10.04.2013 Views

A. Pomeroy Mason Bridge

A. Pomeroy Mason Bridge

A. Pomeroy Mason Bridge

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

OTEC 2009<br />

David Jeakle<br />

URS Corporation<br />

Tampa, Florida<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Steve Williams<br />

Project Manager<br />

ODOT District 10<br />

LESSONS LEARNED


Owner:<br />

Engineer:<br />

Contractor:<br />

OTEC 2009<br />

ODOT / WVDOH<br />

URS Corporation<br />

Construction Inspection:<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

C.J. Mahan/National Joint Venture<br />

PT and Stay Cable Supplier: DSI<br />

Michael Baker Jr., Inc.


<strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

OTEC 2009<br />

•<br />

•<br />

•<br />

US 33 Over Ohio River<br />

<strong>Pomeroy</strong>, Ohio →<br />

Replaces Existing Steel Truss<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Project Description<br />

<strong>Mason</strong>, West Virginia


OTEC 2009<br />

<strong>Pomeroy</strong>, OH<br />

<strong>Mason</strong>, WV<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Project Location<br />

OH<br />

WV<br />

Ohio<br />

River


OTEC 2009<br />

WEST VIRGINIA<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Project Description<br />

1914’-6”<br />

Roadway Typical Section<br />

OHIO


Roadway Alignment<br />

OTEC 2009<br />

•<br />

•<br />

•<br />

Tangent Section<br />

“J-Hook” at Ohio End<br />

Linear Taper at Ohio End<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Project Description<br />

Navigational Channel Towards Ohio Bank


17’-10” Sidespan Segments<br />

OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Final Structural System<br />

26’-6” Mainspan Segments<br />

26’-6” Mainspan Segments


Sidespan Transverse Floorbeams<br />

•<br />

•<br />

•<br />

OTEC 2009<br />

9’-0” Wide, Mild Reinforced<br />

Wt Balances Mainspan Segments<br />

Positive Bearing Reaction from:<br />

−<br />

−<br />

Solid Diaphragm Segment<br />

Secondary Ballast Pours<br />

Sidespan Section<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure<br />

Mainspan Section<br />

Mainspan Floorbeams<br />

•<br />

•<br />

1’-9” Wide<br />

Post-Tensioned<br />

(2-19 strand tendons)


Plan View : Ohio Sidespan<br />

OTEC 2009<br />

Centerline OH Tower<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure<br />

S I D E W A L K<br />

244’-0”<br />

Linear Roadway Taper<br />

Rest Pier 7<br />

Horizontal Curve


Delta Shaped Towers<br />

•<br />

•<br />

•<br />

•<br />

•<br />

OTEC 2009<br />

Both Towers Identical<br />

Dead End Anchorages in<br />

Towerhead<br />

Cross-Strut Below Deck Post-<br />

Tensioned<br />

Tower Legs Hollow Above Deck<br />

Tower Legs Solid Below Deck<br />

− 100 year Flood +38’ above<br />

Normal Pool<br />

− Loaded Barge at +30’ above<br />

Normal Pool<br />

− Empty Barge at +50’ above<br />

Normal Pool<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Substructure<br />

100 YR FLOOD<br />

NORMAL POOL


Waterline Footings<br />

Six 8’-0” Diameter Drilled Shafts<br />

OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Foundations<br />

Loose Sand (30’)<br />

Shale (17’)<br />

“Snag-Free” Footing<br />

Soil Layering<br />

Mudstone (27’)<br />

Siltstone


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Completed <strong>Bridge</strong>


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control<br />

Mainspan Segments Cast With<br />

Form Traveler<br />

Geometry Control Issues<br />

•<br />

•<br />

•<br />

With Cantilevered Segments<br />

As-Built Deflections Poorly<br />

Correlated with Theoretical<br />

Challenges Started with 1st Cantilever Segment


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control<br />

Initial Observed Trend Concerning<br />

Difference Between As-Built & Theoretical Deflections<br />

Expanding


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control<br />

Contractor’s Analysis Model<br />

•<br />

•<br />

Unable to Accurately Predict As-Built Behavior<br />

Thoroughly Reviewed and Adjusted Numerous Times<br />

Segment Erection Specifications<br />

•<br />

•<br />

•<br />

Required Profile Tolerance of 4” at End of Construction<br />

Rideability<br />

Requirements<br />

No Intermediate Geometry Control Provisions<br />

ODOT Briefly Halted Segment Casting


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control<br />

Evaluation of Contractor’s Analysis Model<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Studied Various Temperature Effects<br />

Revised Concrete Unit Weight (153 pcf)<br />

Revised Concrete Elastic Modulus (18% increase)<br />

Evaluated Effects of Superstructure Cracking<br />

Evaluated Sidespan Falsework Stiffness & Release<br />

Performed Cable Lift-Off Tests<br />

Incorporated Revisions Into Analysis Model<br />

•<br />

•<br />

•<br />

Resume Segment Casting<br />

Marginal Improvement in Predicting As-Built Deflections<br />

Began Setting Forms at Cantilever Tip Above Theoretical


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control<br />

Evaluation of Contractor’s Analysis Model<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Studied Various Temperature Effects<br />

