09.04.2013 Views

ultrastructure of modified root-tip cells in ficus carica, induced by the ...

ultrastructure of modified root-tip cells in ficus carica, induced by the ...

ultrastructure of modified root-tip cells in ficus carica, induced by the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J. Cell Sci. 4i, 193-208 (1980)<br />

Pr<strong>in</strong>ted <strong>in</strong> Great Brita<strong>in</strong> © Company <strong>of</strong> Biologists Limited 1980<br />

SUMMARY<br />

ULTRASTRUCTURE OF MODIFIED ROOT-TIP<br />

CELLS IN FICUS CARICA, INDUCED BY THE<br />

ECTOPARASITIC NEMATODE<br />

XIPHINEMA INDEX<br />

U. WYSS,' H. LEHMANNf AND R. JANK-LADWIGf<br />

• Institut fUr Pflanzenkrankhciten und Pflanzenschutz der Universitat Hannover,<br />

Herrenhauser Str. 2, .D-3000 Hannover 21, FRG, and<br />

f Botanisches Institut der Tieraratlichen Hochschule Hannover,<br />

BOnteweg 17 d, D-3000 Hannover 71, FRG<br />

The migratory ectoparasitic <strong>root</strong> nematode Xiph<strong>in</strong>ema <strong>in</strong>dex, added to Ficus <strong>carica</strong> seedl<strong>in</strong>gs<br />

<strong>in</strong> sterile agar culture, fed exclusively on <strong>the</strong> <strong>tip</strong>s <strong>of</strong> <strong>the</strong> <strong>root</strong>s. As a response <strong>the</strong> <strong>tip</strong>s started to<br />

swell and became transformed <strong>in</strong>to term<strong>in</strong>al galls as long as feed<strong>in</strong>g was cont<strong>in</strong>ued.<br />

When <strong>the</strong> cytology <strong>of</strong> swollen <strong>root</strong>-<strong>tip</strong>s was exam<strong>in</strong>ed 24 h after <strong>the</strong> first nematode attack,<br />

necrotic <strong>cells</strong>, scattered s<strong>in</strong>gly or <strong>in</strong> small groups with<strong>in</strong> <strong>the</strong> <strong>root</strong> apex, were found <strong>in</strong> ultrath<strong>in</strong><br />

sections. These <strong>cells</strong>, whose protoplasts showed features <strong>of</strong> a hypersensitive reaction, were most<br />

probably those fed upon <strong>by</strong> <strong>the</strong> nematodes. Each necrotic cell was surrounded <strong>by</strong> several<br />

enlarged, mostly b<strong>in</strong>ucleate <strong>cells</strong> with dense cytoplasm. One day later <strong>the</strong> b<strong>in</strong>culeate <strong>cells</strong><br />

were mult<strong>in</strong>ucleate, conta<strong>in</strong><strong>in</strong>g 4 or even 8 nuclei. The clear-cut demarcation between necrotic<br />

and <strong>modified</strong> <strong>cells</strong> <strong>in</strong>dicated that only <strong>the</strong> stimulus for <strong>the</strong> <strong>in</strong>duction <strong>of</strong> <strong>modified</strong> <strong>cells</strong> but not<br />

<strong>the</strong> stimulus for cell necrosis passed <strong>in</strong>to neighbour<strong>in</strong>g <strong>cells</strong>.<br />

Root-<strong>tip</strong> galls that provided <strong>the</strong> appropriate food for egg production <strong>in</strong> nematodes conta<strong>in</strong>ed<br />

greatly enlarged mult<strong>in</strong>ucleate <strong>cells</strong> between necrotic <strong>cells</strong>. The <strong>modified</strong> <strong>cells</strong> showed features<br />

<strong>of</strong> high metabolic activities, expressed <strong>in</strong> nuclear and nucleolar hypertrophy, <strong>in</strong>vag<strong>in</strong>ation <strong>of</strong><br />

<strong>the</strong> nuclear envelope, <strong>in</strong>creased cytoplasmic density, abundance <strong>of</strong> mitochondria, plastids and<br />

rough endoplasmic reticulum. Wall <strong>in</strong>growths, typical <strong>of</strong> transfer <strong>cells</strong>, were rare and if present<br />

occurred only adjacent to necrotic <strong>cells</strong>. In older <strong>modified</strong> <strong>cells</strong> new cell plates, surrounded<br />

<strong>by</strong> phragmoplasts, were formed.<br />

INTRODUCTION<br />

Xiph<strong>in</strong>ema <strong>in</strong>dex Thorne & Allen, 1950, with a world-wide distribution <strong>in</strong> soils<br />

where v<strong>in</strong>es are grown, was <strong>the</strong> first nematode species proved to be <strong>the</strong> vector <strong>of</strong> a<br />

plant pathogenic virus (Hewitt, Raski & Goheen, 1958), and various aspects <strong>of</strong> its<br />

biology, ecology and pathogenicity have s<strong>in</strong>ce been studied <strong>in</strong> more detail. The host<br />

range appears to be restricted to a few plants amongst which v<strong>in</strong>e (Vitis v<strong>in</strong>ifera L.)<br />

and fig (Ficus <strong>carica</strong> L.) support a rapid population <strong>in</strong>crease under controlled conditions<br />

<strong>in</strong> glasshouses with temperatures above 20 °C. Attacked <strong>root</strong>-<strong>tip</strong>s <strong>of</strong> both<br />

plants become transformed <strong>in</strong>to term<strong>in</strong>al gals. Sections through <strong>the</strong>se galls reveal<br />

<strong>modified</strong> enlarged mult<strong>in</strong>ucleate <strong>cells</strong> (Radewald & Raski, 1962; Weischer & Wyss,<br />

1976; Wyss, 1978; Lehmann & Wyss, 1978; Rumpenhorst & Weischer, 1978) which


194 U. Wyss, H. Lehmann and R. Jank-Ladwig<br />

are thought to play an important role <strong>in</strong> <strong>the</strong> successful development <strong>of</strong> <strong>the</strong> parasite<br />

(Weischer & Wyss, 1976; Wyss, 1978).<br />

X. <strong>in</strong>dex is a migratory ectoparasitic nematode which frequently changes its<br />

feed<strong>in</strong>g sites. The feed<strong>in</strong>g behaviour on v<strong>in</strong>e and fig <strong>root</strong>s has been studied (Fisher<br />

& Raski, 1967; Weischer & Wyss, 1976; Wyss, 1977 a, b) and recorded <strong>in</strong> a research<br />

film (Wyss & Inst. wiss. Film, 1977). Roots <strong>of</strong> fig seedl<strong>in</strong>gs grown <strong>in</strong> agar are usually<br />

first attacked <strong>in</strong> <strong>the</strong> region <strong>of</strong> cell elongation or <strong>in</strong> <strong>the</strong> transition zone between <strong>the</strong><br />

<strong>root</strong> apex and cell elongation. The nematode <strong>in</strong>serts its odontostyle 3-4 <strong>cells</strong> deep<br />

before it starts feed<strong>in</strong>g on a column <strong>of</strong> <strong>cells</strong>, with <strong>in</strong>gestion periods rarely exceed<strong>in</strong>g<br />

