10.04.2013 Views

Recent Advances and Prospects in ReRAM Technology - Sematech

Recent Advances and Prospects in ReRAM Technology - Sematech

Recent Advances and Prospects in ReRAM Technology - Sematech

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SEMATECH Symposium Japan, 2011. 6.22<br />

<strong>Recent</strong> Advance <strong>and</strong> <strong>Prospects</strong> <strong>in</strong><br />

<strong>ReRAM</strong> <strong>Technology</strong>:<br />

Smart Electronics Application of<br />

Functional Oxides<br />

Hiro AKINAGA<br />

秋永 広幸<br />

Director Director, Innovation Innovation Center Center for for Advanced Advanced Nanodevices Nanodevices (ICAN) (ICAN)<br />

National Institute of Advanced Industrial Science <strong>and</strong> <strong>Technology</strong> (AIST),<br />

Tsukuba, Ibaraki 305-8569, Japan<br />

SEMATECH Symposium Japan, 2011. 6.22<br />

Session 6: Emerg<strong>in</strong>g Technologies<br />

It’s a Smart, Dense, Functional World!<br />

1 st Message from Ak<strong>in</strong>aga<br />

Synthetic<br />

Material<br />

Application for<br />

<strong>ReRAM</strong><br />

Technologies<br />

1<br />

2


Proceed<strong>in</strong>gs of the IEEE, Vol. 98, No. 12 (2010)<br />

Nanoelectronics Research: Beyond CMOS Information Process<strong>in</strong>g<br />

Nanoelectronics Research for Beyond CMOS Information Process<strong>in</strong>g<br />

BBourianoff, i ff GG. BBrillouet, ill t MM. CCav<strong>in</strong>, i RR. KK. Hi Hiramoto, t TT. HHutchby, t hb JA J. A. IIonescu, AA. M. M UUchida, hid KK.<br />

Reference<br />

Regional, National, <strong>and</strong> International Nanoelectronics Research Programs: Topical Concentration <strong>and</strong> Gaps<br />

Brillouët, M. Bourianoff, G.I. Cav<strong>in</strong>, R.K. Hiramoto, T. Hutchby, J.A. Ionescu, A.M. Uchida, K.<br />

In Quest of the “Next Switch”: <strong>Prospects</strong> for Greatly Reduced Power Dissipation <strong>in</strong> a Successor to the<br />

Silicon Field-Effect Transistor<br />

Theis, T.N. Solomon, P.M.<br />

Carbon Nanotubes for VLSI: Interconnect <strong>and</strong> Transistor Applications<br />

Awano, Y. Sato, S. Nihei, M. Sakai, T. Ohno, Y. Mizutani, T.<br />

Graphene for CMOS <strong>and</strong> Beyond CMOS Applications<br />

Banerjee, S.K. Register, L.F. Tutuc, E. Basu, D. Seyoung Kim Reddy, D. MacDonald, A.H.<br />

III-V Nanowires—Extend<strong>in</strong>g a Narrow<strong>in</strong>g Road<br />

Wernersson, L.-E. Thel<strong>and</strong>er, C. L<strong>in</strong>d, E. Samuelson, L.<br />

Enhanc<strong>in</strong>g CMOS Us<strong>in</strong>g Nanoelectronic Devices: A Perspective on Hybrid Integrated Systems<br />

Ricketts, D.S. Ba<strong>in</strong>, J.A. Yi Luo Blanton, R.D. Mai, K. Fedder, G.K.<br />

Mechanical Comput<strong>in</strong>g Redux: Relays for Integrated Circuit Applications<br />

Pott, V. Hei Kam Nathanael, R. Jaeseok Jeon Alon, E. Tsu-Jae K<strong>in</strong>g Liu<br />

Proceed<strong>in</strong>gs of the IEEE, Vol. 98, No. 12 (2010)<br />

Nanoelectronics Research: Beyond CMOS Information Process<strong>in</strong>g<br />

Low-Voltage Tunnel Transistors for Beyond CMOS Logic<br />

Seabaugh, g , A.C. Q<strong>in</strong> Zhangg<br />

Molecular Nanoelectronics<br />

Vuillaume, D.<br />

Sp<strong>in</strong>-Transistor Electronics: An Overview <strong>and</strong> Outlook<br />

Sugahara, S. Nitta, J.<br />

The Promise of Nanomagnetics <strong>and</strong> Sp<strong>in</strong>tronics for Future Logic <strong>and</strong> Universal Memory<br />

Wolf, S.A. Jiwei Lu Stan, M.R. Chen, E. Treger, g D.M.<br />

Device <strong>and</strong> Architecture Outlook for Beyond CMOS Switches<br />

Bernste<strong>in</strong>, K. Cav<strong>in</strong>, R.K. Porod, W. Seabaugh, A. Welser, J.<br />

Memory Devices: Energy–Space–Time Energy Space Time Tradeoffs<br />

Zhirnov, V.V. Cav<strong>in</strong>, R.K. Menzel, S. L<strong>in</strong>n, E. Schmelzer, S. Bräuhaus, D. Sch<strong>in</strong>dler, C. Waser, R.<br />

