30.09.2012 Views

Clinical and Technical Review - Tecomedical

Clinical and Technical Review - Tecomedical

Clinical and Technical Review - Tecomedical

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Author:<br />

Peter<br />

Haima, Ph<br />

<strong>Clinical</strong> <strong>and</strong><br />

<strong>Technical</strong> <strong>Review</strong><br />

Bone & Cartilage Metabolism<br />

Cell culture<br />

Diagnostic <strong>and</strong> therapy control<br />

Animal models


2<br />

Bone turnover Biomarker in<br />

Osteoporosis<br />

Diagnosis of metabolic bone diseases can be established<br />

by measuring bone mineral density (BMD) at the hips or spine.<br />

However, BMD is a static measure of bone composition,<br />

reflecting its history. A baseline BMD value does not offer<br />

any prediction of future bone loss or response to therapy.<br />

Moreover, since biochemical bone marker reflect the wholebody<br />

rates of bone turnover, the combined measurement of<br />

bone marker <strong>and</strong> BMD provides more information on the<br />

overall bone loss than BMD measurement at specific skeletal<br />

sites alone.<br />

The increasing number of drugs available for treatment of<br />

osteoporosis <strong>and</strong> other bone diseases requires the use of<br />

more rapid <strong>and</strong> predictive methods to assess therapy efficacy.<br />

While detectable <strong>and</strong> significant changes in BMD take 18 to<br />

24 months to develop, bone turnover marker have been<br />

shown to detect changes in bone tissue within 3-6 months<br />

after starting anti-resorptive therapy. Therefore, measurement<br />

of bone turnover marker is increasingly recommended<br />

as a key component of therapy management: to rapidly<br />

identify therapy responders <strong>and</strong> non-responders, to assess<br />

therapy efficacy <strong>and</strong> to determine the optimal therapy <strong>and</strong><br />

dose of treatment.<br />

Bone marker are intended for use as an<br />

aid in:<br />

• management of postmenopausal osteoporosis <strong>and</strong><br />

Paget’s disease;<br />

• monitoring of postmenopausal women on hormonal<br />

or bisphosphonate therapy;<br />

• prediction of skeletal response to hormonal therapy<br />

in postmenopausal women.<br />

• Detection <strong>and</strong> monitoring of Bone metastasis.<br />

Biomarker <strong>and</strong> Cartilage Destruction<br />

Degenerative joint disease such as osteoarthritis (OA) <strong>and</strong><br />

rheumatoid arthritis (RA) are major causes of disability <strong>and</strong><br />

impaired quality of life among the elderly. Despite better<br />

underst<strong>and</strong>ing of the underlying pathomechanisms, current<br />

clinical practice for diagnosing these diseases mainly relies<br />

on symptom assessment, which has limited sensitivity <strong>and</strong><br />

specificity. By the time radiological techniques can reveal<br />

specific sign, the disease has advanced to a late phase with<br />

pronounced structural damage, when the only therapeutical<br />

option remaining is joint replacement. As marker provide a<br />

dynamic measure of current degradation rate in contrast to<br />

radiological investigations, they allow a rapid determination<br />

of the therapeutic effects, <strong>and</strong> they may also be used for<br />

selecting the therapies <strong>and</strong> drug dose, which are most efficient.<br />

In the lack of established diagnostic methods allowing<br />

the detection of cartilage degradation, early diagnosis<br />

<strong>and</strong> disease monitoring remain a major challenge of health<br />

care professionals.<br />

Therefore Biochemical marker for Cartilage degradation <strong>and</strong><br />

synthesis are helpful for the management of Rheumatoid<br />

Arthritis <strong>and</strong> Osteoarthritis.<br />

Biomarker for diagnosing skeletal<br />

metastases<br />

Cancers have the ability to metastasize to organs distant<br />

from the site of the primary tumor. Breast, prostate,<br />

<strong>and</strong> lung cancer are primary tumors that most frequently<br />

metastasize to the skeleton. The chronic presence of bone<br />

metastasis often results in complete pathologic remodeling<br />

of the affected bone compartment, making affected bones<br />

vulnerable to several complications. Such complications<br />

include pathologic fractures, spinal cord compression,<br />

hypocalcemia, <strong>and</strong> severe bone pain. All reducing quality of<br />

life <strong>and</strong> worsening prognosis. Therefore, early diagnosis <strong>and</strong><br />

adequate treatment of bone metastasis is critically important<br />

for the clinical management of cancer patients.<br />

Emerging evidence suggests that biomarker of bone<br />

turnover carry notable potentials to become useful<br />

diagnostic tools for the diagnosis of bone metastases.<br />

The study by Leeming et al was sought to assess the<br />

relative use of eight biomarker for the detection of bone<br />

metastases in cancer forms frequently spreading to the skeleton.<br />

Participants were 161 patients with either breast, prostate,<br />

or lung cancer. The presence <strong>and</strong> extent of<br />

bone metastases was assessed by imaging techniques<br />

(computer tomography <strong>and</strong>/or magnetic resonance<br />

imaging) <strong>and</strong> Technetium-99m scintigraphy. Number of<br />

bone metastases was recorded, <strong>and</strong> the skeletal load was<br />

graded, as previously proposed by Soloway. The Serum<br />

or urinary level of the bone resorption marker (alpha-CTX,<br />

beta-CTX, NTX, <strong>and</strong> ICTP), formation marker (BSAP),<br />

<strong>and</strong> osteoclastogenesis marker (osteoprotegerin, RANKL,<br />

<strong>and</strong> TRAP5b) was measured by commercially available<br />

immunoassays. There was a uniform pattern of significantly<br />

increased levels of the resorption marker in patients with<br />

bone metastases compared with those without.<br />

The relative responsiveness of marker was calculated to<br />

obtain insights into the relative sensitivity of the different<br />

marker to signal skeletal involvement. The plot demonstrates<br />

a trend toward greater relative increases in the level of the<br />

urine alpha-CTX <strong>and</strong> serum BSAP marker compared with<br />

other marker; differences becoming more evident with<br />

increasing Soloway score.


Figure 1:<br />

Soloway 0 = Patients without bone metastasis<br />

Soloway 1 = Patients with < 6 bone metastases<br />

Soloway 2 = Patients with < 20 bone metastases<br />

Soloway 3 = Patients with > 20 bone metastases but less<br />

than a “super scan”<br />

Soloway 4 = Patients with “super scan” that is defined by<br />

a > 75 % involvement of the ribs, vertebrae<br />

<strong>and</strong> pelvic bones<br />

Relative increases in bone resorption, bone formation, <strong>and</strong><br />

osteoclastogenesis marker as a function of the extent of skeletal<br />

involvement assessed in 132 breast <strong>and</strong> prostate cancer<br />

patients. Relative increases are expressed as percentage of<br />

levels in patients with Soloway score 0 (1) .<br />

Currently, the diagnosis of bone metastasis in cancer<br />

patients relies predominantly on imaging techniques,<br />

such as plain radiography or Technetium-99 scintigraphy.<br />

Although scintigraphy is more sensitive than plain<br />

radiography <strong>and</strong> even can give quantitative information<br />

regarding skeletal involvement, this examination is also<br />

more expensive, invasive, time-consuming <strong>and</strong> exposes<br />

cancer patients to irradiation, limiting its use for monitoring<br />

purposes. Thus, these weaknesses of current methodologies<br />

point out an unmet need for establishing supplementary<br />

diagnostic tools like biochemical marker.<br />

Regulators of bone turnover<br />

Bone remodeling is an ongoing dynamic process<br />

consisting of bone resorption (due to osteoclasts digesting<br />

type I collagen) <strong>and</strong> bone formation (due to osteoblasts).<br />

Normally, these processes are balanced, resulting in 10 %<br />

replacement of the skeleton, each year. However, due to<br />

aging, disease or other conditions, bone turnover may<br />

become imbalanced where bone resorption <strong>and</strong> formation<br />

occur at different rates.<br />

OPG (Osteoprotegerin), also known as osteoclast inhibiting<br />

factor (OCIF), inhibits the differentiation <strong>and</strong> activation of<br />