10 m<strong>in</strong> per <strong>in</strong>dividual cell dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial attacks on <strong>root</strong>-<strong>tip</strong>s. Root growth is soon<br />

retarded if feed<strong>in</strong>g <strong>by</strong> a s<strong>in</strong>gle female or late larval stage (L4) is cont<strong>in</strong>ued for several<br />

hours at different sites along <strong>the</strong> <strong>root</strong>-<strong>tip</strong>. The <strong>tip</strong> starts to swell and gradually<br />

becomes transformed <strong>in</strong>to a term<strong>in</strong>al gall as long as <strong>the</strong> nematode ma<strong>in</strong>ta<strong>in</strong>s its<br />

attack for several days. Galled <strong>root</strong>-<strong>tip</strong>s rema<strong>in</strong> strongly attractive to feed<strong>in</strong>g nematodes<br />

and obviously provide <strong>the</strong> appropriate food source for egg production <strong>in</strong><br />

females. Meristematic activities with<strong>in</strong> <strong>the</strong> <strong>root</strong>-<strong>tip</strong> swell<strong>in</strong>gs and galls are usually<br />

only temporarily arrested (Wyss, 1978).<br />

The ma<strong>in</strong> purpose <strong>of</strong> this study was to obta<strong>in</strong> a deeper <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> development<br />

and ultrastnicture <strong>of</strong> <strong>modified</strong> <strong>root</strong> <strong>cells</strong> <strong>in</strong>duced <strong>by</strong> a migratory ectoparasitic nematode<br />

and to compare <strong>the</strong>se <strong>cells</strong> with <strong>the</strong> well-known cellular adaptations <strong>in</strong>duced <strong>by</strong><br />

sedentary endoparasitic nematodes.<br />

MATERIALS AND METHODS<br />

Dried Ficus <strong>carica</strong> fruits (Izmir figs) were soaked overnight <strong>in</strong> distilled water. On <strong>the</strong><br />

follow<strong>in</strong>g morn<strong>in</strong>g <strong>the</strong> seeds were removed, washed and surface-sterilized for 20 m<strong>in</strong> <strong>in</strong> a<br />

filtered 4% Ca(OCl)i. 4HtO solution. The seeds were <strong>the</strong>n washed for 1 h <strong>in</strong> sterile water<br />

and transferred on to o-8 % distilled water agar <strong>in</strong> plastic Petri dishes for germ<strong>in</strong>ation under<br />

artificial light or <strong>in</strong> daylight at about 25 °C. When <strong>the</strong> seedl<strong>in</strong>gs were 2-3 weeks old <strong>the</strong>y were<br />

<strong>in</strong>serted s<strong>in</strong>gly <strong>in</strong>to a layer 2 mm thick <strong>of</strong> o-6 % distilled water agar <strong>in</strong> plastic Petri dishes and<br />

a few drops <strong>of</strong> Hoagland's solution No. 1 were added. The plates were sealed with ParafUm<br />

and stored at 25 °C and about 3000 lux (16 h exposure/day) until <strong>the</strong>y were <strong>in</strong>oculated with<br />

sterile nematodes.<br />

Stock cultures <strong>of</strong> nematodes were kept <strong>in</strong> growth chambers (25 °C) on fig plants, cultured<br />

<strong>in</strong> sand with little organic matter, <strong>in</strong> which high population densities <strong>of</strong> up to 800 nematodes/<br />

100 ml soil developed. After extraction, batches <strong>of</strong> about 100 females and late larval stages<br />

(L4) were transferred <strong>in</strong>to a 0-03 % NaNs solution <strong>in</strong> sterile sta<strong>in</strong><strong>in</strong>g blocks where <strong>the</strong> nematodes<br />

were soon immobilized. After 1 h <strong>the</strong> sterilant was replaced twice <strong>in</strong>. quick succession <strong>by</strong><br />

sterile distilled water and <strong>the</strong> nematodes were transferred on to agar <strong>in</strong> Petri dishes. One day<br />

later <strong>the</strong> most active females and late larval stages were removed with a microneedle and placed<br />

s<strong>in</strong>gly or <strong>in</strong> batches <strong>of</strong> 10 on to fig seedl<strong>in</strong>gs with <strong>root</strong>s that had just started to grow well.<br />

The cultures were <strong>the</strong>n kept at 25 °C, but now <strong>the</strong> light <strong>in</strong>tensity was reduced to 500-700 lux<br />

(16 h exposure/day). Nematode feed<strong>in</strong>g was exam<strong>in</strong>ed daily and attacked <strong>root</strong>-<strong>tip</strong>s <strong>of</strong> different<br />

developmental stages from <strong>the</strong> first nematode attack were cut and processed for electronmicroscopic<br />

studies.<br />

Excised <strong>root</strong>-<strong>tip</strong>s were fixed for 2 h <strong>in</strong> 3% glutaraldehyde <strong>in</strong> 0-05 M sodium cacodylate<br />

buffer (pH 6-8), washed <strong>in</strong> 12 changes <strong>of</strong> buffer and postfixed for 2 h <strong>in</strong> 2 % osmium tetroxide,<br />

all at room temperature. After a few wash<strong>in</strong>gs <strong>in</strong> buffer, <strong>the</strong> postfixed <strong>root</strong>-<strong>tip</strong>s were dehydrated<br />

<strong>in</strong> an acetone series, followed <strong>by</strong> propylene oxide, and embedded <strong>in</strong> Durcupan (Fluka).<br />

Ultrath<strong>in</strong> sections were cut on a LKB Ultratome I with glass knives and mounted on Formvar-


, > , • • . - .<br />

Modified <strong>root</strong>-<strong>tip</strong> <strong>cells</strong> <strong>in</strong> Ficus<br />

1/V.S<br />

••'1 i / m<br />

Fig. i. LS through a parasitized swollen <strong>root</strong>-<strong>tip</strong>, i day after <strong>the</strong> first nematode<br />

attack. Necrotic <strong>cells</strong> (TIC) with<strong>in</strong> <strong>the</strong> transition zone between <strong>root</strong> apex and cell<br />

elongation are surrounded <strong>by</strong> <strong>modified</strong>, mostly b<strong>in</strong>ucleate <strong>cells</strong> with lobed nuclei<br />

(arrows). The <strong>modified</strong> <strong>cells</strong> bulge <strong>in</strong>to <strong>the</strong> necrotic <strong>cells</strong> whose contents have most<br />

probably been removed <strong>by</strong> nematode feed<strong>in</strong>g. Nucleoli (mi) are occasionally left <strong>in</strong><br />

<strong>the</strong> necrotic <strong>cells</strong>. B<strong>in</strong>ucleate <strong>cells</strong> with wall stubs (tos) attached to <strong>the</strong> mo<strong>the</strong>r cell wall<br />

occur at some distance from <strong>the</strong> necrotic <strong>cells</strong>, x 1700.<br />

WS<br />

1


196 U. Wyss, H. Lehmann and R. Jank-Ladwig<br />

coated copper grids. The sections were sta<strong>in</strong>ed for 10 m<strong>in</strong> with 5 % aqueous uranyl acetate<br />

and <strong>the</strong>n for 15 m<strong>in</strong> with lead citrate. The ultrath<strong>in</strong> sections were exam<strong>in</strong>ed <strong>in</strong> <strong>the</strong> EM 10A<br />

(Zeiss) or Elmiskop IA (Siemens).<br />

RESULTS<br />

Modified <strong>cells</strong> <strong>in</strong> swollen <strong>root</strong>-<strong>tip</strong>s, 1-3 days after <strong>the</strong> first nematode attack<br />

Sections through <strong>the</strong> apical region <strong>of</strong> unattacked, well grow<strong>in</strong>g <strong>root</strong>-<strong>tip</strong>s <strong>of</strong> Ficus<br />

<strong>carica</strong> seedl<strong>in</strong>gs displayed characteristic features <strong>of</strong> meristematic <strong>cells</strong>. All <strong>cells</strong> were<br />

un<strong>in</strong>ucleate and conta<strong>in</strong>ed relatively large, more or less spherical nuclei embedded<br />

<strong>in</strong> dense cytoplasm. However, when parasitized swollen <strong>root</strong>-<strong>tip</strong>s were exam<strong>in</strong>ed<br />

12-14 h after <strong>the</strong> first attack <strong>by</strong> a s<strong>in</strong>gle nematode or several <strong>in</strong>dividuals, dist<strong>in</strong>ct<br />

cellular alterations were observed <strong>in</strong> <strong>the</strong> transition zone between <strong>the</strong> <strong>root</strong> apex and<br />

cell elongation. A general view <strong>of</strong> <strong>the</strong>se changes is given <strong>in</strong> Fig. 1. A few necrotic<br />