Reference<br />

Phase Change Memory<br />

Wong, H.P. Raoux, S. Kim, S. Liang, J. Reifenberg, J.P. Rajendran, B. Asheghi, M. Goodson, K.E.<br />

The Atomic Switch<br />

Aono, M. Hasegawa, T.<br />

Resistive R<strong>and</strong>om Access Memory y( (<strong>ReRAM</strong>) ) Based on Metal Oxides<br />

Ak<strong>in</strong>aga, H. Shima, H.<br />

3<br />

4


<strong>Recent</strong> Advance <strong>and</strong> <strong>Prospects</strong> <strong>in</strong><br />

<strong>ReRAM</strong> <strong>Technology</strong><br />

Structure<br />

1. Brief Introduction of <strong>ReRAM</strong><br />

22. The mechanism of <strong>ReRAM</strong> operation* operation<br />

3. <strong>Recent</strong> Advance <strong>in</strong> <strong>ReRAM</strong> technologies<br />

4. Difficult Challenges <strong>and</strong> <strong>Prospects</strong><br />

Acknowledgement:<br />

Dr. H. Shima (AIST)<br />

* A part of this work was supported by NEDO.<br />

<strong>Recent</strong> Advance <strong>and</strong> <strong>Prospects</strong> <strong>in</strong><br />

<strong>ReRAM</strong> <strong>Technology</strong><br />

Structure<br />

1. Brief Introduction of <strong>ReRAM</strong><br />

22. The mechanism of <strong>ReRAM</strong> operation<br />

3. <strong>Recent</strong> Advance <strong>in</strong> <strong>ReRAM</strong> technologies<br />

4. Difficult Challenges <strong>and</strong> <strong>Prospects</strong><br />

5<br />

6


<strong>ReRAM</strong> device structures<br />

(a) (b) (b)<br />

(c)<br />

(d)<br />

( (e) )<br />

(d) ( (e) )<br />

( (a) ) Typical T i l MOM simple i l stack<strong>in</strong>g t ki structure t t<br />

(b) The memory cell on the metallic via as a bottom electrode<br />

(c) The oxidized via material for the resistance switch<strong>in</strong>g oxide layer<br />

(d) The concave structure<br />

(e) The cross-bar structure<br />

<strong>ReRAM</strong> device operation p<br />

nce<br />

Resistan<br />

IRS<br />

LRS<br />

HRS<br />

0 2 4 6 8 10<br />

RRAM is a non-volatile non volatile memory us<strong>in</strong>g<br />

Switch<strong>in</strong>g cycle<br />

IRS: <strong>in</strong>itial resistance state<br />

resistive changes <strong>in</strong> metal oxide; such as,<br />

Al2O3, CoOx, CuOx, FeOx, HfO2, MgO, MnO2, NiO NiO, SiO SiO2, TO TaOx, TiO TiO2, WO WOx, ZZnO, O ZO ZrO2, SrTiO3, (Pr, Ca)MnO3 LRS: low resistance state<br />

HRS: high resistance state<br />

+ No additional<br />

process load<br />

7<br />

8


Mg<br />

TMOs show<strong>in</strong>g g Resistive switch Al<br />

Ti V Cr Mn Fe Co Ni Cu<br />

Zr Nb Mo Tc Ru Rh Y Ag<br />

Hf Ta W Re Os Ir Pt Au<br />

NiO: S. S.Seo Seo et al., al.,APL85;M.G.Kimet APL85; M. G. Kim et al., JJAP42; S. Seo et al., APL86;<br />

S. Seo et al., APL 87; J.-W. Park et al., J.Vac.Sci.Tech.A23;<br />

D. C. Kim et al., APl 88; D. C. Kim et al., APL88; K. K<strong>in</strong>oshita et al., APL89;<br />

Y.-H. You et al., APL89, K. Tsunoda et al., IEDM2007<br />

CoO: H. H Shima et al al., JJAP46; H. H Shima et al., al APL 91 91, HH. Shima et al., al APL93<br />

Fe 2O 3: I. H. Inoue et al., PRB77, A. Odagawa et al., APL 91<br />

CuxO: A. Chen et al., IEDM2005; T.-N. Fang et al., IEDM2006;,<br />

DD. Lee et al., al IEDM2006; R. R Dong et al., al APL90<br />

TiO x: C. Rohde et al., APL86; B. J. Choi et al., JAP98; M. Fujimoto et al., JJAP45;<br />

K. M. Kim et al., APL89; B. J. Choi et al., APL89; K. M. Kim et al., APL90,<br />

H. Shima et al., APL92, Y. Hosoi et al., IEDM2006<br />

ZrO x: S. Kim et al., JJAP44; C.-Y. L<strong>in</strong> et al., IEEE EDL28; X. Wu et al., APL90<br />

Zn<br />

MoOx: D. Lee et al., , APL90<br />

x<br />

ZnO: M. Villafuerte et al., APL90<br />

WOx: x K.-P. Chang g et al., , SSDM2008<br />

Nb 2O 5: H. Sim et al., Microelectronic Eng<strong>in</strong>eer<strong>in</strong>g 80;<br />

H. Sim et al., IEEE EDL 26.<br />

Ta 2O 5: Wei Z et al., IEDM2008<br />

HfO x: H. Y. Lee et al., IEDM2008<br />

MgO: Yoshida C, APL<br />

Al 2O 3: K. M. Kim et al., Electrochemical <strong>and</strong> Solid-State Letters 9. (2004 ~ 2009)<br />