osteoclasts.<br />

On the other h<strong>and</strong>, sRANKL (soluble receptor activator of<br />

nuclear factor (NF)-κB lig<strong>and</strong>) is the main stimulator for the<br />

formation of mature osteoclasts. Stimulation occurs through<br />

binding of sRANKL to the osteoclastic membrane receptor<br />

RANK.<br />

OPG inhibits the binding of sRANKL to RANK <strong>and</strong> thus<br />

the activation of osteoclasts. The OPG/sRANKL system is<br />

therefore a key regulator of bone resorption. Abnormalities<br />

in the balance of the OPG/sRANKL system may be the<br />

cause of bone loss in many metabolic bone diseases as<br />

osteoporosis, Paget’s disease, metastatic cancers <strong>and</strong><br />

rheumatic bone degradation.<br />

In normal healthy people, sRANKL levels are generally low<br />

because the majority is bound by OPG. Decreased levels of<br />

OPG <strong>and</strong>/or increased levels of sRANKL may indicate an<br />

imbalance of the OPG/sRANKL system.<br />

OPG <strong>and</strong>/or sRANKL measurements can<br />

be used as an aid in determining the cause<br />

of bone loss by assessing imbalances in<br />

the OPG/sRANKL system in:<br />

• Post menopausal osteoporosis<br />

• Paget’s disease<br />

• Metastatic cancer<br />

• Diseases with locally increased resorption activity<br />

• Indicating bone loss in rheumatoid arthritis<br />

• Therapy monitoring after treatment with OPG<br />

• Determining an imbalance in vascular calcification (high<br />

OPG was associated with cardiovascular- <strong>and</strong> all-cause<br />

mortality in hemodialysis patients; Morena et al. 2006).<br />

• Metastatic Renal Cell Carcinoma (OPG)<br />

3


4<br />

Bone Formation<br />

Osteoblast:<br />

The osteoblast is the bone cell responsible for:<br />

1) The formation <strong>and</strong> organization of the extracellular matrix<br />

(ECM) of bone <strong>and</strong> its subsequent mineralization;<br />

2) Synthesis of collagen <strong>and</strong> other bone proteins. Three<br />

periods are distinguished in the osteoblast life cycle.<br />

A) Cell proliferation: genes associated with formation of the<br />

ECM, like Type I Collagen, are expressed <strong>and</strong> gradually<br />

down regulated.<br />

B) ECM maturation: proteins associated with the osteoblast<br />

phenotype are expressed, like Bone-specific Alkaline<br />

Phosphatase (BAP).<br />

C) ECM mineralization: BAP gene expression declines,<br />

Bone Sialo Protein (BSP), osteopontin <strong>and</strong> osteocalcin<br />

gene expression increase.<br />

Bone matrix:<br />

Consists of Type 1 collagen (90 % of the protein in bone),<br />

osteocalcin, osteopontin, osteonectin, proteoglycans,<br />

alkaline phosphatase <strong>and</strong> bone sialo protein.<br />

Proteins<br />

OPG:<br />

OPG (Osteoprotegerin) or OCIF (Osteoclast Inhibiting<br />

Factor) or OBF (Osteoclast Binding Factor) is a key factor in<br />

inhibition of osteoclast differentiation <strong>and</strong> activity.<br />

It binds <strong>and</strong> acts as as decoy receptor for s-RANKL.<br />

sRANKL:<br />

Soluble Receptor Activator of Nuclear factor (NF)-κB Lig<strong>and</strong>.<br />

sRANKL binds to osteoclast receptor: RANK (NF-κB ) <strong>and</strong> is<br />

the main stimulatory factor for the formation of mature<br />

osteoclasts.<br />

BAP:<br />

Bone-specific Alkaline Phosphatase is an osteoblastic enzyme<br />

involved in bone formation. It is assumed that BAP plays<br />

a role in ECM maturation. BAP is a key biochemical bone<br />

marker used for assessing bone turnover <strong>and</strong><br />

monitoring therapy.<br />

Bone Sialoprotein (BSP):<br />

Major structural protein of the bone matrix, expression of<br />

BSP is normally restricted to mineralized connective tissues<br />

of bones <strong>and</strong> teeth. This role has been associated with<br />

mineral crystal formation.<br />

Osteocalcin:<br />

Major structural protein of the bone matrix, binds calcium<br />

<strong>and</strong> attracts osteoclasts.<br />

Osteonectin:<br />

Protein that binds calcium <strong>and</strong> is involved in regulation<br />

of mineralization.<br />

Osteopontin:<br />

Cell-binding protein that anchors osteoclasts to<br />

mineralised matrix.<br />

Proteoglycans:<br />

Monomer looks like test tube brush with keratan <strong>and</strong><br />

chondroitin sulphate chains (= GAGs) bound to a protein<br />

core molecule. Monomers are attached via a link protein<br />

to hyaluronic acid.<br />

DKK-1:<br />

Dickkopf-1(DKK-1) is a 28,672 Da secreted protein that acts<br />

as soluble inhibitor of the WNT signalling pathway. DKK-1<br />

regulates different developmental processes <strong>and</strong> is also<br />

involved in the regulation of bone metabolism as it inhibits<br />

the differentiation of osteoblast.<br />

Collagen metabolites <strong>and</strong> epitopes<br />

Type I Procollagen:<br />

Secreted precursor of Type I Collagen. Extracellular cleavage<br />

results in N- <strong>and</strong> C-terminal propeptides.<br />

PINP:<br />

Epitope of N- terminal propeptide, released during cleavage<br />

of Type I Procollagen.<br />

CICP/PICP:<br />

Epitope of C- terminal propeptide, released during cleavage<br />

of Type I Procollagen (PICP = CICP).<br />

Type I Collagen:<br />

Collagen molecules consist of three chains to form a triple<br />

helix. Crosslinks between the chains <strong>and</strong> the molecules of<br />

collagen give collagen its strength.


Bone Resorption<br />

Osteoclast:<br />

Large motile, multinucleated bone cell located on bone surfaces.<br />

Responsible for the resorption of bone matrix (osteoid).<br />

Osteoclasts have a ruffled border of the cell membrane that<br />

is surrounded by an organelle-free region, or « clear zone ».<br />

Mineral Dissolution:<br />

These processes take place beneath the ruffled border<br />

<strong>and</strong> depend on lysosomal enzyme secretion <strong>and</strong> an acid<br />

microenvironment. A pH gradient across the ruffled<br />

membrane is the consequence of active transport<br />

mechanisms by the osteoclasts.<br />

Collagen degradation:<br />

Osteoclasts actively synthesize lysosomal enzymes,<br />

in particular the tartrate resistant isoenzyme of acid<br />

phosphatase (TRAP 5b) <strong>and</strong> cysteine-proteinases such<br />

as Cathepsin K that are capable of degrading collagen.<br />

Two bone collagenolytic pathways exist:<br />

1. A Cathepsin K collagen degradation pathway is the prevailing<br />

one. Resulting in the following epitopes:<br />

CTX, NTX, DPD <strong>and</strong> PYD.<br />

2. A Matrix MetalloProteinase (MMP) collagen degradation<br />

pathway resulting in the epitope ICTP. This pathway becomes<br />

significant in some situations, including metastatic<br />

bone diseases <strong>and</strong> multiple myeloma. ICTP however, has<br />

proven to be a very poor marker in osteoporosis.<br />

Proteins<br />

TRAP 5b:<br />

The active isoform of TRAP5b, serum b<strong>and</strong> 5 tartrateresistant<br />