<strong>cells</strong>, ei<strong>the</strong>r devoid <strong>of</strong> cytoplasm or still partially filled with degraded contents, were<br />

surrounded <strong>by</strong> <strong>cells</strong> undergo<strong>in</strong>g modification. These <strong>cells</strong> were now 2-3 times as<br />

large as correspond<strong>in</strong>g <strong>cells</strong> <strong>in</strong> unattacked well grow<strong>in</strong>g <strong>root</strong>-<strong>tip</strong>s, and <strong>the</strong>y were<br />

usually b<strong>in</strong>ucleate. Their nuclei were now considerably lobed and slightly enlarged<br />

and were embedded <strong>in</strong> dense cytoplasm. There was always a clear-cut demarcation<br />

between <strong>the</strong> necrotic and <strong>modified</strong> <strong>cells</strong> (Figs. 1, 2), a necrotic response was never<br />

seen to spread <strong>in</strong>to <strong>cells</strong> border<strong>in</strong>g <strong>the</strong> site <strong>of</strong> necrosis. The necrotic <strong>cells</strong> resulted<br />

most probably from direct <strong>in</strong>jury <strong>by</strong> <strong>the</strong> nematode's odontostyle and from <strong>the</strong><br />

subsequent <strong>in</strong>jection <strong>of</strong> saliva and removal <strong>of</strong> cell contents dur<strong>in</strong>g <strong>in</strong>gestion. In an<br />

earlier light-microscopic study on X. <strong>in</strong>dex-feed<strong>in</strong>g sites (Wyss, 1978) necrotic <strong>cells</strong><br />

were occasionally found whose walls were perforated <strong>by</strong> holes <strong>of</strong> approximately <strong>the</strong><br />

same diameter as that <strong>of</strong> <strong>the</strong> nematode's odontostyle. Fig. 2 shows characteristic<br />

features <strong>of</strong> necrotic <strong>cells</strong>, still partially filled with degraded contents. Disorganized<br />

nuclei, nucleoli and cytoplasm were more electron-dense <strong>in</strong> <strong>the</strong>se than <strong>in</strong> adjacent<br />

<strong>modified</strong> <strong>cells</strong>. The numerous vacuoles appeared to have fused, and myel<strong>in</strong>-like<br />

multilamellar dense structures were common (Fig. 2, <strong>in</strong>set). Organelles such as<br />

mitochondria and plastids were no longer recognizable.<br />

In spite <strong>of</strong> numerous exam<strong>in</strong>ations, no stages <strong>of</strong> cell-plate development could be<br />

detected between daughter nuclei <strong>of</strong> b<strong>in</strong>ucleate <strong>cells</strong> adjacent or close to <strong>the</strong> necrotic<br />

Figs. 2-4. Feed<strong>in</strong>g <strong>of</strong> Xiph<strong>in</strong>ema <strong>in</strong>dex on <strong>root</strong>-<strong>tip</strong>s <strong>of</strong> Ficus <strong>carica</strong> seedl<strong>in</strong>gs. LS<br />

through parasitized swollen <strong>root</strong>-<strong>tip</strong>s.<br />

Fig. 2. Necrotic <strong>cells</strong> (nc) surrounded <strong>by</strong> <strong>modified</strong> <strong>cells</strong>, 1 day after <strong>the</strong> first nematode<br />

attack. Note <strong>the</strong> clear-cut demarcation between <strong>the</strong> 2 cell types. The degraded cytoplasmic<br />

contents and nuclei (n) <strong>of</strong> <strong>the</strong> necrotic <strong>cells</strong> are more electron-dense than<br />

those <strong>of</strong> <strong>the</strong> <strong>modified</strong> <strong>cells</strong>. Vacuoles <strong>in</strong> <strong>the</strong> necrotic <strong>cells</strong> have fused, and multilamellar<br />

dense structures are common. These structures (with<strong>in</strong> white outl<strong>in</strong>e) are<br />

shown at higher magnification <strong>in</strong> <strong>the</strong> <strong>in</strong>set, x 4800; <strong>in</strong>set, x 17000.<br />

Fig. 3. Two b<strong>in</strong>ucleate <strong>cells</strong>, a few cell layers distant to <strong>the</strong> necrotic <strong>cells</strong>, 2 days<br />

after <strong>the</strong> first nematode attack. Wall stubs (ws) are attached to <strong>the</strong> mo<strong>the</strong>r cell wall <strong>in</strong><br />

<strong>the</strong> region <strong>of</strong> <strong>the</strong> equatorial plane, x 3900.<br />

Fig. 4. Magnification <strong>of</strong> a wall stub shown <strong>in</strong> Fig. 4. Plasmodesmata (pd) are<br />

present, and <strong>the</strong> end <strong>of</strong> <strong>the</strong> stub is bent and slightly swollen, x 11000.


•i*<br />

Modified <strong>root</strong>-<strong>tip</strong> <strong>cells</strong> <strong>in</strong> Ficus


198 U. Wyss, H. Lehmann and R. Jank-Ladwig<br />

Figs. 5, 6. Feed<strong>in</strong>g <strong>of</strong> Xiph<strong>in</strong>ema <strong>in</strong>dex on <strong>root</strong>-<strong>tip</strong>s <strong>of</strong> Ficus <strong>carica</strong> seedl<strong>in</strong>gs. LS<br />

through parasitized swollen <strong>root</strong>-<strong>tip</strong>s.<br />

Fig. 5. Necrotic <strong>cells</strong> (nc) with rema<strong>in</strong><strong>in</strong>g nucleoli (nu) surrounded <strong>by</strong> enlarged<br />

<strong>modified</strong> <strong>cells</strong> with up to 4 nuclei at <strong>the</strong> plane <strong>of</strong> section, 2 days after <strong>the</strong> first nematode<br />

attack. Numerous small vacuoles are dispersed <strong>in</strong> <strong>the</strong> cytoplasm <strong>of</strong> <strong>the</strong> <strong>modified</strong> <strong>cells</strong>,<br />

x 2000.<br />

Fig. 6. Illustration <strong>of</strong> 2 enlarged nuclei with <strong>in</strong>vag<strong>in</strong>ated envelopes, 3 days after <strong>the</strong><br />

first nematode attack, x 6000.<br />

<strong>cells</strong>. Wall stubs were, however, seen at some distance from necrotic <strong>cells</strong> (Fig. 1).<br />

These wall stubs were always attached to <strong>the</strong> mo<strong>the</strong>r cell wall, approximately <strong>in</strong> <strong>the</strong><br />

region <strong>of</strong> <strong>the</strong> equatorial plane. Fig. 3 shows 2 b<strong>in</strong>ucleate <strong>cells</strong> with such wall stubs at<br />

a higher magnification. In a number <strong>of</strong> <strong>cells</strong>, stubs opposite to each o<strong>the</strong>r were present<br />

on <strong>the</strong> mo<strong>the</strong>r cell walls. Plasmodesmata were fully developed <strong>in</strong> <strong>the</strong> stubs (Fig. 4).<br />

Sections through 2- to 3-day-old <strong>root</strong>-<strong>tip</strong> swell<strong>in</strong>gs revealed <strong>modified</strong> <strong>cells</strong> that had<br />

<strong>in</strong>creased <strong>in</strong> size and which were now mult<strong>in</strong>ucleate, possess<strong>in</strong>g 4-8 enlarged nuclei<br />

(Fig. 5). Aga<strong>in</strong>, no cell wall stubs were present <strong>in</strong> <strong>the</strong> <strong>modified</strong> <strong>cells</strong> adjacent to<br />

necrotic <strong>cells</strong>. The necrotic <strong>cells</strong>, devoid <strong>of</strong> cytoplasm, frequently conta<strong>in</strong>ed several<br />

well preserved but ra<strong>the</strong>r compact nucleoli which <strong>in</strong>dicated that <strong>the</strong>se <strong>cells</strong> were<br />

mult<strong>in</strong>ucleate before <strong>the</strong>y were disorganized <strong>by</strong> nematode attack.<br />

Modified <strong>cells</strong> <strong>in</strong> <strong>root</strong>-<strong>tip</strong> galls, 6-12 days after <strong>the</strong> first nematode attack<br />

When s<strong>in</strong>gle or several nematodes cont<strong>in</strong>ued feed<strong>in</strong>g on <strong>the</strong> same <strong>root</strong>-<strong>tip</strong>, <strong>the</strong><br />

term<strong>in</strong>al swell<strong>in</strong>g became gradually transformed <strong>in</strong>to a gall which <strong>in</strong> many cases<br />

rema<strong>in</strong>ed strongly attractive to <strong>the</strong> feed<strong>in</strong>g nematodes. Five to six days after <strong>the</strong> first<br />

attack some galls were fed upon <strong>by</strong> females which <strong>in</strong> <strong>the</strong> meantime started to produce


Modified <strong>root</strong>-<strong>tip</strong> <strong>cells</strong> <strong>in</strong> Ficus 199<br />

eggs. Egg production was ma<strong>in</strong>ta<strong>in</strong>ed for several days or even weeks as long as <strong>the</strong><br />

females cont<strong>in</strong>ued feed<strong>in</strong>g on <strong>the</strong>se galls. Depend<strong>in</strong>g on <strong>the</strong> age <strong>of</strong> <strong>the</strong> gall, <strong>modified</strong><br />