HfO x<br />

[1] K.-R. Kim, et al., J. Korean Phys. Soc. 59, S548 – S551 (2006). [2] H.-Y. Lee, et al., Jpn. J. Appl. Phys. 46, 2175 – 2179 (2007).<br />

[3] M. Y. Chan, et al, Microelectric. Eng<strong>in</strong>eer. 85, 2420 – 2424 (2008). [4] H. Y. Lee, et al., Tech. Dig. Int. Electron Devices Meet<strong>in</strong>g, San Francisco, 2008, pp. 297-300.<br />

[5] Y.-M. Kim, <strong>and</strong> J.-S. Lee, J. Appl. Phys. 104, 114115-1 – 114115-5 (2008). [6] S. Lee, et al., J. Electrochem. Soc. 115, H92 – H96 (2008).<br />

[7] H. Y. Lee, et al., Appl. Phys. Lett. 92, 142911-1 – 142911-3 (2008). [8] Y. S. Chen, et al., Tech. Dig. Int. Electron Devices Meet<strong>in</strong>g, San Francisco, 2009, pp. 105-108.<br />

[9] C. C Walczyk Walczyk, et al., al J. J Appl. Appl Phys. Phys 105 105, 114103-1 – 114103-6 (2009). (2009) [10] LL. Goux Goux, et al., al Electrochem Electrochem. Solid-State Lett Lett. 13 13, G54 – G56 (2010) (2010).<br />

[11] S. Yu, et al., Electrochem. Solid-State Lett. 13, H36 – H38 (2010). [12] P.-S. Chen, et al., Jpn. J. Appl. Phys. 49, 04DD18-1 – 04DD18-5 (2010).<br />

[13] P. Gonon, et al., J. Appl. Phys. 107, 074507-1 – 074507-9 (2010).<br />

[14] Z. Fang, et al., Proceed<strong>in</strong>gs of 2010 IEEE Int. Reliability Physics Symposium, MY.4.1.-MY4.2.<br />

9<br />

10


I (AA)<br />

Ti [TE] / Pr 0.7Ca Ca0.3MnO MnO 3 (100nm)<br />

/ SrRuO3 [V(+)]<br />

④<br />

⑤<br />

Form<strong>in</strong>g<br />

reverse<br />

①<br />

(①)<br />

Operation Modes of <strong>ReRAM</strong><br />

③<br />

②<br />

②⇒③: SET<br />

④⇒⑤: RESET<br />

forward<br />

Bipolar operation<br />

Pt / CoO (60nm) / Pt<br />

② ③<br />

⑤<br />

④<br />

①<br />

Form<strong>in</strong>g<br />

②⇒③: RESET<br />

④⇒⑤: SET<br />

Uni(Non)polar operation<br />

● Uni-polar Operation ● Bipolar-Operation<br />

TiN/HfO TiN/HfOx/Pt /Pt TiN/HfO TiN/HfOx/Ti/TiN /Ti/TiN<br />

0.0010<br />

00.0008 0008<br />

0.0006<br />

0.0004<br />

0.0002<br />

(a) TiN/HfOx/Pt<br />

0.0005<br />

0.0004<br />

Form<strong>in</strong>g<br />

0.0003<br />

R RS =10kohm = 10 kohm<br />

0.0002<br />

0.0001<br />

0.0000<br />

0 1 2 3 4 5 6<br />

R S = 10 kohm<br />

0.0000<br />

0 1 2 3 4 5<br />

I (A) )<br />

0.0020<br />

0.0015<br />

00.0010 0010<br />

0.0005<br />

(b) TiN/HfOx/Ti<br />

0.0005<br />

0.0004<br />

0.0003<br />

0.0002<br />

0.0001<br />

Form<strong>in</strong>g<br />

R RS =10kohm = 10 kohm<br />

0.0000<br />

0 1 2 3 4<br />

R S = 10 kohm<br />

0.0000<br />

-3 -2 -1 0 1 2 3<br />

V (V)<br />

V (V)<br />

By chang<strong>in</strong>g the electrode,<br />

both Uni-polar <strong>and</strong> Bipolar switches appear.<br />

11<br />

12


Resistive Switch <strong>in</strong> Pt/CoO(50nm)/Pt<br />

I (mAA)<br />

15<br />

12<br />

9<br />

6<br />

(a)<br />

Pt/Co-O/Pt<br />

1st sweep p( (Form<strong>in</strong>g) g)<br />

2nd sweep (Reset: LRS→ HRS)<br />

3rd sweep (Set HRS→LRS)<br />

3 R S = 910 Ω<br />

0<br />

0 2 4<br />

V (V)<br />

6 8 10<br />

I (mAA)<br />

By <strong>in</strong>creas<strong>in</strong>g the Set current,<br />

from Memory to Threshold switch.<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Pt/Co-O/Pt<br />