acid phosphatase, is specifically synthesized<br />

by bone-resorbing osteoclasts. It has been shown that<br />

TRAP5b catalyzes the formation of reactive oxygen<br />

species (ROS). Research results indicate that ROS<br />

generated by TRAP5b are involved in the degradation<br />

of bone matrix products in resorbing osteoclasts.<br />

TRAP5b activity reflects the osteoclast activity <strong>and</strong> is associated<br />

with the number of osteoclasts. TRAP5b is consideredamarkerfortherateofboneresorption<strong>and</strong>maybeof<br />

particular importance for patients with renal failure because<br />

- in contrast to other marker of resorption -<br />

TRAP5b does not accumulate in the blood.<br />

In tumor patients TRAP5b is an indicator for increased bone<br />

resorption due to bone metastases. Changes in TRAP<br />

activity during therapy monitoring allow the assessment of<br />

the efficiency of antiresorptive therapies in osteoporotic<br />

patients.<br />

RANK:<br />

Osteoclastic receptor for sRANKL, the main stimulatory factor<br />

for the formation of mature osteoclasts.<br />

Cathepsin K:<br />

Main osteoclastic protease, responsible for bulk degradation<br />

of Type I Collagen. Acts both intra- <strong>and</strong> extra-cellularly.<br />

Lysosomal enzymes:<br />

Enzymes secreted by the osteoclasts, responsible for<br />

mineral dissolution in an acid environment.<br />

MMP:<br />

Matrix metalloproteinases MMP-2, -9, -13, -14 participate in<br />

the degradation of the collagenous bone matrix,<br />

resulting in epitope ICTP.<br />

Calcitonin receptor:<br />

Osteoclastic receptor for calcitonin, an inhibitor of<br />

osteoclasts activity.<br />

Sclerostin:<br />

Sclerostin is the protein product of the SOST gene, which is<br />

located at 17q12-21 <strong>and</strong> highly conserved across vertebrate<br />

species.<br />

The highest expression of sclerostin throughout the adult<br />

skeleton has been observed in hypertrophic chondrocytes<br />

<strong>and</strong> osteocytes. Sclerostin belongs to the DAN1 family of<br />

glycoproteins of which multiple family members antagonize<br />

bone morphogenetic protein (BMP) <strong>and</strong>/or Wnt2 activity.<br />

Sclerostin blocks canonical Wnt signaling by binding to the<br />

Wnt coreceptors LRP5/63 . Thus, it inhibits bone formation<br />

by regulating osteoblast function <strong>and</strong> promoting osteoblast<br />

apoptosis. By blocking the Wnt-pathway Sclerostin also<br />

antagonises bone morphogenetic protein action e.g. osteoblast<br />

differentiation, but does not inhibit direct BMP-induced<br />

responses.<br />

Sclerostin expression is down-regulated by Parathyroid hormone<br />

(PTH) as well as the mechanical stimulation of bone<br />

reduces the expression of sclerostin.<br />

1 DAN = differential screening-selected gene aberrative in neuroblastomaa<br />

2 Wnt = wingless Proteine<br />

3 LRP = low-density lipoprotein receptor-related protein 5 <strong>and</strong> 6<br />

5


6<br />

Collagen metabolites <strong>and</strong> epitopes<br />

DPD:<br />

Deoxypyridinoline. Breakdown product from Type I collagen<br />

degradation.<br />

PYD:<br />

Pyridinoline. Breakdown product from Type I collagen<br />

degradation.<br />

NTX:<br />

Cross-linked N-terminal telopeptide resulting from<br />

Type I collagen degradation. NTX = new synthesized <strong>and</strong><br />

agemodified bone matrix.<br />

CTX:<br />

C-terminal telopeptide resulting from Type I collagen<br />

degradation, CTX alpha (New Bone Matrix), CTX beta (Old<br />

Bone Matrix).<br />

ICTP=CTX-MMP:<br />

Carboxy-terminal telopeptide of type I collagen.<br />

Larger epitope containing the smaller CTX epitope.<br />

Helical Peptide:<br />

Peptide derived from the helical region of the α-1 chain of<br />

Type 1 collagen.<br />

Note:<br />

The concentration of the different biomarker are partly<br />

dependent on age, gender, race as well as influenced by<br />

diurnal rhythm, food intake etc. (see table on page 8). Age<br />

dependency is of high importance if biomarker are used for<br />

preclinical testing, especially in juvenile laboratory animals<br />

(rat, mice).<br />

Bone turnover regulators<br />

Calcitonin:<br />

Inhibits bone resorption, directly acts on osteoclasts.<br />

Parathyroid hormone (PTH):<br />

Key factor in the maintenance of calcium <strong>and</strong> phosphate<br />

homeostasis. Stimulates osteoclasts activity.<br />

1,25(OH) 2D3 :<br />

1,25 dihydroxy vitamin D3 (or 1,25-dihydroxycholecalciferol)<br />

is the biologically active form of vitamin D. It is<br />

synthesized in the kidney from 25-vitamin D (25-hydroxycholecalciferol).<br />

1,25(OH) 2D3 is the principal regulator<br />

of calcium homeostasis in the body. It enhances the<br />

efficiency of calcium.<br />

Fetuin A:<br />

Glycoprotein synthesized by liver, secreted into blood.<br />

Deposited as noncollagenous protein in mineralized bones.<br />

Potent inhibitor of soft tissue (vascular) calcification by binding<br />

excess mineral in serum. Regulates calcium metabolism<br />

<strong>and</strong> osteogenesis.<br />

FGF-23:<br />

Fibroblast Growth Factor 23. Important regulator of<br />

phosphate homeostasis. Able to “block” renal reabsorption<br />

of Pi. FGF-23 abnormalities are involved in renal phos-phate<br />

wasting disorders leading to “hypophosphatemia”.<br />

Literature:<br />

1. Leeming DJ, Koizumi M, Byrjalsen I, Li B, Qvist P, Tanko LB.<br />

The relative use of eight collagenous <strong>and</strong> noncollagenous markers<br />

for diagnosis of skeletal metastases in breast, prostate, or<br />

lung cancer patients.<br />

Cancer Epidemiol Biomarkers Prev. 2006; 15(1):32-8.<br />

2. Caulfield MP, Reitz RE. Biochemical markers of bone turnover <strong>and</strong><br />

their utility in osteoporosis. MLO-online April 2004.<br />

Schaller S, Henriksen K, Hoegh-Andersen P, Søndergaard BC,<br />

Sumer EU, Tanko LB, Qvist P <strong>and</strong> Karsdal MA. In vitro, ex vivo, <strong>and</strong><br />

in vivo methodological approaches for studying<br />

therapeutic targets of osteoporosis <strong>and</strong> degenerative joint<br />

diseases: How biomarkers can assist? Assay And Drug<br />

Development Technologies 2005; 3:553-580.<br />

3. Delmas PD, Eastell R, Garnero P, Seibel MJ <strong>and</strong> Stephan J. The use<br />

of biochemical markers of bone turnover in osteoporosis.<br />

Osteoporosis Int 2000: Supp 6: S2-17.


