kurokawa, K. (1994) Tumor<br />

necrosis fac<strong>to</strong>r- mRNA Expression in lipopolysaccharide-stimulated<br />

rat kidney. Am. J. Path.<br />

144 (6), 1159–1166.<br />

Ono, J. K.; McCaman, R. E. (1992) <strong>In</strong> situ<br />

hybridization of whole-mounts of Aplysia ganglia<br />

using non-radioactive probes. J. Neurosci. Meth.<br />

44, 71–79.<br />

Radema, S. A.; van Deventer, S. J. H.; Cerami, A.<br />

(1991) <strong>In</strong>terleukin 1 Is expressed predominantly<br />

by enterocytes in experimental colitis.<br />

Gastroenterol. 100, 1180–1186.<br />

Rao, Yi; Jan, L-Y; Jan, Y. N. (1990) Similarity of the<br />

product of the Drosophila neurogenic gene big brain<br />

<strong>to</strong> transmembrane channel proteins. Nature 345,<br />

163 –157.<br />

Reuter, R.; Leptin, M. (1994) <strong>In</strong>teracting functions<br />

of snail, twist and huckebein during the early development<br />

of germ layers in Drosophila. Develop. 120,<br />

1137–1150.<br />

Rothe, M.; Pehl, M.; Taubert, H.; Jäckle, H. (1992)<br />

Loss of gene function through rapid mi<strong>to</strong>tic cycles<br />

in the Drosophila embryo. Nature 359, 156–159.<br />

Sampedro, J.; Guerrero, I. (1991) Unrestricted<br />

expression of the Drosophila gene patched allows<br />

a normal segment polarity. Nature 353, 187–190.<br />

Sano, J.; Miki, K.; Ichinose, M.; Kimura, M.;<br />

Kurokawa, K.; Aida, T.; Ishizaki, M.; Asano, G.;<br />

Masugi, Y.; Wong, R. N. S.; Takahashi, K. (1989)<br />

<strong>In</strong> situ localization of pepsinogens I and II mRNA in<br />

human gastric mucosa. Acta Pathol. Japonica. 39<br />

(12), 765–771.<br />

Schlinger, B. A.; Amur-Umarjee, S.; Shen, P.;<br />

Campagnoni, A. T.; Arnold, A. P. (1994) Neuronal<br />

and non-neuronal aromatase in primary cultures<br />

of developing zebra finch telencephalon.<br />

J. Neurosci. 14 (12), 7541–7552.<br />

Shermoen, A. W.; O’Farrell, P. H. (1991) Progression<br />

of the cell cycle through mi<strong>to</strong>sis leads <strong>to</strong> abortion of<br />

nascent transcripts. Cell 67, 303–310.<br />

Shin, D. M.; Chiao, P. J.; Sacks, P. G.; Shin, H. J.;<br />

Hong, W. K.; Hittelman, W. N.; Tainsky, M. A. (1993)<br />

Activation of ribosomal protein S2 gene expression<br />

in a hamster model of chemically induced oral<br />

carcinogenesis. Carcinogenesis 14 (1), 163–166.<br />

Sibon, O. C. M.; Cremers, F. F. M.; Boonstra, J.;<br />

Humbel, B. M.; Verkleij, A. J. (1993) Localisation of<br />

EGF-recep<strong>to</strong>r mRNA in the nucleus of A431 cells by<br />

light microscopy. Cell Biol. <strong>In</strong>tern. 17 (1), 1–11.<br />

175<br />

6


6<br />

176<br />

References<br />

Sommer, R.; Tautz, D. (1991) Nonradioactive in situ<br />

hybridization <strong>to</strong> sectioned tissues. Trends Genet. 7<br />

(4), 110.<br />

Steinmetz, R. W.; Grant, A. L.; Malven, P. V. (1993)<br />

Transcription of prolactin gene in milk secre<strong>to</strong>ry<br />

cells of the rat mammary gland. J. Endocrinol. 136,<br />

271–276.<br />

Tautz, D.; Pfeifle, C. (1989) A non-radioactive in situ<br />

hybridization method for the localization of specific<br />

RNAs in Drosophila embryos reveals translational<br />

control of the segmentation gene hunchback.<br />

Chromosoma (Berl.) 98, 81–85.<br />

Treacy, M. N.; He, X.; Rosenfeld, M. G. (1991) I-POU:<br />

a POU-domain protein that inhibits neuron-specific<br />

gene activation. Nature 350, 577–584.<br />

Vassias, I.; Perol, S.; Coulombel, L.; Thebault,<br />

M.-C.; Lagrange, P. H.; Morinet, F. (1993) An in situ<br />

hybridization technique for the study of B19 human<br />

parvovirus replication in bone marrow cell cultures.<br />

J. Virol. Meth. 44, 329–338.<br />

Wiethege, Th.; Voss, B.; Pohle, Th.; Fisseler-Eckhoff,<br />

A.; Müller, K. M. (1991) Localization of elastase and<br />

tumor necrosis fac<strong>to</strong>r- mRNA by non-radioactive<br />

in situ hybridization in cultures of alveolar<br />

macrophages. Path. Res. Pract. 187, 912–915.<br />

Wu, T.-C.; Mann, R. B.; Epstein, J. I.; MacMahon, E.;<br />

Lee, W. A.; Charache, P.; Hayward, S. D.; Kurman,<br />

R. J.; Hayward, G. S.; Ambinder, R. F. (1991)<br />

Abundant expression of EBER 1 small nuclear RNA<br />

in nasopharyngeal carcinoma. A morphologically<br />

distinctive target for detection of Epstein-Barr virus<br />

in formalin-fixed paraffin-embedded carcinoma<br />

specimens. Am. J. Pathol. 128 (6), 1461–1469.<br />

Wulf, M.; Bosse, A.; Wiethege, T.; Voss, B.; Müller,<br />

K. M. (1994) Localization of collagen types I, II and<br />

III mRNAs in human hetero<strong>to</strong>pic ossification by<br />

non-radioactive in situ hybridization. Path. Res.<br />

Pract. 190, 25–32.<br />

Xing, Y.; Johnson, C. V.; Dobner, P. R.; Lawrence,<br />

J. B. (1993) Higher level organization of individual<br />

gene transcription and RNA splicing. Science 259,<br />

1326–1330.<br />

Yamada, H.; Aida, T.; Taguchi, K.; Asona, G. (1989)<br />

Localization of type III procollagen mRNA in areas<br />

of liver fibrosis by in situ hybridization. Acta Pathol.<br />

Japonica. 39 (11), 719–724.<br />

Zhang, P.; Knowles, B. A.; Goldstein, L. S. B.;<br />

Hawley, R. S. (1990) A kinesin-like protein required<br />

for distributive chromosome segregation in<br />

Drosophila. Cell 62, 1053–1062.<br />

Zhao, T.-J.; Chiu, T. H.; Rosenberg, H. C. (1994)<br />

Reduced expression of -Aminobutyric acid type<br />

A/benzodiazepine recep<strong>to</strong>r 2 and 5 subunit<br />

mRNAs in brain regions of flurazepam-treated rats.<br />

Mol. Pharmacol. 45, 657–663.<br />

Zheng, M. H.; Fan, Y.; Wysocki, S.; Wood, D. J.;<br />

Papadimitriou, J. M. (1993) Detection of mRNA for<br />

carbonic anhydrase II in human oesteoclast-like<br />

cells by in situ hybridization. J. Bone Mineral Res. 8<br />

(1), 113–118.<br />

b. Nick translation<br />

Coates, P. J.; Mak, W. P.; Slavin, G.; d’Ardenne, A. J.<br />

(1991) Detection of single copies of Epstein-Barr<br />

virus in paraffin wax sections by non-radioactive<br />

in situ hybridization. J. Clin. Pathol. 44, 487–491.<br />

Dirks, R. W.; Van Dorp, A. G. M.; Van Minnen, J.;<br />

Fransen, J. A. M; Van Der Ploeg, M.; Raap, A. K.<br />

(1992) Electron microscopic detection of RNA<br />

sequences by non-radioactive in situ hybridization<br />

in the mollusk lymnaea stagnalis. J. His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 40 (11), 1647–1657.<br />

Dirks, R. W.; Van de Rijke, F. M.; Fujishita, S.; Van<br />

Der Ploeg, M.; Raap, A. K. (1993) Methodologies for<br />

specific intron and exon RNA localization in cultured<br />

cells by haptenized and fluorochromized probes.<br />

J. Cell Sci. 104, 1187–1197.<br />

Flemming, K. A.; Evans, M.; Ryley, K. C.; Franklin,<br />

D.; Lovell-Badge, R. H.; Morey, A. L. (1992)<br />

Optimization of non-iso<strong>to</strong>pic in situ hybridization on<br />

formalin-fixed, paraffin-embedded material using<br />

digoxigenin-labeled probes and transgenic tissues.<br />

J. Pathol. 167, 9–17.<br />

Whawell, S. A.; Wang, Y.; Fleming, K. A.; Thompson,<br />

E. M.; Thompson, J. N. (1993) Localization of<br />

plasminogen activa<strong>to</strong>r inhibi<strong>to</strong>r-1 production in<br />

inflamed appendix by in situ mRNA hybridization.<br />

J. Pathol. 169, 67–71.<br />

c. cDNA synthesis<br />

Ultsch, A.; Schuster, C. M.; Laube, B.; Schloss, P.;<br />

Schmitt, B.; Betz, H. (1992) Glutamate recep<strong>to</strong>rs<br />

of Drosophila melanogaster: Cloning of a kainateselective<br />

subunit expressed in the central nervous<br />

system. Proc. Natl. Acad. Sci. USA 89, 10484–10488.<br />

d. PCR<br />

Barka, T.; van der Noen, H. (1993) Expression of the<br />

cysteine proteinase inhibi<strong>to</strong>r cystatin C gene in rat<br />

heart: Use of digoxigenin-labeled probes generated<br />

by polymerase chain reaction directly for in situ<br />

and northern blot hybridizations. J. His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 41 (12) 1863–1867.<br />

Barka, T.; van der Noen, H. (1994) Expressions of<br />

the genes for cysteine proteinase inhibi<strong>to</strong>rs cystatin<br />

C and cystatin S in rat submandibular salivary<br />

gland. Archs oral Biol. 39 (4), 307–314.<br />

Barka, T.; van der Noen, H. (1994) Expression of the<br />

cysteine proteinase inhibi<strong>to</strong>r cystatin C mRNA in rat<br />

eye. Ana<strong>to</strong>m. Rec. 239, 343–348.<br />

Cripe, L.; Morris, E.; Ful<strong>to</strong>n, A. B. (1993) Vimentin<br />

mRNA location changes during muscle development.<br />

Proc. Natl. Acad. Sci. USA 90, 2724–2728.<br />

Dirks, R. W.; van de Rijke, F. M.; Fujishita, S.; van<br />

der Ploeg, M.; Raap, A. K. (1993) Methodologies for<br />

specific intron and exon RNA localization in cultured<br />

cells by haptenized and fluorochromized probes.<br />

J. Cell Sci. 104, 1187–1197.<br />

CONTENTS<br />

INDEX


Hannon, K.; Johns<strong>to</strong>ne, E.; Craft, L. S.; Little, S. P.;<br />

Smith, C. K.; Heiman, M. L.; Santerre, R. F. (1993)<br />

Synthesis of PCR-derived, single-stranded DNA<br />

probes suitable for in situ hybridization. Anal.<br />

Biochem. 212, 421–427.<br />

Iwamura, M.; Wu, G.; Abrahamsson, P.-A.; Di<br />

Sant’Agnese, P. A.; Cockett, A. T. K.; Def<strong>to</strong>s, L. J.<br />

(1994) Parathyroid hormone-related protein is<br />

expressed by prostatic neuroendocrine cells.<br />

Urology 43 (5), 667–674.<br />

Räsänen, L. A.; Karvonen, U.; Pösö, A. R. (1993)<br />

Localization of xanthine dehydrogenase mRNA in<br />

horse skeletal muscle by in situ hybridization with<br />

digoxigenin-labeled probe. Biochem. J. 292,<br />

639–641.<br />

Sommer, R. J.; Tautz, D. (1993) <strong>In</strong>volvement of an<br />

orthologue of the Drosophila pair-rule gene hairy in<br />

segment formation of the short germ-band embryo<br />

of Tribolium (Coleoptera). Nature 361, 448–450.<br />

Yang, X.; Stedra, J.; Cerny, J. (1994) Reper<strong>to</strong>ire<br />

diversity of antibody response <strong>to</strong> bacterial antigens<br />

in aged mice. IV. Study of VH and VL gene utilization<br />

in splenic antibody foci by in situ hybridization.<br />

J. Immunol. 152, 2214–2220.<br />

B. RNA probes<br />

Adham, I. M.; Burkhardt, E.; Benahmed, M.; Engel,<br />

W. (1993) Cloning of a cDNA for a novel insulin-like<br />

peptide of the testicular leydig cells. J. Biol. Chem.<br />

268 (35), 26668–26672.<br />

Ahn, K. Y.; Madsen, K. M.; Tisher, C. C.; Kone, B. C.<br />

(1993) Differential expression and cellular<br />

distribution of mRNAs encoding - and -isoforms<br />

of Na + -K + -ATPase in rat kidney. Am. J. Physiol. 265,<br />

792–801.<br />

Bachmann, S.; Le Hir, M.; Eckardt, K.-U. (1993)<br />

Co-localization of erythropoietin mRNA and ec<strong>to</strong>-5’nucleotidase<br />

immunoreactivity in peritubular cells<br />

of rat renal cortex indicates that fibroblasts produce<br />

erythropoietin. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 41,<br />

335–341.<br />

Baldino, F.; Robbins, E.; Grega D.; Meyers, S. L.;<br />

Springer, J. E.; Lewis, M. E. (1989) Non-radioactive<br />

detection of NGF-recep<strong>to</strong>r messenger RNA with<br />

digoxigenin-UTP labeled RNA probes. 19th Annual<br />

Meeting Soc. Neuroscience, Phoenix, Arizona, USA,<br />

Oct. 29–Nov. 3, 1989. Soc. Neurosci. Abst.<br />

15 (1), 864.<br />

Barthel, L. K.; Raymond, P. A. (1993) Subcellular<br />

localization of -tubulin and opsin mRNA in the<br />

goldfish retina using digoxigenin-labeled cRNA<br />

probes detected by alkaline phosphatase and HRP<br />

his<strong>to</strong>chemistry. J. Neurosci. Meth. 50, 145–152.<br />

Biffo, S.; Verdun di Can<strong>to</strong>gno, L.; Fasolo, A. (1992)<br />

Double labeling with non-iso<strong>to</strong>pic in situ hybridization<br />

and BrdU immunohis<strong>to</strong>chemistry:<br />

Calmodulin (CaM) mRNA expression in post-mi<strong>to</strong>tic<br />

neurons of the olfac<strong>to</strong>ry system. J. His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 40 (4), 535–540.<br />

CONTENTS<br />

INDEX<br />

References<br />

Birk, P. E.; Grimm, P. C. (1994) Rapid nonradioactive<br />

in situ hybridization for interleukin-2 mRNA with<br />

riboprobes generated using the polymerase chain<br />

reaction. J. Immunol. Meth. 167, 83–89.<br />

Bochenek, B.; Hirsch, A. (1990) <strong>In</strong> situ hybridization<br />

of nodulin mRNAs in root nudules using nonradioactive<br />

probes. Plant Mol. Biol. Reporter 8 (4),<br />

237–248.<br />

Brewer, L. M.; Sheardown, S. A.; Brown, N. A.<br />

(1993) HMG-CoA reductase mRNA in the postimplantation<br />

rat embryo studied by in situ<br />

hybridization. Tetra<strong>to</strong>l. 47, 137–146.<br />

Broide, D. H.; Paine, M. M.; Firestein, G. S. (1992)<br />

Eosinophils express interleukin 5 and granulocyte<br />

macrophage-colony-stimulating fac<strong>to</strong>r mRNA at<br />

sites of allergic inflammation in asthmatics.<br />

J. Clin. <strong>In</strong>vest. 90, 1414–1424.<br />

Bromley, L.; McCarthy, S. P.; Stickland, J. E.;<br />

Lewis, C. E.; McGee, J. (1994) Non-iso<strong>to</strong>pic in situ<br />

detection of mRNA for interleukin-4 in archival<br />

human tissue. J. Immunol. Meth. 167, 47–54.<br />

Brown, P. A. J.; Wilson, H. M.; Reid, F. J.; Booth, N.<br />

A.; Simpson, J. G.; Morrison, L.; Power, D. A.;<br />

Haites, N. E. (1994) Urokinase-plasminogen<br />

activa<strong>to</strong>r is synthesized in vitro by human<br />

glomerular epithelial cells but not by mesangial<br />

cells. Kidney <strong>In</strong>t. 45, 43–47.<br />

Bu, G.; Maksymovitch, E. A.; Nerbonne, J. M.;<br />

Schwartz, A. L. (1994) Expression and function of<br />

the low density lipoprotein recep<strong>to</strong>r-related protein<br />

(LRP) in mammalian central neurons. J. Biol. Chem.<br />

269 (28), 18521–18528.<br />

Butcher, L. L.; Oh, J. D.; Woole, N. J.; Edwards,<br />

R. H.; Roghani, A. (1992) Organization of central<br />

cholinergic neurons revealed by combined in situ<br />

hybridization his<strong>to</strong>chemistry and choline-Oacetyltransferase<br />

immunocy<strong>to</strong>chemistry.<br />

Neurochem. <strong>In</strong>t. 21 (3), 429–445.<br />

Cai, W. Q.; Terenghi, G.; Bodin, P.; Burns<strong>to</strong>ck, G.;<br />

Polak, J. M. (1993) <strong>In</strong> situ hybridization of atrial<br />

natriuretic peptide mRNA in the endothelial cells<br />

of human umbilical vessels. His<strong>to</strong>chem. 100,<br />

277–283.<br />

Campbell, A. M.; Wuytack, F.; Fambrough, D. M.<br />

(1993) Differential distribution of the alternative<br />

forms of the sarcoplasmic/endoplasmic reticulum<br />

Ca2+ -ATPase, SERCA2b and SERCA2a, in the avian<br />

brain. Brain Res. 605, 67–76.<br />

Canas, L. A.; Busscher, M.; Angenent, G. C.;<br />

Beltran, J.-P.; van Tunen, A. J. (1994) Nuclear<br />

localization of the petunia MADS box protein FBP1.<br />

Plant J. 6 (4), 597–604.<br />

Caroni, P.; Schneider, C. (1994) Signaling by insulinlike<br />

growth fac<strong>to</strong>rs in paralyzed skeletal muscle:<br />

rapid induction of IGF-1 expression in muscle fibers<br />

and prevention of interstitial cell proliferation by<br />

IGF-BP5 and IGF-BP4. J. Neurosci. 14 (5),<br />

3378–3388.<br />

177<br />

6


6<br />

178<br />

References<br />

Coutinho, L. L.; Morris, J.; Ivarie, R. (1992)<br />

Whole mount in situ detection of low abundance<br />

transcripts of the myogenic fac<strong>to</strong>r qmf1 and myosin<br />

heavy chain protein in quail embryos. BioTechn. 13<br />

(5), 722–724.<br />

De, S. K.; Chen, H.-L., Pace, J. L.; Hunt, J. S.;<br />

Terranova, P. F.; Enders, G. C. (1993) Expression<br />

of tumor necrosis fac<strong>to</strong>r- in mouse sperma<strong>to</strong>genic<br />

cells. Endocrinol. 133 (1), 389–396.<br />

De Block, M.; Debrouwer, D. (1993) RNA-RNA in situ<br />

hybridization using digoxigenin-labeled probes:<br />

The use of high-molecular-weight polyvinyl alcohol<br />

in the alkaline phosphatase indoxyl-nitroblue<br />

tetrazolium reaction. Anal. Biochem. 215, 86–89.<br />

Dekker, E.-J.; Pannese, M.; Houtzager, E.;<br />

Timmermans, A.; Boncinelli, E.; Durs<strong>to</strong>n, A. (1992)<br />

Xenopus Hox-2 genes are expressed sequentially<br />

after the onset of gastrulation and are differentially<br />

inducible by retionic acid. Development, 195–202.<br />

Dekker, E.-J.; Vaessen, M.-J.; van den Berg, C.;<br />

Timmermans, A.; Godsave, S.; Holling, T.;<br />

Nieuwkoop, P.; Geurts van Kessel, A.; Durs<strong>to</strong>n, A.<br />

(1993) Overexpression of a novel gastrula specific<br />

cellular retinoic acid binding protein (xCRABP)<br />

causes anteroposterior defects in developing<br />

Xenopus embryos. Submitted.<br />

Dirks, R. W.; van de Rijke, F. M.; Fujishita, S.; van<br />

der Ploeg, M.; Raap, A. K. (1993) Methodologies for<br />

specific intron and exon RNA localization in cultured<br />

cells by haptenized and fluorochromized probes.<br />

J. Cell Sci. 104, 1187–1197.<br />

Dörries, U.; Bartsch, U.; Nolte, Ch.; Roth, J.;<br />

Schachner, M. (1993) Adaptation of a non-radioactive<br />

in situ hybridization method <strong>to</strong> electron<br />

microscopy: detection of tenascin mRNAs in mouse<br />

cerebellum with digoxigenin-labeled probes and<br />

gold-labeled antibodies. His<strong>to</strong>chem. 99, 251–262.<br />

Egger, D.; Troxler, M.; Bienz, K. (1994) Light and<br />

electron microscopic in situ hybridization: nonradioactive<br />

labeling and detection, double<br />

hybridization, and combined hybridization-immunocy<strong>to</strong>chemistry.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 42 (6),<br />

815–822.<br />

Eilers, F.; Bartles, H.; Jungermann, K. (1993) Zonal<br />

expression of the glucokinase gene in rat liver.<br />

Dynamics during the daily feeding rhythm and<br />

starvation-refeeding cycle demonstrated by in situ<br />

hybridization. His<strong>to</strong>chem. 99, 133–140.<br />

Ephrussi, A.; Lehman, R. (1992) <strong>In</strong>duction of germ<br />

cell formation by oskar. Nature 358, 387–392.<br />

Esclapez, M.; Tillakaratne, N. J. K.; Kaufman, D. L.;<br />

Tobin, A. J.; Houser, C. R. (1994) Comparative localization<br />

of two forms of glutamic acid decarboxylase<br />

and their mRNAs in rat brain supports the concept<br />

of functional differences between the forms.<br />

J. Neurosci. 14 (3), 1834–1855.<br />

Fisher, C.; Angus, B.; Rees, J. (1991) in situ<br />

hybridization using digoxigenin-labeled probes in<br />

human skin. Brit. J. Derma<strong>to</strong>l. 125, 516–520.<br />

Foss, H.-D.; Herbst, H.; Hummel, M.; Araujo, I.;<br />

Latza, U.; Rancso, C.; Dallenbach, F.; Stein, H.<br />

(1994) Patterns of cy<strong>to</strong>kine gene expression in<br />

infectious mononucleosis. Blood 83 (3), 707–712.<br />

Furuta, H.; Mori, N.; Sa<strong>to</strong>, C.; Hoshikawa, H.; Sakai,<br />

S.-I.; Iwkura, S.; Doi, K. (1994) Mineralocorticoid<br />

type I recep<strong>to</strong>r in the rat cochlea: mRNA identification<br />

by polymerase chain reaction (PCR) and in situ<br />

hybridization. Hearing Res. 78, 175–180.<br />

Grefte, A.; Harmsen, M. C.; van der Giessen, M.;<br />

Knollema, S.; van Son, W. J.; The, T. H. (1994)<br />

Presence of human cy<strong>to</strong>megalovirus (HCMV)<br />

immediate early mRNA but not ppUL83 (lower<br />

matrix protein pp65) mRNA in polymorphonuclear<br />

and mononuclear leukocytes during active HCMV<br />

infection. J. Gen. Virol. 75, 1989–1998.<br />

Grossman, A. B.; Rossmanith, W. G.; Kabigting,<br />

E. B.; Cadd, G.; Clif<strong>to</strong>n, D.; Steiner, R. A. (1994) The<br />

distribution of hypothalamic nitric oxide synthase<br />

mRNA in relation <strong>to</strong> gonadotrophin-releasing<br />

hormone neurons. J. Endocrinol. 140, R5–R8.<br />

Hanh, D.; Amann, R. I.; Zeyer, J. (1993) Detection of<br />

mRNA in Strep<strong>to</strong>myces by whole-cell hybridization<br />

with digoxigenin-labeled probes. Appl. Environm.<br />

Microbiol. 59 (8), 2753–2757.<br />

Hamil<strong>to</strong>n-Du<strong>to</strong>it, S. J.; Raphael, M.; Audouin, J.;<br />