Revised Concrete Unit Weight (153 pcf)<br />

Revised Concrete Elastic Modulus (18% increase)<br />

Evaluated Effects of Superstructure Cracking<br />

Evaluated Sidespan Falsework Stiffness & Release<br />

Performed Cable Lift-Off Tests<br />

Incorporated Revisions Into Analysis Model<br />

•<br />

•<br />

•<br />

Resume Segment Casting<br />

Marginal Improvement in Predicting As-Built Deflections<br />

Began Setting Forms at Cantilever Tip Above Theoretical


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control<br />

On-Going Concerns<br />

•<br />

•<br />

•<br />

How to Achieve Rideability?<br />

How Accurate are Theoretical Cable Forces and Superstructure Moments?<br />

Implications of Excessive Overlay to Achieve Rideability?<br />

Evaluation of Structure for Excessive Overlay<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Predicted Overlay Requirements<br />

Evaluated Stay Cables<br />

Performed Cable Lift-Offs<br />

Evaluated Transverse Floorbeams and Edge Girders<br />

Evaluated Uplift at Anchor Pier Bearings


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control<br />

Closed At Midspan<br />

•<br />

•<br />

Few Locations Below 4” Tolerance on Final Profile<br />

Several “Bumps” Along the Mainspan<br />

Performed Final Survey and Cable Re-stressings


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control<br />

Variable Depth Overlay to Achieve Rideability<br />

•<br />

•<br />

•<br />

Established Target Profile By Evaluating Angle Breaks<br />

Limited Angle Breaks to ±0.04 radians<br />

Minimum Overlay Thickness – 1.25”


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Superstructure Geometry Control<br />

Recommendations:<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Require EOR to Validate Contractor’s Analysis Model With a Detailed<br />

Independent Analysis Model<br />

Require 1.25” Minimum Wearing Surface Thickness; Design for a 2.5”<br />

Average Wearing Surface Thickness<br />

Require Two Empty Holes in All Stay Cable Anchorages to Accommodate<br />

Provisional Strands if Necessary<br />

Allow for Additional Dead Load in Transverse Floorbeam Design<br />

Specifications to Clearly Allow ODOT to Halt Erection if As-Built Geometry is<br />

Not Within Tolerances on a Per Segment Basis


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Stay Cable Lift-offs and Restressing<br />

Contractor Used Mono-Strand Jack For:<br />

•<br />

•<br />

Cable Re-stressing Operations<br />

Cable Lift-off Evaluations<br />

Specifications Required Full-Cable Gradient Jack<br />

Numerous Meetings and Delays Pertaining to Mono-Strand<br />

Jack<br />

Concerned About new “Bite” Marks in Strands


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Stay Cable Lift-offs and Restressing<br />

Recommendations<br />

•<br />

•<br />

•<br />

Provide Stronger Wording in Specification Regarding Full-Cable Gradient<br />

Jacks for Lift-offs and De-stressing Operations<br />

Require Final Lift-off Evaluation of All Stay Cables<br />

CEI to Inquire About Gradient Jack Months Ahead of its Need


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Edge Girder Post-Tensioning<br />

Mild Reinforced Edge Girders;<br />

No PT<br />

Contractor’s Redesigned Form<br />

Traveler<br />

•<br />

•<br />

Twice The Weight of Original Traveler<br />

Added Reinforcement to Edge Girder<br />

for Traveler Loads<br />

Cracking Observed During<br />

Cantilevering<br />

•<br />

•<br />

Top Surface Flexural Cracks<br />

Small Width Consistently Spaced<br />

Cracks Mostly Closed After<br />

Cantilevering


Recommendations:<br />

•<br />

•<br />

•<br />

OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Edge Girder Post-Tensioning<br />

Provide Longitudinal PT Bars Near Top of Section<br />

Reduces Rebar Congestion<br />

Controls Cracks During High Demand Cantilevering Operations


OTEC 2009<br />

Towerhead<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Cable Anchorages<br />

Full Concrete Towerhead<br />

Cables Anchored in Concrete Blisters<br />

PT Bars in Orthogonal Directions<br />

Geometry Control of Cable Guide Pipes Challenging<br />

PT Bars Created Additional Congestion


OTEC 2009<br />

Towerhead<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Cable Anchorages<br />

Contractor Had Minimal Guide Pipe Geometry Issues<br />

Recommendations:<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Consider Steel Anchor Boxes Within Towerhead<br />

Simplifies Guide Pipe Geometry Control<br />

Eliminates PT Bar Operations and Congestion<br />

Eliminates Internal Core Forms<br />

Field Section Length Based on Lifting Capacity of Tower Crane<br />

Evaluated Concrete Strains Closely Based on Compatibility of Strains with<br />

Steel Anchor Box


OTEC 2009<br />

Sidespans<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Cast-In-Place on Falsework<br />