R = 120 Ω<br />

S<br />

1st sweep<br />

2nd sweep<br />

3rd sweep<br />

(b)<br />

0 1 2 3 4<br />

V (V)<br />

Series R S<br />

H. Shima <strong>and</strong> Y. Tamai, Microelectronics Journal 40, 628 (2009).<br />

Wh Why R<strong>ReRAM</strong>? RAM?<br />

RRAM<br />

□□, CMOS compatibility tibilit ( (materials, t i l process…) )<br />

□, No physical scal<strong>in</strong>g limit, < 5 [nm]<br />

strong competitiveness <strong>in</strong> price / record<strong>in</strong>g-bit<br />

□□, Ultra-fast Ultra fast operation, operation < 10 [ns]<br />

□, low-power operation, < 10 [μA]<br />

□, (tolerably) high endurance, ~ 109 11 9~11 R/W<br />

□, (tolerably) good retention, ~ 150 ℃<br />

□, Large ON / OFF ratio, ~ 103 ( y) g<br />

□□, Flexible application to various devices<br />

13<br />

14


<strong>Recent</strong> Advance <strong>and</strong> <strong>Prospects</strong> <strong>in</strong><br />

<strong>ReRAM</strong> <strong>Technology</strong><br />

Structure<br />

1. Brief Introduction of <strong>ReRAM</strong><br />

22. The mechanism of <strong>ReRAM</strong> operation<br />

3. <strong>Recent</strong> Advance <strong>in</strong> <strong>ReRAM</strong> technologies<br />

4. Difficult Challenges <strong>and</strong> <strong>Prospects</strong><br />

<strong>ReRAM</strong> operation mechanism<br />

Correction of misapprehension about<br />

the operation mechanism of b<strong>in</strong>ary-metal-oxide <strong>ReRAM</strong><br />

Filament model (Fuse-Antifuse operation)<br />

vs ( (conflict<strong>in</strong>g) fli ti )<br />

Interface model<br />

(<strong>in</strong>cl. Schottky Barrier height modulation)<br />

15<br />

16


Operation mechanism of <strong>ReRAM</strong><br />

oxidation id ti<br />

V+<br />

reduction GND<br />

Soft breakdown<br />

Off state<br />

(High ( g Resistance State) )<br />

SET (Form<strong>in</strong>g)<br />

Initial state<br />

RESET<br />

~ 30 nm<br />

> 50 nm<br />

Anodic<br />

oxidization<br />

Operation mechanism of <strong>ReRAM</strong><br />

oxidation id ti<br />

V+<br />

reduction GND<br />

Soft breakdown<br />

Off state<br />

(High ( g Resistance State) )<br />

V+<br />

GND<br />

V-<br />

GND<br />

SET (Form<strong>in</strong>g)<br />

Initial state<br />

RESET<br />

~ 30 nm<br />

> 50 nm<br />

Anodic<br />

oxidization<br />

Next Page!<br />

V+<br />

GND<br />

V-<br />

GND<br />

On state<br />

(Low ( Resistance State) )<br />

Virtual cathode<br />

17<br />

On state<br />

(Low ( Resistance State) )<br />

Virtual cathode<br />

18


Operation p mechanism of <strong>ReRAM</strong> (beyond ( y 2X nm generation)<br />

g )<br />

Electrode<br />

Oxygen supplier/<br />

Reservoir<br />

Oxide layer<br />

(R switch<strong>in</strong>g) i hi )<br />

Electrode<br />

Oxygen yg ions<br />

Off state (HRS)<br />

~ 5 nm<br />

~ 5 nm<br />

SET (Form<strong>in</strong>g)<br />

RESET<br />

V+<br />

GND<br />

V-<br />

GND<br />

On state (LRS)<br />

Conductive<br />

(defect/vacancy)<br />

In the nano-meter <strong>ReRAM</strong> device, the filament model does NOT conflict<br />

with ith th the i<strong>in</strong>terface t f model. d l Th The electrochemical l t h i l reaction ti at t the th i<strong>in</strong>terface t f<br />

br<strong>in</strong>gs about the non-volatile resistance switch<strong>in</strong>g.<br />

Unified model of <strong>ReRAM</strong> operation p (beyond ( y 2X nm generation)<br />

g )<br />

Electrode<br />

Oxygen supplier/<br />

Reservoir<br />

Oxide layer<br />

(R switch<strong>in</strong>g) i hi )<br />

Electrode<br />

Oxygen yg ions<br />

Off state (HRS)<br />

SMART!!<br />

SET (Form<strong>in</strong>g)<br />

V+<br />

RESET<br />

GND<br />

V-<br />

GND<br />

On state (LRS)<br />

Conductive<br />

(defect/vacancy)<br />

In the nano-meter <strong>ReRAM</strong> device, the filament model does NOT conflict<br />

with ith th the i<strong>in</strong>terface t f model. d l Th The electrochemical l t h i l reaction ti at t the th i<strong>in</strong>terface t f<br />

br<strong>in</strong>gs about the non-volatile resistance switch<strong>in</strong>g.<br />

19<br />

20


Operation p mechanism of <strong>ReRAM</strong> Key y po<strong>in</strong>ts:<br />

The Reset current (Active cell size)<br />

will be determ<strong>in</strong>ed by the Set current.<br />

Controlled by SET current<br />

(High Resistivity)<br />

Decrease <strong>in</strong> SET current<br />

Key issues: issues To select proper comb<strong>in</strong>ation of the electrode <strong>and</strong> the oxide layer<br />