<strong>cells</strong> with<strong>in</strong> it were now greatly enlarged. Expansion <strong>of</strong> <strong>the</strong> mult<strong>in</strong>ucleate <strong>cells</strong> was<br />

so pronounced that early necrotic <strong>cells</strong> were heavily crushed, nearly disappear<strong>in</strong>g<br />

between <strong>the</strong> expand<strong>in</strong>g <strong>cells</strong>. Fig. 7 shows <strong>the</strong> probable fate <strong>of</strong> early necrotic <strong>cells</strong>,<br />

now degraded at <strong>the</strong> plane <strong>of</strong> section to '<strong>in</strong>tercellular spaces' between 2 expand<strong>in</strong>g<br />

<strong>modified</strong> <strong>cells</strong>. The spaces are filled with dense multilamellar structures which, as<br />

described before, are typical constituents <strong>of</strong> necrotic <strong>cells</strong>. Modified <strong>cells</strong> <strong>in</strong> 10- to<br />

12-day-old galls could reach dimensions 10-15 times <strong>the</strong> size <strong>of</strong> early b<strong>in</strong>ucleate<br />

<strong>in</strong>terphase <strong>cells</strong>. In some <strong>of</strong> <strong>the</strong>m more than 16 nuclei, clustered toge<strong>the</strong>r, were<br />

counted.<br />

Many nuclei with<strong>in</strong> <strong>modified</strong> <strong>cells</strong> had a highly <strong>in</strong>vag<strong>in</strong>ated, nearly amoeboid<br />

pr<strong>of</strong>ile (Fig. 6). Their nucleoli were hypertrophied and most had large vacuoles.<br />

Mitochondria and plastids had <strong>in</strong>creased <strong>in</strong> number <strong>in</strong> <strong>modified</strong> <strong>cells</strong> and <strong>the</strong>ir<br />

shapes became strik<strong>in</strong>gly heteromorphic. Massive aggregations <strong>of</strong> <strong>the</strong>se organelles,<br />

ma<strong>in</strong>ly near cell walls, were common (Figs. 7, 11). A large proportion <strong>of</strong> <strong>the</strong> densely<br />

sta<strong>in</strong><strong>in</strong>g plastids conta<strong>in</strong>ed starch gra<strong>in</strong>s (Figs. 8, n) and most <strong>of</strong> <strong>the</strong>m possessed an<br />

<strong>in</strong>terplastidial membrane system (Fig. 8). Apart from <strong>the</strong>se features, high metabolic<br />

activity <strong>in</strong> transformed <strong>cells</strong> was fur<strong>the</strong>r expressed <strong>by</strong> <strong>the</strong> dense cytoplasm and <strong>the</strong><br />

abundance <strong>of</strong> rough endoplasmic reticulum commonly arranged <strong>in</strong> parallel strands<br />

(Figs. 11, 12). Occasionally <strong>the</strong> strands were arranged <strong>in</strong> concentric whorls around<br />

vacuoles (Fig. 9). The high cytoplasmic density <strong>of</strong> <strong>modified</strong> <strong>cells</strong> <strong>in</strong> <strong>root</strong>-<strong>tip</strong> galls<br />

support<strong>in</strong>g nematode reproduction is clearly illustrated <strong>in</strong> Fig. 12. The cytoplasm <strong>of</strong><br />

<strong>the</strong> cell with 3 nuclei <strong>in</strong> <strong>the</strong> plane <strong>of</strong> section is so dense that, at this level, <strong>the</strong> total<br />

area <strong>of</strong> <strong>the</strong> numerous vacuoles scattered with<strong>in</strong> <strong>the</strong> cytoplasm would hardly exceed<br />

that <strong>of</strong> <strong>the</strong> smallest nucleus.<br />

Enlarged, previously active, but now necrotic <strong>cells</strong> were found next to metabolically<br />

highly active <strong>cells</strong> (Fig. 11). Aga<strong>in</strong> <strong>the</strong> necrotic response did not spread <strong>in</strong>to <strong>the</strong>se<br />

<strong>cells</strong>. Occasionally, however, <strong>in</strong>growths were noted on <strong>the</strong> walls <strong>of</strong> <strong>modified</strong> <strong>cells</strong><br />

adjacent to necrotic <strong>cells</strong> (Figs. 10, 11). These wall protuberances were only found <strong>in</strong><br />

<strong>modified</strong> <strong>cells</strong> near <strong>the</strong> periphery <strong>of</strong> necrotic <strong>root</strong>-<strong>tip</strong> galls. Some protuberances, with<br />

anastomos<strong>in</strong>g branches extend<strong>in</strong>g relatively deeply <strong>in</strong>to <strong>the</strong> <strong>cells</strong> (Fig. 10), were well<br />

developed. As <strong>in</strong> typical wall <strong>in</strong>growths <strong>of</strong> 'transfer <strong>cells</strong>' <strong>the</strong> plasmalemma surround<strong>in</strong>g<br />

<strong>the</strong> protuberances was not ruptured.<br />

In older <strong>modified</strong> <strong>cells</strong> stubs attached to <strong>the</strong> cell walls were commonly noted<br />

(Figs. 13-17), and, less frequently, wall fragments embedded <strong>in</strong> cytoplasm (Fig. 13)<br />

were also recorded. An <strong>in</strong>terest<strong>in</strong>g feature with<strong>in</strong> some older <strong>cells</strong> was <strong>the</strong> formation<br />

<strong>of</strong> new cell plates, surrounded <strong>by</strong> typical phragmoplasts with newly formed nuclei at<br />

<strong>the</strong>ir poles (Figs. 15, 17) and associated with dictyosomes (Fig. 16). The detection <strong>of</strong><br />

new cell plates <strong>in</strong> older <strong>cells</strong> suggests that th<strong>in</strong>-walled long stubs (Figs. 14, 15) or<br />

irregular th<strong>in</strong> walls fus<strong>in</strong>g with thicker walls (Fig. 15, arrow) might have been formed<br />

recently <strong>by</strong> <strong>the</strong> fusion <strong>of</strong> <strong>the</strong> cell-plate vesicles. Fig. 16 shows a cell plate apparently<br />

grow<strong>in</strong>g towards an old wall stub.


U. Wyss, H. Lehmann and R. Jank-Ladwig


DISCUSSION<br />

Modified <strong>root</strong>-<strong>tip</strong> <strong>cells</strong> <strong>in</strong> Ficus 201<br />

The cellular modifications <strong>in</strong>duced <strong>by</strong> <strong>the</strong> ectoparasitic and migratory dorylaimid<br />

nematode Xiph<strong>in</strong>ema <strong>in</strong>dex resemble <strong>in</strong> many respects those <strong>in</strong>duced <strong>by</strong> <strong>the</strong> specialized<br />

endoparasitic and sedentary tylenchid nematodes <strong>of</strong> <strong>the</strong> genera Globodera, Heterodera,<br />

Meloidogyne (Heteroderidae) and Nacobbus, Rotylenchulus (Nacobbidae) so far<br />

exam<strong>in</strong>ed. At <strong>the</strong> ultrastructural level <strong>the</strong> feed<strong>in</strong>g sites <strong>of</strong> <strong>the</strong> genera mentioned and<br />

<strong>of</strong> X. <strong>in</strong>dex show characteristic features <strong>of</strong> metabolically active <strong>cells</strong>. This is expressed<br />

especially <strong>in</strong> <strong>the</strong> enlarged nuclei with usually irregular, lobed outl<strong>in</strong>es and with<br />

hypertrophied nucleoli, <strong>in</strong> <strong>in</strong>creased cytoplasmic density with <strong>the</strong> cytoplasm conta<strong>in</strong><strong>in</strong>g<br />

numerous small vacuoles, <strong>in</strong> <strong>the</strong> proliferation <strong>of</strong> rough endoplasmic reticulum and <strong>in</strong><br />

<strong>in</strong>creased numbers <strong>of</strong> mitochondria and plastids. Apart from considerable changes <strong>in</strong><br />

size and form, <strong>the</strong> plastids <strong>of</strong> X. »n&.v--transformed <strong>cells</strong>, but not <strong>of</strong> control <strong>root</strong> <strong>cells</strong>,<br />

conta<strong>in</strong>ed thylakoids. This is probably not so surpris<strong>in</strong>g (though <strong>in</strong>explicable), as <strong>the</strong><br />