Bone Turnover – Biochemical Marker<br />

Sclerostin:<br />

inhibits differentiation <strong>and</strong><br />

function of osteoblasts<br />

through BMP<br />

DKK-1<br />

regultes osteoblast<br />

differentiation<br />

P *<br />

C<br />

I<br />

P<br />

MMPs<br />

BAP<br />

(bone-specific alkaline phosphatase)<br />

“calcification of the matrix”<br />

ICTP **<br />

ICP<br />

*<br />

P<br />

,<br />

P<br />

N<br />

I<br />

P<br />

Helical Peptide<br />

** Not so relevant in<br />

Osteoporosis<br />

Fetuin A<br />

* CICP = PICP<br />

7


8<br />

Bone marker <strong>and</strong> characteristics<br />

Biomarker Method Main<br />

Sample<br />

Type<br />

Formation<br />

BAP<br />

Osteocalcin<br />

Intact<br />

Osteocalcin<br />

N-mid<br />

PINP<br />

PICP = CICP<br />

Resorption<br />

ICTP =<br />

CTX-MMP<br />

Others<br />

ELISA<br />

IRMA/<br />

ELISA<br />

ELISA<br />

RIA<br />

ELISA<br />

Serum<br />

Serum<br />

Serum<br />

Serum<br />

Serum<br />

A(a) B C D E F G H<br />

Pre- &<br />

postmenopause<br />

+<br />

+<br />

+<br />

+<br />

NA<br />

Analytical<br />

variation<br />

+<br />

+<br />

+<br />

+<br />

+<br />

Treatment<br />

response<br />

Short<br />

time<br />

change<br />

Within<br />

person<br />

variation<br />

Daily<br />

variation<br />

Food<br />

intake<br />

TRAP 5b ELISA Serum ± + ± ± NA + + ±<br />

DPD ELISA Urine + + + + + - + +<br />

NTx ELISA<br />

CTx ELISA<br />

+<br />

+<br />

+<br />

+<br />

+<br />

Sample<br />

stability<br />

Scores sind: + (yes), - (no), ± (fair/indeterminate), NA (not available)<br />

(a) Letters correspond to following, the marker:<br />

H. preferably demonstrates high stability in the biological<br />

A. shows a difference in the rate of bone turnover pre-<strong>and</strong><br />

specimen<br />

post-menopause<br />

(b) In contrast to OPG, sRANKL showed no response to<br />

B. demonstrates minimal analytical variation<br />

bisphosphonate treatment of osteoporotic postmeno-<br />

C. significantly changes in response to treatment<br />

pausal women. However, PTH treatment of glucocorticoid<br />

D. detect changes in short time interval (months)<br />

induced osteoporotic women resulted in a fast (1 month)<br />

E. demonstrates minimal within person (biological) variation <strong>and</strong> sustained increase of sRANKL levels.<br />

F. preferably demonstrates little variation over the day<br />

(c) Cathepsin K is elevated in patients with established<br />

G. no influence by food intake<br />

rheumatoid arthritis.<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

±<br />

±<br />

±<br />

+<br />

+<br />

+<br />

+<br />

+<br />

±<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

-<br />

+<br />

+<br />

+<br />

5 days<br />

2–8 °C<br />

4hours<br />

2–8 °C<br />

5 days<br />

2–8 °C<br />

5 days<br />

2–8 °C<br />

5 days<br />

2–8 °C<br />

2 days<br />

2–8 °C<br />

7 days<br />

2–8 °C<br />

Serum + + + + + - ± ± 1day<br />

2–8 °C<br />

Urine + + + + ± - ± +<br />

3 days<br />

2–8 °C<br />

Serum + + + + + - - + 1day<br />

2–8 °C<br />

Urine + + + + ± - - +<br />

ELISA Serum - + - - NA ± + +<br />

7 days<br />

2–8 °C<br />

5 days<br />

2–8 °C<br />

sRANKL ELISA Plasma NA + ± (b) - NA NA + ± 1day<br />

2–8 °C<br />

Osteoprotegerin<br />

(OPG)<br />

ELISA Plasma NA + + - NA NA + ± 1day<br />

2–8 °C<br />

Cathepsine K ELISA Serum NA (c) + NA NA NA NA + ±<br />

2 days<br />

2–8 °C


Bone marker <strong>and</strong> their behavior in various bone diseases<br />

Biomarker CTX-I NTX-I Free<br />

DPD<br />

Bone Disease<br />

• ↑ Increased values of the biomarker in this disease were<br />

observed in various studies as compared to a healthy<br />

control group.<br />

• ↓ Decreased values of the biomarker in this disease were<br />

observed in various studies as compared to a healthy<br />

control group.<br />

• ↑ Large arrows: indicate large <strong>and</strong> significant differences.<br />

↑<br />

Small arrows: indicate small to medium differences<br />

with the control group.<br />

Degradation marker Formation marker<br />

Free<br />

PYD<br />

Helical<br />

peptide<br />

ICTP TRAP<br />

5b<br />

BAP OC PICP/<br />

CICP<br />

↑<br />

Osteoporosis Osteoporose ↑ ↑ ↑ ↑ ↑ ± + ± ↑ ↑ ↑<br />

↑<br />

Hyperparathyroidism Osteoporose ↑ ↑ ↑ ↑ ↑ ± ↑ + ↑ ↑ ↑<br />

↑<br />

Hyperthyroidism ↑ ↑ ↑ ↑ ↑ (↑)<br />

Bone metastases* ↑ ↑ ↑ ↑ ↑ ↑ (↑) ↑ ↑<br />

Multiple myeoloma ↑ ↑ ↑ ↑ ↓ ±<br />

Rickets/<br />

Vitamin-D Deficiency<br />

Osteomalacia<br />

“adult rickets”<br />

↑ ↑ ↑ ↑ ↓ ↑<br />

↑ ↑ ↑ ↑ ↑<br />

Paget´s ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑<br />

Anorexia nervosa (↑) (↑) (↓) (↓↑) (↓)<br />

Growth hormone<br />

deficiency<br />

↓ ↓ ↓<br />

Renal failure ↑ ↑ ↑ ↑ ↑ ↑<br />

PINP<br />

• (↓) (↑): arrows between brackets: different studies<br />

suggest inconsistent behavior of this marker in<br />

this disease.<br />

• ± indicates that according to various studies this marker<br />

is not considered as valuable for this disease.<br />

• Empty spaces indicate that no information was identified<br />

on this biomarker for this disease.<br />

* Increased values were observed for urin CTX alpha <strong>and</strong><br />

Serum BAP in bone metastases.<br />

9


10<br />

Cartilage Degradation<br />

Chrondocyte:<br />

Chondroblasts trapped in lacunae develop into chondrocytes.<br />

Chondrocytes are important in the control of matrix turnover<br />

through production of collagen, proteoglycans <strong>and</strong> enzymes<br />

for cartilage metabolism.<br />

Proteins<br />

Matrix metalloproteinases:<br />

Are involved in the cleavage of Type II Collagen <strong>and</strong> the proteoglycan<br />

aggrecan. Three collagenases (MMP-1, -8,-13) are<br />

mainly responsible for primary cleavage of Type II Collagen.<br />

MMP-1, -8, -13 <strong>and</strong> 14 are involved in cleavage of the core<br />

protein of aggrecan.<br />

Cathepsin K:<br />

Protease produced by synovial fibroblasts, enzyme<br />

plays critical role in cartilage degradation (together with<br />

matrix metalloproteinases). MMPs perform extracellular<br />

predigestion of collagen, after endocytosis of large<br />

fragments, Cathepsin K degrades collagen <strong>and</strong> aggrecan in<br />

acidic lysosomes.<br />

Aggrecanases:<br />

Enzymes involved in cleavage of aggrecan.<br />

COMP:<br />

Cartilage Oligomeric Matrix Protein is an abundant cartilage<br />

glycoprotein also found in tendon <strong>and</strong> other tissues.<br />

Synthesized by chondrocytes, synovial <strong>and</strong> other skeleton<br />

cells. Intact <strong>and</strong> fragmented COMP in synovial fluid or<br />

serum is correlating to cartilage degradation in OA <strong>and</strong> RA.<br />