Diebold, J.; Lisse, I.; Pedersen, C.; Oksenhendler, E.;<br />

Marelle, L.; Pallesen, G. (1993) <strong>In</strong> situ demonstration<br />

of Epstein-Barr virus small RNAs (EBER 1) in<br />

acquired immunodeficiency syndrome-related<br />

lymphomas: correlation with tumor morphology<br />

and primary site. Blood 82 (2), 619–624.<br />

Hasegawa, K.; Fujiwara, H.; Doyama, K.; <strong>In</strong>ada, T.;<br />

Ohtani, S.; Fujiwaara, T.; Hosoda, K.; Nakao, K.;<br />

Sasayama, S. (1994) Endothelin-1-selective<br />

recep<strong>to</strong>r in the arterial intima of patients with<br />

hypertension. Hypertension 23, 288–293.<br />

Hauptmann, G.; Gerster, T. (1994) Two-color<br />

whole-mount in situ hybridization <strong>to</strong> vertebrate and<br />

Drosophila embryos. TIG 10 (8), 266.<br />

Hemmati-Brivanlou, A.; Frank, D.; Bolce, M. E.;<br />

Brown, B. D.; Sive, H. L.; Harland, R. M. (1990)<br />

Localization of specific mRNAs in xenopus embryos<br />

by whole-mount in situ hybridization. Development<br />

110, 325–330.<br />

Hemmati-Brivanlou, A.; Mel<strong>to</strong>n, D. A. (1992)<br />

A truncated activin recep<strong>to</strong>r inhibits mesoderm<br />

induction and formation of axial structures in<br />

Xenopus embryos. Nature 359, 609–614.<br />

Hendrickson, A. E.; Tillakaratne, N. J. K.; Mehra,<br />

R. D.; Esclapez, M.; Erickson, A.; Vician, L.; Tobin,<br />

A. J. (1994) Differential localization of two glutamic<br />

acid decarboxylases (GAD65 and GAD67) in adult<br />

monkey visual cortex. J. Comparative Neurol. 343,<br />

566–581.<br />

Hill, W. D.; Arai, M.; Cohen, J. A.; Trojanowoski,<br />

J. Q. (1993) Neurofilament mRNA is reduced in<br />

Parkinson’s disease substantia nigra pars compacta<br />

neurons. J. Comparative Neurol. 329, 328–336.<br />

CONTENTS<br />

INDEX


Hillan, K. J.; Farquharson, M.; Harvie, R.; McKee,<br />

T. A.; MacSween, R. N. M.; McNicol, A. M. (1990)<br />

Detection of messenger RNA in formalin fixed rat<br />

tissues using RNA probes labeled with a new<br />

nucleotide analogue digoxigenin-11-UTP. 160th<br />

Meeting Pathol. Soc. GB and Ireland, London,<br />

England, UK, Jan. 3–5, 1990. J. Pathol. 160 (2)<br />

164A.<br />

Hirota, S.; I<strong>to</strong>, A.; Morii, E.; Wanaka, A.; Tohyama,<br />

M.; Kitamura, Y.; Nomura, S. (1992) Localization of<br />

mRNA for c-kit recep<strong>to</strong>r and its ligand in the brain<br />

of adult rats: an analysis using in situ hybridization<br />

his<strong>to</strong>chemistry. Mol. Brain Res. (in press)<br />

Houtani, T.; Ueyama, T.; Takeshima, H.; Ka<strong>to</strong>, S.;<br />

Fukuda, K.; Mori, K.; Sugimo<strong>to</strong>, T. (1994) µ Opioid<br />

recep<strong>to</strong>r: expression and vago<strong>to</strong>my-induced<br />

depletion of the mRNA in medullary preganglionic<br />

neurons. Mol. Brain Res. 24, 347–352.<br />

Hukkanen, V.; Heino, P.; Sears, A. E.; Roizman, B.<br />

(1990) Detection of Herpes Simplex Virus latencyassociated<br />

RNA in mouse trigeminal ganglia by in<br />

situ hybridization using nonradioactive digoxigeninlabeled<br />

DNA and RNA probes. Methods Mol. Cell.<br />

Biol. 2, 70–81.<br />

Hummel, M. (1992) The Polymerase Chain Reaction<br />

in modern diagnosis – Possibilities and Limitations<br />

– BIOforum 11, 395–400.<br />

Humpel, C.; Chadi, G.; Lippoldt, A.; Ganten, D.;<br />

Fuxe, K.; Olson, L. (1994) <strong>In</strong>crease of basic fibroblast<br />

growth fac<strong>to</strong>r (bFGF, FGF-2) messenger RNA<br />

and protein following implantation of a<br />

microdialysis probe in<strong>to</strong> rat hippocampus. Exp.<br />

Brain Res. 98, 229–237.<br />

Humpel, C.; Lippoldt, A.; Strömberg, I.; Bygdeman,<br />

M.; Wagner, J.; Hilgenfeldt, U.; Ganten, D.; Fuxe, K.;<br />

Olson, L. (1994) Human angiotensinogen is highly<br />

expressed in astrocytes in human cortical grafts.<br />

GLIA 10, 186–192.<br />

Humpel, C.; Lippoldt, A.; Chadi, G.; Ganten, D.;<br />

Olson, L.; Fuxe, K. (1993) Fast and widespread<br />

increase of basic fibroblast growth fac<strong>to</strong>rs messenger<br />

RNA and protein in the forebrain after<br />

kainate-induced seizures. Neurosci. 57 (4),<br />

913–922.<br />

Ikeshima, H.; Yuasa, S.; Matsuo, K.; Kawamura, K.;<br />

Hata, J.; Takano, T. (1993) Expression of three<br />

nonallelic genes coding calmodulin exhibits similar<br />

localization on the central nervous system of adult<br />

rats. J. Neurosci. Res. 36, 111–119.<br />

<strong>In</strong>gham, P. W.; Taylor, A. M.; Nakano, Y. (1991)<br />

Role of the Drosophila patched gene in positional<br />

signaling. Nature 353, 184–186.<br />

<strong>In</strong>oue, S.; Orimo, A.; Hosoi, T.; Ikegami, A.; Kozaki,<br />

K.; Ouchi, Y.; Nomura, S.; Muramatsu, M.; Orimo, H.<br />

(1994) Demonstration of activin-a in arteriosclerotic<br />

lesions. Biochem. Biophys. Res. Com. 205 (1),<br />

441–448.<br />

Ishida, N.; Matsui, M.; Mitsui, Y.; Mishina, M. (1994)<br />

Circadian expression of NMDA recep<strong>to</strong>r mRNAs,<br />

3 and 1, in the suprachiasmatic nucleus of rat<br />

brain. Neurosci. Letters 166, 211–215.<br />

CONTENTS<br />

INDEX<br />

References<br />

Jackson, A. C.(1992) Detection of rabies virus<br />

mRNA in mouse brain by using in situ hybridization<br />

with digoxigenin-labeled RNA probes. Mol. Cell.<br />

Probes 6, 131–136.<br />

Jacque, C.; Tchélingérian, J.-L. (1993) Synthèse<br />

de cy<strong>to</strong>kines: une nouvelle forme de réponse des<br />

neurones centraux. C. R. Soc. Biol. 188, 47–57.<br />

Jennische, E.; Andersson, G. L. (1991) Expression of<br />

GH recep<strong>to</strong>r mRNA in regenerating skeletal muscle<br />

of normal and hypophysec<strong>to</strong>mized rats. An in situ<br />

hybridization study. Acta Endocrinol. 125, 595–602.<br />

Jowett, T.; Lettice, L. (1994) Whole-mount in situ<br />

hybridizations on zebrafisch embryos using a<br />

mixture of digoxigenin- and fluorescein-labeled<br />

probes. TIG 10 (3), 73–74.<br />

Karr, L. J.; Panoskaltsis-Mortari, A.; Li, J.; Devore-<br />

Carter, D.; Weaver, C. T.; Bucy, R. P. (1995) <strong>In</strong> situ<br />

hybridization for cy<strong>to</strong>kine mRNA with digoxigeninlabeled<br />

riboprobes. Sensitivity of detection and<br />

double label applications. J. Immunol. Meth. 182,<br />

93–106.<br />

Kaneko, Y.; Takano, S.; Okumura, K.; Takenawa, J.;<br />

Higashituji, H.; Fukumo<strong>to</strong>, M.; Nakayama, H.;<br />

Fujita, J. (1993) Identification of protein tyrosine<br />

phosphatase expressed in murine male germ cells.<br />

Biochem. Biophys. Res. Commun. 197 (2),<br />

625–631.<br />

Kieft, H.; Brady, J.; Brady, T. E.; de Ruijter, N. C. A.;<br />

Schel, J. H. N. Detection of phaseolin m-RNA using<br />

silver enhanced anti-digoxigenin/ultra small gold<br />

probes.<br />

Kishimo<strong>to</strong>, J.; Cox, H.; Keverne, E. B.; Emson, P. C.<br />

(1994) Cellular localization of putative odorant<br />

recep<strong>to</strong>r mRNAs in olfac<strong>to</strong>ry and chemosensory<br />

neurons: a non radioactive in situ hybridization<br />

study. Mol. Brain Res. 23, 33–39.<br />

Komminoth, P. (1992) Digoxigenin as an alternative<br />

probe labeling for in situ hybridization. Diagn. Mol.<br />

Pathol. 1 (2), 142–150.<br />

Komminoth, P.; Merk, F. B.; Leav, I.; Wolfe, H. J.;<br />

Roth, J. (1992) Comparison of 35S- and digoxigeninlabeled<br />

RNA and oligonucleotide probes for in situ<br />

hybridization. His<strong>to</strong>chem. 98, 217–228.<br />

Kon, Y.; Endoh, D.; Fukamizu, A.; Murakami, K.;<br />

Hashimo<strong>to</strong>, Y.; Sugimura, M. (1993) A simple<br />

method of hybridohis<strong>to</strong>chemistry for detection of<br />

renin mRNA in the mouse kidney. J. Vet. Med. Sci.<br />

55 (3), 461–463.<br />

Kriegsmann, J.; Keyszer, G.; Geiler, T.; Gay, R. E.;<br />

Gay, S. (1994) A new double labeling technique for<br />

combined in situ hybridization and<br />

immunohis<strong>to</strong>chemical analysis. Lab. <strong>In</strong>vest. 71 (6),<br />

911–917.<br />

Kronenberger, J.; Desprez, T.; Höfte, H.; Caboche,<br />

M.; Traas, J. (1993) A methacrylate embedding<br />

procedure developed for immunolocalization on<br />

plant tissues is also compatible with in situ<br />

hybridization. Cell Biol. <strong>In</strong>t. 17 (11), 1013–1021.<br />

179<br />

6


6<br />

180<br />

References<br />

Labrecque, L. G.; Lampert, I.; Kazembe, P.; Philips,<br />

J.; Griffin, B. E. (1994) Correlation between cy<strong>to</strong>pathological<br />

results and in situ hybridization on needle<br />

aspiration biopsies of suspected african burkitt’s<br />

lymphomas. <strong>In</strong>t. J. Canc. 59, 591–596.<br />

Lauterborn, J. C.; Tran, T. M. D.; Isackson, P. J.; Gall,<br />

C. M. (1993) Nerve growth fac<strong>to</strong>r mRNA is expressed<br />

by GABAergic neurons in rat hippocampus.<br />

NeuroReport 5, 273–276.<br />

Lepage, T.; Ghiglione, C.; Gache, C. (1992) Spatial<br />

and temporal expression pattern during sea urchin<br />

embryogenesis of a gene coding for a protease<br />

homologous <strong>to</strong> the human protein BMP-1 and <strong>to</strong> the<br />

product of the Drosophila dorsal-ventral patterning<br />

gene <strong>to</strong>lloid. Development 114.<br />

Lepage, T.; Sardet, C.; Gache, C. (1992) Spatial<br />

expression of the hatching enzyme gene in the sea<br />

urchin embryo. Development Biol. 150.<br />

Lin, N.-S.; Chen, C.-C.; Hsu, Y.-H. (1993) Postembedding<br />

in situ hybridization for localization<br />

of viral nucleic acid in ultra-thin sections.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 41 (10), 1513–1519.<br />

Linares-Cruz, G.; Rigaut, J. P.; Vassy, J.; De Oliveira,<br />

T. C.; De Cremoux, P.; Olofsson, B.; Calvo, F. (1994)<br />

Reflectance in situ hybridization (RISH): detection,<br />

by confocal reflectance laser microscopy, of goldlabeled<br />

riboprobes in breast cancer cell lines and<br />

his<strong>to</strong>logical specimens. J. Microsc. 173 (1), 27–38.<br />

Maguire, S. M.; Millar, M. R.; Sharpe, R. M.;<br />

Saunders, P. T. K. (1993) Stage-dependent<br />

expression of mRNA for cyclic protein 2 during<br />

sperma<strong>to</strong>genesis is modulated by elongate<br />

spermatids. Mol. Cel. Endocrinol. 94, 79–88.<br />

Manoukian, A. S.; Krause, H. M. (1992)<br />

Concentration-dependent activities of the evenskipped<br />

protein in drosophila embryos. Genes &<br />

Development 6, 1740–1751.<br />

Marks, D. L.; Smith, M. S.; Clif<strong>to</strong>n, D. K.; Steiner, R.<br />

A. (1993) Regulation of gonadotropin-releasing<br />

hormone (GnRH) and galanin gene expression in<br />

GnRH neurons during lactation in the rat.<br />

Endocrinol. 133 (3), 1450–1458.<br />

Marks, D. L.; Smith, M. S.; Vrontakis, M.; Clif<strong>to</strong>n,<br />

D. K.; Steiner, R. A. (1993) Regulation of galanin<br />

gene expression in gonadotropin-releasing hormone<br />

neurons during the estrous cycle of the rat.<br />

Endocrinol. 132 (4), 1836–1844.<br />

Martinez-Montero, J. C.; Herring<strong>to</strong>n, C. S.;<br />

Stickland, J.; Sawyer, H.; Evans, M.; Flannery, D. M.<br />

J.; McGee, J. O’D. (1991) Model system for<br />

optimising mRNA non-iso<strong>to</strong>pic in situ hybridization:<br />

Riboprobe detection of lysozyme mRNA in archival<br />

gut biopsy specimens. J. Clin. Pathol. 44, 835–839.<br />

Matejka, G. L.; Eriksson, P. S.; Carlsson, B.;<br />

Jennische, E. (1992) Distribution of IGF-I mRNA and<br />

IGF-I binding sites in the rat kidney. His<strong>to</strong>chem. 97<br />

(2), 173–180.<br />

Matsui, M.; Mitsui, Y.; Ishida, N. (1993) Circadian<br />

regulation of per repeat mRNA in the suprachiasmatic<br />

nucleus of rat brain. Neurosci. Letters 163,<br />

189–192.<br />

McFadden, G.; Bönig, I.; Clarke, A. Double label<br />

in situ hybridization for electron microscopy.<br />

Merchant, K. M.; Miller, M. A. (1994) Coexpression<br />

of neurotensin and c-fos mRNAs in rat neostriatal<br />

neurons following acute haloperidol. Mol. Brain<br />

Res. 23, 271–277.<br />

Millar, M. R.; Sharpe, R. M.; Maguire, S. M.;<br />

Saunders, P. T. K. (1993) Cellular localisation of<br />

messenger RNAs in rat testis: application of<br />

digoxigenin-labeled ribonucleotide probes <strong>to</strong><br />

embedded tissue. Cell Tissue Res. 273, 269–277.<br />

Millar, M. R.; Sharpe, R. M.; Maguire, S. M.;<br />

Gaughan, J.; West, A. P.; Saunders, P. T. K. (1994)<br />

Localization of mRNAs by in situ hybridization <strong>to</strong> the<br />

residual body at stages IX-X of the cycle of the rat<br />

seminiferous epithelium: fact or artefact?<br />

<strong>In</strong>t. J. Androl. 17, 149–160.<br />

Miller, M. A.; Kolb, P. E.; Raskind, M. A. (1993)<br />

Extra-hypothalamic vasopressin neurons coexpress<br />

galanin messenger RNA as shwon by double in situ<br />

hybridization his<strong>to</strong>chemistry. J. Comparative<br />

Neurol. 329, 378–384.<br />

Miller, M. A.; Kolb, P. E.; Raskind, M. A. (1993)<br />

A method for simultaneous detection of multiple<br />

mRNAs using digoxigenin and radioiso<strong>to</strong>pic cRNA<br />

probes. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 41 (12),<br />

1741–1750.<br />

Mitani, K.; Fujita, H.; Hayashi, N.; Yamamo<strong>to</strong>, M.;<br />

Sassa, S. (1992) Differential induction responses<br />

of -aminolevulinate synthase mRNAs during<br />

erythroid differentiation: Use of nonradioactive<br />

in situ hybridization. Am. J. Hema<strong>to</strong>l. 39, 63–64.<br />

Mizuno, K.; Hasegawa, K.; Ogimo<strong>to</strong>, M.; Katagiri, T.;<br />

Yakura, H. (1994) Developmental regulation of gene<br />

expression for the MPTP isoforms in the central<br />

nervous system and the immune system. FEBS<br />

Letters 355, 223–228.<br />

Morvan, P.-Y.; Picot, C.; Dejour, R.; Gillot, E.;<br />

Genetet, B.; Genetet, N. (1994) <strong>In</strong> situ hybridization<br />

and cy<strong>to</strong>fluorometric analysis of cy<strong>to</strong>kine mRNA<br />

during in vitro activation of human T cells. Eur.<br />

Cy<strong>to</strong>kine Netw. 5 (5), 469–480.<br />

Nagamatsu, S.; Sawa, H.; Kamada, K.; Nakamichi, Y.;<br />

Yoshimo<strong>to</strong>, K.; Hoshino, T. (1993) Neuron-specific<br />

glucose transporter (NSGT): CNS distribution of<br />

GLUT3 rat glucose transporter (RGT3) in rat central<br />

neurons. FEBS 334 (3), 289–295.<br />

Nakase, T.; Nomura, S.; Yoshikawa, H.; Hashimo<strong>to</strong>,<br />

J.; Hirota, S.; Kitamura, Y.; Oikawa, S.; Ono, K.;<br />

Takaoka, K. (1994) Transient and localized expression<br />

of bone morphogenetic protein 4 messenger<br />

RNA during fracture healing. J. Bone Mineral Res.<br />

9 (5), 651–659.<br />

Nojima, T.; Abe, S.; Furuta, Y.; Nagashima, K.;<br />

Alam, S.; Takada, N.; Sasaki, F.; Hata, Y. (1991)<br />

Morphological and cy<strong>to</strong>genetic characterization and<br />

N-myc oncogene analysis of a newly established<br />

neuroblas<strong>to</strong>ma cell line. Acta Pathol. Japonica. 41,<br />

507–515.<br />

CONTENTS<br />

INDEX


Nonomura, K.; Yamanishi, K.; Hosokawa, Y.; Doi,<br />

H.; Hirano, J.; Fukushima, S.; Yasuno, H. (1993)<br />

Localization of transglutaminase 1 mRNA in normal<br />

and psoriatic epidermis by non-radioactive in situ<br />

hybridization. Brit. J. Dema<strong>to</strong>l. 128, 23–28.<br />

Obenaus, A.; Esclapez, M.; Houser, C.R. (1993) Loss<br />

of glutamate decarboxylase mRNA-containing<br />

neurons in the rat dentate gyrus following<br />

pilocarpine-induced seizures. J. Neurosci. 13 (10),<br />

4470–4485.<br />

Oh, J. D.; Woolf, N. J.; Roghani, A.; Edwards, R. H.;<br />

Butcher. L. L. (1992) Cholinergic neurons in the rat<br />

central nervous system demonstrated by in situ<br />

hybridization of choline acetyltransferase mRNA.<br />

Neurosci. 47 (4), 807–822.<br />

Ohtani, H.; Kuroiwa, A.; Obinata, M.; Ooshima, A.;<br />

Nagura, H. (1992) Identification of type I collagenproducing<br />

cells in human gastrointestinal<br />

carcinomas by non-radioactive in situ hybridization<br />

and immunoelectron microscopy. J. His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 40 (8), 1139–1146.<br />

Okada, K.; Matsuda, S.; Li, Y.; Okumura, N.; Uryu,<br />

K.; Fujita, H.; Sakanaka, M. (1993) Basic fibroblast<br />

growth fac<strong>to</strong>r-like immunoreactivity in the rat<br />

trigeminal sensory system and peri-oral skin with<br />

vibrissae. Cell Tissue Res. 272, 417– 427.<br />

Okamura, T.; Shimokawa, H.; Takagi, Y.; Ono, H.;<br />

Sasaki, S. (1993) Detection of collagenase mRNA in<br />

odon<strong>to</strong>clasts of bovine root-resorbing tissue by<br />

in situ hybridization. Calcif Tissue <strong>In</strong>t. 52, 325–330.<br />

O’Neill, J. W.; Bier, E. (1994) Double-label in situ<br />

hybridization using biotin and digoxigenin-tagged<br />

RNA probes. BioTechn. 17 (5), 870–875.<br />

Oschwald, R.; Richter, K.; Grunz, H. (1991)<br />

Localization of a nervous system-specific class II<br />

-tubulin gene in Xenopus laevis embryos by<br />

whole-mount in situ hybridization. <strong>In</strong>t. J. Dev. Biol.<br />

35, 399–405.<br />

Pan, L.; Happerfield, L. C.; Bobrow, L. G.; Isaacson,<br />

P. G. (1993) <strong>In</strong> situ detection of human Ig ligh-chain<br />

mRNA on formalin-fixed and paraffin-embedded<br />

tissue sections using digoxigenin-labeled RNA<br />

probes. His<strong>to</strong>chem. J. 25, 57–63.<br />

Pang, M.; Baum, L. G. (1993) Application of<br />

noniso<strong>to</strong>pic RNA in situ hybridization <strong>to</strong> detect<br />

endogenous gene expression in pathologic<br />

specimens. Diagn. Mol. Pathol. 2 (4), 277–282.<br />

Panoskaltsis-Mortari, A.; Bucy, R. P. (1995) <strong>In</strong> situ<br />

hybridization with digoxigenin-labeled RNA probes:<br />

facts and artifacts. BioTechn. 18 (2), 300–307.<br />

Peng, C.; Gallin, W.; Peter, R. E.; Blomqvist, A. G.;<br />

Larhammar, D. (1994) Neuropeptide-Y gene<br />

expression in the goldfish brain: Distribution and<br />

regulation by ovarian steroids. Endocrinol. 134 (3),<br />

1095–1103.<br />

Qian, Z.; Gilbert, M. E.; Colicos, M. A.; Kandel, E. R.;<br />

Kuhl, D. (1993) Tissue-plasminogen activa<strong>to</strong>r is<br />

induced as an immediate-early gene during seizure,<br />

kindling and long-term potentiation. Nature 361,<br />

453–457.<br />

CONTENTS<br />

INDEX<br />

References<br />

Redies, C.; Takeichi, M. (1993) Expression of<br />

N-Cadherin mRNA during development of the<br />

mouse brain. Developm. Dynam. 197, 26–39.<br />

Rees, J. L.; Fisher, C. (1992) Nonradioactive in situ<br />

hybridization with digoxigenin. Trends Genet. 8 (1), 8.<br />

Robbins, E.; Baldino, F.; Roberts-Lewis, J. M.;<br />

Meyer, S. L.; Grega, D.; Lewis, M. E. (1991)<br />

Quantitative non-radioactive in situ hybridization of<br />

preproenkephalin mRNA with digoxigenin-labeled<br />

cRNA probes. Ana<strong>to</strong>m. Rec. 231, 559–562.<br />

Rosen, B.; Bedding<strong>to</strong>n, R. S. P. (1993) Whole-mount<br />

in situ hybridization in the mouse embryo: gene<br />

expression in three dimensions. TIG 9 (5), 162–167.<br />

Rosinski-Chupin, I.; Rougeot, C.; Courty, Y.;<br />

Rougeon, F. (1993) Localization of mRNAs of two<br />

androgen-dependent proteins, SMR1 and SMR2, by<br />

in situ hybridization reveals sexual differences in<br />

acinar cells of rat submandibular gland. J.<br />

His<strong>to</strong>chem. Cy<strong>to</strong>chem. 41 (11), 1645–1649.<br />

Sakamo<strong>to</strong>, K.; Ezashi, T.; Miwa, K.; Okuda-Ashitaka,<br />

E.; Houtani, T.; Sugimo<strong>to</strong>, T.; I<strong>to</strong>, S.; Hayaishi, O.<br />