Ficus <strong>carica</strong> seedl<strong>in</strong>gs were exposed to light, bear<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d that chloroplasts with<br />

few lamellae developed <strong>in</strong> Meloidogyne <strong>in</strong>cognita-<strong>in</strong>fected tomato <strong>root</strong> galls, but only<br />

when <strong>the</strong>se were exposed to light (Orion, Gommers & van Bezooijen, 1973). Syncytia<br />

<strong>of</strong> Heterodera schachtii-'mfected <strong>root</strong>s turn green when <strong>the</strong>se are exposed to light<br />

(J. Miiller, personal communication).<br />

Well developed wall <strong>in</strong>growths occur <strong>in</strong> <strong>the</strong> syncytia and giant <strong>cells</strong> <strong>in</strong>duced <strong>by</strong><br />

Heteroderidae but not <strong>in</strong> <strong>the</strong> syncytia <strong>in</strong>duced <strong>by</strong> Nacobbidae (Jones & Payne, 1977).<br />

Wall <strong>in</strong>growths with anastomos<strong>in</strong>g branches were occasionally also observed <strong>in</strong><br />

X. <strong>in</strong>^fet-transformed <strong>cells</strong>, at <strong>the</strong> periphery <strong>of</strong> <strong>the</strong> galled <strong>root</strong>-<strong>tip</strong>s and only on<br />

limited areas <strong>in</strong> <strong>the</strong> immediate vic<strong>in</strong>ity to empty necrotic <strong>cells</strong>. Wall <strong>in</strong>growths are<br />

thought to develop as a response to <strong>the</strong> flow <strong>of</strong> solutes from conduct<strong>in</strong>g elements <strong>of</strong><br />

<strong>the</strong> xylem and phloem across <strong>the</strong> plasmalemma <strong>of</strong> adjacent <strong>cells</strong>, and it is suggested<br />

that <strong>the</strong>ir function is to <strong>in</strong>crease <strong>the</strong> surface area <strong>of</strong> <strong>the</strong> plasmalemma for <strong>the</strong> uptake<br />

<strong>of</strong> solutes (cf., for example, Jones & Dropk<strong>in</strong>, 1975). Cells with such characteristics<br />

are common <strong>in</strong> plants and are termed transfer <strong>cells</strong> (Gunn<strong>in</strong>g & Pate, 1969). The<br />

hypo<strong>the</strong>sis that syncytia or giant <strong>cells</strong>, <strong>in</strong>duced <strong>by</strong> sedentary Heteroderidae are<br />

Figs. 7-10. Feed<strong>in</strong>g <strong>of</strong> Xiph<strong>in</strong>ema <strong>in</strong>dex on <strong>root</strong>-<strong>tip</strong>s <strong>of</strong> Fiais <strong>carica</strong> seedl<strong>in</strong>gs. LS<br />

through 6- to 12-day-old <strong>root</strong>-<strong>tip</strong> galls.<br />

Fig. 7. The <strong>in</strong>tercellular space (<strong>tip</strong>) between greatly enlarged <strong>modified</strong> <strong>cells</strong> is<br />

filled with lamellar structures which are most probably degraded remnants <strong>of</strong> crushed<br />

necrotic <strong>cells</strong>. The lamellar structures (with<strong>in</strong> black rectangle) are shown at higher<br />

magnification <strong>in</strong> <strong>the</strong> <strong>in</strong>set. Note <strong>the</strong> aggregation, <strong>of</strong> mitochondria and plastids, <strong>the</strong><br />

latter with <strong>in</strong>terplastidial membranes, x 8000; <strong>in</strong>set, x 40000.<br />

Fig. 8. S<strong>in</strong>gle plastid with 2 starch gra<strong>in</strong>s (st) and show<strong>in</strong>g <strong>the</strong> <strong>in</strong>terplastidial<br />

membrane system, t, thylakoids x 41000.<br />

Fig. 9. Modified <strong>cells</strong> are rich <strong>in</strong> endoplasmic reticulum (er). Here it is arranged <strong>in</strong><br />

concentric whorls around a vacuole. x 9000.<br />

Fig. 10. Wall <strong>in</strong>growths (1) <strong>in</strong>vested <strong>by</strong> an <strong>in</strong>tact plasmalemma (/>) are occasionally<br />

formed adjacent to necrotic <strong>cells</strong>. In this case <strong>the</strong> <strong>in</strong>tercellular space between 3<br />

<strong>modified</strong> <strong>cells</strong> is a necrotic cell (nc), x 7000.<br />

14 CEL 41


2O2 U. Wyss, H. Lehmann and R. Jank-Ladwig


Modified <strong>root</strong>-<strong>tip</strong> <strong>cells</strong> <strong>in</strong> Ficus 203<br />

mult<strong>in</strong>ucleate transfer <strong>cells</strong> and that <strong>the</strong> wall <strong>in</strong>growths are formed as a consequence<br />

<strong>of</strong> cont<strong>in</strong>uous nematode demands for nutrients (Jones & Northcote, 1972) is now<br />

widely accepted. F<strong>in</strong>gerlike wall <strong>in</strong>growths were also observed <strong>in</strong> <strong>root</strong>-<strong>tip</strong> <strong>cells</strong> <strong>of</strong><br />

celery, parasitized <strong>by</strong> <strong>the</strong> ectoparasitic and migratory dorylaimid nematode Longidorus<br />

apulus (Bleve-Zacheo, Zacheo, Lamberti & Arrigoni, 1977) which belongs to <strong>the</strong><br />

same family as X <strong>in</strong>dex. The authors suggest that <strong>in</strong> this particular case, <strong>in</strong> which<br />

<strong>the</strong> feed<strong>in</strong>g site <strong>of</strong> <strong>the</strong> parasite is not fixed (and where thus <strong>the</strong> nutrient demand is not<br />

cont<strong>in</strong>uous), <strong>the</strong> <strong>in</strong>growths may have a double function: to stop <strong>the</strong> spread <strong>of</strong> <strong>the</strong><br />

necrotic area adjacent to <strong>the</strong> <strong>cells</strong> and to improve <strong>the</strong> cell-to-cell transport when <strong>the</strong><br />

meristematic tissue <strong>of</strong> <strong>the</strong> <strong>root</strong>-<strong>tip</strong> is <strong>in</strong>activated. In this connexion it is worthwhile<br />

mention<strong>in</strong>g <strong>the</strong> unusual f<strong>in</strong>d<strong>in</strong>g <strong>by</strong> Gunn<strong>in</strong>g, Pate & Green (1970), who observed<br />

tufts <strong>of</strong> wall <strong>in</strong>growths <strong>of</strong> yet unknown function around <strong>in</strong>tercellular spaces <strong>in</strong> leaf<br />

traces <strong>of</strong> <strong>the</strong> goosegrass (Gallium apar<strong>in</strong>e).<br />

Modified <strong>root</strong>-<strong>tip</strong> <strong>cells</strong> <strong>in</strong>duced <strong>by</strong> X. <strong>in</strong>dex on its host F. <strong>carica</strong> also show similarities<br />

<strong>in</strong> <strong>the</strong>ir <strong>ultrastructure</strong> to <strong>cells</strong> <strong>of</strong> <strong>the</strong> nutritive tissue <strong>in</strong> galls <strong>in</strong>duced <strong>by</strong> zoocecidia<br />

such as <strong>by</strong> Cecidomyidae (Rohfritsch, 1971), Chermesidae (Rohfritsch, 1977) and<br />

Cynipidae (Rohfritsch, 1974). The nutritive <strong>cells</strong> <strong>of</strong> <strong>the</strong>se zoocecidia are characterized<br />

<strong>by</strong> a large lobed nucleus, nuclear hypertrophy, abundant cytoplasm, reduction and<br />

fragmentation <strong>of</strong> <strong>the</strong> vacuome, abundance <strong>of</strong> ribosomes, plastids and mitochondria.<br />

X. <strong>in</strong>dex-<strong>modified</strong> <strong>cells</strong> show even greater similarities to nutritive <strong>cells</strong> <strong>in</strong> galls<br />

<strong>in</strong>duced <strong>by</strong> certa<strong>in</strong> acarocecidia which disturb cytok<strong>in</strong>esis so that bi- or mult<strong>in</strong>ucleate<br />

<strong>cells</strong> with wall fragments attached to <strong>the</strong> mo<strong>the</strong>r-cell wall are formed (Westphal, 1977).<br />