Cartilage metabolites <strong>and</strong> epitopes<br />

CTX-II:<br />

A 6 amino acid sequence epitope of the nonhelical C- terminal<br />

telopeptides resulting from Type II collagen degradation.<br />

C2C:<br />

C2C or COL2-3/4CLong epitope that specifically appears<br />

into circulation when Type II collagen degradation occurs.<br />

C1,2C:<br />

C1, 2C or COL2-3/4CShort epitope that appears into circulation<br />

when Type II but also Type I collagen degradation occurs.<br />

CS-GAG:<br />

Chondroitin sulfate glycosaminoglycans are bound at high<br />

densities, to a core protein forming the cartilage proteoglycan<br />

aggrecan molecule.<br />

Cartilage Synthesis<br />

Cartilage metabolites <strong>and</strong> epitopes<br />

Type II Procollagen:<br />

Secreted precursor of Type II Collagen. Extracellular cleavage<br />

results in N- <strong>and</strong> C-terminal propeptides.<br />

CP-II:<br />

Epitope of C- terminal propeptide, released during<br />

maturation of Type II Procollagen to Type II Collagen.<br />

Type II Collagen:<br />

The principal structural component of cartilage is an extensive<br />

network of Type II collagen molecules, arranged in fibrils.<br />

Collagen molecules consist of three chains to form a triple<br />

helix. Crosslinks between the chains <strong>and</strong> the molecules of<br />

collagen give collagen its strength.<br />

Proteoglycan Aggrecan:<br />

Responsible for the compressive strength of cartilage. Serve<br />

to trap <strong>and</strong> hold water to regulate matrix hydration. Monomer<br />

looks like test tube brush with keratan <strong>and</strong> chondroitin<br />

sulphate chains (= GAGs) bound to a protein core molecule.<br />

Monomers are attached via a link protein to hyaluronic acid.<br />

CS-GAG:<br />

Chondroitin sulfate glycosaminoglycans are bound at high<br />

densities, to a core protein forming the cartilage proteoglycan<br />

aggrecan molecule.<br />

Aggrecan epitope CS 846:<br />

Chondroitin native epitope, present on intact bioactive<br />

(“fetal-like”) proteoglycan only.<br />

PIINP:<br />

Epitope of Type II N-terminal propeptide, released during<br />

maturation of Type II Procollagen to Type II Collagen. PIINP<br />

has been postulated to play a role in chondrogenesis. It has<br />

been found to be synthesized by osteoarthritic chondrocytes<br />

in diseased cartilage <strong>and</strong> may serve as a specific arthritis<br />

biomarker that reflects an attempt by the chondrocytes to<br />

repair diseased cartilage.<br />

Proteins<br />

BMP1:<br />

BMP1 (Bone morphogenetic protein) is a protein that is<br />

capable of inducing formation of cartilage in vivo. It cleaves<br />

the C-terminal propeptides of procollagen I, II, <strong>and</strong> III <strong>and</strong><br />

plays an important role in collagen maturation.


Biomarker according to NIH Osteoarthritis Biomarker Network<br />

Synovium<br />

Type III collagen<br />

Noncollagenous proteins<br />

Enzymes<br />

Aggrecan<br />

Type II collagen<br />

Cartilage<br />

Noncollagenous proteins<br />

Enzymes<br />

Proliferation/Formation Degradation<br />

PIIINP<br />

anti-CCP<br />

COMP<br />

Hyaluronan<br />

Pentosidine<br />

YKL-40<br />

MMPs<br />

TIMPs<br />

Chondroitin sulfate<br />

PIICP<br />

PIINP<br />

PIIANP<br />

YKL-40<br />

TIMPs<br />

Detailed information cartilage metabolism<br />

"Biomarker for diagnosis <strong>and</strong> monitoring of degenerative joint diseases" by Petra Seebeck, PhD,<br />

Glc-Gal-PYD<br />

PYD<br />

Keratan sulfate<br />

GAGs<br />

C1, 2C<br />

C2C<br />

COL2-1<br />

COL2-1NO2<br />

CTX-II<br />

HELIX II<br />

TIINE<br />

COMP<br />

CILP<br />

MMPs<br />

ADAMTSs<br />

Cathepsin K<br />

Inflammation marker – synovial metabolism<br />

Joint inflammation is a key feature of RA but can occur also during OA. Proliferative synovial inflammation leads to the<br />

forced syntheses of different marker. However, most of them are not synovium-specific, since they are also produced in<br />

cartilage <strong>and</strong> other tissues.<br />

anti-CCP<br />

Citrullin arises from enzymatic modification of the amino-acid arginine for instance during inflammatory processes.<br />

Auto-antibodies against cyclic citrullinated peptides (anti-CCP) were detected in up to 80%of RA patients already during a<br />

very early stage of disease, but only in very little patients with juvenile idiopathic arthritis (JIA). The concentrations of anti-CCP<br />

were not correlated to the disease activity score (DAS28), but to radiographic signs of joint destruction. Anti-rheumatic<br />

immunosuppressive therapy (Infliximab) reduced the sanguineous anti-CCP level in RA patients.<br />

Hyaluronan<br />

Hyaluronan is a main component of the cartilage matrix as well as the synovial fluid. In patients with knee OA the serological<br />

hyaluronan level correlated with the degree of synovial proliferation <strong>and</strong> the length of osteophytes but not with the femoral<br />

cartilage thickness. Increased hyaluronan levels were observed in OA as well as RA patients with patients with higher initial<br />

values showing a more progressive course of disease. Serological hyaluronan levels correlated with the degree of joint space<br />

narrowing. RA patients with synovial inflammation showed decreasing hyaluronan concentrations after anti-inflammatory therapy.<br />

11


12<br />

Cartilage Degradation – Biochemical Marker


Cartilage Synthesis – Biochemical Marker<br />

BMP-<br />

MMP<br />

13


14<br />

Cartilage - Type II procollagen<br />

Figure 3:<br />

Schematic drawing of type II procollagen <strong>and</strong> the localization of the different epitopes. Numbering is based on the amino-acid<br />

sequence of an alpha (II) chain of human type IIB collagen (COL2A1_HUMAN, P02458, UniProtKB, Swiss).<br />

* Type IIA procollagen would include an additional sequence of sixty-nine amino-acids at position 29-97, the numbering of the<br />

following sections would be shifted accordingly


Cartilage Biomarker <strong>and</strong> their behavior in various arthritis clinical situations<br />