(1994) Molecular cloning and expression of a cDNA<br />

of the bovine prostaglandin F2 Recep<strong>to</strong>r. J. Biolog.<br />

Chem. 269 (5), 3881–3886.<br />

Sasaki, J.; Nomura, T.; Watanabe, S.; Kanda, S.;<br />

Kouno, T.; Okada, T.; Noji, S.; Watanabe, H. (1991)<br />

The localization of actin mRNA in megakaryocytes<br />

demonstrated by in situ hybridization using<br />

digoxigenin-labeled riboprobes. Acta His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 24 (3), 335–339.<br />

Saunders, P. T. K.; Millar, M. R.; Maguire, S. M.;<br />

Sharpe, R. M. (1992) Stage-specific expression<br />

of rat transition protein 2 mRNA and possible localization<br />

<strong>to</strong> the chroma<strong>to</strong>id body of step 7 spermatids<br />

by in situ hybridization using a nonradiaoctive<br />

riboprobe. Mol. Reprod. Develop. 33, 385–391.<br />

Saunders, P. T. K.; Millar, M. R.; West, A. P.; Sharpe,<br />

R. M. (1993) Mi<strong>to</strong>chondrial cy<strong>to</strong>chrome C oxidase II<br />

messenger ribonucleic acid is expressed in<br />

pachytene sperma<strong>to</strong>cytes at high levels and in a<br />

stage-dependent manner during sperma<strong>to</strong>genesis<br />

in the rat. Biol. Reprod. 48, 57–67.<br />

Schaeren-Wiemers, N.; Gerfin-Moser, A. <strong>In</strong> situ<br />

hybridization using digoxigenin labeled cRNA<br />

probes; A standardized pro<strong>to</strong>col <strong>to</strong> detect low<br />

abundant mRNA transcripts in tissue sections and<br />

cell cultures. Abstract.<br />

Schaeren-Wiemers, N.; Gerfin-Moser, A. (1993) A<br />

single pro<strong>to</strong>col <strong>to</strong> detect transcripts of various types<br />

and expression levels in neural tissue and cultured<br />

cells: in situ hybridization using digoxigenin-labeled<br />

cRNA probes. His<strong>to</strong>chem. 100, 431–440.<br />

Schröder, H.; Giacobini, E.; Wevers, A.; Birtsch, C.;<br />

Schütz, U. (1995) Nicotinic recep<strong>to</strong>rs in Alzheimer’s<br />

disease.<br />

Spreyer, P.; Kuhn, G.; Hanemann, C. O.; Gillen, C.;<br />

Schaal, H.; Kuhn, R.; Lemke, G.; Müller, H. W.<br />

(1991) Axon-regulated expression of a Schwann cell<br />

transcript that is homologous <strong>to</strong> a “growth arrestspecific”<br />

gene. EMBO J. 10 (12), 3661–3668.<br />

181<br />

6


6<br />

182<br />

References<br />

Springer, J. E.; Gwag, B. J.; Lewis, M. E.; Baldino, F.<br />

(1991) Non-radioactive detection of nerve growth<br />

fac<strong>to</strong>r recep<strong>to</strong>r (NGFR) mRNA in rat brain using<br />

in situ hybridization his<strong>to</strong>chemistry. J. His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 39 (2), 231–234.<br />

Steel, J. H.; Martinez, A.; Springall, D. R.; Tres<strong>to</strong>n,<br />

A. M.; Cuttitta, F.; Polak, J. M. (1994) Peptidylglycine<br />

-amidating monooxygenase (PAM) immunoreactivity<br />

and messenger RNA in human pituitary<br />

and increased expression in pituitary tumours.<br />

Cell Tissue Res. 276, 197–207.<br />

Strähle, U.; Blader, P.; Adam, J.; <strong>In</strong>gham, P. W.<br />

(1994) A simple and efficient procedure for noniso<strong>to</strong>pic<br />

in situ hybridization <strong>to</strong> sectioned material.<br />

TIG 10 (3), 75–76.<br />

Swain, G. P.; Jacobs, A. J.; Frei, E.; Selzer, M. E.<br />

(1994) A method for in situ hybridization in<br />

wholemounted lamprey brain: neurofilament<br />

expression in larvae and adults. Experim. Neurol.<br />

125, 256–269.<br />

Tensen, C. P.; Coenen, T.; van Herp, F. (1991)<br />

Detection of mRNA encoding Crustacean<br />

hyperglycemic hormone (CHH) in the eyestalk of the<br />

crayfish orconectes limosus using non-radioactive<br />

in situ hybridization. Neurosci. Letter 124,<br />

178–182.<br />

Tensen, C. P.; van Kesteren, E. R.; Planta, R. J.;<br />

Cox, K. J. A.; Burke, J. F.; van Heerikhuizen, H.;<br />

Vreugdenhil, E. (1994) A G protein-coupled recep<strong>to</strong>r<br />

with low density lipoprotein-binding motifs suggests<br />

a role for lipoproteins in G-linked signal transduction.<br />

Proc. Natl. Acad. Sci. USA 91, 4816–4820.<br />

Tezuka, K.-I.; Tezuka, Y.; Maejima, A.; Sa<strong>to</strong>, T.;<br />

Nemo<strong>to</strong>, K.; Kamioka, H.; Hakeda, Y.; Kumegawa,<br />

M. (1994) Molecular cloning of a possible cysteine<br />

proteinase predominantly expressed in osteoclasts.<br />

J. Biolog. Chem. 269 (2), 1106–1109.<br />

Tiret, L.; Le Mouellic, H.; Lallemand, Y.; Maury, M.;<br />

Brulet, P. (1993) Altering the spatial determinations<br />

in the mouse embryos by manipulating the Hox<br />

genes. C.R. Acad. Sci. 316, 1017–1024.<br />

Tohyama, C.; Nishimura, N.; Suzuki, J. S. (1994)<br />

Metallothionein mRNA in the testis and prostate of<br />

the rat detected by digoxigenin-labeled riboprobe.<br />

His<strong>to</strong>chem. 101, 341–346.<br />

Torii, S.; Yamagishi, T.; Murakami, K.; Nakayama,<br />

K. (1993) Localization of Kex2-like processing<br />

endoproteases, furin and PC4, within mouse testis<br />

by in situ hybridization. FEBS 316 (1), 12–16.<br />

Tsukamo<strong>to</strong>, T.; Kusakabe, M.; Saga, Y. (1991) <strong>In</strong> situ<br />

hybridization with non-radiactive digoxigenin-11-<br />

UTP-labeled cRNA probes: localization of<br />

developmentally regulated mouse tenascin mRNAs.<br />

<strong>In</strong>t. J. Dev. Biol. 35, 25–32.<br />

Uehara, F.; Ohba, N.; Nakashima, Y.; Yanagita, T.;<br />

Ozawa, M.; Muramatsu, T. (1993) Developmental<br />

change of distribution of -galac<strong>to</strong>side 2,6sialyltransferase<br />

mRNA in rat retina. Exp. Eye Res.<br />

56, 89–93.<br />

Uryu, K.; Iwata, H.; Yoshida, S.; Shiosaka, S.;<br />

Matsuda, S.; Sakanaka, M. (1993) Localization with<br />

a digoxigenin-labeled cRNA probe of basic<br />

fibroblast growth fac<strong>to</strong>r mRNA in dystrophic (MDX)<br />

mouse masseter muscle and rat hair follicles. Acta<br />

His<strong>to</strong>chem. Cy<strong>to</strong>chem. 26 (5), 381–389.<br />

Van Bael, A.; Huygen, R.; Himpens, B.; Denef, C.<br />

(1994) <strong>In</strong> vitro evidence that LHRH stimulates the<br />

recruitment of prolactin mRNA-expressing cells<br />

during the postnatal period in the rat. J. Mol.<br />

Endocrinol. 12, 107–118.<br />

Viaene, A. I.; Baert, J. H. (1994) Localization<br />

of cy<strong>to</strong>keratin 4 mRNA in human oesophageal<br />

epithelium by non-radioactive in situ hybridization.<br />

His<strong>to</strong>chem. J. 26, 50–58.<br />

Wahle, P.; Beckh, S. (1992) A method of in situ<br />

hybridization combined with immunocy<strong>to</strong>chemistry,<br />

his<strong>to</strong>chemistry, and tract tracing <strong>to</strong> characterize the<br />

mRNA expressing cell types in heterogeneous<br />

neuronal populations. J. Neurosci. Meth. 41,<br />

153–166.<br />

Wang, D.; Cutz, E. (1994) Methods in labora<strong>to</strong>ry<br />

investigation. Simultaneous detection of messenger<br />

ribonucleic acids for bombesin/gastrin-releasing<br />

peptide in its recep<strong>to</strong>r in rat brain by nonradiolabeled<br />

double in situ hybridization. Lab. <strong>In</strong>vest. 70 (5),<br />

775–780.<br />

West, A. P.; Sharpe, R. M.; Saunders, P. T. K.<br />

(1994) Differential regulation of cyclic adenosine<br />

3’,5’-monophosphate (cAMP) response elementbinding<br />

protein and cAMP response element<br />

modula<strong>to</strong>r messenger ribonucleic acid transcripts<br />

by follicle-stimulating hormone and androgen in<br />

the adult rat testis. Biol. Reprod. 50, 869–881.<br />

Wevers, A.; Jeske, A.; Lobron, Ch.; Birtsch, Ch.;<br />

Heinemann, S.; Maelicke, A.; Schröder, R.;<br />

Schröder, H. (1994) Cellular distribution of nicotinic<br />

acetylcholine recep<strong>to</strong>r subunit mRNAs in the human<br />

cerebral cortex as revealed by non-iso<strong>to</strong>pic in situ<br />

hybridization. Mol. Brain Res. 25, 122–128.<br />

Wiel, van de, C.; Norris, J. H.; Bochenek, B.;<br />

Dickstein, R.; Bisseling, T.; Hirsch, A. M. (1990)<br />

Nodulin gene expression and ENOD2 localization<br />

in effective, nitrogen-fixing and ineffective,<br />

bacteria-free modules of alfalfa. Plant Cell 2,<br />

1009–1017.<br />

Wright, D. E.; Jennes, L. (1993) Lack of expression of<br />

sero<strong>to</strong>nin recep<strong>to</strong>r subtype -1a, 1c, and -2 mRNAs in<br />

gonadotropin-releasing hormone producing neurons<br />

of the rat. Neurosci. Letters 163, 1–4.<br />

Wu, T.-C.; Kanayama, M. D.; Hruban, R. H.;<br />

Au, W.-C.; Askin, F. B.; Hutchins, G. M. (1992) Virusassociated<br />

RNAs (VA-I and VA-II). An efficient target<br />

for the detection of adenovirus infections by in situ<br />

hybridization. Am. J. Pathol. 140 (4), 991–998.<br />

Wu, T.-C.; Kanayama, M. D.; Hruban, R. H.;<br />

Whitehead, W.; Raj, N. B. K. (1993) Detection of a<br />

neuron-specific 9.0-kb transcript which shares<br />

homology with antisense transcripts of HIV-1 gag<br />

Gene in patients with and without HIV-1 infection.<br />

Am. J. Pathol. 142, 25–31.<br />

CONTENTS<br />

INDEX


Wu, T.-C.; Lee, W. A.; Pizzorno, M. C.; Au, W.-C.;<br />

Chan, Y.-J.; Hruban, R. H.; Hutchins, G. M.;<br />

Hayward, G. S. (1992) Localization of the human<br />

cy<strong>to</strong>megalovirus 2.7-kb major early -gene<br />

transcripts by RNA in situ hybridization in<br />

permissive and nonpermissive infections. Am. J.<br />

Pathol. 141, 1247–1254.<br />

Wu, T.-C.; Pizzorno, M. C.; Hayward, G. S.;<br />

Willoughby, S.; Neumann, D. A.; Rose, N. R.;<br />

Ansari, A. A.; Beschorner, W. E.; Baughman, K. L.;<br />

Herskowitz, A. (1992) <strong>In</strong> situ detection of human<br />

cy<strong>to</strong>megalovirus immediate-early gene transcripts<br />

within cardiac myocytes of patients with HIVassociated<br />

cardiomyopathy. AIDS 6, 777–785.<br />

Wu, T.-C.; Kuo, T.-T. (1993) Study of epstein-barr<br />

virus early RNA 1 (EBER 1) expression by in situ<br />

hybridization in thymic epithelial tumors of chinese<br />

patients in Taiwan. Hum. Pathol. 24, 235–238.<br />

Xu, X.-C.; Ro, J. Y.; Lee, J. S.; Shin, D. M.; Hong,<br />

W. K.; Lotan, R. (1994) Differential expression of<br />

nuclear retinoid recep<strong>to</strong>rs in normal, premalignant,<br />

and malignant head and neck tissues. Cancer Res.<br />

54, 3580–3587.<br />

Xu, X.-C.; Clifford, J. L.; Hong, W. K.; Lotan, R.<br />

(1994) Detection of nuclear retinoic acid recep<strong>to</strong>r<br />

mRNA in his<strong>to</strong>logical tissue sections using nonradioactive<br />

in situ hybridization his<strong>to</strong>chemistry.<br />

Diagn. Mol. Pathol. 3 (2), 122–131.<br />

Yan, Y.; Lagenaur, C.; Narayanan, V. (1993) Molecular<br />

cloning of M6: identification of a PLP/DM20 gene<br />

family. Neuron 11, 423–431.<br />

Ying, S.; Durham, S. R.; Barkans, J.; Masuyama, K.;<br />

Jacobson, M.; Rak, S.; Löwhagen, O.; Moqbel, R.;<br />

Kay, A. B.; Hamid, Q. A. (1993) T cells are the<br />

principal source of <strong>In</strong>terleukin-5 mRNA in allergeninduced<br />

rhinitis. Am. J. Respir. Cell Mol. Biol. 9,<br />

356–360.<br />

Yokouchi, Y.; Sasaki, H.; Kuroiwa, A. (1991)<br />

Homeobox gene expression correlated with the<br />

bifurcation process of limb cartilage development.<br />

Nature 353, 443–445.<br />

Yoshimura, A.; Gordon, K.; Alpers, C. E.; Floege, J.;<br />

Pritzl, P.; Ross, R.; Couser, W. G.; Bowen-Pope,<br />

D. F.; Johnson, R. J. (1991) Demonstration of PDGF<br />

B-chain mRNA in glomeruli in mesangial proliferative<br />

nephritis by in situ hybridization. Kidney <strong>In</strong>ternat.<br />

40, 470–476.<br />

Young, I. D.; Stewart, R. J.; Ailles, L.; Mackie, A.;<br />

Gore, J. (1993) Synthesis of digoxigenin-labeled<br />

cRNA probes for noniso<strong>to</strong>pic in situ hybridization<br />

using reverse transcription polymerase chain<br />

reaction. Biotechn. His<strong>to</strong>chem. 68 (3), 153–158.<br />

Zhou, X.; Sasaki, H.; Lowe, L.; Hogan, B. L. M.;<br />

Kuehn, M. R. (1993) Nodal is a novel TGF--like<br />

gene expressed in the mouse node during<br />

gastrulation. Nature 361, 543–547.<br />

Zurbriggen, A.; Müller, C.; Vandevelde, M. (1993)<br />

<strong>In</strong> situ hybridization of virulent canine distemper<br />

virus in brain tissue, using digoxigenin-labeled<br />

probes. Am. J. Vet. Res. 54 (9), 1457–1461.<br />

CONTENTS<br />

INDEX<br />

C. Oligonucleotide probes<br />

a. 3'-Endlabeling<br />

References<br />

Campbell, A. M.; Wuytack, F.; Fambrough, D. M.<br />

(1993) Differential distribution of the alternative<br />

forms of the sarcoplasmic/endoplasmic reticulum<br />

Ca2+ -ATPase, SERCA2b and SERCA2a, in the avian<br />

brain. Brain Res. 605, 67–76.<br />

Hodges, E.; Howell, W. M.; Tyacke, S. R.; Wong, R.;<br />

Cawley, M. I. D. (1994) Detection of T-Cell recep<strong>to</strong>r<br />

chain mRNA in frozen and paraffin-embedded<br />

biopsy tissue using digoxigenin-labeled oligonucleotide<br />

probes in situ. J. Pathol. 174, 151–158.<br />

McNicol, A. M.; Farquharson, M. A.; Walker, E.<br />

(1991) Non-Iso<strong>to</strong>pic in situ hybridization with<br />

digoxigenin and alkaline phosphatase labeled<br />

oligodeoxynucleotide probes. Path. Res. Pract. 187,<br />

556–558.<br />

Roncaroli, F.; Dina, R.; Geuna, M.; Rea<strong>to</strong>, G.;<br />

Ponti, R.; Palestro, G. (1994) Identification of<br />

granulocyte-macrophage colony stimulating fac<strong>to</strong>r<br />

recep<strong>to</strong>r mRNA by non-iso<strong>to</strong>pic in situ hybridization<br />

in bone marrow biopsies. Haemo<strong>to</strong>l. 79, 322–327.<br />

Thomas, G. A.; Davies, H. G.; Williams, E. D. (1993)<br />

Demonstration of mRNA using digoxigenin labeled<br />

oligonucleotide probes for in situ hybridzation in<br />

formamide free conditions. J. Clin. Pathol. 46,<br />

171–174.<br />

b. 3'-Tailing<br />

Artero, R. D.; Akam, M.; Pérez-Alonso, M. (1992)<br />

Oligonucleotide probes detect splicing variants<br />

in situ in Drosophila embryos. Nucl. Acids Res. 20<br />

(21), 5687–5690.<br />

Amberg, D. C.; Goldstein, A. L.; Cole, C. N. (1992)<br />

Isolation and characterization of RAT1: an essential<br />

gene of Saccharomyces cerevisiae required for the<br />

efficient nucleocy<strong>to</strong>plasmic trafficking of mRNA.<br />

Genes Develop. 6, 1173–1189.<br />

Baldino, F.; Lewis, M. E. (1989) Non-radioactive in<br />

situ hybridization his<strong>to</strong>chemistry with digoxigenindUTP<br />

labeled oligonucleotides. Methods in Neuroscience<br />

Vol. 1 (Conn, P. M., ed.) Acadmic Press,<br />

New York, 282–292.<br />

Black, M.; Carey, F. A.; Farquharson, M. A.; Murray,<br />

G. D.; McNicol, A. M. (1993) Expression of the proopiomelanocortin<br />

gene in lung neuroendocrine<br />

tumours: in situ hybridization and immunohis<strong>to</strong>chemical<br />

studies. J. Pathol. 169, 329–334.<br />

Brouwer, N.; Van Dijken, H.; Ruiters, M. H. J.; Van<br />

Willigen, J.-D.; Ter Horst, G. J. (1992) Localization<br />

of dopamine D2 recep<strong>to</strong>r mRNA with non-radioactive<br />

in situ hybridization his<strong>to</strong>chemistry.<br />

Neurosci. Letters 142, 223–227.<br />

Dechesne, C. J.; Winsky, L.; Moniot, B.; Raymond,<br />

J. (1993) Localization of calretinin mRNA in rat<br />

and guinea pig inner ear by in situ hybridization<br />

using radioactive and non-radioactive probes.<br />

Hear. Res. 69, 91–97.<br />

183<br />

6


6<br />

184<br />

References<br />

Dickerson, D. S.; Huerter, B. S.; Morris, S. J.;<br />

Chronwall, B. M. (1994) POMC mRNA levels in<br />

individual melanotropes and GFAP in glial-like cells<br />

in rat pituitary. Peptides 15 (2), 247–256.<br />

Dirks, R. W.; Van Dorp, A. G. M.; Van Minnen, J.;<br />

Fransen, J. A. M.; Van der Ploeg, M.; Raap, A. K.<br />

(1992) Electron microscopic detection or RNA<br />

sequences by non-radioactive in situ hybridization<br />

in the mollusk lymnaea stagnalis. J. His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 40, 1647–1657.<br />

Dirks, R. W.; Van Gijlswijk, R. P. M.; Vooljs, M. A.;<br />

Smit, A. B.; Bogerd, J.; Van Minnen, J.; Raap, A. K.;<br />

Van der Ploeg, M. (1991) 3’End fluorochromized and<br />

haptenized oligonucleotides as in situ hybridization<br />

probes for multiple, simultaneous RNA detection.<br />

Experim. Cell Res. 194, 310–315.<br />

Dirks, R. W.; Van der Rijke, F. M.; Fujishita, S.;<br />

Van der Ploeg, M.; Raap, A. K. (1993) Methodologies<br />

for specific intron and exon RNA localization in<br />

cultured cells by haptenized and fluorochromized<br />

probes. J. Cell Sci. 104, 1187–1197.<br />

Dumas, S.; Horellou, P.; Helin, C.; Mallet, J. (1992)<br />

Co-expression of tyrosine hydroxylase messenger<br />

RNA1 and 2 in human ventral mesencephalon<br />

revealed by digoxigenin- and biotin-labeled oligodeoxyribonucleotides.<br />

J. Chem. Neuroana<strong>to</strong>my 5,<br />

11–18.<br />

Crabb, I. D.; Hughes, S. S.; Hicks, D. G.; Puzas, J. E.;<br />

Tsao, G. J. Y.; Rosier, R. N. (1992) Nonradioactive<br />

in situ hybridization using digoxigenin-labeled oligonucleotides.<br />

Am. J. Pathol. 141 (3), 579–589.<br />

Farquharson, M.; Harvie, R.; McNicol, A. M. (1990)<br />

Detection of messenger RNA using a digoxigenin<br />

end labeled oligonucleotide probe. J. Clin Pathol.<br />

43, 424–428.<br />

Farquharson, M.; Harvie, R.; McNicol, A. M. (1990)<br />

Detection of pro-opiomelanocortin messenger RNA<br />

using a digoxigenin end labeled oligodeoxynucleotide<br />

probe. J. Endocrinol. 124 (Supplement).<br />

Fevre-Montange, M.; Trembleau, A.; Landry, M.;<br />

Calas, A. (1992) Hybridation in situ avec des sondes<br />

oligonucléotidiques marquées à la digoxigénine:<br />

application à la détection des ARNm de la vasopressine<br />

et de l’ocy<strong>to</strong>cine. Techniques, 479–486.<br />

Grega, D.; Cavanaugh, T.; Martin, R.; Lewis, M.;<br />

Baldino, F. (1989) <strong>In</strong> situ hybridization his<strong>to</strong>chemistry<br />

using a new non-radioactive detection method. ICSU<br />

Short Reports, Advances in Gene Technology: Molecular<br />

Neurobiology and Neuropharmacology, Proceedings<br />

of the 1989 Miami Bio/Technology Winter<br />

Symposium, Vol. 9, p. 69, IRL Press, McLean, Virginia.<br />

Guellec Le, P.; Dumas, S.; Volle, G. E.; Pidoux, E.;<br />

Moukhtar, M. S.; Treilhou-Lahille, F. (1993) An<br />

efficient method <strong>to</strong> detect calci<strong>to</strong>nin mRNA in normal<br />

and neoplastic rat c-cells (Medullary Thyroid<br />

Carcinoma) by in situ hybridization using a<br />

digoxigenin-labeled synthetic<br />

oligodeoxyribonucleotide probe.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 41, 389–395.<br />