We can control the active cell size at will <strong>in</strong> the operation.<br />

Operation p mechanism of <strong>ReRAM</strong><br />

SSoft ft bbreakdown kd CCurrent-<strong>in</strong>duced t i d d oxidation id ti<br />

driven by the electric field<br />

Key po<strong>in</strong>ts:<br />

The Reset current (Active ( cell size) )<br />

will be determ<strong>in</strong>ed by the Set current.<br />

Key issues: issues To select proper comb<strong>in</strong>ation of the electrode <strong>and</strong> the oxide layer<br />

We can control the active cell size, even beyond 2X nm generation!<br />

21<br />

22


2.5<br />

Vooltage<br />

(VV)<br />

Demonstration of Fast & Low-power operation<br />

2.0<br />

achieved by select<strong>in</strong>g the comb<strong>in</strong>ation of Ta <strong>and</strong> CoO<br />

to fabricate the electrochemically active <strong>in</strong>terface.<br />

250<br />

200<br />

15 1.5<br />

150<br />

1.0<br />

100<br />

05 0.5<br />

50<br />

0<br />

0<br />

-0.5 0.5<br />

0 50 100 150<br />

-50 50<br />

200<br />

Time (ns)<br />

Cuurrent<br />

(μμA)<br />

Vooltage<br />

(VV)<br />

0.5<br />

50<br />

0<br />

0<br />

-0.5 05<br />

-50 50<br />

-1.0<br />

-100<br />

-1 -1.55<br />

-150<br />

-2.0<br />

-200<br />

-2.5<br />

0 50 100 150<br />

-250 250<br />

200<br />

Time (ns)<br />

Fig Fig. 4 Applied pulse voltage <strong>and</strong> writ<strong>in</strong>g current waveforms of Ta/CoO/Pt for<br />

(a) Set <strong>and</strong> (b) Reset. Set <strong>and</strong> reset conditions are 2.2 V 50 ns <strong>and</strong> -1.4 V 50 ns,<br />

respectively.<br />

2008 IInternational t ti l CConference f on SSolid lid St State t DDevices i <strong>and</strong> d MMaterials t i l (SSDM 2008) 2008).<br />

Date : September 23-26, 2008<br />

RESET current is controlled<br />

by SET operation<br />

(μA)<br />

Current C<br />

Important Issues for <strong>ReRAM</strong> Circuit (TEG) Design<br />

② ③<br />

⑤<br />

④<br />

①<br />

Form<strong>in</strong>g<br />

②⇒③: RESET<br />

④⇒⑤: SET<br />

NVM operation without<br />

Form<strong>in</strong>g process, by<br />

controll<strong>in</strong>g the thicknesses of<br />

the oxide layer y <strong>and</strong> the<br />

metal electrode, <strong>and</strong>/or PTA<br />

The current compliance is<br />

controlled by the transistor<br />

(by a diode <strong>in</strong> the future)<br />

23<br />

24


<strong>Recent</strong> Advance <strong>and</strong> <strong>Prospects</strong> <strong>in</strong><br />

<strong>ReRAM</strong> <strong>Technology</strong><br />

Structure<br />

1. Brief Introduction of <strong>ReRAM</strong><br />

22. The mechanism of <strong>ReRAM</strong> operation<br />

3. <strong>Recent</strong> Advance <strong>in</strong> <strong>ReRAM</strong> technologies<br />

4. Difficult Challenges <strong>and</strong> <strong>Prospects</strong><br />

SRC/NSF/A*STAR Forum on 2020 Semiconductor Memory Strategies: Processes, Devices, <strong>and</strong> Architectures,<br />

Hiro AKINAGA <strong>and</strong> Hisashi SHIMA, Oct. 20-21, 2009, S<strong>in</strong>gapore<br />

An example of importance to control the <strong>in</strong>terface<br />

Coounts<br />

25<br />

20<br />

15<br />

10<br />

5<br />

As prepared<br />

Form<strong>in</strong>g voltage VF Pt/CoO(10nm)/PtTE<br />

n = 24<br />

20 x 20 um 2<br />

After<br />

EB蒸着 <strong>in</strong>terface PtTEcontrol<br />

TE drive<br />

Before スパッタ PtTE<br />

<strong>in</strong>terface (ULVAC) control<br />

0<br />

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0<br />

V F (V)<br />

Form<strong>in</strong>g (1st SET) voltage <strong>and</strong> current (not shown)<br />

are stabilized by the <strong>in</strong>terface control<br />

25<br />

26


TSSC<br />

(pA)<br />

MRS 2010 Fall Meet<strong>in</strong>g Symposium K (K8.20)<br />

TE deposition process dependence of TSC<br />

2 2<br />

10 2<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 2<br />

(a) SPT-RRAM<br />

TSSC<br />

(pA)<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 2<br />

(b) EB-RRAM<br />

50 100 150 200 250 50 100 150 200 250<br />

T (K)<br />

T (K)<br />

Temperature p ( (T) ) dependence p of TSC ( (thermally y stimulated<br />

current) <strong>in</strong> (a) SPT-RRAM <strong>and</strong> (b) EB-RRAM devices. On the T Tm (K) E ( (eV) V)<br />

whole, the T dependence of TSC <strong>in</strong> SPT-RRAM is gentle over<br />

a wide temperature range. Three dist<strong>in</strong>guish<strong>in</strong>g peaks <strong>in</strong> TSC A 112 0.20<br />

were confirmed for EB EB-RRAM RRAM as depicted by the blue arrows arrows.<br />

This <strong>in</strong>dicates the existence of tightly distributed energy levels<br />