Biomarker<br />

(u = urinary;<br />

s = serum;<br />

syn = synovial fluid;<br />

c = cellculture))<br />

<strong>Clinical</strong> situation<br />

Degradation marker Formation marker<br />

u CTX-II s C2C s C1,2C c C1,2C s COMP<br />

1) Only the ratio of C2C / C1,2C was prognostic.<br />

2) Changes in serum COMP are prognostic,<br />

not baseline levels.<br />

3) Prognostic for rapid joint destruction.<br />

4) Levels reflect the degree of synovial inflammation.<br />

syn<br />

s CPII<br />

COMP<br />

syn<br />

CPII<br />

s<br />

PIINP<br />

s<br />

Aggrecan<br />

Epitop<br />

syn<br />

Aggrecan<br />

Epitop<br />

s<br />

YKL-40<br />

OA ↑ ↑ ↑ ↑ ↑ ↓/N ↑ ↓ ↑ ↑ ↑<br />

OA Early ↑ ↑ ↑ N<br />

OA Late ↑ ↑ ↑<br />

OA Severity<br />

(Baseline levels<br />

indicate severity)<br />

OA Prognosis<br />

(Baseline levels predict<br />

progression)<br />

syn<br />

YKL-40<br />

+ + 2) + ± 4)<br />

+ 5) + 1) + 1) + + 5)<br />

RA ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑<br />

RA Early ↑ ↑ ↑<br />

RA Late ↑<br />

RA Progressive<br />

(Levels in progressive RA<br />

resulting in rapid joint<br />

destruction)<br />

↑ ↑ ↑ ↑ ↑ ↓/N<br />

RA Chronic ↑ ↑ ↑<br />

RA Severity<br />

(Baseline levels<br />

indicate severity)<br />

RA Prognosis<br />

(Baseline levels<br />

predict progression)<br />

+ + ± 4)<br />

+ + + + 3) − + +<br />

5) Patients with knee OA are characterized by an uncoupling<br />

of type II collagen synthesis <strong>and</strong> degradation which<br />

can be detected by assays for serum PIINP <strong>and</strong> urinary<br />

CTX-II. The combination of CTX-II <strong>and</strong> PIINP measurements<br />

seems prognostic for identifying knee OA patients<br />

at high risk for rapid progression of joint damage.<br />

Table was adapted from Schaller et al. (2005).<br />

15


16<br />

Bonemarker normal values for children<br />

Bone marker<br />

BAP (serum)<br />

bone specified alkaline<br />

phosphatase<br />

CICP/PICP (serum)<br />

c-terminal propeptid<br />

of type I collagen<br />

NTX (serum)<br />

N-terminal telopeptide<br />

of type I collagen<br />

NTX (urine)<br />

N-terminal telopeptide<br />

of type I collagen<br />

Deoxypyridinolin<br />

(urine)<br />

free DPD<br />

Helicale peptide (urine)<br />

Helicale peptide<br />

620 - 633 from the<br />

alpha-I-chain of<br />

type I collagen<br />

Pyridinolin (urine)<br />

free Pyd & DPD<br />

Cat.<br />

No.<br />

8012<br />

8003<br />

504836<br />

504837<br />

8007<br />

8022<br />

8010<br />

Sex Unit Age group<br />

m U/l ± SD<br />

f U/l ± SD<br />

Tanner<br />

Stage<br />

Tanner<br />

I<br />

104 ± 21<br />

0–2 y.<br />

122 ± 19<br />

0–2 y.<br />

Tanner<br />

II–III<br />

94 ± 17<br />

3–9 y.<br />

106 ± 16<br />

3–8 y.<br />

Tanner<br />

IV–V<br />

m U/l ± SD 95 ± 22 114 ± 35 121 ± 37<br />

f U/l ± SD 84 ± 23 113 ± 43 79 ± 46<br />

m/f ng/ml<br />

m ng/ml<br />

f ng/ml<br />

m/f ng/ml<br />

Tanner<br />

Stage<br />

m<br />

f<br />

m/f<br />

Tanner<br />

Stage<br />

m<br />

f<br />

m/f<br />

m/f<br />

m/f<br />

m/f<br />

BCE<br />

nmol/l<br />

BCE<br />

nmol/l<br />

BCE<br />

nmol/l<br />

Creatinin<br />

nmol/mml<br />

Creatinin<br />

nmol/mmol<br />

Creatinin<br />

nmol/mml<br />

Creatinin<br />

ug/mmol<br />

Creatinin<br />

nmol/mmol<br />

Creatinin<br />

nmol/mmol<br />

Creatinin<br />

Pyridinolin (serum) 8019 m/f nmol/l<br />

Tanner<br />

I<br />

50.6<br />

(37.2–88.9)<br />

53.6<br />

(31.2–90.9)<br />

211–1.310<br />

0–2 y.<br />

230–1.104<br />

0–2 y.<br />

Tanner<br />

II–IV<br />

71.7<br />

(32.7–126.0)<br />

50.2<br />

(12.9–79.8)<br />

295–365<br />

4.0–12.9 y.<br />

147–830<br />

3–9 y.<br />

155–568<br />

3–8 y.<br />

113–426<br />

4–13 y.<br />

Tanner<br />

V<br />

18.0<br />

(11.3–50.4)<br />

12.8<br />

(9.6–22.2)<br />

114 ± 21<br />

10–14 y.<br />

112 ± 16<br />

9–12 y.<br />

444 ± 192<br />

13 y.<br />

123–618<br />

10–14 y.<br />

122–373<br />

9–12 y.<br />

449 ± 123<br />

14 y.<br />

127–189<br />

15–19 y.<br />

74–167<br />

13–17 y.<br />

110–443<br />

14–18 y.<br />

0–1 y. 2–5 y. 6–10 y. 11–15 y. 16–20 y.<br />

1639<br />

(102-4769)<br />

Tanner<br />

I<br />

689<br />

(34-1752)<br />

Tanner<br />

II–III<br />

497<br />

(90-1356)<br />

Tanner<br />

IV–V<br />

23.5 ± 1.9 25.6 ± 4.0 31.1 ± 9.5<br />

21.0 ± 2.1 33.0 ± 5.1 23.2 ± 7.0<br />

22.5 ± 1.4 28.7 ± 3.2 28.0 ± 6.2<br />

804 –<br />

11305<br />

4–12.9 y.<br />

45.7–85.1<br />

4–12.9 y.<br />

55.5 ± 6.5<br />

4–12.9 y.<br />

2.49 ± 0.12<br />

4–12.9 y.<br />

429<br />

(34-2158)<br />

40.8 ± 6.4<br />

13–18 y.<br />

1.6 ± 1.0<br />

13–18 y.<br />

192<br />

(34-780)<br />

59 ± 19<br />

15–18 y.<br />

39 ± 23<br />

13–17 y.<br />

347 ± 145<br />

15–18 y.<br />

77–183<br />

20–50 y.<br />

37–133<br />

20–50 y.<br />

References<br />

[1]/[2]<br />

[3]<br />

[4]<br />

[1]<br />

[5]<br />

[6]<br />

[9]<br />

[5]<br />

[10]<br />

[11]<br />

[11]


Bonemarker normal values for children<br />

Cat.<br />

Bone marker Sex Unit Age group<br />

No.<br />

TRAP5b (Serum)<br />

Tartrate-Resistant Acid<br />

Phosphatase active<br />

isoform 5b<br />

8036<br />

Following references refer to the table<br />

on page 16 <strong>and</strong> 17.<br />

[1] Tsai et al<br />

Bone Alkaline Phosphatase Isoenzyme <strong>and</strong> Carboxy-Terminal<br />

Propeptide of Type-I Procollagen in Healthy Chinese Girls <strong>and</strong><br />

Boys.<br />

<strong>Clinical</strong> Chemistry 45, No. 1, 1999<br />

[2] Elmlinger MW et al<br />

Significance of bone specific alkaline phosphatase <strong>and</strong><br />

procollagen-I-peptide as diagnostic markers of bone<br />

formation for monitoring growth hormone therapy<br />

at the Congress on Calcium Regulating Hormones <strong>and</strong> Bone<br />

Metabolism from the German Society for Endocrinology, Giessen,<br />

Germany, September 29-30, 1995<br />

[3] Siu L. Hui et al<br />

Difference in Bone Mass between Black <strong>and</strong> White American<br />

Children: Attributable to Body, Build, Sex Hormone Levels, or<br />

Bone Turnover?<br />

Journal of <strong>Clinical</strong> Endocrinology & Metabolism 88 (2), 642 - 649,<br />

2003<br />

[4] Winterbottom et al<br />

An assay for the C-term. Propeptide of type I collagen.<br />

The Endocrine Society, Anaheim, CA, June 15 - 18, 1994.<br />

[5] Quidel In house study<br />

status<br />

f U/l<br />

m U/l<br />

Pre-<br />

Pubertal<br />

8.1±3.8<br />

1–9 y.<br />

6.6±3.6<br />

1–10 y.<br />

[6] Van der Sluis<br />

A Cross-Sectional Study on Biochemical Parameters of bone<br />

Turnover <strong>and</strong> Vitamin D Metabolites in Healthy Dutch Children<br />

