10.04.2013 Views

fundamentals of centrifugal pumps - Master Pumps and Power

fundamentals of centrifugal pumps - Master Pumps and Power

fundamentals of centrifugal pumps - Master Pumps and Power

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PRODUCT TRAINING<br />

FUNDAMENTALS OF<br />

CENTRIFUGAL PUMPS<br />

1


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

A <strong>centrifugal</strong> pump is a mechanical device that<br />

converts energy to hydraulic work<br />

Energy is supplied by a driver such as an electric<br />

motor, turbine, or engine<br />

Hydraulic work is the movement <strong>of</strong> a liquid mass<br />

through a distance<br />

This presentation is limited to <strong>centrifugal</strong> pump<br />

types only<br />

Sundyne <strong>pumps</strong> are a special design that will not be<br />

covered in this presentation<br />

2


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

Just Say NO!!!!!<br />

3


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

The work takes place at an impeller which<br />

accelerates the liquid by whirling it through<br />

the impeller thus adding <strong>centrifugal</strong> force<br />

<strong>and</strong> hence acceleration<br />

4


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

When an object is<br />

spun around in a<br />

circle it is accelerated<br />

outward by<br />

<strong>centrifugal</strong> force<br />

5


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

When liquid is spun<br />

around in a circle, it<br />

accelerates outward<br />

from the center <strong>of</strong> the<br />

circle due to<br />

<strong>centrifugal</strong> force<br />

6


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

An impeller has vanes<br />

which are blades that<br />

push the liquid through<br />

the impeller. The center<br />

<strong>of</strong> the impeller where the<br />

liquid enters the impeller<br />

is called the eye<br />

Vanes<br />

Eye<br />

7


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

To obtain useful<br />

work, the impeller is<br />

contained in a casing<br />

which directs the<br />

accelerated fluid<br />

along a desired path<br />

Discharge<br />

8


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

Pump Impeller <strong>and</strong> Shaft<br />

9


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

Pump Impeller <strong>and</strong> Shaft<br />

with Pressure Casing<br />

10


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

Pump Impeller<br />

<strong>and</strong> Shaft with<br />

Pressure Casing<br />

<strong>and</strong> Cover<br />

11


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

Process<br />

Fluid<br />

Adjustment<br />

Packing<br />

Stuffingbox<br />

Cover<br />

12


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Impeller Design<br />

The impeller is the most important part <strong>of</strong> the<br />

pump since it is where the work is taking<br />

place. Furthermore, the impeller plays an<br />

important role in the design <strong>of</strong> other pump<br />

components. It has a direct effect on the seal<br />

cavity pressure for example<br />

13


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Many different types <strong>of</strong><br />

impeller styles are used.<br />

Most, but not all, have vanes<br />

that curve away from the<br />

flow path so that the liquid<br />

is in contact with the<br />

impeller longer. These are<br />

referred to as “reverse reverse<br />

curve” curve vane impellers<br />

Vanes<br />

Eye<br />

14


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Impeller vanes may be<br />

enclosed by “shrouds shrouds”. .<br />

In general impellers with<br />

shrouds are slightly less<br />

efficient due to the drag<br />

<strong>of</strong> the liquid on the<br />

shroud<br />

15


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Therefore many<br />

impellers have no<br />

shrouds. They are called<br />

“open open” impellers. Note<br />

that the bottom impeller<br />

is “partially partially shrouded” shrouded<br />

due to a shroud area<br />

around the impeller eye<br />

16


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Some impeller designs<br />

may also have a shroud<br />

only on one side <strong>of</strong> the<br />

impeller. They are also<br />

said to be partially<br />

shrouded or semi-open semi open<br />

or semi-closed semi closed<br />

17


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Shrouds are generally used on larger impellers to<br />