Mult<strong>in</strong>ucleate <strong>cells</strong> <strong>in</strong>duced <strong>by</strong> X. <strong>in</strong>dex are apparently formed <strong>by</strong> repeated mitoses<br />

without cytok<strong>in</strong>esis (Wyss, 1978; Rumpenhorst & Weischer, 1978), and <strong>the</strong>y thus<br />

resemble <strong>in</strong> this respect giant <strong>cells</strong> <strong>in</strong>duced <strong>by</strong> Meloidogyne spp. (Huang & Maggenti,<br />

1969; Jones & Payne, 19780). Accord<strong>in</strong>g to Bird (1979), <strong>the</strong> term coenocyte should<br />

be used for mult<strong>in</strong>ucleate <strong>cells</strong> formed <strong>by</strong> repeated mitoses without cell division,<br />

whereas any enlarged un<strong>in</strong>ucleate cell may be a giant cell. The mult<strong>in</strong>ucleate state<br />

<strong>of</strong> X. zncfoc-<strong>in</strong>duced coenocytes arises <strong>by</strong> synchronous mitoses (Rumpenhorst &<br />

Weischer, 1978; Wyss, unpublished) which are typical <strong>of</strong> most naturally and artificially<br />

created mult<strong>in</strong>ucleate <strong>cells</strong> (Fowke, Bech-Hansen, Gamborg & Constabel,<br />

Figs. 11-13. Feed<strong>in</strong>g <strong>of</strong> Xiph<strong>in</strong>ema <strong>in</strong>dex on. <strong>root</strong>-<strong>tip</strong>s <strong>of</strong> Ficus <strong>carica</strong> seedl<strong>in</strong>gs. LS<br />

through 6- to 12-day-old <strong>root</strong>-<strong>tip</strong> galls.<br />

Fig. 11. Enlarged <strong>modified</strong> <strong>cells</strong> adjacent and near a necrotic cell (nc). The large<br />

cell at <strong>the</strong> centre conta<strong>in</strong>s dense cytoplasm and endoplasmic reticulum (er) arranged<br />

<strong>in</strong> parallel strands. Wall <strong>in</strong>growths (i) grow <strong>in</strong>to <strong>the</strong> cell adjacent to <strong>the</strong> necrotic cell.<br />

Note <strong>the</strong> aggregation <strong>of</strong> plastids (p) with starch gra<strong>in</strong>s <strong>in</strong> a neighbour<strong>in</strong>g cell, x 3200.<br />

Fig. 12. A necrotic cell (nc) surrounded <strong>by</strong> <strong>modified</strong> <strong>cells</strong>. The cell with 3 nuclei<br />

at <strong>the</strong> plane <strong>of</strong> section is filled with extremely dense cytoplasm (compare <strong>the</strong> small<br />

vacuoles (uj) with those (t>j) <strong>of</strong> a neighbour<strong>in</strong>g cell), x 2000.<br />

Fig. 13. Wall stubs (foi) are quite commonly found <strong>in</strong> older <strong>modified</strong> <strong>cells</strong>.<br />

Occasionally wall fragments, not attached to cell walls, are also found, x 2300.<br />

14-2


204 U. Wyss, H. Lehmann and R. Jank-Ladwig


Modified <strong>root</strong>-<strong>tip</strong> <strong>cells</strong> <strong>in</strong> Ficus 205<br />

In <strong>the</strong> early stage <strong>of</strong> X. <strong>in</strong>dex-coenocyte formation cell wall stubs, attached to <strong>the</strong><br />

mo<strong>the</strong>r cell wall, were seen to protrude <strong>in</strong>to b<strong>in</strong>ucleate <strong>cells</strong> at some distance from<br />

parasitized necrotic <strong>cells</strong>. These stubs resulted most probably from <strong>in</strong>complete fusion<br />

<strong>of</strong> cell plate vesicles. Similar protrud<strong>in</strong>g wall fragments are formed when <strong>root</strong>s are<br />

treated with caffe<strong>in</strong>e (Roper & Roper, 1977; Jones & Payne, 19786) which does not<br />

affect mitosis. From <strong>the</strong> description <strong>by</strong> Jones & Payne (19786) o-i % caffe<strong>in</strong>e applied<br />

to grow<strong>in</strong>g <strong>root</strong>s <strong>of</strong> Impatiens balsam<strong>in</strong>a <strong>in</strong>hibited <strong>root</strong> growth and caused <strong>root</strong>-<strong>tip</strong>s<br />

to swell. This effect is very similar to <strong>the</strong> early stage <strong>of</strong> <strong>root</strong> response to X. <strong>in</strong>dex<br />

attack (Wyss, 1978). Cell wall fragments observed <strong>in</strong> older X. <strong>in</strong>^ex-coenocytes were<br />

attributed to cell wall dissolution (Wyss, 1978; Lehmann & Wyss, 1978). We now<br />

hesitate to ma<strong>in</strong>ta<strong>in</strong> this statement, as holes <strong>in</strong> a cont<strong>in</strong>uous wall were very rare and<br />

as such strik<strong>in</strong>g symptoms <strong>of</strong> cell wall lysis as shown <strong>in</strong> affected <strong>cells</strong> <strong>by</strong> Rotylenchuhis<br />

reniformis (Rebois, Madden & Eldridge, 1975) and Longidorus apulus (Bleve-Zacheo<br />

et al. 1977) were never observed. Th<strong>in</strong> and ra<strong>the</strong>r irregular cell walls <strong>in</strong> older coenocytes<br />

are undoubtedly formed <strong>by</strong> renewed cytok<strong>in</strong>esis. To our knowledge this<br />

feature, <strong>in</strong>volv<strong>in</strong>g typical phragmoplast and cell plate formation, is unique <strong>in</strong><br />

nematode-transformed plant <strong>cells</strong>. It possibly represents <strong>the</strong> <strong>in</strong>itial stage <strong>of</strong> renewed<br />

meristematic activities at <strong>the</strong> onset <strong>of</strong> new lateral <strong>root</strong> formation. As described earlier<br />

(Wyss, 1978) lateral <strong>root</strong>s were <strong>of</strong>ten seen to emerge from X. <strong>in</strong>dex-mduceA <strong>root</strong>-<strong>tip</strong><br />

galls.<br />

Modified feed<strong>in</strong>g sites are also <strong>in</strong>duced <strong>by</strong> <strong>in</strong>vertebrate - (e.g. Po<strong>in</strong>ar & Hess, 1974)<br />

and vertebrate-parasitic nematodes (Wright, 1974; Lee & Wright, 1978). The<br />

migratory trichurid nematode Capillaria hepatica <strong>in</strong>duces for <strong>in</strong>stance <strong>in</strong> <strong>the</strong> liver <strong>of</strong><br />

its host mouse a syncytial feed<strong>in</strong>g site, consist<strong>in</strong>g <strong>of</strong> mult<strong>in</strong>ucleate food <strong>cells</strong> whose<br />

contents are <strong>in</strong>gested and which ultimately degenerate (Wright, 1974). It is suggested<br />

that <strong>the</strong> parasite progressively <strong>in</strong>duces new feed<strong>in</strong>g sites on its migration through <strong>the</strong><br />

liver. A similar host-parasite relationship was shown for Trichuris muris <strong>in</strong> <strong>the</strong><br />

caecum and colon <strong>of</strong> its mouse host (Lee & Wright, 1978). In this respect X. <strong>in</strong>dex<br />

shows <strong>in</strong> its behaviour and <strong>in</strong> conjunction with associated responses <strong>of</strong> <strong>the</strong> host<br />

tissue, closer aff<strong>in</strong>ities to <strong>the</strong> mammal parasites mentioned than to sedentary plant<br />

parasitic nematodes which, as long as <strong>the</strong>y live, do not destroy <strong>the</strong> cellular alterations<br />

<strong>the</strong>y <strong>in</strong>duce and ma<strong>in</strong>ta<strong>in</strong>.<br />

Figs. 14-17. Feed<strong>in</strong>g <strong>of</strong> Xiph<strong>in</strong>ema <strong>in</strong>dex on <strong>root</strong>-<strong>tip</strong>s <strong>of</strong> Ficus <strong>carica</strong> seedl<strong>in</strong>gs. LS<br />

through 6- to 12-day-old <strong>root</strong>-<strong>tip</strong> galls.<br />

Fig. 14. Modified <strong>cells</strong> with several wall stubs (tos). x 1600.<br />

Fig. 15. Two older <strong>modified</strong> <strong>cells</strong> with new cell plates {cp), each surrounded <strong>by</strong> a<br />

phragmoplast. Nuclei (n) are found at both poles <strong>of</strong> <strong>the</strong> phragmoplasts. Note <strong>the</strong> two<br />

th<strong>in</strong> and irregular walls, one fus<strong>in</strong>g with a thick wall with a stub (tos) at its end<br />

(arrowhead), x 3000.<br />

Fig. 16. A new cell plate (cp), surrounded <strong>by</strong> dictyosomes (d), is orientated towards<br />

<strong>the</strong> stub (tus) <strong>of</strong> an older cell wall, x 13000.<br />

Fig. 17. New cell plate (cp) surrounded <strong>by</strong> a phragmoplast between 2 newly formed<br />

nuclei (w). The figure shows <strong>the</strong> same cell plate as <strong>the</strong> vertical plate <strong>in</strong> Fig. 15, but at<br />

a slightly different plane and at a higher magnification, x 6000.