<strong>and</strong> Young Adults<br />

Hormon Research 2002; 57: 170-179.<br />

Early Adolescence<br />

10.0±2.7<br />

10–13 y.<br />

9.9±3.3<br />

11–13 y.<br />

Late Adolescence<br />

2.3±0.7<br />

14–17 y.<br />

3.4±1.4<br />

14–17 y.<br />

[7] F. Rauch<br />

Urinary immunoreactive dpd in children <strong>and</strong> adolescents:<br />

variations with age, sex, <strong>and</strong> growth velocity.<br />

Scan J. Clin Lab Invest 1996:56: 715 - 719 (Metra Ref # 1540)<br />

[8] A. Bourdeau<br />

Age Dependent Variations in Healthy Children of Urinary<br />

Excretion of Pyridinium Crosslinks.<br />

XII International Conf. On Calcium Regulating Hormones, Australia,<br />

Feb. 14-19, 1995.<br />

[9] A. Conti<br />

Urinary free deoxypyridinoline levels during childhood.<br />

J. Endo. Invest. 21: 318 - 322, 1998. Ref#2574<br />

[10] Husain, et al<br />

Urinary excretion of pyridinium crosslinks in healthy<br />

4 - 10 year olds.<br />

Arch. Dis. Child 1999, 80: 370 - 373<br />

[11] A. Colwell<br />

The Renal Clearance of Free <strong>and</strong> Conjugated Pyridinium<br />

Crosslinks of Collagen.<br />

J. of Bone <strong>and</strong> Min. Res. Vol. 11, Number 12, 1996<br />

References<br />

[12] Price HE, Langman CB <strong>and</strong> Brooks ER.<br />

TRAP5b – profiles in children with chronic kidney disease.<br />

Poster presented at ASBMR (2007).<br />

[12]<br />

[12]<br />

17


18<br />

Biomarkers in Cell Culture<br />

If cell culture samples are used in assay systems which have been validated for the determination of biomarkers in serum<br />

<strong>and</strong> plasma, several aspects have to be taken into consideration.<br />

An assay system validated for serum / plasma may be affected by sample material generated from cell culture.<br />

To examine whether the assay system is influenced by cross-reactions or interferences induced by the components used,<br />

it is recommended to determine both the medium <strong>and</strong> all further substances in the assay. FCS in particular may crossreact<br />

with antibodies in the test or the media can affect the antibody response.<br />

It is recommended to use a culture medium comprising the following components:<br />

• DMEM or equivalent commercial medium<br />

• Fetal bovine or calf serum or serum substitutes (FCS-free medium)<br />

• L-Glutamine or ascorbate<br />

• Antibiotic<br />

To exclude the influence of FCS, it is recommended to use FCS-free medium, if possible.<br />

Testing of medium, medium additives, <strong>and</strong> other buffers used<br />

• Buffer: e.g. elution buffers which have been used to elute a substance from a gel or tissue<br />

• Matrix: e.g. serum-free medium, serum substitutes<br />

• Testing of medium combination:<br />

1. Medium<br />

2. Medium including all additives, but no FCS or alternative matrix<br />

3. Medium including all additives <strong>and</strong> FCS or alternative matrix (complete medium)<br />

4. Only FCS or corresponding alternative matrix<br />

• Recovery:<br />

Add st<strong>and</strong>ard material/substance to the complete medium (spiking) to determine recovery;<br />

e.g. at a ratio 1:5, test 20% of the highest kit st<strong>and</strong>ard <strong>and</strong> 80% of complete medium in the assay<br />

• Linearity:<br />

Measure dilutions of the spiked medium to control linearity:<br />

a) by using dilution buffer or zero st<strong>and</strong>ard from the kit at a ratio 1:2 <strong>and</strong> 1:4<br />

b) by using medium at a ratio 1:2 <strong>and</strong> 1:4<br />

• St<strong>and</strong>ard curve (optional):<br />

Dilute stock st<strong>and</strong>ard or the highest st<strong>and</strong>ard contained in the kit with complete medium <strong>and</strong> perform measurement


Specific recommendations<br />

BAP<br />

Osteocalcin<br />

CICP / PICP<br />

DPD<br />

PYD<br />

NTX<br />

Helical Peptide<br />

Assay Analyt Comments to the test procedure<br />

Bone Alkaline Phosphatase<br />

Intact Osteocalcin<br />

C-terminal Propeptide of Type-I-<br />

Collagen (CICP)<br />

Desoxypyridinolin-Crosslinks<br />

Pyridinolin-Crosslinks<br />

alpha-2 (I) N- telopeptide<br />

Helical Peptide<br />

The Alkaline Phosphate is membrane<br />

bound <strong>and</strong> can be measured in cell<br />

lysate.<br />

The cells can be grown in serum containing<br />

media, but osteocalcin must be<br />

harvested from tissue culture supernatant<br />

that is serum-free.<br />

The cells can be grown in serum containing<br />

media; however, to measure<br />

the parameters serum-free tissue culture<br />

supernatant has to be used.<br />

Bone collagen specific –<br />

direct measurement of bone resorption.<br />

The cells can be grown in serum containing<br />

media; however, to measure the<br />

parameters serum-free tissue culture<br />

supernatant has to be used.<br />

First results show that the ELISA is<br />

suited for the determination of the helical<br />

Peptide for in vitro analyses. This<br />

test method is especially advantageous<br />

because it requires small sample quantities<br />

<strong>and</strong> the curve covers a large<br />

range of the sample concentrations (30<br />

fold of the CTX-beta in vitro Assays).<br />

The background concentrations<br />

through the medium are very low.<br />

TRAP5b Tartratresistent acid phosphatase 5b Measurement of the osteoclast activity.<br />

Interferences<br />

In order to test if there are any cross reactions or interferences of the media used for the cell culture with the assay system,<br />

it is recommended to measure the media <strong>and</strong> maybe other substances in the assay. Especially FCS could contain interfering<br />

substances respectively cross react or certain media suppress the antibody reaction.<br />

19


20<br />

Measurement of BAP <strong>and</strong> Osteocalcin<br />

in cell culture<br />

• DMEM or equivalent commercial medium<br />

• Fetal bovine serum or calf serum or serum substitutes<br />

(FCS free medium)<br />

• L-Glutamine or Ascorbat<br />

• Antibiotic<br />

Additionally, 50 nM Vitamin D3 is necessary to generate<br />

measurable quantities of osteocalcin. The cells can be<br />

grown in serum containing media, but osteocalcin must be<br />

harvested from tissue culture supernatant that is serumfree,<br />

because the antibody will also detect this analyte in<br />

serum.<br />

Bone alkaline phosphatase is membrane-bound <strong>and</strong> it has<br />

to be measured in culture from cell lysate. Cell culture media<br />

should not be treated with ion chelators like EDTA or citrate<br />

because of an inhibition of the BAP enzyme activity.<br />

After the incubation the cell layers should be washed twice<br />

with saline <strong>and</strong> scraped into TMN buffer solution (20 mM<br />

Tris-HCl, pH 7.4; 2 mM MgCl2; 150 mM NaCl) uising a stir<br />

stick. The number of cells has to be determined (e.g. Coulter<br />

cell counter Model F) before the cells become solubilized by<br />

the addition of Triton X-100 to a final concentration of 1 %.<br />

Centrifugate the samples at 70,000g for 60 min <strong>and</strong> examine<br />

the aliquots of the supernatant for alkaline phosphatase<br />

activity.<br />

Sheep <strong>and</strong> human cells will be fine for this purpose.<br />

References for BAP, PICP, OSTEOCALCIN<br />

in cell culture<br />

Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L<br />

(2000) Dynamic cell stretching increases human osteoblast<br />

proliferation <strong>and</strong> CICP synthesis but decreases osteocalcin<br />

synthesis <strong>and</strong> alkaline phosphatase activity.<br />

J Biomech 33, 45-51.<br />

Martínez ME, Medina S, Del Campo MT, et al. (1998) Effect<br />

of polyethylene on osteocalcin, alkaline phosphatase <strong>and</strong><br />

procollagen secretion by human osteoblastic cells.<br />

Calcif Tissue Int 62, 453-456.<br />

Measurement of CICP / PICP<br />

in cell culture<br />

The assay is suitable for the measurement of cell culture<br />

supernatant from cells producing type-I collagen. The<br />

METRA ® CICP Test can be used for the determination of the<br />

collagen production level of skin fibroblasts <strong>and</strong> bone cells.<br />