help support the vanes <strong>and</strong> maintain the<br />

impeller shape under extreme pressure <strong>and</strong><br />

temperature conditions. They also have the<br />

disadvantage <strong>of</strong> limiting the particle size that can<br />

pass through the impeller<br />

18


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

There are two different impeller<br />

types used in the process industry.<br />

They differ by the type <strong>of</strong> flow<br />

through the impeller. The most<br />

common type is a “radial radial flow” flow<br />

impeller where the liquid makes a<br />

90 o turn as it passes through the<br />

impeller<br />

19


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

In a turbine type impeller, the liquid<br />

also makes a turn as it passes through<br />

the pump, but less than 90 o . These are<br />

most <strong>of</strong>ten found in “diffuser diffuser” type<br />

<strong>pumps</strong> which relates to the casing<br />

design <strong>and</strong> will be discussed later.<br />

Since the liquid makes less <strong>of</strong> a turn, a<br />

turbine style impeller may be slightly<br />

more efficient than a similar “radial radial<br />

flow” flow impeller<br />

20


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

The impeller has a direct relationship to<br />

pump performance. The design <strong>of</strong> the<br />

impeller is the single most important factor<br />

in determining the flow rate <strong>and</strong> liquid<br />

pressure that a pump can generate<br />

21


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

The <strong>Master</strong> <strong>Pumps</strong> & <strong>Power</strong> catalog is an<br />

excellent reference resource for most<br />

pump application problems. It should be a<br />

part <strong>of</strong> every engineers library. It is free to<br />

all <strong>of</strong> our customers<br />

22


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Flow through an impeller is determined<br />

primarily by three factors<br />

Vane width<br />

Number <strong>of</strong> vanes<br />

Impeller speed<br />

23


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

A wide vane impeller<br />

will move more liquid<br />

per unit time than a<br />

narrow vane impeller.<br />

The flow is directly<br />

proportional to the<br />

vane width<br />

24


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Flow (Q) through an<br />

impeller is also<br />

directly related to the<br />

impeller speed. The<br />

more times an<br />

impeller rotates per<br />

unit time the more<br />

fluid is will move<br />

25


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Finally the flow<br />

through a pump is<br />

somewhat related to<br />

the number <strong>of</strong> vanes<br />

although it is not<br />

directly proportional.<br />

More vanes will move<br />

more fluid<br />

26


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

An impeller creates<br />

“head head” by<br />

accelerating the fluid<br />

to a given velocity.<br />

As it spins, the fluid is<br />

accelerated outward<br />

by <strong>centrifugal</strong> force<br />

27


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

The fluid exits the<br />

impeller at a given<br />

velocity. Therefore it<br />

will rise to a given height<br />

in a column based on the<br />

exit speed regardless <strong>of</strong><br />

the weight <strong>of</strong> the fluid<br />

28


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Therefore a <strong>centrifugal</strong> pump is said to be a<br />

“constant constant head” head device. At a given speed it will<br />

accelerate a liquid to a given velocity regardless<br />

<strong>of</strong> the weight <strong>of</strong> the liquid.<br />

A heavier liquid would require more<br />

horsepower <strong>and</strong> the discharge pressure would<br />

be higher, but it would rise in a column no<br />

higher than a light liquid<br />

29


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

This phenomenon is based on simple laws <strong>of</strong><br />

physics<br />

(V 2 = 2 AS) where V is the velocity, A is the<br />

acceleration <strong>of</strong> gravity, <strong>and</strong> S is the height<br />