206 U. Wyss, H. Lehtnann and R. Jank-Ladtmg<br />

The <strong>cells</strong> killed <strong>by</strong> X. <strong>in</strong>dex feed<strong>in</strong>g show similarities to <strong>the</strong> degenerated <strong>cells</strong> that<br />

result as a hypersensitive response to Meloidogyne <strong>in</strong>cognita <strong>in</strong>fection <strong>in</strong> resistant<br />

tomato <strong>root</strong>s (Paulson & Webster, 1972), especially with respect to <strong>the</strong> ra<strong>the</strong>r rapid<br />

<strong>in</strong>crease <strong>in</strong> electron-density <strong>of</strong> <strong>the</strong> affected cytoplasm. In addition <strong>the</strong> stimulus that<br />

causes <strong>the</strong> disorganization <strong>of</strong> <strong>the</strong> parasitized <strong>cells</strong> does not spread to adjacent <strong>cells</strong>.<br />

The trigger, however, which <strong>in</strong>itiates <strong>the</strong> mitotic and cytok<strong>in</strong>etic aberrations obviously<br />

passes <strong>in</strong>to neighbour<strong>in</strong>g <strong>cells</strong>. This implies a symplastic movement <strong>of</strong> <strong>the</strong> trigger,<br />

i.e. via plasmodesmata, which <strong>in</strong> turn implies a relatively low molecular weight. The<br />

expansion <strong>of</strong> <strong>the</strong> neighbour<strong>in</strong>g <strong>cells</strong> is later facilitated <strong>by</strong> <strong>the</strong> necrotic, easily crushable,<br />

<strong>cells</strong> that surround <strong>the</strong>m.<br />

Little is yet known about <strong>the</strong> chemical nature <strong>of</strong> <strong>the</strong> trigger that <strong>in</strong>duces <strong>modified</strong><br />

<strong>cells</strong> <strong>in</strong> specific plant-nematode <strong>in</strong>teractions. In X. <strong>in</strong>dex <strong>the</strong> trigger can only be<br />

released <strong>in</strong>to perforated <strong>cells</strong> via <strong>the</strong> parasite's odontostyle, hav<strong>in</strong>g been produced <strong>in</strong><br />

secretory gland <strong>cells</strong> that open <strong>in</strong>to <strong>the</strong> food canal. In a recent study (Robertson &<br />

Wyss, 1979) it was shown that X. <strong>in</strong>dex possesses <strong>in</strong> its basal oesophageal bulb a<br />

large and very active gland cell whose duct system was seen to deplete after <strong>the</strong> last<br />

perforation thrust <strong>of</strong> <strong>the</strong> stylet and dur<strong>in</strong>g <strong>in</strong>gestion pauses. There are several<br />

<strong>in</strong>dications that only secretions from this cell will be <strong>in</strong>jected <strong>in</strong>to perforated plant<br />

<strong>cells</strong>. Microanalytical studies on biochemical events at <strong>the</strong> site <strong>of</strong> <strong>the</strong> host-parasite<br />

<strong>in</strong>teraction: F. <strong>carica</strong>-X. <strong>in</strong>dex are <strong>in</strong> progress (Poehl<strong>in</strong>g, Wyss & Neuh<strong>of</strong>f, 1979)<br />

and it is hoped that <strong>the</strong>y will f<strong>in</strong>ally provide an answer.<br />

This study, f<strong>in</strong>anced <strong>by</strong> <strong>the</strong> Deutsche Forschungsgeme<strong>in</strong>schaft, was made <strong>in</strong> <strong>the</strong> Arbeitsgeme<strong>in</strong>schaft<br />

fur Elektronenmikroskopie der Tierarztlichen Hochschule Hannover. The<br />

authors thank Ulrike Ahrendt for technical assistance and Dr M. G. K. Jones, Department <strong>of</strong><br />

Biochemistry, University <strong>of</strong> Cambridge, England, for helpful comments.<br />

REFERENCES<br />

BIRD, A. F. (1979). Histopathology and physiology <strong>of</strong> syncytia. In Root-knot Nematodes<br />

{Meloidogyne species): Systematics, Biology and Control (ed. F. Lamberti & C. E. Taylor),<br />

PP- I 5S~ I 7 I - New York and London: Academic Press.<br />

BLEVE-ZACHEO, T., ZACHEO, G., LAMBERTI, F. & ARRIGONI, O. (1977). Cell wall breakdown<br />

and cellular response <strong>in</strong> develop<strong>in</strong>g galls <strong>in</strong>duced <strong>by</strong> Longidortu apulus. Nematol. medit. 5,<br />

3°5-3ii-<br />

BLEVE-ZACHEO, T., ZACHEO, G., LAMBERTI, F. & ARRIGONI, O. (1979). Cell wall protrusions<br />

and associated membranes <strong>in</strong> <strong>root</strong>s parasitized <strong>by</strong> Longidorus apuliis. Nematologica 25, 62-66.<br />

FISHER, J. M. & RASKI, D. L. (1967). Feed<strong>in</strong>g <strong>of</strong> Xiph<strong>in</strong>ema <strong>in</strong>dex and X. diversicaudatum.<br />

Proc. helm<strong>in</strong>th. Soc. Wash. 34, 68-72.<br />

FOWKE, L. C, BECH-HANSEN, C. W., GAMBORG, O. L. & CONSTABEL, F. (1975). Electronmicroscope<br />

observations <strong>of</strong> mitosis and cytok<strong>in</strong>esis <strong>in</strong> mult<strong>in</strong>ucleate protoplasts <strong>of</strong> soybean.<br />

J. Cell Sci. 18, 49i-5°7-<br />

GUNNING, B. E. S. & PATE, J. S. (1969). Transfer <strong>cells</strong> - plant <strong>cells</strong> with wall <strong>in</strong>growths,<br />

specialized <strong>in</strong> relation to short distance transport <strong>of</strong> solutes - <strong>the</strong>ir occurrence, structure and<br />

development. Protoplasma 68, 107-133.<br />

GUNNING, B. E. S., PATE, J. S. & GREEN, L. W. (1970). Transfer <strong>cells</strong> <strong>in</strong> <strong>the</strong> vascular system<br />

<strong>of</strong> stems: Taxonomy, association with nodes, and structure. Protoplasma 71, 147-171.<br />

HEWITT, W. B., RASKI, D. J. & GOHEEN, A. C. (1958). Nematode vectors <strong>of</strong> soil-borne fanleaf<br />

virus <strong>of</strong> grapev<strong>in</strong>es. Phytopathology 48, 586-595.