Hamada, K.; Okawara, Y.; Fryer, J. N.; Tomonaga,<br />

A.; Fukuda, H. (1994) Localization of mRNA of<br />

procollagen 1 type I in <strong>to</strong>rn supraspinatus tendons.<br />

Clin. Orthopaed. Related Res. 304, 18–21.<br />

Harper, S. J.; Pringle, J. H.; Gillies, A.; Allen, A. C.;<br />

Layward, L.; Feehally, J.; Lauder, I. (1992) Simultaneous<br />

in situ hybridization of native mRNA and<br />

immunoglobulin detection by conventional<br />

immunofluorescence in paraffin way embedded<br />

sections. J. Clin. Pathol. 45, 114–119.<br />

Harvie, R.; Elvin, P.; McArdle, C.; Morten, J. E. N.;<br />

McNicol, A. M. (1991) Detection of mRNA for ribosomal<br />

phosphoprotein P2 in normal colon and colonic<br />

tumours by in situ hybridization. J. Pathol. 164,<br />

67–73.<br />

Hil<strong>to</strong>n, D. A.; Day; C.; Pringle, J. H.; Fletcher, A.; Chambers,<br />

S. (1992) Demonstration of the distribution of<br />

Coxsackie virus RNA in neonatal mice by non-iso<strong>to</strong>pic<br />

in situ hybridization. J. Virol. Meth. 40, 155–162.<br />

Hil<strong>to</strong>n, D. A.; Fletcher, A.; Pringle, J. H. (1994)<br />

Absence of coxsacki viruses in idiopathic<br />

inflamma<strong>to</strong>ry muscle disease by in situ hybridization.<br />

Neuropathol. Appl. Neurobiol. 20, 238–242.<br />

Humpel, C.; Lindqvist, E.; Olson, L. (1993) Detection<br />

of nerve growth fac<strong>to</strong>r mRNA in rodent salivary<br />

glands with digoxigenin- and 33P-labeled oligonucleotides:<br />

effects of castration and sympathec<strong>to</strong>my.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 41 (5), 703–708.<br />

Kendall, C. H.; Roberts, P. A.; Pringle, J. H.;<br />

Lauder, I. (1991) The expression of parathyroid<br />

hormone messenger RNA in normal and abnormal<br />

parathyroid tissue. J. Pathol. 165, 111–118.<br />

Kennedy, R. E.; Hutchins, J. B. (1992) Choline acetyltransferase<br />

expression studied with an oligonucleotide<br />

probe. Cell. Mol. Neurobiol. 12 (4), 309–315.<br />

Khan, G.; Coates, P .J.; Kangro, H. O.; Slavin, G.<br />

(1992) Epstein Barr virus (EBV) encoded small RNAs:<br />

Targets for detection by in situ hybridization with<br />

oligonucleotide probes. J. Clin. Pathol. 45, 616–620.<br />

Khan, G.; Nor<strong>to</strong>n, A. J.; Slavin, G. (1993) Epstein-<br />

Barr virus in angioimmunoblastic T-cell lymphomas.<br />

His<strong>to</strong>pha<strong>to</strong>l. 22, 145–149.<br />

Kirchgessner, A. L.; Liu, M.-T.; Howard, M. J.;<br />

Gershon, M. D. (1993) Detection of the 5-HT1A<br />

Recep<strong>to</strong>r and 5-HT1A Recep<strong>to</strong>r mRNA in the rat<br />

bowel and pancreas: comparison with 5-HT1P<br />

Recep<strong>to</strong>rs. J. Comparative Neurol. 327, 233–250.<br />

Koji, T.; Brenner, R. M. (1993) Localization of<br />

estrogen recep<strong>to</strong>r messenger ribonucleic acid in<br />

rhesus monkey uterus by nonradioactive in situ<br />

hybridization with digoxigenin-labeled oligodeoxynucleotides.<br />

Endocrinol. 132, 382–392.<br />

Komminoth, P. (1992) Digoxigenin as an alternative<br />

probe labeling for in situ hybridization. Diagn. Mol.<br />

Pathol. 1 (2), 142–150.<br />

Komminoth, P.; Merk, F. B.; Leav, I.; Wolfe, H. J.;<br />

Roth, J. (1992) Comparison of 35S- and digoxigeninlabeled<br />

RNA and oligonucleotide probes for in situ<br />

hybridization. His<strong>to</strong>chem. 98, 217–228.<br />

Krizbai, I.; Deli, M.; Lengyel, I.; Maderspach, K.;<br />

Pákáski, M.; Joó, F.; Wolff, J. R. (1993) <strong>In</strong> situ<br />

hybridization with digoxigenin labeled oligonucleotide<br />

probes: detection of CAMK-II gene expression<br />

in primary cultures of cerebral endothelial cells.<br />

Neurobiol. 1 (3), 235–240.<br />

CONTENTS<br />

INDEX


Krusche, C.; Beier, H. M. (1994) Localization of<br />

uteroglobin mRNA by nonradioactive in situ<br />

hybridization in the pregnant rabbit endometrium.<br />

Ann. Anat. 176, 23–31.<br />

Laverdure, A.-M.; Carette-Desmoucelles, C.;<br />

Breuzet, M.; Descamps, M. (1994) Neuropeptides<br />

and related nucleic acid sequences detected in<br />

peneid shrimps by immunohis<strong>to</strong>chemistry and<br />

molecular hybridizations. Neurosci. 60 (2), 569–579.<br />

Laverdure, A.-M.; Breuzet, M.; Soyez, D.; Becker, J.<br />

(1992) Detection of the mRNA encoding vitellogenesis<br />

inhibiting hormone in neurosecre<strong>to</strong>ry cells of the<br />

X-organ in homarus americanus by in situ hybridization.<br />

Gen. Compar. Endocrinol. 87, 443–450.<br />

Lee, D.; Huang, W.; Yang, Z.; Copolov, D. L.;<br />

Lim, A. T. (1992) <strong>In</strong> vitro evidence for modulation of<br />

morphological and functional development of<br />

hypothalamic immunoreactive atrial natriuretic<br />

peptide neurons by cyclic 3', 5'-adenosine<br />

monophosphate. Endocrinol. 131, 911–918.<br />

Lewis, M. E.; Robbins, E.; Grega, D.; Baldino, F.<br />

(1989) Nonradioactive detection of vasopression<br />

and soma<strong>to</strong>statin mRNA with Digoxigenin-labeled<br />

oligonucleotide probes. Ann. NY Acad. Sci. V:<br />

Molecular Biology: The Future of Neuropeptide<br />

Research, pp 246–253.<br />

Matute, C.; Wahle, P.; Gutiérrez-Igarza, K.; Albus, K.<br />

(1993) Distribution of neurons expression substance<br />

P recep<strong>to</strong>r messenger RNA in immature and adult<br />

cat visual cortex. Exp. Brain Res. 97, 295–300.<br />

Mertani, H. C.; Waters, M. J.; Jambou, R.; Gossard, F.;<br />

Morel, G. (1994) Growth hormone recep<strong>to</strong>r inding<br />

protein in rat anterior pituitary. Neuroendocrinol. 59,<br />

483–494.<br />

Miranda, R. C.; Toran-Allerand, C. D. (1992)<br />

Developmental expression of estrogen recep<strong>to</strong>r<br />

mRNA in the rat cerebral cortex: A noniso<strong>to</strong>pic in<br />

situ hybridization his<strong>to</strong>chemistry study. Cerebral<br />

Cortex Jan/Feb 2, 1–15.<br />

Mitchel, V.; Gambiez, A.; Beauvillain, J. C. (1993)<br />

Fine-structural localization of proenkephalin mRNAs<br />

in the hypothalamic magnocellular dorsal nucleus<br />

of the guinea pig: a comparison of radioiso<strong>to</strong>pic and<br />

enzymatic in situ hybridization methods at the lightand<br />

electron-microscopic levels. Cell Tissue Res.<br />

274, 219–228.<br />

Millar, M. R.; Sharpe, R. M.; Maguire, S. M.;<br />

Saunders, P. T. K. (1993) Cellular localisation of<br />

messenger RNAs in rat testis: application of<br />

digoxigenin-labeled ribonucleotide probes <strong>to</strong><br />

embedded tissue. Cell Tissue Res. 273, 269–277.<br />

Miyazaki, M.; Nikolic-Paterson, D. J.; Masayuki, E.;<br />

Nomo<strong>to</strong>, Y.; Sakai, H.; Atkins, R. C.; Koji, T. (1994)<br />

A sensitive method of non-radioactive in situ<br />

hybridization for mRNA localization within human<br />

renal biopsy specimens: use of digoxigenin labeled<br />

oligonucleotides. <strong>In</strong>t. Med. 33, 87–91.<br />

Murray, G. I.; Paterson, P. J.; Ewen, S. W. B.; Melvin,<br />

W. T. (1992) <strong>In</strong> situ hybridization of albumin mRNA<br />

in normal liver and hepa<strong>to</strong>cellular carcinoma with a<br />

digoxigenin labeled oligonucleotide probe. J. Clin.<br />

Pathol. 45, 21–24.<br />

CONTENTS<br />

INDEX<br />

References<br />

Myatt, N.; Coghill, G.; Morrison, K.; Jones, D.;<br />

Cree, I. A. (1994) Detection of tumour necrosis<br />

fac<strong>to</strong>r- in sarcoidosis and tuberculosis<br />

granulomas using in situ hybridization. J. Clin.<br />

Pathol. 47, 423–426.<br />

Nakagawa, M.; Kukita, T.; Nakasima, A.; Kurisu, K.<br />

(1994) Expression of the type I collagen gene in rat<br />

periodontal ligament during <strong>to</strong>oth movement as<br />

revealed by in situ hybridization. Archs oral Biol. 39<br />

(4), 289–294.<br />

Negro, F.; Papotti, M.; Pacchioni, D.; Galimi, F.;<br />

Bonino, F.; Bussolati, G. (1994) Detection of human<br />

androgen recep<strong>to</strong>r mRNA in hepa<strong>to</strong>cellular<br />

carcinoma by in situ hybridization. Liver 14,<br />

213–219.<br />

Nicoloso, M.; Caizergues-Ferrer, M.; Michot, B.;<br />

Azum, M.-C.; Bachellerie, J.-P. (1994) U20, a novel<br />

small nucleolar RNA, is encoded in an intron of the<br />

nucleolin gene in mammals. Mol. Cell. Biol. 14 (9),<br />

5766–5776.<br />

O’Keefe, R. J.; Puzas, J. E.; Loveys, L.; Hicks, D. G.;<br />

Rosier, R. N. (1994) Analysis of type II and type X<br />

collagen synthesis in cultured growth plate chondrocytes<br />

by in situ hybridization: rapid induction of<br />

type X collagen in culture. J. Bone Mineral Res. 9<br />

(11), 1713–1722.<br />

Ong, W. Y.; Garey, L. J.; Sumi, Y. (1994) Distribution<br />

of preprosoma<strong>to</strong>statin mRNA in the rat parietal and<br />

temporal cortex. Mol. Brain Res. 23, 151–156.<br />

Pacchioni, D.; Papotti, M.; Andorno, E.; Bonino, F.;<br />

Mondardini, A.; Oliveri, F.; Brunet<strong>to</strong>, M.; Ussolati,<br />

G.; Negro, F. (1993) Expression of estrogen recep<strong>to</strong>r<br />

mRNA in tumorous and non-tumorous liver tissue as<br />

detected by in situ hybridization. J. Surgical Oncol.<br />

Suppl. 3, 14–17.<br />

Papotti, M.; Pacchioni, D.; Negro, F.; Bonino, F.;<br />

Bussolati, G. (1994) Albumin gene expression in<br />

liver tumors: diagnostic interest in fine needle<br />

aspiration biopsies. Modern Pathol. 7 (3), 271–275.<br />

Paulmyer-Lacroix, O.; Anglade, G.; Grino, M. (1994)<br />

<strong>In</strong>sulin-induced hypoglycaemia increase colocalization<br />

of corticotrophin-releasing fac<strong>to</strong>r and arginine<br />

vasopressin mRNAs in the rat hypothalamic<br />

paraventricular nucleus. J. Mol. Endocrinol. 13,<br />

313–320.<br />

Samoszuk, M.; Nansen, L. (1990) Detection of<br />

<strong>In</strong>terleukin-5 messenger RNA in Reed-Sternberg<br />

cells of Hodgkin’s desease with eosinophilia.<br />

Blood 75 (1), 13–16.<br />

Sharara, F. I.; Nieman, L. K. (1994) Identification<br />

and cellular localization of growth hormone recep<strong>to</strong>r<br />

gene expression in the human ovary. J. Clin.<br />

Endocrinol. Metabolism 79 (2), 670–672.<br />

Shorrock, K.; Roberts, P.; Pringle, J. H.; Lauder, I.<br />

(1991) Demonstration of insulin and glucagon mRNA<br />

in routinely fixed and processed pancreatic tissue<br />

by in situ hybridization.J. Pathol. 165, 105–110.<br />

Thomas, G. A.; Davies, H. G.; Williams, E. D. (1994)<br />

Site of production of IGF1 in the normal and<br />

stimulated mouse thyroid. J. Pathol. 173, 355–360.<br />

185<br />

6


6<br />

186<br />

References<br />

Throsby, M.; Lee, D.; Huang, W.; Yang, Z.; Copolov,<br />

D. L.; Lim, A. T. (1991) Evidence for atrial natriuretic<br />

peptide-(5-28) production by macrophages of the<br />

rat spleen: An immunochemical and nonradioactive<br />

in situ hybridization approach. Endo. 129, 991–1000.<br />

Throsby, M.; Yang, Z.; Lee, D.; Huang, W.; Copolov,<br />

D. L.; Lim, A. T. (1993) <strong>In</strong> vitro evidence for atrial<br />

natriuretic fac<strong>to</strong>r-(5-28) production by macrophages<br />

of adult rat thymi. Endocrinol. 132 (5), 2184–2190.<br />

Tokushige, E.; I<strong>to</strong>, K.; Ushikai, M.; Katahira, S.;<br />

Fukuda, K. (1994) Localization of IL-1 mRNA<br />

and cell adhesion molecules in the maxillary sinus<br />

mucosa of patients with chronic sinusitis.<br />

Laryngoscope 104, 1245–1250.<br />

Toran-Allerand, C. D.; Miranda, R. C.; Hochberg,<br />

R. B.; MacLusky, N. J. (1992) Cellular variations in<br />

estrogen recep<strong>to</strong>r mRNA translation in the developing<br />

brain: evidence from combined [ 125I] estrogen<br />

au<strong>to</strong>radiography and non-iso<strong>to</strong>pic in situ hybridization<br />

his<strong>to</strong>chemistry. Brain Res. 576, 25–41.<br />

Trembleau, A.; Roche, D.; Calas, A. (1993)<br />

Combination of non-radioactive and radioactive in<br />

situ hybridization with immunohis<strong>to</strong>chemistry: a new<br />

method allowing the simultaneous detection of two<br />

mRNAs and one antigen in the same brain tissue<br />

section. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 41, 489–498.<br />

Trembleau, A.; Morales, M.; Bloom, F. E. (1994)<br />

Aggregation of vasopressin mRNA in a subset of<br />

axonal swellings of the median eminence and<br />

posterior pituitary: Light and electron microscopic<br />

evidence. J. Neurosci. 14 (1), 39–53.<br />

Ueyama, T.; Houtani, T.; Nakagawa, H.; Baba, K.;<br />

Ikeda, M.; Yamashita, T.; Sugimo<strong>to</strong>, T. (1994) A<br />

subpopulation of olivocerebellar projection neurons<br />

express neuropeptide Y. Brain Res. 634, 353–357.<br />

Wani, G.; Wani, A. A.; Ambrosio, S. (1992) <strong>In</strong> situ<br />

hybridization of human kidney tissue reveals celltype-specific<br />

expression of the O6-methylguanine- DNA methyltransferase gene. Carcinogenesis 13<br />

(3), 463–468.<br />

Wani, G.; Wani, A. A.; Ambrosio, S. (1993) Cell typespecific<br />

expression of the O6-alkylguanine-DNA alkyltransferase gene in normal human liver tissues<br />

as revealed by in situ hybridization. Carcinogenesis<br />

14 (4), 737–741.<br />

Whitman, G. F.; Pantazis, C. G. (1991) Cellular localization<br />

of müllerian inhibiting substance messenger<br />

ribonucleic acid during human ovarian follicular<br />

development. Am. J. Obstet. Gynecol. 165,<br />

1881–1886.<br />

Woodroofe, M. N.; Cuzner, M. L. (1993) Cy<strong>to</strong>kine<br />

mRNA expression in inflamma<strong>to</strong>ry multiple sclerosis<br />

lesions: detection by non-radioactive in situ<br />

hybridization. Cy<strong>to</strong>kine 5 (6), 583–588.<br />

Xerri, L.; Monges, G.; Guigou, V.; Parc, P.; Hassoun,<br />

J. (1992) Detection of gastrin mRNA by in situ<br />

hybridization using radioactive- and digoxigeninlabeled<br />

probes: a comparative study. APMIS 100,<br />

949–953.<br />

Yamada, S.; Takahashi, M.; Hara, M.; Sano, T.; Aiba,<br />

T.; Shishiba, Y.; Suzuki, T.; Asa, S. L. (1994) Growth<br />

hormone and prolactin gene expression in human<br />

densely and sparsely granulated soma<strong>to</strong>troph<br />

adenomas by in situ hybridization with digoxigeninlabeled<br />

probes. Diagn. Mol. Pathol. 3 (1), 46–52.<br />

Young, W. S. III (1989) Simultaneous use of<br />

digoxigenin- and radiolabeled oligodeoxyribonucleotide<br />

probes for hybridization his<strong>to</strong>chemistry.<br />

Neuropeptides (Edinburgh) 18, 271–275.<br />

Young, W. S. III; Horvath, S.; Palkovits, M. (1990)<br />

The influence of hyperosmolality and synaptic<br />

inputs on galanin and vasopressin expression in the<br />

hypothalamus. Neurosci. 39 (1), 115–125.<br />

Young, W. S. III; Reynolds, K.; Shepard, E. A.;<br />

Gainer, H.; Castel, M. (1990) Cell-specific expression<br />

of the rat oxy<strong>to</strong>cin gene in transgenic mice.<br />

J. Neuroendocrinol. 2 (6), 917–925.<br />

Zupanc, G. K. H.; Okawara, Y.; Zupanc, M. M.;<br />

Fryer, J. N.; Maler, L. (1991) <strong>In</strong> situ hybridization of<br />

putative soma<strong>to</strong>statin mRNA in the brain of electric<br />

gymnotiform fish. Neuro Report 2, 707–710.<br />

c. Chemical synthesis<br />

Hassall, C. J. S.; Stanford, S. C.; Burns<strong>to</strong>ck, G.;<br />

Buckley, N. J. (1993) Co-expression of four<br />

muscarinic recep<strong>to</strong>r genes by the intrinsic neurons<br />

of the rat and guinea-pig heart. Neurosci. 56 (4),<br />

1041–1048.<br />

Hell, K.; Pringle, J. H.; Hansmann, M.-L.; Lorenzen,<br />

J.; Colloby, P.; Lauder, I.; Fischer, R. (1993)<br />

Demonstration of light chain mRNA in hodgkin’s<br />

disease.J. Pathol. 171, 137–143.<br />

Hodges, E.; Howell, W. M.; Tyacke, S. R.; Wong, R.;<br />

Cawley, M. I. D.; Smith, J. L. (1994) Detection of<br />

T-cell recep<strong>to</strong>r chain mRNA in frozen and paraffinembedded<br />

biopsy tissue using digoxigenin-labeled<br />

oligonucleotide probes in situ. J. Pathol. 174,<br />

151–158.<br />

Li, D.; Bell, J.; Brown, A.; Berry, C. L. (1994) The<br />

observation of angiogenin and basic fibroblast<br />

growth fac<strong>to</strong>r gene expression in human colonic<br />

adenocarcinomas, gastric adenocarcinomas, and<br />

hepa<strong>to</strong>cellular carcinomas. J. Pathol. 172, 171–175.<br />

Shanks, J. H.; Lappin, T. R. J.; Hill, C. M. <strong>In</strong> situ<br />

hybridization for erythropoietin messenger RNA<br />

using digoxigenin-labeled oligonucleotides. Annals<br />

New York Academy of Sciences.<br />

Thomas, G. A.; Neonakis, E.; Davies, H. G.; Wheeler,<br />

M. H.; Williams, E. D. (1994) Synthesis and s<strong>to</strong>rage<br />

in rat thyroid C-cells. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 42<br />