Note that this formula makes no<br />

consideration <strong>of</strong> weight<br />

30


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

If fluids are pushed up a<br />

column to the same<br />

height, the pressure at<br />

the bottom <strong>of</strong> the<br />

column would be<br />

different for fluids <strong>of</strong><br />

different weight.<br />

The formulae for this<br />

relationship are as follows<br />

hd. hd.<br />

ft. =<br />

(psi psi X 2.31) / sp. gr.<br />

psi =<br />

(hd hd ft. / 2.31) x sp. gr.<br />

31


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

To illustrate, a pressure gauge<br />

at the bottom <strong>of</strong> a 231 ft. high<br />

column filled with water<br />

would read 100 psi. psi.<br />

If the<br />

column was filled with butane<br />

having a specific gravity <strong>of</strong><br />

only .5, the gauge would read<br />

50 psi<br />

231 ft.<br />

32


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

In order for the pump to move fluid, the system<br />

must be able to push fluid into the pump as fast<br />

as the pump can push it out.<br />

Therefore there must be a certain minimum<br />

required suction pressure for each pump based on<br />

the pump flow<br />

This pressure is expressed in head feet <strong>and</strong> is<br />

referred to as NPSH -net net positive suction head<br />

33


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

NPSH is expressed in two ways<br />

NPSHA is the net positive suction head available<br />

from the system<br />

NPSHR is the net positive suction head required by<br />

the pump at a particular flow<br />

NPSHA must always be greater than NPSHR or<br />

damage to the pump will occur due to cavitation<br />

34


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

Cavitation is the flashing <strong>of</strong> the liquid at the<br />

pump impeller eye caused by the pump<br />

lowering the pressure in the eye area as it<br />

accelerates fluid across the impeller<br />

The damage occurs when the flashed gas is<br />

compressed back to a liquid as it gains<br />

pressure while traveling through the impeller<br />

35


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

Cavitation causes pump problems in two areas<br />

Severe cavitation can erode the pump<br />

impeller resulting in decrease performance<br />

<strong>and</strong> vibration due to imbalance<br />

Cavitation normally results in substantially<br />

higher vibration in the entire pump<br />

36


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

NPSH is the total suction head in feet<br />

<strong>of</strong> liquid (absolute at the pump<br />

centerline or impeller eye) less the<br />

absolute vapor pressure (in feet ) <strong>of</strong><br />

the liquid being pumped<br />

37


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

NPSHA is the NPSH available at the pump suction nozzle <strong>and</strong><br />

depends on the suction system design. It must always be equal<br />

to or greater than the NPSHR<br />

NPSHR is the NPSH required by the pump for stable operation.<br />

It is determined by the pump manufacturer <strong>and</strong> is dependent on<br />

many factors including the type <strong>of</strong> impeller inlet, impeller design, design,<br />

pump flow, rotational speed, nature <strong>of</strong> the liquid, etc. It is<br />

usually plotted on the characteristic pump performance curved<br />

supplied by the pump manufacturer<br />

38


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

NPSHA is a difficult calculation. It will require<br />

the help <strong>of</strong> a process engineer from the plant<br />

NPSHA can be determined by direct field<br />

measurement if the vapor pressure is known. A<br />

method for this calculation is presented later<br />

39


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

*Assume vapor pressure<br />

<strong>of</strong> water @ 80 F = .5psia<br />

or 1.2 feet = hvpa *Assume atmospheric<br />

pressure @ sea level<br />

or 34.0 feet = ha Height = hst *Assume pipe losses = 15 feet<br />

3.5 feet = hfs *NPSHA = ha - hvpa - hst - hfs *NPSHA = 34 - 1.2 - 15 - 3.5 =<br />

14.3 feet<br />

NPSHA Example for Suction Lift<br />

Atmospheric<br />

Pressure = h a<br />

40


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

Atmospheric Pressure = h a<br />

Height = h st<br />

15 feet<br />

*Assume vapor pressure<br />

<strong>of</strong> water @ 80 F = .5psia<br />

or 1.2 feet = h vpa<br />

*Assume atmospheric<br />

pressure @ sea level<br />

or 34.0 feet = h a<br />

*Assume pipe losses =<br />

3.5 feet = h fs<br />

*NPSHA = h a - h vpa + h st - h fs<br />

*NPSHA = 34 - 1.2 + 15 - 3.5 =<br />

44.3 feet<br />

NPSHA Example<br />

for Flooded Suction<br />

41


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

Simple Method to Determine NPSHA<br />

NPSHA is the total suction head in feet <strong>of</strong> liquid (absolute at<br />

the pump centerline or impeller eye) less the absolute vapor<br />

pressure (in feet) <strong>of</strong> the liquid being pumped<br />

Measure the suction pressure <strong>and</strong> convert to feet <strong>of</strong> head<br />

(must be absolute not atmospheric)<br />

Determine the vapor pressure <strong>of</strong> the liquid <strong>and</strong> convert to<br />

feet <strong>of</strong> head<br />

Subtract the vapor pressure from the suction pressure<br />

42


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

A pump manufacturer will supply a curve for<br />

every pump purchased which graphically<br />

represents the expected pump performance<br />

For most applications, a copy <strong>of</strong> the pump curve<br />

is required information for properly selecting a<br />

sealing system <strong>and</strong> flush plan<br />

43


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Head<br />

BHP<br />

Flow, GPM<br />

NPSHR<br />

Efficiency<br />

44


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Contents<br />

What pump curves represent<br />

How to read pump curves<br />

45


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Head<br />

BHP<br />

A Pump Curve<br />

Flow, GPM<br />

NPSHR<br />

Efficiency<br />

46


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Summary <strong>of</strong> Pump Curve Info<br />