B 165 00.32 32<br />

<strong>in</strong> EB-RRAM.<br />

4<br />

E = kBTm<br />

ln( Tm<br />

/ β )<br />

C 220 0.44<br />

* M.G. Buehler, Solid State Electron. 15, (1972) 69<br />

*<br />

kB: Boltzmann constant<br />

β: Temperature ramp<strong>in</strong>g rate(0.15K/sec)<br />

Form<strong>in</strong>g process <strong>in</strong> RVS test<br />

I-t curve <strong>in</strong> CVS test<br />

t tBD di distribution t ib ti <strong>in</strong> i CVS test t t<br />

T dependence of TSC<br />

A<br />

MRS 2010 Fall Meet<strong>in</strong>g Symposium K (K8.20)<br />

B<br />

EB EB-RRAM RRAM SPT SPT-RRAM RRAM<br />

Smaller VF <strong>and</strong> IF Larger VF <strong>and</strong> IF distributions distributions<br />

Spiky noise observed A monotonic change<br />

Smaller especially p y<br />

for small VCVS LLarger<br />

Peaks observed A monotonic change<br />

EB-RRAM SPT-RRAM The trap levels which dom<strong>in</strong>ate the<br />

Carrier Carrier<br />

current condition dur<strong>in</strong>g the form<strong>in</strong>g<br />

(breakdown) process are affected by<br />

the TE deposition process. In EB-RRAM,<br />

more tightly distributed trap levels exists<br />

<strong>in</strong> the device homogeneously. g y On the<br />

other h<strong>and</strong>s, trap levels <strong>in</strong>duced by the<br />

TE deposition process <strong>in</strong>creases the<br />

r<strong>and</strong>omness of the breakdown process.<br />

C<br />

27<br />

28


<strong>Recent</strong> Advance <strong>and</strong> <strong>Prospects</strong> <strong>in</strong><br />

<strong>ReRAM</strong> <strong>Technology</strong><br />

Structure<br />

1. Brief Introduction of <strong>ReRAM</strong><br />

22. The mechanism of <strong>ReRAM</strong> operation<br />

3. <strong>Recent</strong> Advance <strong>in</strong> <strong>ReRAM</strong> technologies<br />

4. Difficult Challenges <strong>and</strong> <strong>Prospects</strong><br />

currennt<br />

Operat<strong>in</strong>g<br />

Operat<strong>in</strong>g current <strong>and</strong> speed <strong>in</strong> <strong>ReRAM</strong><br />