Contract Plans Based on Balanced Cantilever<br />

•<br />

•<br />

•<br />

•<br />

Form Traveler For Mainspan and Sidespan Cantilevering<br />

OH Sidespan Mostly Over Land<br />

Very Heavy Sidespan Segments Due to Ballast Requirement<br />

Variable Width on OH Sidespan


OTEC 2009<br />

Sidespans<br />

Contractor Cast Sidespans<br />

on Falsework<br />

•<br />

•<br />

•<br />

•<br />

Reduced Travelers From 4 to 2<br />

Eliminated Need for Temporary<br />

Stability Tower in Sidespans<br />

Deliver Concrete Over<br />

Completed Approaches and<br />

Sidespans<br />

Sidespans Became Staging Area<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Cast-In-Place on Falsework


OTEC 2009<br />

Sidespans<br />

Designed For Balanced<br />

Cantilever<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Realized Potential For Casting<br />

Sidespans on Falsework<br />

Designing For Balanced<br />

Cantilever Maximized Demand<br />

on System<br />

Gave Contractor Flexibility to<br />

Build Either Method<br />

Without Increase in Quantities<br />

Contractor Needed to Evaluate<br />

Risks of Falsework in River<br />

Contractor to Obtain Coast<br />

Guard Permit<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Cast-In-Place on Falsework


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

No Anchor Pier Uplift Restraint<br />

Short End Spans Due to J-Hook at Ohio Bank<br />

•<br />

•<br />

Sidespan to Mainspan Ratio = 0.36<br />

Creates Uplift at Anchor Piers<br />

WVDOH Mandated No Uplift Restraint at Anchor Piers<br />

•<br />

•<br />

•<br />

No Steel or Post-Tensioning Tie-Downs<br />

No Engaging Weight of Anchor Pier and Foundation<br />

No Engaging Weight of Approach Spans


Ballasted Sidespans<br />

•<br />

•<br />

•<br />

OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

No Anchor Pier Uplift Restraint<br />

Sidespan Floor Beams 9’-0” Wide<br />

Sidespans<br />

50% Solid<br />

Secondary Pour in Last Bay at Anchor Pier Segment<br />

Sidespan Section<br />

Mainspan Section


Implications<br />

•<br />

•<br />

•<br />

•<br />

•<br />

OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

No Anchor Pier Uplift Restraint<br />

Significant Ballast Concrete<br />

Volume<br />

Ballast Over Full Sidespan<br />

Length<br />

Ballast Weight Near Towers is<br />

Inefficient<br />

Increased Cable Quantities<br />

Increased Tower Axial Reactions


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Ice Guards at Top of Towers<br />

Top of Tower is Shallow<br />

Pyramid<br />

•<br />

•<br />

Sloped in All Four Directions<br />

Two Faces Slope Towards<br />

Roadway<br />

Concerned With Ice<br />

Slides off Pyramid Top<br />

•<br />

•<br />

Place Ice Guard Around<br />

Perimeter<br />

Break-up Ice As Sliding Off


OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Waterline Tower Footings<br />

Developed a Waterline Footing<br />

•<br />

•<br />

•<br />

Supported on Six 8’-0” Diameter Drilled Shafts<br />

Minimize Required Depth of Dewatering<br />

Water Depth at Normal Pool = 35’


Large Water Level<br />

Fluctuation<br />

•<br />

•<br />

•<br />

•<br />

OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Waterline Tower Footings<br />

100 Year Flood +38 feet<br />

Above Normal Pool<br />

Loaded Barge Impact +30 feet<br />

Above Normal Pool<br />

Empty Barge Impact +48 feet<br />

Above Normal Pool<br />

Footing Block Completely<br />

Submerged<br />

100 YR FLOOD<br />

NORMAL POOL


Snag-Free Shape<br />

•<br />

•<br />

OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Waterline Tower Footings<br />

Submerged Footing Shaped to<br />

Not Snag Passing Vessels<br />

Slope of Navigation Channel<br />

Faces is 4:1


Pros<br />

•<br />

•<br />

•<br />

Cons<br />

•<br />

•<br />

•<br />

•<br />

OTEC 2009<br />

<strong>Pomeroy</strong>-<strong>Mason</strong> <strong>Pomeroy</strong> <strong>Mason</strong> <strong>Bridge</strong><br />

Delta Shaped Towers<br />

Improves Aerodynamic Performance<br />

Provides Torsional Rigidity for Edge<br />

Girder Superstructure<br />

No Upper Cross Strut Required<br />

Consolidation of Concrete in Sloped<br />

Legs Challenging<br />

Cable Geometry More Challenging<br />

Intermediate Temporary Bracing<br />

Required<br />

No Cable Installation Until Closed at<br />

Top

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!