Graphical representation <strong>of</strong> performance<br />

Head Head<br />

BHP BHP<br />

Efficiency Efficiency<br />

NPSHR NPSHR<br />

47


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Summary <strong>of</strong> Pump Curve Info<br />

Graphical representation <strong>of</strong> performance<br />

Contains more than performance data<br />

speed<br />

stages<br />

may have info about liquid<br />

impeller, case patterns<br />

wear ring clearances<br />

48


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Actual Sample Curve<br />

Pricebook Curve<br />

49


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Actual Sample Curve -Job Curve<br />

50


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

P1<br />

How Pump Curves are Made<br />

Pump<br />

P2<br />

Flow Meter<br />

51


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Test Data<br />

Flow P2 - P1 BHP<br />

0 311 20<br />

400 291 117<br />

800 234 156<br />

960 195 163<br />

Pressure in PSIG<br />

52


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Convert Pressure to Feet <strong>of</strong> Head<br />

Head = 2.31 (P -P 2 1) ) / S.G.<br />

Head is in Feet!<br />

53


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Compute Efficiency<br />

Efficiency = Theoretical Horsepower<br />

divided by Actual Horsepower<br />

Convert to Percent<br />

54


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Test Data<br />

Flow Head BHP Efficiency<br />

0 718 20 ***<br />

400 672 117 58%<br />

800 540 156 70%<br />

960 450 163 67%<br />

Now in feet<br />

55


TDH Head Portion <strong>of</strong> Pump Curve<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 200 400 600 800 1000 1200<br />

Flow, GPM<br />

56


BHP<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

BHP Portion <strong>of</strong> Pump Curve<br />

0 200 400 600 800 1000 1200<br />

Flow, GPM<br />

57


Eff<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Efficiency Portion <strong>of</strong> Pump Curve<br />

0 200 400 600 800 1000 1200<br />

Flow, GPM<br />

58


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

NPSH<br />

Net Positive Suction Head<br />

NPSHR: Required<br />

NPSHA: Available<br />

59


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

NPSH<br />

Net Positive Suction Head<br />

NPSHR: Required<br />

NPSHA: Available<br />

NPSH = Actual Pressure - Vapor<br />

Pressure, then convert to feet <strong>of</strong> head<br />

60


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

NPSH Required<br />

Determined during pump test<br />

Throttling Throttling suction to pump<br />

Hot Hot water<br />

Based on 3% head loss-reduce loss reduce NPSHA<br />

until 3% loss in produced head is observed<br />

Based on water<br />

61


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Test Data<br />

Flow Full Head 3% Loss<br />

0 718 - 22 = 696<br />

400 672 - 20 = 652<br />

800 540 - 16 = 524<br />

960 450 - 14 = 436<br />

62


NPSHR<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

NPSHR Portion <strong>of</strong> Pump Curve<br />

0 200 400 600 800 1000 1200<br />

Flow, GPM<br />

63


NPSHR<br />

NPSH<br />

TDH<br />

TDH<br />

EFF<br />

Eff<br />

BHP<br />

BHP<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

0 200 400 600 800 1000 1200<br />

0 200 400 600 800 1000 1200<br />

0 200 400 600 800 1000 1200<br />

0 200 400 600 800 1000 1200<br />

FLOW IN GPM<br />

Flow, GPM<br />

64


Head<br />

BHP<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

A Pump Curve<br />

Operating Point<br />

BEP<br />

Flow, GPM<br />

NPSHR<br />

Efficiency<br />

65


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

The pump manufacturer will normally show the<br />

point on the curve where the pump is expected<br />

to operate<br />

BEP is the best efficiency point taken at the<br />

highest point <strong>of</strong> the efficiency curve<br />

At BEP the pump normally operates the most stably<br />

Operation below BEP can result in mechanical <strong>and</strong><br />

hydraulic problems<br />

66


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Summary <strong>of</strong> Pump Curve Information<br />

Graphical representation <strong>of</strong><br />

performance<br />

Contains more than performance data<br />

67


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Balance Holes<br />

68


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Effect <strong>of</strong> back wear rings<br />