10mA<br />

1mA<br />

100μA μ<br />

10μA<br />

H. Y. Lee et al.,<br />

ITRI<br />

< 25 μAA IEDM2008<br />

K. Tsunoda<br />

et a al.,Fujitsu , uj tsu<br />

IEDM2007<br />

Z. Wei et al.,<br />

Panasonic,<br />

IEDM2008<br />

Y. Hosoi et al., ,<br />

SHARP&AIST,<br />

IEDM2006<br />

High speed<br />

operation<br />

LLow current t operation ti<br />

YY. Tamai et al al.,<br />

SHARP & AIST<br />

SSDM2008<br />

S. E. Ahn et al.,<br />

Samsung,<br />

Adv. Mater 2008<br />

I. G. Baek et al.,<br />

Samsung,<br />

IEDM2004<br />

1ns 10ns 100ns 1μs μ 10μs μ<br />

Operat<strong>in</strong>g speed<br />

29<br />

30


I. G. Baek et al.,<br />

Samsung,<br />

IEDM2004<br />

Cyccle<br />

enduurance<br />

Current C ( μA)<br />

10 10<br />

10 3<br />

10 2<br />

10 1<br />

Comparison with MOSFET drive current<br />

Y. Hosoi et al.,<br />

SHARP&AIST<br />

SHARP&AIST,<br />

IEDM2006<br />

Z. Wei et al.,<br />

Panasonic, a aso c,<br />

IEDM2008<br />

K. Tsunoda<br />

et al.,Fujitsu<br />

IEDM2007<br />

NMOS ddrive i current t<br />

(ITRS2007, Low operat<strong>in</strong>g power technology)<br />

for gate width of 100 nm<br />

Planar bulk<br />

UTB FD<br />

These NMOS drive current<br />

DG<br />

was calculated for the gate<br />

width of 100 nm.<br />

Y. Tamai et al.,<br />

SHARP & AIST<br />

SSDM2008<br />

S. E. Ahn et al.,<br />

Samsung,<br />

Adv. Mater 2008<br />

H. Y. Lee et al.,<br />

ITRI<br />

IEDM2008<br />

Operat<strong>in</strong>g current of <strong>ReRAM</strong><br />

can be lower than the MOSFET<br />

drive current, <strong>in</strong>dicat<strong>in</strong>g that<br />

<strong>ReRAM</strong> is appropriate ffor<br />

the<br />

low operat<strong>in</strong>g power technology.<br />

2002 2004 2006 2008 2010 2012 2014 2016<br />

Calendar year<br />

:Pt free devices<br />

Cycle y endurance ( (CE) )<br />

10 11<br />

10 12<br />

10<br />

H. Y. Lee et al.,<br />

IEDM2010<br />

Estimation on<br />

required cycle endurance:<br />

11 Z. Wei et al.,<br />

IEDM2010<br />

Technical program<br />

required cycle endurance:<br />

IEDM2008(Pt/Ta2O5/Pt)<br />

(19.7), HfOx-RRAM<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10<br />

10 5<br />

HH. YY. LLee et t al, l IEDM2008<br />

(TiN/HfOx/Ti/TiN)<br />

Samsung<br />

ITRI<br />

C. Yoshida et al,<br />

APL2007(Pt/TiOx/TiN)<br />

Fujitsu<br />

I. G. Baek et al.,<br />

IEDM2004(Pt/NiO/Pt)<br />

Panasonic<br />

ITRI<br />

NEC<br />

H. Y. Lee et al, JJAP<br />

(TiN/HfO (TiN/HfOx/Ti/TiN) /Ti/TiN)<br />

M. Terai et al,IEDM2009<br />

(BE/TiOx/Ta2O5/Pt) ITRI<br />

ITRI<br />

H. Y. Lee et al, JJAP<br />

(TiN/HfOx/Ta)<br />

• Writ<strong>in</strong>g frequency: 1Hz<br />

(1 time / 1 sec)<br />

• A period of use: 1 yrs<br />

31<br />

= 3.1 x 10 7 sec<br />

A practical CE for 1 memory<br />

element is <strong>in</strong> the order of<br />

10 7 times.<br />

CE <strong>in</strong> RRAM exceeds<br />

current Flash memories<br />

National Ts<strong>in</strong>-Hua University<br />

10 4 y<br />

Y. H. Zheng, et al,<br />

CE for s<strong>in</strong>gle bit<br />

IEDM2009 (Si/SiO2/TiON/TiN/W)<br />

Flash memory<br />

10 3<br />

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014<br />

Calendar Year<br />

CE for multi multi-bit bit<br />

Flash memory<br />

32


Pt<br />

Ti<br />

HfO x<br />

Nanoscale characterization of oxides<br />

Integrated EEELS<br />

signal<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

BE (a) TE (b)<br />

Pt(BE)/HfO x /Ti(5nm)/Pt<br />

Ti-L (PDA)<br />

O-K (PDA)<br />

O-K (PDA)<br />

Ti-L (PDA)<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

Relative position<br />

Pt<br />

•Electron energy loss spectroscopy (EELS) is a powerful<br />

tool to characterize oxides with a nanoscale resolution.<br />

However, , especially p y for the high-k g oxide such as HfOx, ,<br />

the characterization of Hf edge becomes difficult<br />

HADEF-STEM image of HfOx/Ti <strong>in</strong>terface because of the severe signal <strong>in</strong>tensity decay.<br />

Development of nanoscale metrology for RRAM is<br />

crucial <strong>in</strong> order to improve the operat<strong>in</strong>g reliability of<br />

RRAM <strong>in</strong> association with the material characteristics.<br />

Possible Role-shar<strong>in</strong>g of <strong>ReRAM</strong><br />

CPU<br />

~ 1ns<br />

Cache<br />

~5ns<br />

DRAM ~<br />

10ns<br />

NAND (SSD)<br />

HDD<br />

<strong>ReRAM</strong><br />

(1) Non-volatile<br />

(2) ( ) Byte y Access<br />

(3) Fast operation (~10ns)<br />

1st Target:<br />

To solve I/O bottleneck<br />

33<br />

34


<strong>Recent</strong> Advance <strong>and</strong> <strong>Prospects</strong> <strong>in</strong><br />

<strong>ReRAM</strong> <strong>Technology</strong><br />

2 nd Message from Ak<strong>in</strong>aga<br />

<strong>ReRAM</strong> technology is very young (< 10 years), but<br />

Many y similarities between High-k g <strong>and</strong> <strong>ReRAM</strong> technologies g<br />

We need…<br />

1. Knowledge of Solid State Chemistry <strong>in</strong> Semicond. Tech.<br />

22. Further advance metrology for nano-scale devices<br />

3. Conversation with researchers of emerg<strong>in</strong>g architecture<br />

35<br />

36


cherry on the cake…..<br />

St<strong>and</strong>ard Semiconductor <strong>Technology</strong><br />

carrier dop<strong>in</strong>g<br />

37<br />

38


Mott Transition FET(Mott ( Transistor) )<br />

carrier dop<strong>in</strong>g<br />

(fill<strong>in</strong>g control)<br />

MMott ttI Insulator l t Mtl Metal<br />

·A large number of electrons are Localized electrons become<br />

localized due to electron correlation correlation. it<strong>in</strong>erant by carrier dop<strong>in</strong>g. dop<strong>in</strong>g<br />