(8), 1055–1060.<br />

CONTENTS<br />

INDEX


1.2 rRNA target<br />

A. RNA probe<br />

Cary, S. C.; Warren, W.; Anderson, E.; Giovannoni,<br />

S. J. (1993) Identification and localization of<br />

bacterial endosymbionts in hydrothermal vent taxa<br />

with symbiont-specific polymerase chain reaction<br />

amplification and in situ hybridization techniques.<br />

Mol. Marine Biol. Biotechn. 2 (1), 51–62.<br />

Fischer, D.; Weisenberger, D.; Scheer, U.: Assigning<br />

functions <strong>to</strong> nucleolar structures. Chomosoma<br />

Focus.<br />

B. Oligonucleotide probes<br />

a. 3'-Endlabeling<br />

Dixon, B. (1992) Targeting ribosomal RNA:<br />

Identifying microbes. BioTechn. 10, 124.<br />

Zarda, B.; Amann, R.; Wallner, G.; Schleifer, K.-H.<br />

(1991) Identification of single bacterial cells using<br />

digoxigenin-labeled rRNA-targeted oligonucleotides.<br />

J. Gen. Microbiol. 137, 2823–2830.<br />

b. 3'-Tailing<br />

Azum-Gélade, M.-C.; Noaillac-Depeyre, J.;<br />

Caizergues-Ferrer, M.; Gas, N. (1994) Cell cycle<br />

redistribution of U3 snRNA and fibrillarin. Presence<br />

in the cy<strong>to</strong>plasmic nucleolus remnant and in the<br />

prenucleolar bodies at telophase. J. Cell Sci. 107,<br />

463–475.<br />

Concha, I. I.; Urzua, U.; Yanez, A.; Schroeder, R.;<br />

Pessot, C.; Burzio, L. O. (1993) U1 and U2 snRNA<br />

are localized in the sperm nucleus. Experiment. Cell<br />

Res. 204, 378–381.<br />

c. Chemical synthesis<br />

Gersdorf, H.; Pelz, K.; Göbel, U. B. (1993)<br />

Fluorescence in situ hybridization for direct<br />

visualization of Gram-negative anaerobes in<br />

subgingival plaque samples. FEMS Immunol. &<br />

Medical Microbiol. 6, 109–114.<br />

Roller, C.; Wagner, M.; Amann, R.; Ludwig, W.;<br />

Schleifer, K.-H. (1994) <strong>In</strong> situ probing of Grampositive<br />

bacteria with high DNA G+C content using<br />

23S rRNA-targeted oligonucleotides. Microbiol. 140,<br />

2849–2858.<br />

Wallner, G.; Amann, R.; Beisker, W. (1993)<br />

Optimizing fluorescent in situ hybridization with<br />

rRNA-targeted oligonucleotide probes for flow<br />

cy<strong>to</strong>metric identification of microorganisms.<br />

Cy<strong>to</strong>m. 14, 136–143.<br />

Zarda, B.; Amann, R.; Wallner, G.; Schleifer, K.-H.<br />

(1991) Identification of single bacterial cells using<br />

digoxigenin-labeled rRNA-targeted oligonucleotides.<br />

J. Gen. Microbiol. 137, 2823–2830.<br />

CONTENTS<br />

INDEX<br />

1.3 RNA target<br />

A. Oligonucleotide Probes<br />

b. 3'-Tailing<br />

Negro, F.; Pacchioni, D.; Shimizu, Y.; Miller, R. H.;<br />

Bussolati, G.; Purcell, R. H.; Bonino, F. (1992)<br />

Detection of intrahepatic replication of hepatitis C<br />

virus RNA by in situ hybridization and comparison<br />

with his<strong>to</strong>pathology. Proc. Natl. Acad. Sci. USA 89,<br />

2247–2251.<br />

Azum-Gelade, M.-C.; Noaillac-Depeyre, J.;<br />

Caizergues-Ferrer, M.; Gas, N. (1994) Cell cycle<br />

redistribution of U3 snRNA and fibrillarin. J. Cell<br />

Sci. 107, 463–475.<br />

B. RNA probes<br />

Bashir, R.; McManus, B.; Cunningham, C.;<br />

Weisenburger, D.; Hochberg, F. (1994) Detection<br />

of Eber-1 RNA in primary brain lymphomas in<br />

immunocompetent and immunocompromised<br />

patients. J. Neuro-Oncol. 20, 47–53.<br />

Di Giuseppe, J. A.; Wu, T.-C.; Corio, R. L. (1994)<br />

Analysis of epstein-barr virus-encoded small RNA 1<br />

expression in benign lymphoepithelial salivary<br />

gland lesions. Mod. Pathol. 7 (5), 555–559.<br />

Lima, M. I.; Fonseca, M. E. N.; Flores, R.; Kitajima,<br />

E. W. (1994) Detection of avocado sunblotch viroid<br />

in chloroplasts of avocado leaves by in situ<br />

hybridization. Arch. Virol. 138, 385–390.<br />

Lin, N.-S.; Chen, C.-C.; Hsu, Y.-H. (1993) Postembedding<br />

in situ hybridization for localization<br />

of viral nucleic acid in ultra-thin sections. J.<br />

His<strong>to</strong>chem. Cy<strong>to</strong>chem. 41 (10), 1513–1519.<br />

C. DNA probes<br />

d. PCR<br />

References<br />

Tanaka, Y.; Enomo<strong>to</strong>, N.; Kojima, S.; Tang, L.;<br />

Go<strong>to</strong>, M.; Marumo, F.; Sa<strong>to</strong>, C. (1993) Detection<br />

of hepatitis C virus RNA in the liver by in situ<br />

hybridization. Liver 13, 203–208.<br />

187<br />

6


6<br />

188<br />

References<br />

2. DNA target<br />

A. DNA probes<br />

a. RPL<br />

Boland, N. I.; Gosden, R. G. (1994) Clonal analysis<br />

of chimaeric mouse ovaries using DNA in situ<br />

hybridization. J. Reprod. Fertility 100, 203–210.<br />

Brown, D. W.; Welsh, R. M.; Like, A. A. (1993)<br />

<strong>In</strong>fection of peripancreatic lymph nodes but not<br />

islets precedes kilham rat virus-induced diabetes in<br />

BB/Wor rats. J. Virol. 67 (10), 5873–5878.<br />

Burnett, S.; Kiessling, U.; Pettersson, U. (1989) Loss<br />

of bovine papillomavirus DNA replication control in<br />

growth-arrested transformed cells. J. Virol. 63 (5),<br />

2215–2225.<br />

Cenacchi, G.; Musiani, M.; Gentilomi, G.; Righi, S.;<br />

Zerbini, M.; Chandler, J. G.; Scala, C.; La Plaga, M.;<br />

Martinelli, G. N. (1993) <strong>In</strong> situ hybridization at the<br />

ultrastructural level: localization of cy<strong>to</strong>megalovirus<br />

DNA using digoxigenin labeled probes.<br />

J. Submicrosc. Cy<strong>to</strong>l. Pathol. 25 (3), 341–345.<br />

Clark, J.; Moore, L.; Krasinskas, A.; Way, J.;<br />

Battey, J.; Tamkun, J.; Kahn, R. A. (1993) Selective<br />

amplification of additional members of the ADPribosylation<br />

fac<strong>to</strong>r (ARF) family: Cloning of additional<br />

human and drosophila ARF-like genes. Proc. Natl.<br />

Acad. Sci. USA 90, 8952–8956.<br />

Coates, P. J.; D’Ardenne, A. J.; Slavin, G.; Kings<strong>to</strong>n,<br />

J. E.; Malpas, J. S. (1993) Detection of Epstein-Barr<br />

virus in reed-sternberg cells of hodgkin’s disease<br />

arising in children. Med. Pediatric Oncol. 21, 19–23.<br />

Delvenne, P.; Fontaine, M.-A.; Delvenne, C.;<br />

Nikkels, A.; Boniver, J. (1994) Detection of human<br />

papillomaviruses in paraffin-embedded biopsies<br />

of cervical intraepithelial lesions: analysis by<br />

immunohis<strong>to</strong>chemistry, in situ hybridization, and<br />

the polymerase chain reaction. Modern Pathol. 7<br />

(1), 113–119.<br />

Delvenne, P.; Kaschten, B.; Deneufbourg, J. M.;<br />

Demanez, L.; Stevenaert, A.; Reznik, M.; Boniver, J.<br />

(1993) Detection of Epstein-Barr virus in a case of<br />

undifferentiated nasopharyngeal carcinoma by<br />

in situ hybridization with digoxigenin-labeled PCRgenerated<br />

probes. Virchows Archiv A. Pathol. Anat.<br />

423, 145–150.<br />

Fletcher, S.; Darragh, D.; Fan, Y.; Grounds, M. D.;<br />

Fischer, C. J.; Beilharz, M. W. (1993) Specific<br />

cloning of DNA fragments unique <strong>to</strong> the dog<br />

Y chromosome. GATA 10 (3–4), 77–83.<br />

Furuta, Y.; <strong>In</strong>uyama, Y.; Nagashima, K. (1989)<br />

Detection of human papillomavirus genome in<br />

nasolaryngeal papillomas using digoxigenin labeled<br />

DNA probes. J. O<strong>to</strong>laryngol. Japan. 92, 2055–2063.<br />

Furuta, Y.; Shinohara, T.; Sano, K.; Meguro, M.;<br />

Nagashima, K. (1990) <strong>In</strong> situ hybridization with<br />

digoxigenin-labeled DNA probes for detection of<br />

viral genomes. J. Clin. Pathol. 43, 806–809.<br />

Gentilomi, G.; Musiani, M.; Zerbini, M.; Gallinella, G.;<br />

Gibellini, D.; La Placa, M. (1989) A hybrido-immunocy<strong>to</strong>chemical<br />

assay for the in situ detection of<br />

cy<strong>to</strong>megalovirus DNA using digoxigenin-labeled<br />

probes. J. Immunol. Methods 125, 177–183.<br />

Genitilomi, G.; Musiani, M.; Zerbini, M.; Gibellini, D.;<br />

Gallinella, G.; Venturoli, S. (1992) Double in situ<br />

hybridization for detection of herpes simplex virus<br />

and cy<strong>to</strong>megalovirus DNA using non-radioactive<br />

probes. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 40 (3), 421–425.<br />

Gentilomi, G.; Zerbini, M.; Musiani, M.; Gallinella,<br />

G.; Gibellini, D.; Venturoli, S.; Re, M. C.; Pileri, S.;<br />

Finelli, C.; La Placa, M. (1993) <strong>In</strong> situ detection of<br />

B19 DNA in bone marrow of immunodeficient<br />

patients using a digoxigenin-labeled probe. Mol.<br />

Cell. Probes 7, 19–24.<br />

Han, K.-H.; Hollinger, F. B.; Noonan, C. A.; Yoffe, B.<br />

(1992) Simultaneous detection of HBV-specific<br />

antigens and DNA in paraffin-embedded liver tissue<br />

by immunohis<strong>to</strong>-chemistry and in situ hybridization<br />

using a digoxigenin-labeled probe. J. Virol. Meth.<br />

37, 89–98.<br />

Heiles, H. B. J.; Genersch, E.; Kessler, C.; Neumann,<br />

R.; Eggers, H. J. (1988) <strong>In</strong> situ hybridization with<br />

digoxigenin-labeled DNA of human papillomaviruses<br />

(HPV 16/18) in HeLa and SiHa cells. BioTechn. 6,<br />

978–981.<br />

Heino, P.; Hukkanen, V.; Arstila, P. (1989) Detection<br />

of human papilloma virus (HPV) DNA in genital<br />

biopsy specimens by in situ hybridization with<br />

digoxigenin-labeled probes. J. Virol. Methods 26,<br />

331–338.<br />

Holm, R.; Karlsen, F.; Nesland, J. M. (1992)<br />

<strong>In</strong> situ hybridization with noniso<strong>to</strong>pic probes using<br />

different detection systems. Modern Pathol. 5 (3),<br />

315–319.<br />

Han, K. H.; Hollinger, F. B.; Noonan, C. A.; Solomon,<br />

H.; Klintmalm, G. B. G.; Genta, R. M.; Yoffe, B.<br />

(1993) Southern-blot analysis and simultaneous<br />

in situ detection of hepatitis B virus-associated<br />

DNA and antigens in patients with end-stage liver<br />

disease. Hepa<strong>to</strong>l. 18, 1032–1038.<br />

Jackwood, D. J.; Swayne, D. E.; Fisk, R. J. (1992)<br />

Detection of infectious bursal disease viruses<br />

using in situ hybridization and non-radioactive<br />

probes. Avian Diseases 36, 154–157.<br />

Jacob, J.; Kassir, R.; Kelsoe, G. (1991) <strong>In</strong> situ<br />

studies of the primary immune response <strong>to</strong><br />

(4-hydroxy-3-nitrophenyl)acetyl. I. The architecture<br />

and dynamics of responding cell populations.<br />

J. Exp. Med. 173, 1165–1175.<br />

CONTENTS<br />

INDEX


Kawase, M.; Honda, M.; Niimura, M. (1994)<br />

Detection of human papillomavirus type 60 in<br />

plantar cysts and verruca plantaris by the in situ<br />

hybridization method using digoxigenin labeled<br />

probes. J. Derma<strong>to</strong>l. 21, 709–715.<br />

Keighren, M.; West, J. D. (1993) Analysis of cell<br />

ploidy in his<strong>to</strong>logical sections of mouse tissues by<br />

DNA-DNA in situ hybridization with digoxigeninlabeled<br />

probes. His<strong>to</strong>chem. J. 25, 30–44.<br />

Konkle, B. A.; Shapiro, S. S.; Asch, A. S.; Nachman,<br />

R. L. (1990) Cy<strong>to</strong>kine-enhanced expression of<br />

glycoprotein Iba in human endothelium. J. Biol.<br />

Chem. 265 (32), 19833–19838.<br />

Lassus, J.; Niemi, K.-M.; Marjamäki, A.; Syrjänen, S.;<br />

Kartamaa, M.; Lehmus, A.; Krohn, K.; Ranki, A.<br />

(1992) Comparison of four in situ hybridization<br />

methods, based on digoxigenin- and biotin-labeled<br />

probes, in detecting HPV DNA in male condylomata<br />

acuminata. <strong>In</strong>tern. J. STD & AIDS 3, 196–203.<br />

Lau, J. Y. N.; Naoumov, N. V.; Alexander, G. J. M.;<br />

Williams, R. (1991) Rapid detection of hepatitis B<br />

virus DNA in liver tissue by in situ hybridization<br />

and its combination with immunohis<strong>to</strong>chemistry<br />

for simultaneous detection of HBV antigens.<br />

J. Clin. Pathol. 44, 905–908.<br />

Lereuz, M.; Pallier, C.; Vassias, I.; Elouet, J. F.;<br />

Romeo, P.; Morinet, F. (1994) Differential<br />

transcription, without replication, of non-structural<br />

and structural genes of human parvovirus B19 in<br />

the UT7/EPO cell line as demonstrated by in situ<br />

hybridization. J. Gen. Virol. 75, 1475–1478.<br />

Morey, A. L.; Ferguson, D. J. P.; Leslie, K. O.;<br />

Taatjes, D. J.; Fleming, K. A. (1993) <strong>In</strong>tracellular<br />

localization of parvovirus B19 nucleic acid at the<br />

ultrastructural level by in situ hybridization with<br />

digoxigenin-labeled probes. His<strong>to</strong>chem. J. 25,<br />

421–429.<br />

Morris, R. G.; Arends, M. J.; Bishop, P. E.; Sizer, K.;<br />

Duvall, E.; Bird, C. C. (1990) Sensitivity of digoxigenin-<br />

and biotin-labeled probes of detection of<br />

human papillomavirus by in situ hybridization.<br />

J. Clin. Pathol. 43, 800–805.<br />

Musiani, M.; Gentilomi, G.; Zerbini, M.; Gibellini, D.;<br />

Gallinella, G.; Pileri, S.; Baglioni, P.; La Placa, M.<br />

(1990) <strong>In</strong> situ detection of cy<strong>to</strong>megalovirus DNA<br />

in biopsies of AIDS patients using a hybridoimmunocy<strong>to</strong>chemical<br />

assay. His<strong>to</strong>chem. 94, 21–25.<br />

Prelle, A.; Fagiolari, G.; Checcarelli, N.; Moggio, M.;<br />

Battistel, A.; Comi, G. P.; Bazzi, P.; Bordoni, A.;<br />

Zeviani, M.; Scarla<strong>to</strong>, G. (1994) Mi<strong>to</strong>chondrial<br />

myopathy: correlation between oxidative defect<br />

and mi<strong>to</strong>chondrial DNA deletions at single fiber<br />

level. Acta Neuropathol. 87, 371–376.<br />

Permeen, A. M. Y.; Sam, C. K.; Pathmanathan, R.;<br />

Prasad, U.; Wolf, H. (1990) Detection of Epstein Barr<br />

Virus DNA in nasopharyngeal carcinoma using a<br />

non-radioactive digoxigenin-labeled probe. J. Virol.<br />

Meth. 27 (3), 261–268.<br />

CONTENTS<br />

INDEX<br />

Premoli-de-Percoco, G.; Galindo, I.; Ramirez, J. L.<br />

(1992) <strong>In</strong> situ hybridization with digoxigenin-labeled<br />

DNA probes for the detection of human papillomavirus-induced<br />

focal epithelial hyperplasia among<br />

Venezuelans. Virchows Archiv A. Pathol. Anat. 420,<br />

295–300.<br />

Schmidt, P.; Meyer, H.; Hübert, P.; Hafner, A.;<br />

Andiel, E.; Grabner, A.; Dahme, E. (1994) <strong>In</strong> situ<br />

hybridization for demonstration of equine herpesvirus<br />

type 1 DNA in paraffin wax-embedded tissues<br />

and its use in horses with disseminated necrotizing<br />

myeloencephalitis. J. Comp. Path. 110, 215–225.<br />

Schwarz, T. F.; Nerlich, A.; Hottenträger, B.; Jäger,<br />

G.; Wiest, I.; Kantimm, S.; Roggendorf, H.; Schultz,<br />

M.; Gloning, K.-P.; Schramm, T.; Holzgreve, W.;<br />

Roggendorf, M. (1991) Parvovirus B19 infection<br />

of the fetus. His<strong>to</strong>logy and in situ hybridization.<br />

Am. J. Clin. Pathol. 96 (1), 121–126.<br />

Schwarz, T. F.; Nerlich, A.; Hillemanns, P. (1993)<br />

Detection of parvovirus B19 in fetal au<strong>to</strong>psies. Arch.<br />

Gynecol. Obstet. 253, 207–213.<br />

Smith, K. L.; Robbins, P. D.; Dawkins, H. J. S.;<br />

Papadimitriou, J. M.; Redmond, S. L.; Carrello, S.;<br />

Harvey, J. M.; Sterrett, G. F. (1994) c-erbB-2<br />

amplification in breast cancer: Detection in<br />

formalin-fixed, paraffin-embedded tissue by in situ<br />

hybridization. Hum. Pathol. 25, 413–418.<br />

Thompson, C. H.; Biggs, I. M.; De Zwart-Steffe, R. T.<br />

(1990) Detection of molluscum contagiosum virus<br />

DNA by in situ hybridization. Pathol. 22, 181–186.<br />

b. Nick translation<br />

References<br />

Coates, P. J.; Mak, W. P.; Slavin, G.; D’Ardenne, A. J.<br />

(1991) Detection of single copies of Epstein-Barr<br />

virus in paraffin wax sections by non-radioactive<br />

in situ hybridization. J. Clin. Pathol. 44, 487–491.<br />

Coates, P. J.; Slavin, G.; D’Ardenne, A. J. (1991)<br />

Persistence of epstein-barr virus in reed-sternberg<br />

cells throughout the course of hodgkin’s disease.<br />

J. Pathol. 164, 291–297.<br />

Cooper, K.; Herring<strong>to</strong>n, C. S.; Graham, A. K.;<br />

Evans, M. F.; McGee, J. O’D (1991) <strong>In</strong> situ human<br />

papillomavirus (HPV) genotyping of cervical intraepithelial<br />

neoplasia in South African and British<br />

patients: Evidence for putative HPV integration<br />

in vivo. J. Clin. Pathol. 44, 400–405.<br />

Cooper, K.; Herring<strong>to</strong>n, C. S.; Lo, E. S.-F.; Evans,<br />

M. F.; McGee, J. O. (1992) <strong>In</strong>tegration of human<br />

papillomavirus types 16 and 18 in cervical<br />

adenocarcinoma. J. Clin. Pathol. 45, 382–384.<br />

Del Buono, R.; Fleming, K. A.; Morey, A. L.;<br />

Hall, P. A.; Wright, N. A. (1992) A nude mouse<br />

xenograft model of fetal intestine development<br />

and differentiation. Development 114, 67–73.<br />

Egawa, K.; Shibasaki, Y.; De Villiers, E.-M. (1993)<br />

Double infection with human papillomavirus 1 and<br />

human papillomavirus 63 in single cells of a lesion<br />

displaying only an human papillomavirus 63-induced<br />

cy<strong>to</strong>pathogenic effect. Lab. <strong>In</strong>vest. 69 (5), 583–588.<br />

189<br />

6


6<br />

190<br />

References<br />

Hegele, R. G.; Bicknell, S. G.; Bailey, D. J.; Cameron,<br />

R. G. (1994) <strong>In</strong> situ hybridization for the Y chromosome<br />

reveals a donor origin for a posttransplant<br />

lymphoproliferative disorder in a sex-mismatched<br />

hepatic allograft. Arch. Pathol. Lab. Med. 118,<br />

795–796.<br />

Heiskanen, M.; Karhu, R.; Hellsten, E.; Pel<strong>to</strong>nen, L.;<br />

Kallioniemi, O. P.; Palotie, A. (1994) High resolution<br />

mapping using fluorescence in situ hybridization <strong>to</strong><br />

extended DNA fibers prepared from agaroseembedded<br />

cells. BioTechn. 17 (5), 928–933.<br />

Herring<strong>to</strong>n, C. S.; Burns, J.; Graham, A. K.;<br />

Bhatt, B.; McGee, J. O. (1989) <strong>In</strong>terphase cy<strong>to</strong>genetics<br />

using biotin and digoxigenin labeled<br />

probes. II. Simultaneous differential detection of<br />

human and papilloma virus nucleic acids in<br />

individual nuclei. J. Clin. Pathol. (Lond) 42 (6),<br />

601–606.<br />

Herring<strong>to</strong>n, C. S.; Burns, J.; Graham, A. K.; Evans,<br />

M.; McGee, J. O. (1989) <strong>In</strong>terphase cy<strong>to</strong>genetics<br />

using biotin and digoxigenin labeled probes. I.<br />

Relative sensitivity of both reporter molecules for<br />

detection of HPV16 in caski cells. J. Clin. Pathol.<br />

(Lond) 42 (6), 592–600.<br />

Herring<strong>to</strong>n, C. S.; Bhatt, B.; Burns, J.; Graham, A. K.;<br />

McGee, J. O. (1989) Simultaneous non-iso<strong>to</strong>pic in<br />

situ hybridization using biotinylated and digoxigeninlabeled<br />

probes. J. Pathol. (Edin) 157, 163.<br />

Herring<strong>to</strong>n, C. S.; De Angelis, M.; Evans, M. F.;<br />

Troncone, G.; McGee, J. O. (1992) Detection of high<br />

risk human papillomavirus in routine cervical<br />

smears: Strategy for screening. J. Clin. Pathol. 45,<br />

385–390.<br />

Herring<strong>to</strong>n, C. S.; Graham, A. K.; Burns, J.;<br />

McGee, J. O. (1989) Enhancement of sensitivity of<br />

digoxigenin labeled probes: the evaluation of a<br />

biotin independent detection system. J. Pathol.<br />

(Edin) 158, 337.<br />

Herring<strong>to</strong>n, C. S.; Graham, A. K; McGee, J. O.<br />

(1991) <strong>In</strong>terphase cy<strong>to</strong>genetics using biotin and<br />

digoxigenin labeled probes: III. <strong>In</strong>creased sensitivity<br />

and flexibility for detecting HPV in cervical biopsy<br />

specimens and cell lines. J. Clin. Pathol. 44 (1),<br />

33–38.<br />

Kerstens, H. M. J.; Poddighe, P. J.; Hanselaar,<br />

A. G. J. M. (1995) A novel in situ hybridization<br />

signal amplification method based on the deposition<br />

of biotinylated tyramine. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem.<br />

43 (4), 347–352.<br />

Kerstens, H. M. J.; Poddighe, P. J.; Hanselaar, A. G.<br />

J. M. (1994) Double-target in situ hybridization in<br />

brightfield microscopy. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 42<br />

(8), 1071–1077.<br />

Lawrence, J. B.; Marselle, L. M.; Byron, K. S.;<br />

Johnson, C. V.; Sullivan, J. L.; Singer, R. H. (1990)<br />

Subcellular localization of low-abundance human<br />

immunodeficiency virus nucleic acid sequences<br />

visualized by fluorescence in situ hybridization.<br />

Proc. Natl. Acad. Sci. 87, 5420–5424.<br />

Leitch, I. J.; Leitch, A. R.; Heslop-Harrison, J. S.<br />

(1991) Physical mapping of plant DNA sequences<br />

by simultaneous in situ hybridization of two<br />

differently labeled fluorescent probes. Genome 34,<br />

329–333.<br />

Morey, A. L.; Porter, H. J.; Keeling, J. W.; Fleming,<br />

K. A. (1992) Non-iso<strong>to</strong>pic in situ hybridization and<br />

immunophenotyping of infected cells in the<br />

investigation of human fetal parvovirus infection.<br />

J. Clin. Pathol. 45, 673–678.<br />

Scherthan, H. (1991) Characterisation of a tandem<br />

repetitive sequence cloned from the deer capreolus<br />

capreolus and it’s chromosomal localisation in two<br />

muntjac species. Hereditas (in press).<br />

Steilen, H.; Ketter, R.; Romanakis, K.; Zwergel, T.;<br />

Unteregger, G.; Bonkhoff, H.; Seitz, G.; Ziegler, M.;<br />

Zand, K. D.; Wullich, B. (1994) DNA aneuploidy in<br />

prostatic adenocarcinoma: A frequent event as<br />

shown by fluroescence in situ DNA hybridization.<br />

Hum. Pathol. 25, 1306–1313.<br />

Troncone, G.; Herring<strong>to</strong>n, C. S.; Cooper, K.;<br />

De Angelis, M. L.; McGee, J. O. (1992) Detection of<br />

human papillomavirus in matched cervical smears<br />

and biopsy specimens by non-iso<strong>to</strong>pic in situ<br />

hybridization. J. Clin. Pathol. 45, 308–313.<br />

Wachtler, F.; Schöfer, C.; Schedle, A.; Schwarzacher,<br />

H. G.; Hartung, M.; Stahl, A.; Gonzales, I.; Sylvester, J.<br />

(1991) Transcribed and nontranscribed parts of the<br />

human ribosomal gene repeat show a similar<br />

pattern of distribution in nucleoli. Cy<strong>to</strong>genet. Cell<br />

Genet. 57, 175–178.<br />

Wood, N. B.; Sheikholeslami, M.; Pool, M.; Coon, J. S.<br />

(1994) PCR production of a digoxigenin-labeled<br />

probe for the detection of human cy<strong>to</strong>megalovirus<br />

in tissue sections. Diagn. Mol. Pathol. 3 (3),<br />

200–208.<br />

d. PCR<br />

Saeki, K.; Mishima, K.; Horiuchi, K.; Hirota, S.;<br />

Nomura, S.; Kitamura, Y.; Aozasa, K. (1993)<br />

Detection of low copy numbers of epstein-barr<br />

virus by in situ hybridization using nonradioiso<strong>to</strong>pic<br />

probes prepared by the polymerase chain reaction.<br />

Diagn. Mol. Pathol. 2 (2), 108–115.<br />

Varma, V. A.; Cerjan, C. M.; Abbott, K. L.; Hunter, S. B.<br />

(1994) Non-iso<strong>to</strong>pic in situ hybridization method for<br />

mi<strong>to</strong>chondria in oncocytes. J. His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. 42 (2), 273–276.<br />