<strong>and</strong> balance holes<br />

Pressure at O.D. <strong>of</strong><br />

impeller breaks down<br />

across back wear ring<br />

Balance holes bleed<br />

pressure back to suction<br />

Seal chamber at same<br />

pressure as balance holes<br />

69


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Impeller with PumpoutVanes<br />

70


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Effect <strong>of</strong> pump out<br />

vanes<br />

Vane O.D. is the same as<br />

the impeller O.D. <strong>and</strong> is<br />

turning at the same speed<br />

Therefore vane puts up<br />

same head as impeller<br />

Therefore back <strong>of</strong><br />

impeller at shaft is at same<br />

pressure as front<br />

71


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Impeller with no back wear<br />

rings or pumpout vanes<br />

72


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Effect <strong>of</strong> no back wear<br />

rings or pump out vanes<br />

Pressure at impeller<br />

O.D. is present<br />

behind entire impeller<br />

Seal chamber at<br />

discharge pressure<br />

73


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

If a higher pressure<br />

differential is required<br />

across the pump the<br />

designer has several<br />

options. Two would<br />

be to:<br />

Increase the pump<br />

speed-the speed the flow would<br />

also increase<br />

Increase the impeller<br />

O.D.<br />

74


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

In most cases neither is practical<br />

There is a practical limit to the impeller diameter.<br />

Beyond that limit it would be difficult to control<br />

the tolerances to ensure proper fit <strong>and</strong> balance.<br />

The hardware would be prohibitively expensive<br />

There is also a practical limit to the shaft speed.<br />

Not only would balance be critical, but the<br />

bearing <strong>and</strong> lubrication system would be complex<br />

<strong>and</strong> expensive<br />

75


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

The third option is simpler. To achieve high<br />

differential head without the expense more than one<br />

stage or impeller are used. Multistage <strong>pumps</strong> come<br />

in many varieties<br />

Multistage volute<br />

Split case<br />

Double case<br />

Multistage diffuser<br />

Vertical<br />

Horizontal<br />

76


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

To underst<strong>and</strong> multistage pump design, it is first<br />

essential to know that there are in general two<br />

different ways that the pump case directs the<br />

flow from the impeller to the discharge nozzle<br />

Volute pattern<br />

Diffuser pattern<br />

77


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Volute Pump<br />

One or two passages in<br />

the pump case guide the<br />

fluid from the impeller to<br />

the pump discharge or the<br />

next stage<br />

Single volute <strong>pumps</strong> can<br />

result in excessive<br />

hydraulic load on the<br />

impeller <strong>and</strong> shaft<br />

78


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Single Volute Double Suction Pump<br />

79


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Diffuser Pump<br />

A multipassage “diffuser diffuser”<br />

or “bowl bowl assembly” assembly<br />

surrounds the entire<br />

impeller O.D. <strong>and</strong> guides<br />

the fluid to the discharge<br />

nozzle or next stage<br />

through multiple paths<br />

80


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Diffuser <strong>Pumps</strong><br />

Note that the Byron Jackson design incorporates a<br />

“mixed mixed flow” flow impeller<br />

The fluid does not make a full 90 o turn in the impeller.<br />

Since it is not a radial flow impeller, it is termed a mixed<br />

flow impeller<br />

Not all turbine <strong>pumps</strong> are mixed flow. Some are<br />

furnished with radial flow impellers such as the<br />

horizontal diffuser pump shown previously<br />

81


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Volute Split Case<br />

82


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Most multistage volute type <strong>pumps</strong> have front <strong>and</strong> back<br />

wear rings.<br />

Therefore the seal cavity pressures would be as<br />

follows:<br />

One end-suction end suction<br />

The other end-discharge end discharge pressure <strong>of</strong> one <strong>of</strong> the stages unless<br />

some measures are taken to reduce the pressure<br />

Most multistage volute <strong>pumps</strong> will have several taps<br />

on the pump case where various pressures are available<br />

for the flush source<br />

83


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Volute Double Case<br />

84


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Most multistage double case volute type <strong>pumps</strong> have<br />

front <strong>and</strong> back wear rings.<br />

Therefore the seal cavity pressures would be as<br />

follows:<br />

One end-suction end suction<br />

The other end-discharge end discharge pressure <strong>of</strong> one <strong>of</strong> the stages<br />