Modified <strong>root</strong>-<strong>tip</strong> <strong>cells</strong> <strong>in</strong> Ficus 207<br />

HUANG, C. S. & MACGENTI, A. R. (1969). Mitotic aberrations and nuclear changes <strong>of</strong> develop<strong>in</strong>g<br />

giant <strong>cells</strong> <strong>in</strong> Viciafaba caused <strong>by</strong> <strong>root</strong> knot nematode, Meloidogyne javarrica. Phytopathology<br />

59, 418-425-<br />

JONES, M. G. K. & DROPKIN, V. H. (1975). Cellular alterations <strong>in</strong>duced <strong>in</strong> soybean <strong>root</strong>s <strong>by</strong><br />

three endoparasitic nematodes. Physiol. PI. Path. 5, 119-124.<br />

JONES, M. G. K. & NORTHCOTE, D. H. (1972). Nematode-<strong>in</strong>duced syncytium-a mult<strong>in</strong>ucleate<br />

transfer cell. jf. Cell Sci. 10, 789-809.<br />

JONES, M. G. K. & PAYNE, H. L. (1977). The structure <strong>of</strong> syncytia <strong>in</strong>duced <strong>by</strong> <strong>the</strong> phytoparasitic<br />

nematode Nacobbus aberrans <strong>in</strong> tomato <strong>root</strong>s, and <strong>the</strong> possible role <strong>of</strong> plasmodesmata<br />

<strong>in</strong> <strong>the</strong>ir nutrition. J. Cell Sci. 23, 299-313.<br />

JONES, M. G. K. & PAYNE, H. L. (1978a). Early stages <strong>of</strong> nematode-<strong>in</strong>duced giant cell<br />

formation <strong>in</strong> <strong>root</strong>s <strong>of</strong> Impatiens baham<strong>in</strong>a. J. Nemat. 10, 70—84.<br />

JONES, M. G. K. & PAYNE, H. L. (19786). Cytok<strong>in</strong>esis <strong>in</strong> Impatiens baham<strong>in</strong>a and <strong>the</strong> effect<br />

<strong>of</strong> caffe<strong>in</strong>e. Cytobios 20, 79-91.<br />

LEE, T. D. G. & WRIGHT, K. A. (1978). The morphology <strong>of</strong> <strong>the</strong> attachment and probable<br />

feed<strong>in</strong>g site <strong>of</strong> <strong>the</strong> nematode Trichuris muris (Schrank, 1788) Hall, 1916. Can. J. Zool. 56,<br />

1889-1905.<br />

LEHMANN, H. & WYSS, U. (1978). The <strong>ultrastructure</strong> <strong>of</strong> <strong>modified</strong> <strong>root</strong>-<strong>tip</strong> <strong>cells</strong> <strong>in</strong>duced <strong>by</strong> <strong>the</strong><br />

feed<strong>in</strong>g <strong>of</strong> an ectoparasitic nematode. gth <strong>in</strong>t. Conf. Electron Microsc, Toronto, vol. 2<br />

(ed. J. M. Sturgess), pp. 438-439. Toronto: The Imperial Press.<br />

ORION, D., GOMMERS, F. J. & VAN BEZOOIJEN, J. (1973). Physiological and cellular changes <strong>in</strong><br />

<strong>the</strong> cortical tissue <strong>of</strong> Meloidogyne <strong>in</strong>cognita galls. Med. Fac. Landboutvto. Rijksuniv. Gent<br />

38, 1297-1301.<br />

PAULSON, R. E. & WEBSTER, J. M. (1972). Ultrastructure <strong>of</strong> <strong>the</strong> hypersensitive reaction <strong>in</strong><br />

<strong>root</strong>s <strong>of</strong> tomato, Lycopersicon esculentum L., to <strong>in</strong>fection <strong>by</strong> <strong>the</strong> <strong>root</strong>-knot nematode, Meloidogyne<br />

<strong>in</strong>cognita. Physiol. PI. Path. 2, 227-234.<br />

POEHLING, H.-M., WYSS, U. & NEUHOFF, V. (1979). Microanalysis <strong>of</strong> free am<strong>in</strong>o acids <strong>in</strong> <strong>the</strong><br />

aseptic host-parasite system: Ficus <strong>carica</strong> — Xiph<strong>in</strong>ema <strong>in</strong>dex. Physiol. PL Path. (In Press.)<br />

POINAR, G. O. & HESS, R. (1974). An ultrastructural study <strong>of</strong> <strong>the</strong> response <strong>of</strong> Blatella germanica<br />

(Orthoptera: Blattidae) to <strong>the</strong> nematode Abbreviata caucasica (Spiruida: Physalopteridae).<br />

Int. J. Parasit. 4, 133-138.<br />

RADEWALD, J. D. & RASKI, D. J. (1962). Studies on <strong>the</strong> host range and pathogenicity <strong>of</strong><br />

Xiph<strong>in</strong>ema <strong>in</strong>dex. Phytopathology 52, 748-749.<br />

REBOIS, R. V., MADDEN, P. A. & ELDRIDCE, B. J. (1975). Some ultrastructural changes <strong>in</strong>duced<br />

<strong>in</strong> resistant and susceptible soybean <strong>root</strong>s follow<strong>in</strong>g <strong>in</strong>fection <strong>by</strong> Rotylenchulus reniformis.<br />

J. Nemat. 7, 122-139.<br />

ROBERTSON, W. M. & WYSS, U. (1979). Observations on <strong>the</strong> <strong>ultrastructure</strong> and function <strong>of</strong><br />

<strong>the</strong> dorsal oesophageal gland cell <strong>in</strong> Xiph<strong>in</strong>ema <strong>in</strong>dex. Nematologica 25. (In Press.)<br />

R6PER, W. & R6PER, S. (1977). Centripetal wall formation <strong>in</strong> <strong>root</strong>s <strong>of</strong> Viciafaba after caffe<strong>in</strong>e<br />

treatment. Protoplasma 93, 89—100.<br />

ROHFRITSCH, O. (1971). Infrastructure des cellules du tissu nourricier dela galle de Geocrypta<br />

galii H. Lw. sur Galium mollugo L. C. r. hebd. Sianc. Acad. Sci., Paris D 272, 76-78.<br />

ROHFRITSCH, O. (1974). Infrastructure du tissu nourricier de la galle de VAulax glechomae L.<br />

sur Glechoma hederacea L. Protoplasma 81, 205-230.<br />

ROHFRITSCH, O. (1977). Ultrastructure <strong>of</strong> <strong>the</strong> nutritive tissue <strong>of</strong> <strong>the</strong> Chermes abietis L. fundatrix<br />

on Picea excelsa L. Marcellia 40, 135-149.<br />

RUMPENHORST, H. J. & WEISCHER, B. (1978). Histopathological and histochemical studies on<br />

grapev<strong>in</strong>e <strong>root</strong>s damaged <strong>by</strong> Xiplt<strong>in</strong>ema <strong>in</strong>dex. Rev. Nimat. I, 217-225.<br />

WEISCHER, B. & WYSS, U. (1976). Feed<strong>in</strong>g behaviour and pathogenicity <strong>of</strong> Xiph<strong>in</strong>ema <strong>in</strong>dex<br />

on grapev<strong>in</strong>e <strong>root</strong>s. Nematologica 22, 319-325.<br />

WESTPHAL, E. (1977). Morphogenese, <strong>ultrastructure</strong> et 6tiologie de quelques galles d'Eriophyes<br />

(Acariens) Marcellia 39, 193-375.<br />

WRIGHT, K. A. (1974). The feed<strong>in</strong>g site and probable feed<strong>in</strong>g mechanisms <strong>of</strong> <strong>the</strong> parasitic<br />

nematode Capillaria hepatica (Bancr<strong>of</strong>t, 1893). Can. J. Zool. 52, 1215-1220.<br />

WYSS, U. (1977a). Feed<strong>in</strong>g phases <strong>of</strong> Xiph<strong>in</strong>ema <strong>in</strong>dex and associated processes <strong>in</strong> <strong>the</strong> feed<strong>in</strong>g<br />

apparatus. Nematologica 23, 463-470.


208 U. Wyss, H. Lehmann and R. Jank-Ladwig<br />

WYSS, U. (19776). Feed<strong>in</strong>g mechanisms and feed<strong>in</strong>g behaviour <strong>of</strong> Xiph<strong>in</strong>ema <strong>in</strong>dex. Med.<br />

Fac. Landbouvnv. Rijksuniv. Gent 42, 1513-1519.<br />

WYSS, U. (1978). Root and cell responses to feed<strong>in</strong>g <strong>by</strong> Xiph<strong>in</strong>ema <strong>in</strong>dex. Nematologica 24,<br />

159-166.<br />

WYSS, U. & INST. VVISS. FILM (1977). Xiph<strong>in</strong>ema <strong>in</strong>dex (Nematoda)-Saugen an Wurzeln von<br />

SSml<strong>in</strong>gen (Feige). Film E 2375 des IWF, Gdtt<strong>in</strong>gen. Publ. Wiss. Film. (Sekt. BioL), Ser.<br />

10, Nr 61, E 2375, 20 pp.<br />

(Received 21 May 1979)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!