CONTENTS<br />

INDEX


B. RNA probes<br />

Brown, C. C.; Meyer, R. F.; Grubman, M. J. (1994)<br />

Identification of african horse sickness virus in cell<br />

culture using a digoxigenin-labeled RNA probe.<br />

J. Vet. Diagn. <strong>In</strong>vest. 6, 153–155.<br />

Coen, E. S.; Romero, J. M.; Doyle, S.; Elliott, R.;<br />

Murphy, G.; Carpenter, R. (1990) Floricaula:<br />

A homeotic gene required for flower development<br />

in Antirrhinum majus. Cell 63, 1311–1322.<br />

Marquardt, D. L.; Walker, L. L.; Heinemann, S.<br />

(1994) Cloning of two adenosine recep<strong>to</strong>r subtypes<br />

from mouse bone marrow-derived mast cells.<br />

J. Immunol. 152, 4508–4515.<br />

Su, I.-J.; Chen, R.-L.; Lin, D.-T.; Lin, K.-S.;<br />

Chen, C.-C. (1994) Epstein-Barr virus (EBV) infects<br />

T lymphocytes in childhood EBV-associated<br />

hemophagocytic syndrome in Taiwan. Am. J. Pathol.<br />

144 (6), 1219–1225.<br />

CONTENTS<br />

INDEX<br />

C. Oligonucleotide probe<br />

b. 3'-Tailing<br />

Cubie, H. A.; Felix, D. H.; Southam, J. C.; Wray, D.<br />

(1991) Application of molecular techniques in the<br />

rapid diagnosis of EBV-associated oral hairy<br />

leukoplakia. J. Oral. Pathol. Med. 20, 271–274.<br />

Cubie, H. A.; <strong>In</strong>glis, J. M.; McGowan, A. M. (1991)<br />

Detection of respira<strong>to</strong>ry syncytial virus antigen and<br />

nucleic acid in clinical specimens using synthetic<br />

oligonucleotides. J. Virol. Meth. 34, 27–35.<br />

Oraveerakul, K.; Choi, C. S.; Moli<strong>to</strong>r, T. W. (1993)<br />

Tissue tropisms of porcine parvovirus in swine.<br />

Arch. Virol. 130, 377–389.<br />

Pacchioni, D.; Papotti, M.; Bonio, F.; Bussolati, G.;<br />

Negro, F. (1992) Detection of cy<strong>to</strong>megalovirus by<br />

in situ hybridization using a digoxigenin-tailed oligonucleotide.<br />

Liver 12, 257–261.<br />

c. Chemical synthesis<br />

References<br />

Zischler, H.; Nanda, J.; Schäfer, R.; Schmid, M.;<br />

Epplen, J. (1989) Digoxigenated oligonucleotide<br />

probes specific for simple repeats in DNA<br />

fingerprinting and hybridization in situ. Hum. Genet.<br />

82 (3), 227–233.<br />

191<br />

6


6<br />

192<br />

References<br />

3. Chromosomes/<strong>In</strong>terphase nuclei<br />

An<strong>to</strong>nacci, R.; Marzella, R.; Finelli, P.; Lonoce, A.;<br />

Forabosco, A.; Archidiacono, N.; Rocchi, M. (1995)<br />

A panel of subchromosomal painting libraries<br />

representing over 300 regions of the human<br />

genome. Cy<strong>to</strong>genet. Cell Genet. 68, 25–32.<br />

Arnold, N.; Seibl, R.; Kessler, C.; Wienberg, J.<br />

(1992) Non-radioactive in situ hybridization with<br />

digoxigenin labeled DNA probes. Biotechnic<br />

His<strong>to</strong>chem. 67 (2), 59–67.<br />

Arnoldus, E. P. J.; Wiegant, J.; Noordermeer, I. A.;<br />

Wessels, J. W.; Beers<strong>to</strong>ck, G. C.; Grosveld, G. C.;<br />

van der Ploeg, M.; Raap, A. K. (1990) Detection of<br />

the Philadelphia chromosome in interphase nuclei.<br />

Cy<strong>to</strong>genet. Cell Genet. 54, 108–111.<br />

Ashley, T.; Ried, T.; Ward, D. C. (1994) Detection<br />

of nondisjunction and recombination in meiotic and<br />

postmeiotic cells from XYSxr [XY, Tp(Y)1Ct] mice<br />

using multicolor fluorescence in situ hybridization.<br />

Proc. Natl. Acad. Sci. USA 91, 524–528.<br />

Avarello, R.; Pedicini, A.; Caiulo, A.; Zuffardi, O.;<br />

Fraccaro, M. (1992) Evidence for an ancestral<br />

alphoid domain on the long arm of human<br />

chromosome 2. Hum. Genet 89, 247–249.<br />

Balazs, M.; Mayall, B. H.; Waldmann, F. M. (1991)<br />

Simultaneous analysis of chromosomal aneusomy<br />

and 5-bromodeoxyuridine incorporation in MCF-7<br />

breast tumor cell line. Cancer Genet. Cy<strong>to</strong>genet. 57,<br />

93–102.<br />

Boggs, B. A.; Chinault, C. (1994) Analysis of<br />

replication timing properties of human X-chromosomal<br />

loci by fluorescence in situ hybridization.<br />

Proc. Natl. Acad. Sci. USA 91, 6083–6087.<br />

Boschman, G. A.; Buys, C. H. C. M.; Van der Veen,<br />

A. Y.; Rens, W.; Osinga, J.; Slater, R. M.; Aten, J. A.<br />

(1993) Identification of a tumor marker chromosome<br />

by flow sorting, DNA amplification in vitro,<br />

and in situ hybridization of the amplified product.<br />

Genes Chrom. Cancer 6, 10–16.<br />

Boyle, A. L.; Feltquite, D. M.; Dracopoli, N. C.;<br />

Housman, D. E.; Ward, D. C. (1992) Rapid physical<br />

mapping of cloned DNA on banded mouse chromosomes<br />

by fluorescence in situ hybridization.<br />

Genomics 12, 106–115.<br />

Brandt, C. A.; Hindkjaer, J.; Stromkjaer, H.;<br />

Pedersen, S.; Sunde, L.; Kolvraa, S. (1993)<br />

Molecular cy<strong>to</strong>genetics: Applications in clinical<br />

genetics. Europ. J. Obstetrics & Gynecol. Reprod.<br />

Biol. 50, 235–242.<br />

Brandt, C. A.; Lyngbye, T.; Pedersen, S.; Bolund, L.;<br />

Friedrich, U. (1994) Value of chromosome painting<br />

in determining the chromosomal outcome in<br />

offspring of a 12; 16 translocation carrier. J. Med.<br />

Genet. 31, 234–237.<br />

Celeda, D.; Bettag, U.; Cremer, C. (1992)<br />

PCR Amplification and simultaneous digoxigenin<br />

incorporation of long DNA probes for fluorescence<br />

in situ hybridization. BioTechn. 12 (1), 98–102.<br />

Celeda, D.; Aldinger, K.; Haar, F.-M.; Hausmann, M.;<br />

Durm, M.; Ludwig, H.; Cremer, C. (1994) Rapid<br />

fluorescence in situ hybridization with repetitive<br />

DNA probes: Quantification by digital image<br />

analysis. Cy<strong>to</strong>metry 17, 13–25.<br />

Chevillard, C.; Le Paslier, D.; Passage, E.; Ougen, P.;<br />

Billault, A.; Boyer, S.; Mazan, S.; Bachellerie,<br />

J. P.; Vignal, A.; Cohen, D.; Fontes, M. (1993)<br />

Relationship between Charcot-Marie-Tooth 1A and<br />

Smith-Magenis regions. snU3 may be a candidate<br />

gene for the Smith-Magenis syndrome. Hum. Mol.<br />

Gen. 2 (8), 1235–1243.<br />

Christmann, A.; Lagoda, P. J. L.; Zang, K. D. (1991)<br />

Non-radioactive in situ hybridization pattern of the<br />

M13 minisatellite sequences on human metaphase<br />

chromosomes. Hum. Genet. 86, 487–490.<br />

Couturier, J.; Garau-Sastre, X.; Schneider-<br />

Maunoury, S.; Labib, A.; Orth, G. (1991) <strong>In</strong>tegration<br />

of papillomavirus DNA near myc genes in genital<br />

carcinomas and its consequences for pro<strong>to</strong>oncogene<br />

expression. J. Virol. Vol. 65, No. 8,<br />

4534–4538.<br />

Dal Cin, P.; Aly, M. S.; Delabie, J.; Ceuppens, J. L.;<br />

Van Gool, S.; Van Damme, B.; Baert, L.; Van Poppel,<br />

H.; Van Den Berghe, H. (1992) Trisomy 7 and<br />

trisomy 10 characterize subpopulations of tumorinfiltrating<br />

lymphocytes in kidney tumors and in the<br />

surrounding kidney tissue. Proc. Natl. Acad. Sci.<br />

USA 89, 9744–9748.<br />

Dauwerse, J. G.; Wiegant, J.; Raap, A. K.; Breuning,<br />

M. H.; Ommen, van, G. J. B. (1992) Multiple colors<br />

by fluorescence in situ hybridization using ratiolabeled<br />

DNA probes create a molecular karyotype.<br />

Hum. Mol. Gen. 1 (8), 593–598.<br />

Davies, A. F.; Barber, L.; Murer-Orlando, M.;<br />

Bobrow, M.; Adinolfi, M. (1994) FISH detection of<br />

trisomy 21 in interphase by the simultaneous use<br />

of two differentially labeled cosmid contigs. J. Med.<br />

Genet. 31, 679–685.<br />

De Fru<strong>to</strong>s, R.; Kimura, K.; Peterson, K. R. (1990)<br />

<strong>In</strong> situ hybridization of Drosophila polytene<br />

chromosomes with digoxigenin-dUTP labeled<br />

probes. Methods Mol. Cell. Biol. 2, 32–36.<br />

Delhanty, J. D. A.; Griffin, D. K.; Handyside, A. H.;<br />

Harper, J.; Atkinson, G. H. G.; Pieters, M. H. E. C.;<br />

Wins<strong>to</strong>n, R. M. L. (1993) Detection of aneuploidy<br />

and chromosomal mosaicism in human embryos<br />

during preimplantation sex determination by<br />

fluorescent in situ hybridzation (FISH). Hum. Mol.<br />

Gen. 2 (8), 1183–1185.<br />

De Leeuw, B.; Suijkerbuijk, R. F.; Balemans, M.;<br />

Sinke, R. J.; De Jong, B.; Molenaar, W. M.; Meloni,<br />

A. M.; Sandberg, A. A.; Geraghty, M.; Hofker, M.;<br />

Ropers, H. H.; Geurts van Kessel, A. (1993)<br />

Sublocalization of the synovial sarcoma-associated<br />

t(X;18) chromosomal breakpoint in Xp11.2 using<br />

cosmid cloning and fluorescence in situ<br />

hybridization. Oncogene 8, 1457–1463.<br />

CONTENTS<br />

INDEX


De Leeuw, B.; Berger, W.; Sinke, R. J.; Suijkerbuijk,<br />

R. F.; Gilgenkrantz, S.; Geraghty, M. T.; Valle, D.;<br />

Monaco, A. P.; Lehrach, H.; Ropers, H. H.; Geurts<br />

van Kessel, A. (1993) Identification of a yeast<br />

artificial chromosome (YAC) spanning the synovial<br />

sarcoma-specific t(X;18)(p11.2;q11.2) Breakpoint.<br />

Genes, Chrom. Cancer 6, 182–189.<br />

Desmaze, C.; Zucman, J.; Delattre, O.; Thomas, G.;<br />

Aurias, A. (1992) <strong>In</strong> situ hybridization of PCR<br />

amplified inter-Alu sequences from a hybrid cell<br />

line. Hum. Genet. 88, 541–544.<br />

De Vries, J. E.; Kornips, F. H. A. C.; Wiegant, J.;<br />

Moerkerk, P. M.; Senden, N.; Schutte, B.; Geraedts,<br />

J. P. M.; Bosman, F. T.; ten Kate, J. (1992)<br />

Chromosomal localization of transfected genes by<br />

a combination of hot banding and fluorescence<br />

in situ hybridization.<br />

Döhner, H.; Pohl, S.; Bulgay-Mörschel, M.;<br />

Stilgenbauer, S.; Bentz, M.; Lichter, P. (1993)<br />

Trisomy 12 in Chronic Lymphoid Leukemias – a<br />

Metaphase and <strong>In</strong>terphase Cy<strong>to</strong>genetic Analysis.<br />

Leukemia 7 (4), 516–520.<br />

Dunham, I.; Lengauer, C.; Cremer, T.; Feathers<strong>to</strong>ne,<br />

T. (1992) Rapid generation of chromosome-specific<br />

alphoid DNA probes using the polymerase chain<br />

reaction. Hum. Genet. 88, 457–462.<br />

Fidlerová, H.; Senger, G.; Kost, M.; Sanseau, P.;<br />

Sheer, D (1994) Two simple procedures for<br />

releasing chromatin from routinely fixed cells for<br />

fluorescence in situ hybridization. Cy<strong>to</strong>genet. Cell<br />

Genet. 65, 203–205.<br />

Flejter, W. L.; Barcroft, C. L.; Guo, S.-W.; Lynch, E.<br />

D.; Boehnke, M.; Chandrasekharappa, S.; Hayes, S.;<br />

Collins, F. S.; Weber, B. L.; Glover, T. W. (1993)<br />

Multicolor FISH mapping with Alu-PCR-Amplified<br />

YAC Clone DNA determines the order of markers in<br />

the BRCA1 region on chromosome 17q12-q21.<br />

Genomics 17, 624–631.<br />

Gerdes, M. G.; Carter, K. C.; Moen, P. T.; Lawrence,<br />

J. B. (1994) Dynamic changes in the higher-level<br />

chromatin organization of specific sequences<br />

revealed by in situ hybridization <strong>to</strong> nuclear halos.<br />

J. Cell Biol. 126 (2), 289–304.<br />

Geurts van Kessel, A.; Stellink, F.; van Gaal, J.;<br />

van de Klundert, W.; Siepman, A.; Oosten, H. R.<br />

(1994) Translocation (12;22) (p13;q12) as sole<br />

karyotypic abnormality in a patient with nonlymphocytic<br />

leukemia. Cancer Genet. Cy<strong>to</strong>genet.<br />

72, 105–108.<br />

Gray, J. W.; Pinkel, D.; Brown, J. M. (1994)<br />

Fluorescence in situ hybridization in cancer and<br />

radiation biology. Radiat. Res. 137, 275–289.<br />

Haar, F.-M.; Durm, M.; Aldinger, K.; Celeda, D.;<br />

Hausmann, M.; Ludwig, H.; Cremer, C. (1994)<br />

A rapid FISH technique for quantitative microscopy.<br />

BioTechn. 17 (2), 346–355.<br />

Han, T. L.; Ford, J. H.; Webb, G. C.; Flaherty, S. P.;<br />

Correll, A.; Matthews, C. D. (1993) Simultaneous<br />

detection of X- and Y-bearing human sperm by<br />

double fluorescence in situ hybridization. Mol.<br />

Reprod. Develop. 34, 308–313.<br />

CONTENTS<br />

INDEX<br />

References<br />

Han, T. L.; Ford, J. H.; Flaherty, S. P.; Webb, G. C.;<br />

Matthews, C. D. (1994) A fluorescent in situ<br />

hybridization analysis of the chromosome<br />

constitution of ejaculated sperm in a 47,XYY male.<br />

Clin. Genet. 45, 57–70.<br />

Hausmann, M.; Dudin, G.; Aten, J. A.; Heilig, R.;<br />

Diaz, E.; Cremer, C. (1991) Slit Scan Flow Cy<strong>to</strong>metry<br />

of isolated chromosomes following fluorescence<br />

hybridization: an Approach of online screening for<br />

specific chromosomes and chromosome translocations.<br />

Z. Naturforsch. 46c, 433–441.<br />

Heppell-Par<strong>to</strong>n, A. C.; Albertson, D. G.; Fishpool, R.;<br />

Rabbitts, P. H. (1994) Multicolour fluorescence in<br />

situ hybridization <strong>to</strong> order small, single-copy probes<br />

on metaphase chromosomes. Cy<strong>to</strong>genet. Cell<br />

Genet. 66, 42–47.<br />

Heslop-Harrison, J. S.; Schwarzacher, T.;<br />

Anamthawat-Jonsson, K.; Leitch, A. R.; Shi, M.;<br />

Leitch, I. J. (1991) <strong>In</strong> situ hybridization with<br />

au<strong>to</strong>mated chromosome denaturation. Technique<br />

3 (3), 109–116.<br />

Hyytinen, E.; Visakorpi, T.; Kallioniemi, A.;<br />

Kallioniemi, O.-P.; Isola, J. J. (1994) Improved<br />

technique for analysis of formalin-fixed, paraffinembedded<br />

tumors by fluorescence in situ hybridization.<br />

Cy<strong>to</strong>metry 16, 93–99.<br />

Jansen, G.; Bar<strong>to</strong>lomei, M.; Kalscheuer, V.; Merkx,<br />

G.; Wormskamp, N.; Mariman, E.; Smeets, D.;<br />

Ropers, H.-H.; Wieringa, B. (1993) No imprinting<br />

involved in the expression of DM-kinase mRNAs in<br />

mouse and human tissues. Hum. Mol. Gen. 2 (8),<br />

1221–1227.<br />

Jauch, A.; Wienberg, J.; Stanyon, R.; Arnold, N.;<br />

Tofanelli, S.; Ishida, T.; Cremer, T. (1992)<br />

Reconstruction of genomic rearrangements in great<br />

apes and gibbons by chromosome painting. Proc.<br />

Natl. Acad. Sci. USA 89, 8611–8615.<br />

Jenne, D. E.; Zimmer, M.; Garcia-Sanz, J. A.;<br />

Tschopp, J.; Lichter, P. (1991) Genomic organization<br />

and subchromosomal in situ localization of the<br />

murine granzyme F, a serine protease expressed in<br />

CD8+ T cells. J. Immunol. 147, 1045–1052.<br />

Johnson, C. V.; McNeil, J.; Carter, K. C.; Lawrence,<br />

J. B. (1991) A simple, rapid technique for precise<br />

mapping of multiple sequences in two colors using<br />

a single optical filter set. GATA 8 (2), 75–76.<br />

Joos, S.; Scherthan, H.; Speicher, M. R.; Schlegel,<br />

J.; Cremer, T.; Lichter, P. (1993) Detection of<br />

amplified DNA sequences by reverse chromosome<br />

painting using genomic tumor DNA as probe. Hum.<br />

Genet. 90, 584–589.<br />

Kallioniemi, A.; Kallinoniemi, O.-P.; Piper, J.; Tanner,<br />

M.; S<strong>to</strong>kke, T.; Chen, L.; Smith, H. S.; Pinkel, D.;<br />

Gray, J. W.; Waldman, F. M. (1994) Detection and<br />

mapping of amplified DNA sequences in breast<br />

cancer by comparative genomic hybridization. Proc.<br />

Natl. Acad. Sci. USA 91, 2156–2160.<br />

Kallioniemi, O.-P.; Kallioniemi, A.; Piper, J.; Isola, J.;<br />

Waldman, F. M.; Gray, J. W.; Pinkel, D. (1994)<br />

Optimizing comparative genomic hybridization for<br />

analysis of DNA sequence copy number changes in<br />

solid tumors. Genes, Chrom. Canc. 10, 231–243.<br />

193<br />

6


6<br />

194<br />

References<br />

Kerstens, H. M. J.; Poddighe, P. J.; Hanselaar,<br />

A. G. J. M. (1994) Double-target in situ hybridization<br />

in brightfield microscopy. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem.<br />

42 (8), 1071–1077.<br />

Kerstens, H. M. J.; Poddighe, P. J.; Hanselaar, A. G.<br />

J. M. (1995) A novel in situ hybridization signal<br />

amplifiaction method based on the deposition of<br />

biotinylated tyramine. J. His<strong>to</strong>chem. Cy<strong>to</strong>chem.<br />

43 (4), 347–352.<br />

Khatib, Z. A.; Matsushime, H.; Valentine, M.;<br />

Shapiro, C. N.; Sherr, D. J.; Look, A. T. (1993)<br />

Coamplification of the CDK4 Gene with MDM2 and<br />

GLI in human sarcomas. Canc. Res. 53,<br />

5535–5541.<br />

Kibbelaar, R. E.; Mulder, J.-W. R.; van Kamp, H.;<br />

Dreef, E. J.; Wessels, H. W.; Bevers<strong>to</strong>ck, G. C.;<br />

Haak, H. L.; Raap, A. K.; Kluin, P. M. (1992)<br />

Nonradioactive in situ hybridization of the<br />

translocation t(1;7) in myeloid malignancies.<br />

Genes Chrom. Cancer 4, 128–134.<br />

Kitsberg, D.; Selig, S.; Brandels, M.; Simon, I.;<br />

Keshet, I.; Driscoll, D. J.; Nicholls, R. D.; Cedar, H.<br />

(1993) Allele-specific replication timing of imprinted<br />

gene regions. Nature 364, 459–463.<br />

Kluck, P. M. C.; Wiegant, J.; Raap, A. K.; Vrolijk, H.;<br />

Tanke, H. J.; Willemze, R.; Landegent, J. E. (1993)<br />

Order of human hema<strong>to</strong>poietic growth fac<strong>to</strong>r and<br />

recep<strong>to</strong>r genes on the long arm of chromosome 5,<br />

as determined by fluorescence in situ hybridization.<br />

Ann. Hema<strong>to</strong>l. 66, 15–20.<br />

Knehr, S.; Zitzelsberger, H.; Braselmann, H.;<br />

Bauchinger, M. (1994) Analysis for DNA-proportional<br />

distribution of radiation-induced chromosome<br />

aberrations in various triple combinations of human<br />

chromosomes using fluorescence in situ hybridization.<br />

<strong>In</strong>t. J. Radiat. Biol. 65 (6), 683–690.<br />

Kobayashi, H.; Espinosa III, R.; Thirman, M. J.;<br />

Davis, E. M.; Diaz, M. O.; Le Beau, M. M.; Rowley,<br />

J. D. (1993) Variability of 11q23 rearrangements in<br />

hema<strong>to</strong>poietic cell lines identified with fluorescence<br />

in situ hybridization. Blood 81 (11), 3027–3033.<br />

Lalli, E.; Gibellini, D.; Santi, S.; Facchini, A.<br />

(1992) <strong>In</strong> situ hybridization in suspension and flow<br />

cy<strong>to</strong>metry as a <strong>to</strong>ol for the study of gene<br />

expression. Anal. Biochem. 207, 298–303.<br />

Larin, Z.; Fricker, M. D.; Maher, E.; Ishikawa-Brush,<br />

Y.; Southern, E. M. (1994) Fluorescence in situ<br />

hybridization of multiple probes on a single<br />

microscope slide. Nucl. Acids Res. 22 (18),<br />

3689–3692.<br />

Larramendy, M.; Heiskanen, M.; Wessman, M.;<br />

Ritvanen, A.; Pel<strong>to</strong>mäki, P.; Simola, K.; Kääriäinen,<br />

H.; Von Koskull, H.; Kähkönen, M.; Knuutila, S.<br />

(1993) Molecular cy<strong>to</strong>genetic study of patients<br />

with Pallister-Killian syndrome. Hum. Genet. 91,<br />

121–127.<br />

Larramendy, M.; Nylund, S. J.; Armstrong, E.;<br />

Knuutila, S. (1993) Simultaneous detection of highresolution<br />

R-banding and fluorescence in situ<br />

hybridization signals after fluorouracil-induced<br />

cellular synchronization. Hereditas 119, 89–94.<br />

Lawrence, J. B. (1990) A fluorescence in situ<br />

hybridization approach for gene mapping and the<br />

study of nuclear organization. <strong>In</strong>: Davies, K. E.;<br />

Tilghman, S. M. (eds) Genetic and Physical<br />

Mapping, Cold Spring Harbor Labora<strong>to</strong>ry Press,<br />

page 1–38.<br />

Lawrence, J. B.; Singer, R. H.; McNeil, J. A. (1990)<br />

<strong>In</strong>terphase and metaphase resolution of different<br />

distances within the human dystrophin gene.<br />

Science 249, 928–932.<br />

Lazaridou, A.; Chase, A.; Melo, J.; Garicochea, B.;<br />

Diamond, J.; Goldman, J. (1994) Lack of reciprocal<br />

translocation in BCR-ABL positive Ph-negative<br />

chronic myeloid leukaemia. Leukemia 8 (3),<br />

454–457.<br />

Le Beau, M. M.; Espinosa III, R.; Neuman, W. L.;<br />

S<strong>to</strong>ck, W.; Rouls<strong>to</strong>n, D.; Larson, R. A.; Keinanen, M.;<br />