unless some measures are taken to reduce the pressure<br />

Only pump discharge pressure is available for a flush<br />

source<br />

85


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Many <strong>of</strong> these <strong>pumps</strong> as well as other multistage<br />

designs will have some provision for reducing the<br />

pressure in the seal chamber at the high pressure end<br />

Balance line<br />

Close clearance bushing<br />

86


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

A balance line will typically bleed the high pressure seal<br />

chamber to about suction plus 70% <strong>of</strong> one stage<br />

differential<br />

Depends on the bushing wear<br />

Also depends on the allowable flow in the<br />

balance line which represents pump<br />

inefficiency<br />

87


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Don’t Don t assume<br />

Check to see if the<br />

balance line exists<br />

Measure the seal<br />

cavity pressure<br />

The following slide<br />

illustrates a balance<br />

line-they line they are not<br />

always so visible<br />

Confucius say - “When you<br />

assume you make a donkey<br />

out <strong>of</strong> “u” <strong>and</strong> “me”<br />

88


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Volute<br />

with Balance Line<br />

89


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Diffuser Horizontal<br />

90


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Multistage Diffuser Horizontal<br />

Since all the impellers face <strong>and</strong> pump the same<br />

direction the seal cavity pressures are as follows<br />

One end-suction end suction<br />

The other end-full end full discharge unless some measure<br />

is taken<br />

91


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Multistage Diffuser Horizontal<br />

Measure taken to reduce seal cavity pressure on high<br />

pressure end<br />

Balance drum (piston)<br />

Balance disc<br />

Both are similar to balance lines <strong>and</strong> close clearance<br />

bushings<br />

92


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Multistage Diffuser Horizontal<br />

Balance drum (piston)<br />

Balance disc<br />

Both have additional function in that they are<br />

part <strong>of</strong> the mechanism to reduce the load on the<br />

pump thrust bearing<br />

Both are very complex <strong>and</strong> extremely precise<br />

mechanical devices<br />

93


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Diffuser Vertical<br />

Byron Jackson<br />

Sumpmaster<br />

94


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Diffuser Vertical<br />

Byron Jackson VLT<br />

(Very Large Turbine)<br />

Process Pump with Case<br />

95


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Vertical Turbine <strong>Pumps</strong><br />

Note that the sumpmaster is shown without a<br />

mechanical seal. This is typical for low pressures<br />

but many <strong>of</strong> these pump styles do have<br />

mechanical seals<br />

Since all the impellers are pumping in the same<br />

direction <strong>and</strong> the seal sits in the discharge head <strong>of</strong><br />

the pump, the seal cavity is at discharge pressure<br />

unless measures are taken<br />

96


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Vertical Turbine <strong>Pumps</strong><br />

Measures taken depend on the pump seal cavity<br />

construction<br />

Internal seal head-the head the seal actually sits in the pump<br />

discharge flow-it flow it can only be at pump discharge pressure<br />

External seal or packing head-a head a close clearance bushing<br />

<strong>and</strong> balance line arrangement are used to reduce the<br />

pressure to suction plus 70% <strong>of</strong> one stage. Again you<br />

must measure to be sure<br />

97


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Vertical Turbine <strong>Pumps</strong><br />

Measures taken depend on the pump seal cavity<br />

construction<br />

Internal packing head-the head the seal chamber is a<br />

separate piece but sits in the discharge flow-<br />

usually some provision is made to reduce the<br />

pressure in the packing or seal area<br />

98


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Internal<br />

Seal Head<br />

99


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

External<br />

Seal Head<br />

100


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Internal<br />

Packing<br />

Head<br />

101


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

There are three typical styles <strong>of</strong> pump<br />

construction<br />

Overhung: an example follows<br />

Double-ended: Double ended: several examples have been given<br />

similar to the previous slides <strong>and</strong> the slide<br />

following the overhung pump<br />

Vertical: many variations exist<br />

Turbine style-an style an example is the previous slide<br />

Process with <strong>and</strong> without a bearing bracket-examples<br />

bracket examples<br />

will follow<br />

102


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Typical end Suction<br />

(Overhung) Process Pump<br />

103


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Many <strong>pumps</strong> use a double suction impeller<br />

design which is a single impeller with two inlets<br />

High flow<br />

Low NPSHA<br />

Since a double suction impeller must be radial<br />

flow, they are all in volute type cases almost<br />

without exception<br />

104


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Double Suction <strong>Pumps</strong><br />