Sh Schematics ti of felectric l ti double d blllayer ttransistor it (EDLT)<br />

Source<br />

~1nm EDL<br />

anion (BF (BF4) )<br />

+ + + +<br />

NSNO Channel<br />

Dra<strong>in</strong><br />

Size of the channel 10 μmØ 100 μm<br />

Ionic Liquid: DEME-BF 4<br />

Ionic Liquid<br />

(Electrolyte)<br />

cation<br />

(DEME)<br />

separator p Au/Pt Gate<br />

NdGaO 3<br />

10 10μF/cm F/ 2@10 3H 2@10-3Hz →1.5 × 1014 hole/cm2@VG=-2.5 39<br />

40


NdNiO 3 Channel<br />

-2.5 0 Vgs (V)<br />

Acknowledgement: M. Kawasaki <strong>and</strong> Y. Iwasa<br />

Nonvolatile Diode Switch<br />

Substrate<br />

PtTE<br />

TiO x<br />

PtBE<br />

Fig.1 Schematic Illustration of the Pt/TiO x/Pt Diode.<br />

<strong>Recent</strong>ly, an novel nonvolatile switch<br />

behavior has been successfully<br />

demonstrated <strong>in</strong> a simple s<strong>and</strong>wich<br />

Pt/TiOx/Pt (Fig.1) structure by our group.<br />

After apply<strong>in</strong>g a negative pulse voltage, the<br />

forward current was observed <strong>in</strong> the<br />

negative bias (Fig (Fig.2). 2) It demonstrates that<br />

the diode polarity was switched. The<br />

reproducible switch behavior was<br />

successfully demonstrated (Fig.3).<br />

H. Shima, N. Zhong, H. Ak<strong>in</strong>aga, Appl. Phys. Lett. 94, 082905 (2009).<br />

N. Zhong, H. Shima, H. Ak<strong>in</strong>aga, Jpn. J. Appl. Phys 48, 05DF03 (2009).<br />

Asanuma et al., APL 97, 142110 (2010).<br />

(a)<br />

(b)<br />

Fig. 2 Current-voltage (I-V ) curves of Pt/TiOx/Pt (a)<strong>in</strong>itial state (b) after apply<strong>in</strong>g voltage pulse pulse.<br />

(a) (b)<br />

Fig.3 Current-voltage curves of Pt/TiO x/Pt follow<strong>in</strong>g the<br />

voltage pulse application of (a) h/w=-6.0V/900ms <strong>and</strong> (b)<br />

h/w=+6.0V/900ms.<br />

41<br />

42


Mechanism of the nonvolatile diode switch<br />

(a)<br />

(b)<br />

PtTE<br />

V VO V VO TiO x<br />

V VO V VO VO VO VO PtBE<br />

V O<br />

φ b<br />

w<br />

Pt TiO x (high ( g<br />

x)<br />

+ -<br />

(c) ( w<br />

(c) )<br />

φb Pt TiOx (low<br />

x)<br />

- +<br />

Fig. 4 (a) Profile of VO <strong>in</strong> virg<strong>in</strong> Pt/TiOx/Pt; b<strong>and</strong> structure<br />

<strong>and</strong> equivalent circuit of TiOx/Pt <strong>in</strong>terface [TiOx: (b)<br />

stoichiometriclike <strong>and</strong> (c) heavily reduced] reduced].<br />

(a)<br />

PtTE<br />

V O<br />

V O<br />

TiO x<br />

VO VO VO VO VO PtBE<br />

(b)<br />

PtTE<br />

VO VO VO VO VO TiO x<br />

V O<br />

V O<br />

PtBE<br />

Fig. 5 Profile of V O <strong>in</strong> Pt/TiO x/Pt <strong>and</strong> equivalent circuit of<br />

TiO x/Pt <strong>in</strong>terface TiO x. (a) <strong>in</strong>itial state or after apply<strong>in</strong>g positive<br />

pulse voltage; (b) after apply<strong>in</strong>g negative pulse voltage.<br />

As shown <strong>in</strong> Fig.4, it is assumed that an <strong>in</strong>tr<strong>in</strong>sic-dead layer is produced at the beg<strong>in</strong>n<strong>in</strong>g of<br />

the deposition process<strong>in</strong>g, which contributes to the Ohmic contact of BE/TiO x, due to a good<br />

many of the defects <strong>in</strong> this <strong>in</strong>tr<strong>in</strong>sic-dead layer. For TiO x/TE <strong>in</strong>terface, the <strong>in</strong>terface state is<br />

controlled by the deposition condition. High O2 partial pressure results <strong>in</strong> low concentration of<br />

the defects <strong>in</strong> TiOx layer, therefore, a Schottky barrier would be obta<strong>in</strong>ed.<br />

As shown <strong>in</strong> Fig. 5, the nonvolatile switch<strong>in</strong>g is proposed to be orig<strong>in</strong>ated from the electrical<br />

control of the chemical state <strong>in</strong> TiO TiOx such as the oxygen vacancy concentration at the<br />

<strong>in</strong>terfaces between the TiO x layer <strong>and</strong> Pt electrodes. H. Shima, N. Zhong, H. Ak<strong>in</strong>aga, Appl. Phys. Lett. 94, 082905 (2009).<br />

N. Zhong, H. Shima, H. Ak<strong>in</strong>aga, Appl. Phys. Lett. 96, 042107 (2010).<br />

43<br />

44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!