Westbrook, C. A. (1993) Cy<strong>to</strong>genetic and molecular<br />

delineation of the smallest commonly deleted<br />

region of chromosome 5 in malignant myeloid<br />

diseases. Proc. Natl. Acad. Sci. USA 90,<br />

5484–5488.<br />

Léger, I.; Thomas, M.; Ronot, X.; Brugal, G. (1993)<br />

Detection of chromosomes 1 aberrations by<br />

fluorescent in situ hybridization (FISH) in the human<br />

breast cancer cell line MCF-7. Anal. Cell. Pathol. 5,<br />

299–309.<br />

Léger, I.; Robert-Nicoud, M.; Brugal, G. (1994)<br />

Combination of DNA in situ hybridization and<br />

immunocy<strong>to</strong>chemical detection of nucleolar<br />

proteins: A contribution <strong>to</strong> the functional mapping<br />

of the human genome by fluorescence microscopy.<br />

J. His<strong>to</strong>chem. Cy<strong>to</strong>chem. 42 (2), 149–154.<br />

Léger, I.; Guillaud, M.; Krief, B.; Brugal, G. (1994)<br />

<strong>In</strong>teractive computer-assisted analysis of chromosome<br />

1 colocalization with nucleoli. Cy<strong>to</strong>metry 16,<br />

313–323.<br />

Leitch, A. R.; Mosgöller, W.; Shi, M.; Heslop-<br />

Harrison, J. S. (1992) Different patterns of rDNA<br />

organization at interphase in nuclei of wheat and<br />

rye. J. Cell Sci. 101, 751–757.<br />

Leitch, A.R.; Schwarzacher, T.; Leitch, I. J. (1994)<br />

The use of fluorochromes in the cy<strong>to</strong>genetics of the<br />

small-grained cereals (Triticeae). His<strong>to</strong>chem. J. 26,<br />

471–479.<br />

Lemieux, N.; Malfoy, B.; Fetni, R.; Muleris, M.;<br />

Vogt, N.; Richer, C. L.; Dutrillaux, B. (1994) <strong>In</strong> situ<br />

hybridization approach at infragenic level on<br />

metaphase chromosomes. Cy<strong>to</strong>genet. Cell Genet.<br />

66, 107–112.<br />

Lengauer, C.; Speicher, M. R.; Popp, S.; Jauch, A.;<br />

Taniwaki, M.; Nagaraja, R.; Riethman, H. C.;<br />

Donis-Keller, H.; D’Urso, M.; Schlessinger, D.;<br />

Cremer, T. (1993) Chromosomal bar codes produced<br />

by multicolor fluorescence in situ hybridization with<br />

multiple YAC clones and whole chromosome<br />

painting probes. Hum. Mol. Gen. 2 (5), 505–512.<br />

Lichter, P.; Boyle, A. L.; Cremer, T.; Ward, D. C.<br />

(1991) Analysis of genes and chromosomes by<br />

noniso<strong>to</strong>pic in situ hybridization. GATA 8 (1), 24–35.<br />

CONTENTS<br />

INDEX


Lichter, P.; Chang Tang, C.; Call, K.; Hermanson, G.;<br />

Evans, G. A.; Housman, D.; Ward, D. C. (1990) High<br />

resolution mapping of human chromosome II by in<br />

situ hybridization with cosmid clones. Science 247,<br />

64–69.<br />

Lutz, S.; Welter, C.; Urbschat, K.; Seitz, G.; Blin, N.<br />

(1992) Regional loss of the Y chromosome in<br />

urothelial carcinoma. <strong>In</strong>t. J. Oncol. 1, 115–119.<br />

Makowski, E. R.; Ruzin, S. E. (1994) Fluorescent<br />

<strong>In</strong> <strong>Situ</strong> <strong>Hybridization</strong> of maize meiotic chromosomes<br />

a visualized by confocal microscopy. BioTechn.<br />

16 (2), 256–263.<br />

Maluszynska, J.; Heslop-Harrison, J. S. (1991)<br />

Localization of tandemly repeated DNA sequences<br />

in arabidopsis thaliana. Plant J. 1 (7).<br />

Manoir du, S.; Speicher, M. R.; Joos, S.; Schröck, E.;<br />

Popp, S.; Döhner, H.; Kovacs, G.; Robert-Nicoud, M.;<br />

Lichter, P.; Cremer, T. (1993) Detection of complete<br />

and partial chromosomes gains and losses by<br />

comparative genomic in situ hybridization. Hum.<br />

Genet. 90, 590–610.<br />

McNeil, J. A.; Johnson, C. V.; Carter, K. C.; Singer,<br />

R. H.; Lawrence, J. B. (1991) Localizing DNA and<br />

RNA within nuclei and chromosomes by fluorescence<br />

in situ hybridization. GATA 8 (2), 41–58.<br />

Meloni, A. M.; Peier, A. M.; Haddad, F. S.; Powell,<br />

I. J.; Block, A. W.; Huben, R. P.; Todd, I.; Potter, W.;<br />

Sandberg, A. A. (1993) A new approach in the<br />

diagnosis and follow-up of bladder cancer. Cancer<br />

Genet. Cy<strong>to</strong>genet. 71, 105–118.<br />

Michaelis, K. C.; Helvering, L. M.; Kinding, D. E.;<br />

Garriott, M. L.; Richardson, K. K. (1994) Localization<br />

of the xanthine guanine phosphoribosyl transferase<br />

gene (gpt) of e.coli in AS52 metaphase cells by<br />

fluorescence in situ hybridization. Environm. Mol.<br />

Mutagen. 24, 176–180.<br />

Munné, S.; Lee, A., Rosenwaks, Z.; Grifo, J.;<br />

Cohen, J. (1993) Diagnosis of major chromosome<br />

aneuploidies in human preimplantation embryos.<br />

Human Reprod. 8 (12), 2185–2191.<br />

Nederlof, P. M.; Flier, van der, S.; Raap, A. K.;<br />

Tanke, H. J. (1992) Quantification of inter- and<br />

intra-nuclear variation of fluorescence in situ<br />

hybridization signals. Cy<strong>to</strong>metry 13, 831–838.<br />

Nederlof, P. M.; Flier, van der, S.; Verwoerd, N. P.;<br />

Vrolijk, J.; Raap, A. K.; Tanke, H. J. (1992)<br />

Quantification of fluorescence in situ hybridization<br />

signals by image cy<strong>to</strong>metry. Cy<strong>to</strong>metry 13,<br />

846–852.<br />

Nederlof, P. M.; Flier, van der, S.; Vrolijk, J.; Tanke,<br />

H. J.; Raap, A. K. (1992) Fluorescence ratio<br />

measurements of double-labeled probes for<br />

multiple in situ hybridization by digital imaging<br />

microscopy. Cy<strong>to</strong>metry. 13, 839–845.<br />

Nylund, S. J.; Ruutu, T.; Saarinen, U.; Larramendy,<br />

M. L.; Knuutila, S. (1994) Detection of minimal<br />

residual disease using fluorescence DNA in situ<br />

hybridization: a follow-up study in leukemia and<br />

lymphoma patients. Leukemia 8 (4), 587–594.<br />

CONTENTS<br />

INDEX<br />

References<br />

Pendás, A. M.; Morán, P.; Garcia-Vázquez, E. (1993)<br />

Ribosomal RNA genes are interspersed throughout<br />

a heterochromatic chromosome arm in Atlantic<br />

salmon. Cy<strong>to</strong>genet. Cell Genet. 63, 128–130.<br />

Pendás, A. M.; Morán, P.; Garcia-Vázquez, E. (1993)<br />

Multi-chromosomal location of ribosomal RNA<br />

genes and heterochromatin association in brown<br />

trout. Chrom. Res. 1, 63–67.<br />

Popp, S.; Jauch, A.; Schindler, D.; Speicher, M. R.;<br />

Lengauer, C.; Donis-Keller, H.; Riethman, H. C.;<br />

Cremer, T. (1993) A strategy for the characterization<br />

of minute chromosome rearrangements using<br />

multiple color fluorescence in situ hybridization<br />

with chromosome-specific DNA libraries and YAC<br />

clones. Hum. Genet. 92, 527–532.<br />

Raap, A. K.; Wiegant, J.; Lichter, P. Multiple<br />

fluorescence in situ hybridization for molecular<br />

cy<strong>to</strong>genetics.<br />

Rassool, F. V.; McKeithan, T. W.; Neilly, M. E.; Van<br />

Melle, E.; Espinosa III, R.; Le Beau, M. M. (1991)<br />

Preferential integration of marker DNA in<strong>to</strong> the<br />

chromosomal fragile site at 3p14: an approach <strong>to</strong><br />

cloning fragile sites. Proc. Natl. Acad. Sci. USA 88,<br />

6657–6661.<br />

Richard, F.; Vogt, N.; Muleris, M.; Malfoy, B.;<br />

Dutrillaux, B. (1994) <strong>In</strong>creased FISH efficieny using<br />

APC probes generated by direct incorporation of<br />

labeled nucleotides by PCR. Cy<strong>to</strong>genet. Cell Genet.<br />

65, 169–171.<br />

Ried, T.; Arnold, N.; Ward, D. C.; Wienberg, J. (1993)<br />

Comparative high-resolution mapping of human and<br />

primate chromosomes by fluorescence in situ<br />

hybridization. Genomics 18, 381–386.<br />

Ried, T.; Baldini, A.; Rand, T. C.; Ward, D. C. (1992)<br />

Simultaneous visualization of seven different DNA<br />

probes by in situ hybridization using combina<strong>to</strong>rial<br />

fluorescence and digital imaging microscopy. Proc.<br />

Natl. Acad. Sci. USA 89, 1388–1392.<br />

Ried, T.; Landes, G.; Dackowski, W.; Klinger, K.;<br />

Ward, D. C. (1992) Multicolor fluorescence in situ<br />

hybridization for the simultaneous detection of<br />

probe sets for chromosomes 13, 18, 21, X and Y in<br />

uncultured amniotic fluid cells. Human Mol. Gen. 1<br />

(5), 307–313.<br />

Ried, T.; Lengauer, C.; Cremer, T.; Wiegant, J.;<br />

Raap, A. K.; van der Ploeg, M.; Groitl, P.; Lipp, M.<br />

(1991) Specific metaphase and interphase detection<br />

of the breakpoint region in 8q24 of burkitt<br />

lymphoma cells by triple-color fluorescence in situ<br />

hybridization. Genes, Chromosomes & Cancer 4,<br />

69–74.<br />

Sai<strong>to</strong>h, Y.; Mizuno, S. (1992) Distribution of Xho I<br />

and Eco RI family repetitive DNA sequences in<strong>to</strong><br />

separate domains in the chicken W chromosome.<br />

Chromosoma 101, 474–477.<br />

Scherthan, H.; Köhler, M.; Vogt, P.; Malsch, von,<br />

K.; Schweizer, D. (1992) Chromosomal in situ<br />

hybridization with double-labeled DNA: signal<br />

amplification at the probe level. Cy<strong>to</strong>genet. Cell<br />

Genet. 60, 4–7.<br />

195<br />

6


6<br />

196<br />

References<br />

Scherthan, H.; Loidl, J.; Schuster, T.; Schweizer, D.<br />

(1992) Meiotic chromosome condensation and<br />

pairing in Saccharomyces cerevisiae studied by<br />

chromosome painting. Chromosoma 101, 590–595.<br />

Schmidt, E. R. (1992) Multicolor in situ hybridization<br />

– a helpful technique for precise gene localisation.<br />

Scient. Techn. <strong>In</strong>form. X (3), 80–84.<br />

Schwarzacher, T.; Anamthawat-Jonsson, K.;<br />

Harrison, G. E.; Islam, A. K. M. R.; Jia, J. Z.; King, I.<br />

P.; Leitch, A. R.; Miller, T. E.; Reader, S. M.; Rogers,<br />

W. J.; Shi, M.; Heslop-Harrison, J. S. (1992)<br />

Genomic in situ hybridization <strong>to</strong> identify alien<br />

chromosomes and chromosome segments in wheat.<br />

Theor. Appl. Genet. 84, 778–786.<br />

Schwarzacher, T.; Heslop-Harrison, J. S.;<br />

Anamthawat-Jonsson, K. (1992) Parental genome<br />

separation in reconstructions of somatic and<br />

premeiotic metaphases of Hordeum vulgare x H.<br />

bulbosum. J. Cell Sci. 101, 13–24.<br />

Selig, S.; Okumura, K.; Ward, D. C.; Cedar, H.<br />

(1992) Delineation of DNA replication time zones by<br />

fluorescence in situ hybridization. EMBO J. 11 (3),<br />

1217–1225.<br />

Shi, G.-P.; Webb, A. C.; Foster, K. E.; Knoll, J. H. M.;<br />

Lemere, C. A.; Munger, J. S.; Chapman, H. A. (1994)<br />

Human cathepsin S: Chromosomal localization,<br />

gene structure, and tissue distribution. J. Biol.<br />

Chem. 269 (15), 11530–11536.<br />

Shi, Y.-P.; Huang, T.-T.; Carlson, E. J.; Epstein, C. J.<br />

(1994) The mapping of transgenes by fluorescence<br />

in situ hybridization on G-banded mouse chromosomes.<br />

Mammal. Genome 5, 337–341.<br />

Shibasaki, Y. (1994) High resolution mapping of the<br />

MYCN pro<strong>to</strong>-oncogene at human chromosome<br />

2p24.3 by fluorescence in situ hybridization.<br />

Cy<strong>to</strong>genet. Cell Genet. 66, 75–76.<br />

Speel, E. J. M.; Kamps, M.; Bonnet, J.; Ramaekers,<br />

F. C. S.; Hopman, A. H. N. (1993) Multicolour<br />

preparations for in situ hybridization using<br />

precipitating enzyme cy<strong>to</strong>chemistry in combination<br />

with reflection contrast microscopy. His<strong>to</strong>chem.<br />

100, 357–366.<br />

Speleman, F.; Leroy, J. G.; Roy, van, N.; De Paepe,<br />

A.; Suijkerbuijk, R.; Brunner, H.; Looijenga, L.;<br />

Verschraegen-Spae, M.-R.; Orye, E. (1991)<br />

Pallister-Killian syndrome: Characterization of<br />

the isochromosome 12p by fluorescent in situ<br />

hybridization. Am. J. Med. Gen. 41, 381–387.<br />

Speleman, F.; Van Roy, N.; De Vos, E.; Hilliker, C.;<br />

Suijkerbuijk, R. F. S.; Leroy, J.G. (1993) Molecular<br />

cy<strong>to</strong>genetic analysis of a familial pericentric<br />

inversion of chromosome 12. Clin. Genet. 44,<br />

156–163.<br />

Spriggs, E. L.; Martin, R. H. (1994) Analysis of<br />

segregation in a human male reciprocal translocation<br />

carrier, t (1;11) (p36.3;q13.1), by twocolour<br />

fluorescence in situ hybridization. Mol.<br />

Reprod. Develop. 38, 247–250.<br />

Stanyon, R.; Arnold, N.; Koehler, U.; Bigoni, F.;<br />

Wienberg, J. (1995) Chromosomal painting shows<br />

that “marked chromosomes” in lesser apes and old<br />

world monkey are not homologous and evolved by<br />

convergence. Cy<strong>to</strong>genet. Cell Genet. 68, 74–78.<br />

Steilen, H.; Ketter, R.; Romanakis, K.; Zwergel, T.;<br />

Unteregger, G.; Bonkhoff, H.; Seitz, G.; Ziegler, M.;<br />

Zang, K. D.; Wullich, B. (1994) DNA aneuploidy in<br />

prostatic adenocarcinoma: A frequent event as<br />

shown by fluorescence in situ DNA hybridization.<br />

Hum. Pathol. 25, 1306–1313.<br />

Strehl, S.; Ambros, P. F. (1993) Fluorescence in situ<br />

hybridization combined with immuno-his<strong>to</strong>chemistry<br />

for highly sensitive detection of chromosome 1<br />

aberrations in neuroblas<strong>to</strong>ma. Cy<strong>to</strong>genet. Cell<br />

Genet. 63, 24–28.<br />

Tagarro, I.; Wiegant, J.; Raap, A. K.; Gonzalez-<br />

Aguilera, J. J.; Fernandez-Peralta, A. M. (1994)<br />

Assignment of human satellite 1 DNA as revealed<br />

by fluorescent in situ hybridization with oligonucleotides.<br />

Hum. Genet. 93, 125–128.<br />

Tkachuk, D. C.; Westbrook, C. A.; Andreeff, M.;<br />

Donlon, T. A.; Cleary, M. L.; Suryanarayan, K.;<br />

Homge, M.; Redner, A.; Gray, J.; Pinkel, D. (1990)<br />

Detection of bcr-abl fusion in chronic myelogeneous<br />

leukemia by in situ hybridization. Science 250,<br />

559–561.<br />

Toledo, F.; Buttin, G.; Debatisse, M. (1993) The<br />

origin of chromosome rearrangements at early<br />

stages of AMPD2 gene amplification in Chinese<br />

hamster cells. Current Biol. 3 (5), 255–264.<br />

Trask, B. J.; Massa, H.; Kenwrick, S.; Gitschier, J.<br />

(1991) Mapping of human chromosome Xq28 by<br />

two-color fluorescence in situ hybridization of DNA<br />

sequences <strong>to</strong> interphase cell nuclei. Am. J. Hum.<br />

Genet. 48, 1–15.<br />

Van Devanter, D. R.; Yirdaw, G. (1993)<br />

Recombination between separate myc amplification<br />

structures in COLO320 cells. Genes Chrom. Cancer<br />

6, 190–197.<br />

Vernole, P. (1990) Digoxigenin-labeled probes can<br />

detect single-copy genes in human metaphase<br />

chromosomes. BioTechn. 9 (2), 200.<br />

Vourc’h, C.; Taruscio, D.; Boyle, A. L.; Ward,<br />

D. C. (1993) Cell cycle-dependent distribution of<br />

telomeres, centromeres, and chromosome-specific<br />

subsatellite domains in the interphase nucleus of<br />

mouse lymphocytes. Exp. Cell Res. 205, 142–151.<br />

Warbur<strong>to</strong>n, D.; Yu, M-T.; Tantravahi, U.; Lee, C.;<br />

Cayanis, E.; Russo, J.; Fischer, S. G. (1993)<br />

Regional localization of 32 NotI-HindIII fragments<br />

from a human chromosome 13 library by a somatic<br />

cell hybrid panel and in situ hybridization.<br />

Genomics 16, 355–360.<br />

Ward, D. C. (1990) New developments in non-iso<strong>to</strong>pic<br />

labeling and purification of nucleic acid probes.<br />

Clin. Biochem. 23, 307–310.<br />

CONTENTS<br />

INDEX


Wiegant, J.; Ried, T.; Nederlof, P. M.; van der Ploeg,<br />

M.; Tanke, H. J. Raap, A. K. (1991) <strong>In</strong> situ<br />

hybridization with fluoresceinated DNA. Nucl. Acids<br />

Res. 19 (12), 3237–3241.<br />

Wiegant, J.; Wiesmeijer, C. C.; Hoovers, J. M. N.;<br />

Schuuring, E.; D’Azzo, A.; Vrolijk, J.; Tanke, H. J.;<br />

Raap, A. K. (1993) Multiple and sensitive<br />

fluorescence in situ hybridization with rhodamine-,<br />

fluorescein-, and coumarin-labeled DNAs.<br />

Cy<strong>to</strong>genet. Cell Genet. 63, 73–76.<br />

Wienberg, J.; Stanyon, R.; Jauch, A.; Cremer, T.<br />

(1992) Homologies in human and Macaca fuscata<br />

chromosomes revealed by in situ suppression<br />

hybridization with human chromosome specific DNA<br />

libraries. Chromosoma 101, 265–270.<br />

Wyrobek, A. J.; Robbins, W. A.; Mehraein, Y.;<br />

Pinkel, D.; Weier, H.-U. (1994) Detection of sex<br />

chromosomal aneuploidies X-X, Y-Y, and X-Y in<br />

human sperm using two-chromosome fluroescence<br />

in situ hybridization. Am. J. Med. Gen. 53, 1–7.<br />

Yerle, M.; Goureau, A.; Gellin, J.; Le Tissier, P.;<br />

Moran, C. (1994) Rapid mapping of cosmid clones<br />

on pig chromosomes by fluorescence in situ<br />

hybridization. Mammalian Genome 5, 34–37.<br />

Zhang, F. R.; Heilig, R.; Thomas, G.; Aurias, A.<br />

(1990) A one-step efficient and specific nonradioactive<br />

non-fluorescent method for in situ<br />

hybridization of banded chromosomes.<br />

Chromosoma 99, 436–439.<br />

CONTENTS<br />

INDEX<br />

References<br />

197<br />

6


6<br />

198<br />

References<br />

4. Primed in <strong>Situ</strong> Labeling of Nucleic Acids<br />

Abbo, S.; Dunford, R. P.; Miller, T. E.; Reader,<br />

S. M.; King, I. P. (1993) Primer-mediated in situ<br />

detection of the B-hordein gene cluster on barley<br />

chromosome 1H. Proc. Natl. Acad. Sci. USA 90,<br />

11821–11824.<br />

Brandt, C. A.; Djernes, B.; Stromkjaer, H.; Petersen,<br />

M. B.; Pedersen, S.; Hindkjaer, J.; Brinch-Iversen,<br />

J.; Bruun-Petersen, G. (1994) Pseudododicentric<br />

chromosome 18 diagnosed by chromosome painting<br />

and primed in situ labeling (PRINS). J. Med.<br />

Genet. 31, 99–102.<br />

Brandt, C. A.; Kierkegaard, O.; Hindkjaer, J.; Jensen,<br />

P. K. A.; Pedersen, S.; Therkelsen, A. J. (1993) Ring<br />

chromosome 20 with loss of telomeric sequences<br />

detected by multicolour PRINS. Clin. Genet. 44,<br />

26–31.<br />

Cinti, C.; Santi, S.; Maraldi, N. M. (1993) Localization<br />

of single copy gene by PRINS technique. Nucl.<br />

Acids Res. 21 (24), 5799–5800.<br />

Gosden, J.; Hanratty, D. (1991) Comparison of<br />

sensitivity of three haptens in the PRINS (oligonucleotide<br />

primed in situ DNA synthesis) reaction.<br />

Techniques 3 (4), 159–165.<br />

Gosden, J.; Lawson, D. (1995) <strong>In</strong>stant PRINS:<br />

a rapid method for chromosome identification by<br />

detecting repeated sequences in situ. Cy<strong>to</strong>genet.<br />

Cell Genet. 68, 57–60.<br />

Hindkjaer, J.; Koch, J.; Mogensen, J.; Pedersen, S.;<br />

Fischer, H.; Nygaard, M.; Junker, S.; Gregersen, N.;<br />

Kolvraa, S.; Therkelsen, A. J.; Bolund, L. (1991)<br />

Primed in situ labeling of nucleic acids. BFE 8, (12)<br />

752–756.<br />

Hindkjaer, J.; Koch, J.; Terkelsen, C.; Brandt, C. A.;<br />

Kolvraa, S.; Bolund, L. (1994) Fast, sensitive<br />

multicolor detection of nucleic acids in situ by<br />

PRimed<br />

IN <strong>Situ</strong> labeling (PRINS). Cy<strong>to</strong>genet. Cell Genet. 66,<br />