In a single stage double suction pump the seal or<br />

seals sit in the impeller eye<br />

The only pressure they can see is suction<br />

There are limited choices to dealing with<br />

inadequate vapor suppression margin for these<br />

<strong>pumps</strong><br />

Close clearance throat bushing with plan 11 or 32<br />

flush<br />

Cooling<br />

Cooling<br />

105


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Double Suction Radially Split<br />

106


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Double Suction Axially Split<br />

107


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Double Suction Overhung<br />

108


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Vertical Process <strong>Pumps</strong><br />

In addition to those previously shown, there are a<br />

class <strong>of</strong> <strong>pumps</strong> that are process <strong>pumps</strong> mounted in a<br />

vertical configuration. They are almost always volute<br />

single stage <strong>pumps</strong>. There are two styles<br />

Rigid coupling-no coupling no bearing bracket<br />

Flexible coupling with bearing bracket<br />

109


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Vertical Inline<br />

Process Pump with<br />

Rigid coupling-<br />

No bearing bracket<br />

110


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Vertical Inline<br />

Process Pump with<br />

flexible coupling<br />

<strong>and</strong> bearing bracket<br />

111


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Since these <strong>pumps</strong> are process style <strong>pumps</strong>, the<br />

seal cavity pressure can be at anything between<br />

<strong>and</strong> including suction <strong>and</strong> discharge<br />

The normal rules apply. It is necessary to know<br />

the impeller <strong>and</strong> case construction to estimate<br />

the seal cavity pressure<br />

112


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Some pump designs have inherent mechanical<br />

problems because <strong>of</strong> their design <strong>and</strong> resultant<br />

impeller <strong>and</strong> shaft loads<br />

Vertical inline rigid coupling no bearing<br />

bracket<br />

Overhung double suction or two stage<br />

Single volute<br />

113


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Some pump designs have inherent mechanical<br />

problems because <strong>of</strong> their design <strong>and</strong> resultant<br />

impeller <strong>and</strong> shaft loads<br />

Shaft deflection <strong>and</strong> vibration are common to<br />

these designs<br />

Something must be done to address the<br />

mechanical situation<br />

114


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Cure or eliminate problem pump<br />

constructions<br />

L3 /D 4 < or = 40<br />

Vertical inline with rigid coupling<br />

Two stage or double suction overhung<br />

Internal sealed (gl<strong>and</strong>less) pump designs<br />

Something we haven’t haven t discussed<br />

No seal chamber or stuffingbox-similar stuffingbox similar to internal seal<br />

arrangementfor vertical turbine <strong>pumps</strong><br />

115


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

L3 /D 4 < or = 40<br />

L = distance in inches from center <strong>of</strong> radial<br />

bearing to center <strong>of</strong> impeller<br />

D = diameter <strong>of</strong> shaft in inches under the seal<br />

sleeve<br />

116


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

L3 /D 4 < or = 40 Solutions<br />

Replace bearing bracket <strong>and</strong> stuffingbox with<br />

7th edition upgrade<br />

Modify existing pump with heavier shaft <strong>and</strong><br />

more robust bearings<br />

Close clearance non galling wear rings <strong>and</strong><br />

throat bushing<br />

117


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Vertical inline with rigid coupling<br />

Fine for low horsepower (


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Vertical inline with rigid coupling (continued)<br />

Close clearance non galling wear rings <strong>and</strong> throat<br />

bushing<br />

Add external bearing assembly on top <strong>of</strong> seal flange<br />

May require more first obstruction-add obstruction add motor<br />

spacer ring <strong>and</strong> lengthen pump shaft<br />

May be oil mist or grease lubricated<br />

119


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Two stage or double suction overhung, old API <strong>pumps</strong> with<br />

large calculated shaft deflection, single volute <strong>pumps</strong><br />

Same problem as L 3 /D 4 < or = 40<br />

Replace bearing bracket <strong>and</strong> stuffingbox with 7th<br />

edition upgrade<br />

Modify existing pump with heavier shaft <strong>and</strong> more<br />

robust bearings<br />

Close clearance non galling wear rings <strong>and</strong> throat<br />

bushing<br />

120

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!