152–154.<br />

Hindkjaer, J.; Koch, J.; Mogensen, J.; Kolvraa, S.;<br />

Bolund, L. (1994) Primed in situ (PRINS) labeling of<br />

DNA. Meth. Mol. Biol. 33, 95–109.<br />

5. <strong>In</strong> situ hybridization in suspension<br />

Brown, C. C.; Meyer, R. F.; Grubman, M. J. (1993)<br />

Use of digoxigenin-labeled RNA probe <strong>to</strong> detect all<br />

24 serotypes of blue<strong>to</strong>ngue virus in cell culture.<br />

J. Vet. Diagn. <strong>In</strong>vest. 5, 159–162.<br />

Timm, A.; Stewart, C. C. (1992) Fluorescent in situ<br />

hybridization en suspension (FISHES) using<br />

digoxigenin-labeled probes and flow cy<strong>to</strong>metry.<br />

BioTechn. 12 (3), 362–367.<br />

Koch, J.; Fischer, H.; Askholm, H.; Hindkjaer, J.;<br />

Pedersen, S.; Kolvraa, S.; Bolund, L. (1993)<br />

Identification of a supernumerary der(18)<br />

chromosome by a rational strategy for the<br />

cy<strong>to</strong>genetic typing of small marker chromosomes<br />

with chromosome-specific DNA probes. Clin. Genet.<br />

43, 200–203.<br />

Koch, J.; Hindkjaer, J.; Kolvraa, S.; Bolund, L.<br />

Construction of a panel of chromosome specific<br />

oligonucleotide probes (PRINS-primers) useful for<br />

the identification of individual human chromosomes<br />

in situ. Cy<strong>to</strong>gen. Cell Gen. submitted.<br />

Pelles<strong>to</strong>r, F.; Girardet, A.; Andréo, B.; Charlieu, J.-P.<br />

(1994) A polymorphic alpha satellite sequence for<br />

human chromosome 13 detected by oligonucleotide<br />

primed in situ labeling (PRINS). Hum. Genet. 94,<br />

346–348.<br />

Pelles<strong>to</strong>r, F.; Girardet, A.; Geneviève, L.; Andréo, B.;<br />

Charlieu, J. P. (1995) Use of the primed in situ<br />

labeling (PRINS) technique for a rapid detection of<br />

chromosomes 13, 16, 18, 21, X and Y. Hum. Genet.<br />

95, 12–17.<br />

Speel, E. J. M.; Lawson, D.; Hopman, A. H. N.;<br />

Gosden, J. (1995) Multi-PRINS: multiple sequential<br />

oligonucleotide primed in situ DNA synthesis<br />

reactions label specific chromosomes and produce<br />

bands. Hum. Genet. 95, 29–33.<br />

Terkelsen, C.; Koch, J.; Kolvraa, S.; Hindkjaer, J.;<br />

Pedersen, S.; Bolund, L. (1993) Repeated primed in<br />

situ labeling: formation and labeling of specific DNA<br />

sequences in chromosomes and nucleic. Cy<strong>to</strong>genet.<br />

Cell Genet. 63, 235–237.<br />

Therkelsen, A. J.; Nielsen, A.; Koch, J.; Hindkjaer,<br />

J.; Kolvraa, S. (1995) Staining of human telomeres<br />

with primed in situ labeling (PRINS). Cy<strong>to</strong>genet. Cell<br />

Genet. 68, 115–118.<br />

Volpi, E. V.; Baldini, A. (1993) Multiprins: a method<br />

for multicolour primed in situ labeling. Chrom. Res.<br />

1, 257–260.<br />

CONTENTS<br />

INDEX


6. PCR in situ technique<br />

Cinti, C.; Santi, S.; Maraldi, N. M. (1993) Localization<br />

of single copy gene by PRINS technique. Nucl.<br />

Acids Res. 21 (24), 5799–5800.<br />

Gosden, J.; Hanratty, D. (1993) PCR <strong>In</strong> situ: A rapid<br />

alternative <strong>to</strong> in situ hybridization for mapping<br />

short, low copy number sequences without<br />

iso<strong>to</strong>pes. BioTechn. 15 (1), 78–80.<br />

Gressens, P.; Martin, J. R. (1994) <strong>In</strong> situ polymerase<br />

chain reaction: localization of HSV-2 DNA<br />

sequences in infections of the nervous system.<br />

J. Virol. Meth. 46, 61–83.<br />

Li, S.; Harris, C. P.; Leong, S. A. (1993) Comparison<br />

of fluorescence in situ hybridization and primed in<br />

situ labeling methods for detection of single-copy<br />

genes in the fungus ustilago maydis. Experim.<br />

Mycol. 17, 301–308.<br />

Long, A. A.; Komminoth, P.; Lee, E.; Wolfe, H. J.<br />

(1993) Comparison of indirect and direct in situ<br />

polymerase chain reaction in cell preparations and<br />

tissue sections. His<strong>to</strong>chem. 99, 151–162.<br />

Moss, R. B.; Kaliner, M. A. (1994) Primed in <strong>Situ</strong> DNA<br />

Amplification (PIDA). J. Clin. Lab. Anal. 8, 120–122.<br />

Nuovo, G.; Direct incorporation of digoxigenin-11dUTP<br />

in<strong>to</strong> amplified DNA using the “Hot Start” PCR<br />

in situ technique.<br />

Nuovo, G. J.; Gallery, F.; MacConnell, P.; Becker, J.;<br />

Bloch, W. (1991) An improved technique for the<br />

in situ detection of DNA after Polymerase Chain<br />

Reaction amplification. Am. J. Pathol. 139 (6),<br />

1239–1244.<br />

CONTENTS<br />

INDEX<br />

References<br />

Patel, V. G.; Shum-Siu, A.; Heniford, B. W.; Wieman,<br />

T. J.; Hendler, F. J. (1994) Detection of epidermal<br />

growth fac<strong>to</strong>r recep<strong>to</strong>r mRNA in tissue sections<br />

from biopsy specimens using in situ polymerase<br />

chain reaction. Am. J. Pathol. 144 (1), 7–14.<br />

Pelles<strong>to</strong>r, F.; Girardet, A.; Lefort, G.; Andréo, B.;<br />

Charlieu, J. P. (1994) Détection rapide des<br />

chromosomes 21 in situ par la technqie PRINS.<br />

Ann. Génét. 37 (2), 66–71.<br />

Pestaner, J. P.; Bibbo, M.; Bobroski, L.; Seshamma,<br />

T.; Bagasra, O. (1994) Potential of the in situ<br />

polymerase chain reaction in diagnostic cy<strong>to</strong>logy.<br />

Acta Cy<strong>to</strong>l. 38, 676–680.<br />

Teyssier, M.; Carosella, E.; Gluckman, E.;<br />

Kirszenbau, M. (1994) PCR introcellulaire: nouvelle<br />

approche de diagnostic tissulaire et cy<strong>to</strong>genetique.<br />

Immunoanal. Biol. Spec. 9, 159–164.<br />

Tsongalis, G. J.; McPhail, A. H.; Lodge-Rigal, R. D.;<br />

Chapman, J. F.; Silverman, L. M. (1994) Localized<br />

in situ amplification (LISA): A novel approach <strong>to</strong><br />

in situ PCR. Clin. Chem. 40 (3), 381–384.<br />

Zehbe, I.; Hacker, G. W.; Rylander, E.; Sällström, J.;<br />

Wilander, E. (1992) Detection of single HPV copies<br />

in SiHa cells by in situ polymerase chain reaction<br />

(in situ PCR) combined with immuno-peroxidase<br />

and immunogold-silver staining (IGSS) techniques.<br />

Anticanc. Res. 12, 2165–2168.<br />

199<br />

6


6<br />

200<br />

References<br />

7. Apop<strong>to</strong>sis research using DIG-dUTP and terminal<br />

transferase<br />

Billig, H.; Furuta, I.; Hsueh, A. J. (1993) Estrogens<br />

inhibit and androgens enhance ovarian granulosa<br />

cell apop<strong>to</strong>sis. Endocrinol. 133 (5) 2204–2212.<br />

Billig, H.; Furuta, I.; Hsueh, A. J. W. (1994) Gonadotropin-releasing<br />

hormone directly induces apop<strong>to</strong>tic<br />

cell death in the rat ovary: Biochemical and in situ<br />

detection of deoxyribonucleic acid fragmentation in<br />

granulosa cells. Endocrinol. 134 (1), 245–252.<br />

Gold; R.; Schmied, M.; Rothe, G.; Zischler, H.;<br />

Breitschopf, H.; Wekerle, H.; Lassmann, H. (1993)<br />

Detection of DNA fragmentation in apop<strong>to</strong>sis:<br />

Application of in situ nick translation <strong>to</strong> cell culture<br />

systems and tissue sections. J. His<strong>to</strong>chem.<br />

Cy<strong>to</strong>chem. (in press).<br />

Gorczyca, W.; Bigman, K.; Mittelman, A.; Ahmed, T.;<br />

Gong, J.; Melamed, M. R.; Darzynkiewicz, Z. (1993)<br />

<strong>In</strong>duction of DNA strand breaks associated with<br />

apop<strong>to</strong>sis during treatment of leukemias. Leukemia<br />

7 (5), 659–670.<br />

8. Miscellaneous<br />

Schöfer, C.; Müller, M.; Leitner, M. D.; Wachtler, F.<br />

(1993) The uptake of uridine in the nucleolus occurs<br />

in the dense fibrillar component. Cy<strong>to</strong>genet. Cell<br />

Genet. 64, 27–30.<br />

Wansink, D. G.; Manders, E. E. M.; van der Kraan, I.;<br />

Aten, J. A.; van Driel, R.; de Jong, L. (1994) RNA<br />

polymerase II transcription is concentrated outside<br />

replication domains throughout S-phase. J. Cell Sci.<br />

107, 1449–1456.<br />

Gorczyca, W.; Gong, J.; Ardelt, B.; Traganos, F.;<br />

Darzynkiewicz, Z. (1993) The cell cycle related<br />

differences in susceptibility of HL-60 cells <strong>to</strong><br />

apop<strong>to</strong>sis induced by various antitumor agents.<br />

Cancer Res. 53, 3186–3192.<br />

Gorczyca, W.; Gong, J.; Darzynkiewicz, Z. (1993)<br />

Detection of DNA strand breaks in individual<br />

apop<strong>to</strong>tic cells by the in situ terminal deoxynucleotidyl<br />

transferase and nick translation assays. Canc.<br />

Res. 53, 1945–1951.<br />

Sgonc, R.; Boeck, G.; Dietrich, H.; Gruber, J.;<br />

Reicheis, H.; Wick, G. (1994) Simultaneous determination<br />

of cell surface antigens and apop<strong>to</strong>sis.<br />

TIG 10 (2), 41–42.<br />

CONTENTS<br />

INDEX


CONTENTS<br />

INDEX<br />

Ordering <strong>In</strong>formation


7<br />

202<br />

Ordering Guide<br />

Labeling and <strong>Hybridization</strong><br />

PRINS Reaction Sets<br />

Cat. No. Size<br />

DIG PRINS Reaction Set 1695 932 1 set (40 reactions,<br />

5 controls)<br />

Rhodamine PRINS Reaction Set 1768 514 1 set (40 reactions,<br />

5 controls)<br />

PRINS Oligonucleotide Primers<br />

Human Chromosome 1 specific 1695 959 100 µl (20 reactions)<br />

Human Chromosome 1 + 16 specific 1768 549 100 µl (20 reactions)<br />

Human Chromosome 3 specific 1695 967 100 µl (20 reactions)<br />

Human Chromosome 7 specific 1695 975 100 µl (20 reactions)<br />

Human Chromosome 8 specific 1695 983 100 µl (20 reactions)<br />

Human Chromosome 9 (SAT) specific 1768 565 100 µl (20 reactions)<br />

Human Chromosome 10 specific 1768 522 100 µl (20 reactions)<br />

Human Chromosome 11 specific 1695 991 100 µl (20 reactions)<br />

Human Chromosome 12 specific 1696 009 100 µl (20 reactions)<br />

Human Chromosome 14 + 22 specific 1768 557 100 µl (20 reactions)<br />

Human Chromosome 17 specific 1696 017 100 µl (20 reactions)<br />

Human Chromosome 18 specific 1696 025 100 µl (20 reactions)<br />

Human Chromosome X specific 1696 033 100 µl (20 reactions)<br />

Human Chromosome Y specific 1696 041 100 µl (20 reactions)<br />

All Human Chromosome specific 1699 172 100 µl (20 reactions)<br />

Human Telomere Specific 1699 199 100 µl (20 reactions)<br />

DNA probes, human chromosome<br />

1 specific, digoxigenin-labeled 1558 765 1 µg (50 µl)<br />

1 specific, fluorescein-labeled 1558 684 1 µg (50 µl)<br />

1 + 5 + 19 specific, digoxigenin-labeled 1690 507 1 µg (50 µl)<br />

1 + 5 + 19 specific, fluorescein-labeled 1690 647 1 µg (50 µl)<br />

2 specific, digoxigenin-labeled 1666 479 1 µg (50 µl)<br />

2 specific, fluorescein-labeled 1666 380 1 µg (50 µl)<br />

3 specific, digoxigenin-labeled 1690 515 1 µg (50 µl)<br />

4 specific, digoxigenin-labeled 1690 523 1 µg (50 µl)<br />

6 specific, digoxigenin-labeled 1690 531 1 µg (50 µl)<br />

7 specific, digoxigenin-labeled 1690 639 1 µg (50 µl)<br />

7 specific, fluorescein-labeled 1694 375 1 µg (50 µl)<br />

8 specific, digoxigenin-labeled 1666 487 1 µg (50 µl)<br />

8 specific, fluorescein-labeled 1666 398 1 µg (50 µl)<br />

9 specific, digoxigenin-labeled 1690 540 1 µg (50 µl)<br />

10 specific, digoxigenin-labeled 1690 558 1 µg (50 µl)<br />

10 specific, fluorescein-labeled 1690 655 1 µg (50 µl)<br />

11 specific, digoxigenin-labeled 1690 566 1 µg (50 µl)<br />

11 specific, fluorescein-labeled 1690 663 1 µg (50 µl)<br />

12 specific, digoxigenin-labeled 1690 574 1 µg (50 µl)<br />

12 specific, fluorescein-labeled 1690 671 1 µg (50 µl)<br />

13 + 21 specific, digoxigenin-labeled 1690 582 1 µg (50 µl)<br />

14 + 22 specific, digoxigenin-labeled 1666 495 1 µg (50 µl)<br />

14 + 22 specific, fluorescein-labeled 1666 401 1 µg (50 µl)<br />

15 specific, digoxigenin-labeled 1690 604 1 µg (50 µl)<br />

16 specific, digoxigenin-labeled 1699 091 1 µg (50 µl)<br />

17 specific, digoxigenin-labeled 1666 452 1 µg (50 µl)<br />

17 specific, fluorescein-labeled 1666 371 1 µg (50 µl)<br />

18 specific, digoxigenin-labeled 1666 509 1 µg (50 µl)<br />

18 specific, fluorescein-labeled 1666 428 1 µg (50 µl)<br />

20 specific, digoxigenin-labeled 1666 517 1 µg (50 µl)<br />

20 specific, fluorescein-labeled 1666 436 1 µg (50 µl)<br />

22 specific, digoxigenin-labeled 1690 612 1 µg (50 µl)<br />

X specific, digoxigenin-labeled 1666 525 1 µg (50 µl)<br />

X specific, fluorescein-labeled 1666 444 1 µg (50 µl)<br />

Y specific, digoxigenin-labeled 1558 196 1 µg (50 µl)<br />

Y specific, fluorescein-labeled 1558 692 1 µg (50 µl)<br />

Specific for all human chromosomes, digoxigenin-labeled 1558 757 1 µg (50 µl)<br />

Specific for all human chromosomes, fluorescein-labeled 1558 676 1 µg (50 µl)<br />

CONTENTS<br />

INDEX


CONTENTS<br />

INDEX<br />

Ordering Guide<br />

Detection<br />

Anti-Digoxigenin, Fab fragment<br />

Cat. No. Size<br />

AP conjugate 1093 274 150 U<br />

AMCA conjugate 1533 878 200 µg<br />

-Gal conjugate 1634 020 150 U<br />

fluorescein conjugate 1207 741 200 µg<br />

gold conjugate 1450 590 1 ml<br />

POD conjugate 1207 733 150 U<br />

POD poly conjugate 1633 716 50 U<br />

rhodamine conjugate 1207 750 200 µg<br />

unlabeled 1214 667 1 mg<br />

Anti-Digoxigenin, monoclonal 1333 062 100 µg<br />

Anti-Digoxigenin from sheep 1333 089 200 µg<br />

Anti-Biotin,<br />

AP conjugate 1426 303 150 U<br />

POD conjugate 1426 311 150 U<br />

unlabeled 1297 597 100 µg<br />

Anti-Fluorescein 1426 320 100 µg<br />

Anti-Fluorescein, Fab fragment<br />

AP conjugate 1426 338 150 U<br />

POD conjugate 1426 346 150 U<br />

DAPI, 4',6-Diamidine-2'-Phenylindole Dihydrochloride 236 276 10 mg<br />

DIG Quantification Teststrips 1669 958 50 strips<br />

DIG Control Teststrips 1669 966 25 strips<br />

DIG Nucleic Acid 1175 041 Detection of 40 blots<br />

Detection Kit, Colorimetric (10 x 10 cm)<br />

Streptavidin<br />

AP conjugate, MB grade 1093 266 150 U<br />

AMCA conjugate 1428 578 1 mg<br />

fluorescein conjugate 1055 097 1 mg<br />

POD conjugate 1089 153 500 U<br />

unlabeled 973 190 1 mg<br />

1097 679 5 mg<br />

DNA, COT-1, human 1581 074 500 µg (500 µl)<br />

DNA from herring sperm 223 646 1 g<br />

DNA, MB-grade from fish sperm 1467 140 500 mg (500 ml)<br />

RNA from yeast 109 223 100 g<br />

NBT/BCIP S<strong>to</strong>ck Solution 1681 451 8 ml<br />

BCIP 5-Bromo-4-chloro-3-indolyl-phosphate 1383 221 3 ml (150 mg)<br />

NBT 4-Nitroblue tetrazolium chloride 1383 213 3 ml<br />

Silver Enhancement Reagents 1465 350 1 set<br />

Blocking Reagent, for nucleic acid hybridization 1096 176 50 g<br />

HNPP Fluorescent Detection Set 1758 888 Set for 500<br />

FISH Detection Reactions<br />

Fluorescent Antibody Enhancer Set for DIG Detection 1768 506 1 Set<br />

203<br />

7


7<br />

**This product is sold under licensing<br />

arrangements with Roche<br />

Molecular Systems and the Perkin-<br />

Elmer Corporation. Purchase of<br />

this product is accompanied by a<br />

license <strong>to</strong> use it in the Polymerase<br />

Chain Reaction (PCR) process in<br />

conjunction with an Authorized<br />

Thermal Cycler.<br />

For complete license disclaimer,<br />

see inside back cover page.<br />

**This product or the use of this<br />

product may be covered by one<br />

or more patents of Boehringer<br />

Mannheim GmbH, including the<br />

following: EP patent 0 649 909<br />

(application pending).<br />

204<br />

Ordering Guide<br />

DNA Probe Labeling Cat. No. Size<br />

DIG DNA Labeling and Detection Kit 1093 657 25 labeling reactions<br />

and colorimetric detection<br />

of 50 blots (10 x 10 cm)<br />

DIG DNA Labeling Kit 1175 033 40 labeling reactions<br />

DIG DNA Labeling Mix 1277 065 50 µl (25 reactions)<br />

DIG-High Prime** 1585 606 160 µl (40 reactions)<br />

DIG-High Prime Labeling and Detection Starter Kit I** 1745 832 12 labeling reactions<br />

and colorimetric<br />

detection of 24 blots<br />

(10 x 10 cm)<br />

PCR DIG Probe Synthesis Kit* 1636 090 25 labeling reactions<br />

PCR DIG Labeling Mix* 1585 550 50 reactions (for<br />

detection applications)<br />

Nick Translation Mix for in situ probes 1745 808 200 µl (50 reactions)<br />

DIG-Nick Translation Mix for in situ probes 1745 816 160 µl (40 reactions)<br />

Biotin-Nick Translation Mix for in situ probes 1745 824 160 µl (40 reactions)<br />

Digoxigenin-11-dUTP, alkali-labile 1573 152 25 nmol (25 µl)<br />

1573 179 125 nmol (125 µl)<br />

Digoxigenin-11-dUTP, alkali-stable 1093 088 25 nmol (25 µl)<br />

1558 706 125 nmol (125 µl)<br />

1570 013 5 x125 nmol<br />

(5 x125 µl)<br />

DIG-labeled Control DNA 1585 738 50 µl<br />

Biotin-16-dUTP, solution 1093 070 50 nmol (50 µl)<br />

Biotin-High Prime** 1585 649 100 µl (25 reactions)<br />

PCR Fluorescein Labeling Mix* 1636 154 10 reactions<br />

Fluorescein-12-dUTP, solution 1373 242 25 nmol (25 µl)<br />

Fluorescein-High Prime** 1585 622 100 µl (25 reactions)<br />

Tetramethyl-rhodamine-6-dUTP, solution 1534 378 25 nmol (25 µl)<br />

AMCA-6-dUTP, solution 1534 386 25 nmol (25 µl)<br />

Oligonucleotide Probe Labeling Cat. No. Size<br />

DIG Oligonucleotide 3'-End Labeling Kit 1362 372 25 labeling reactions<br />

(100 pmol<br />

oligonucleotide each)<br />

DIG Oligonucleotide Tailing Kit 1417 231 25 tailing reactions<br />

(100 pmol<br />

oligonucleotide each)<br />

DIG Oligonucleotide 5'-End Labeling Set 1480 863 10 labeling reactions<br />

DIG-3'-end labeled Control Oligonucleotide 1585 754 50 µl (125 pmol)<br />

Digoxigenin-11-ddUTP, solution 1363 905 25 nmol (25 µl)<br />

DIG-NHS ester (Digoxigenin-3-0-methylcarbolyl-- 1333 054 5mg<br />

aminocaproic acid-N-hydroxysuccinimide ester)<br />

Biotin-16-ddUTP, solution 1427 598 25 nmol (25 µl)<br />

Fluorescein-12-ddUTP, solution 1427 849 25 nmol (25 µl)<br />

CONTENTS<br />

INDEX


CONTENTS<br />

INDEX<br />

Ordering Guide<br />

RNA Probe Labeling Cat. No. Size<br />

DIG (Genius 4) RNA Labeling Kit 1175 025 2 x 10 labeling reactions<br />

DIG RNA Labeling Mix 1277 073 40 µl (20 reactions)<br />

Digoxigenin-11-UTP, solution 1209 256 250 nmol (25 µl)<br />

Biotin-16-UTP, solution 1388 908 250 nmol (25 µl)<br />

Biotin RNA Labeling Mix 1685 597 40 µl (20 reactions)<br />

DIG-labeled Control RNA 1585 746 50 µl<br />

Fluorescein RNA Labeling Mix 1685 619 40 µl (20 reactions)<br />

Fluorescein-12-UTP, solution 1427 857 250 nmol (25 µl)<br />

205<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!