It is recommended, that the supernatant of these cultures<br />

contains serum-free medium. Bovine serum in the medium<br />

may contain bovine CICP, which cross-reacts with the antibody<br />

in the kit. This would result in erroneously increased<br />

values.<br />

In a confluating cell culture at an optimal collagen production<br />

level, the amount of CICP in the supernatant is approximately<br />

20 – 50 ng/ml or slightly below a normal human serum<br />

sample. Dilute the cell culture supernatant 1:12 (like a normal<br />

serum sample) <strong>and</strong> calculate the final concentration according<br />

to the dilution. If the CICP concentration of the 1:12<br />

dilution is below the detection limit it is possible to choose<br />

a 1:6-dilution.<br />

Sell S, Gaissmaier C, Fritz J et al. (1998) Different behavior<br />

of human osteoblast-like cells isolated from normal <strong>and</strong><br />

heterotopic bone in vitro. Calcif Tissue Int 62, 51-59.<br />

Siggelkow H, Niedhart C, Kurre W, et al. (1998) In vitro differentiation<br />

potential of a new human osteosarcoma cell line<br />

(HOS 58). Differentiation 63, 81-91.<br />

Siggelkow H, Rebenstorff K, Kurre W, et al. (1999)<br />

Development of the osteoblast phenotype in primary human<br />

osteoblasts in culture: comparison with rat calvarial cells in<br />

osteoblast differentiation. J Cell Biochem 75, 22-35.


Bone marker - Reference values in animals<br />

BAP in Dogs<br />

Serum / Plasma: < 1 year 56.3 ± 9.8 U/L<br />

1 – 2 years 10.7 ± 4.5 U/L<br />

2 – 3 years 7.0 ± 2.5 U/L<br />

3 – 7 years 6.7 ± 3.6 U/L<br />

> 8 years 7.0 ± 2.9 U/L<br />

Reference: Allen LC et al. (2000) A comparison of two techniques for the determination of serum bone-specific<br />

alkaline phosphatase activity in dogs. Res Vet Sci 68, 231-235.<br />

BAP in Cats<br />

Serum: < 2 years 10 – 70 U/L<br />

> 2 years 2 – 15 U/L<br />

Reference: DeLaurier A, Jackson B, Ingham K, Pfeiffer D, Horton MA, Price JS. (2002) Biochemical markers of<br />

bone turnover in the domestic cat: relationships with age <strong>and</strong> feline osteoclastic resorptive lesions.<br />

J Nutr 132, 1742S-4S.<br />

BAP in Horses<br />

Serum: 12.2 – 25.5 U/L<br />

Plasma: 12.6 – 22.7 U/L<br />

Reference: Hoekstra K et al. (1999) Comparison of bone mineral content <strong>and</strong> biochemical markers of bone<br />

metabolism in stall vs. pasture-reared horses. Equine Exercise Phys Equine Vet J 30, 601-604.<br />

BAP in goats<br />

Serum: 12 ± 4 U/L<br />

Reference: Liesegang A, Risteli J, Wanner M (2005) The effects of first gestation <strong>and</strong> lactation on bone<br />

metabolism in dairy goats <strong>and</strong> milk sheep. Bone. Dec 16; [Epub ahead of print]<br />

BAP in sheep<br />

Serum: 13 ± 4 U/L<br />

Reference: Liesegang A, Risteli J, Wanner M (2005) The effects of first gestation <strong>and</strong> lactation on bone<br />

metabolism in dairy goats <strong>and</strong> milk sheep. Bone. Dec 16; [Epub ahead of print]<br />

BAP in porcine<br />

Reference: Liesegang A et al. (2002) Influence of a Vegetarian Diet Versus a Diet with Fishmeal on Bone<br />

in Growing Pigs. J. Vet. Med. A 49, 230-238<br />

21


22<br />

DPD in Dogs<br />

Urine: < 1 year 45 nM/mM Creatinine<br />

1 – 2 years 4 – 5 nM/mM Creatinine<br />

2 – 3 years 4 – 5 nM/mM Creatinine<br />

3 – 7 years 4 – 5 nM/mM Creatinine<br />

Reference: Allen MJ et al. (2000) Urinary markers of type-I collagen degradation in the dog.<br />

Res Vet Sci 69, 123-127.<br />

DPD in Cats<br />

Urine: 1-10 years 11.3 nM/mM Creatinine<br />

Reference: DeLaurier A, Jackson B, Ingham K, Pfeiffer D, Horton MA, Price JS. (2002) Biochemical markers of<br />

bone turnover in the domestic cat: relationships with age <strong>and</strong> feline osteoclastic resorptive lesions.<br />

J Nutr 132, 1742S-4S.<br />

DPD in Horses<br />

Urine: 6.0 – 95 nM/mM Creatinine<br />

Reference: Hoekstra K et al. (1999) Comparison of bone mineral content <strong>and</strong> biochemical markers of bone<br />

metabolism in stall vs. pasture-reared horses. Equine Exercise Phys Equine Vet J 30, 601-604.<br />

Osteocalcin intact in Horses<br />

Serum: 15 – 50 ng/ml<br />

Reference: Hoekstra K et al. (1999) Comparison of bone mineral content <strong>and</strong> biochemical markers of bone<br />

metabolism in stall vs. pasture-reared horses. Equine Exercise Phys Equine Vet J 30, 601-604.<br />

Creatinine for animal species<br />

Reference: Sierra RI, Specker BL, Jimenez F, Cruz C, Pedraza-Chaverri J (1997) Biochemical bone markers,<br />

bone mineral content, <strong>and</strong> bone mineral density in rats with experimental nephrotic syndrome.<br />

Ren Fail19, 409-424.<br />

PTH in Dogs<br />

Serum / Plasma: 15 – 150 pg/ml<br />

PTH in Cats<br />

Serum / Plasma: 3.3 – 22.5 pg/ml<br />

PTH in Horses<br />

Serum / Plasma: 20 – 120 pg/ml mean 56 pg/ml


Cross reactivity - different species<br />

Produkt<br />

Product<br />

Produit<br />

Zellkultur<br />

Cell culture<br />

Culture cellulaire<br />

Human<br />

Human<br />

Homme<br />

Elefant<br />

Elephant<br />

Eléphant<br />

Eichhörnchen<br />

Squirrel<br />

Ecureuil<br />

Huhn<br />

Chicken<br />

Poulet<br />

Hund<br />

Dog<br />

Chien<br />

Kaninchen<br />

Rabbit<br />

Lapin<br />

Katze<br />

Cat<br />

Chat<br />

Cynomolgus Makake<br />

Cynomolgus Macaque<br />

Macaque<br />

Maus<br />

Mouse<br />

Souris<br />

Meerschweinchen<br />

Guinea pig<br />

Cobaye<br />

Pavian<br />

Baboon<br />

Babouin<br />

Pferd<br />

Horse<br />

Cheval<br />

Rind<br />

Bovine<br />

Bovin<br />

Schwein<br />

Porcine<br />

Porc<br />

Ratte<br />

Rat<br />

Rat<br />

Rhesus Affe<br />

Rhesus macaque<br />

Singe Rhésus<br />

KNOCHEN METABOLISMUS / BONE METABOLISM / MÉTABOLISME DE L'OS<br />

Truthahn<br />

Turkey<br />

Dinde<br />

Schaf<br />

Sheep<br />

Mouton<br />

Schimpanse<br />

Chimpanzee<br />

Chimpanzé<br />

BAP X X X X X X N X X X X N X X X<br />

Cathepsin K X<br />

CICP/PICP X X N X X N N X N X N<br />

Ziege<br />

Goat<br />

Chèvre<br />

Hamster<br />

Hamser<br />

Hamster<br />

Alle Spezies<br />

All species<br />

Toutes espèces<br />

Creatinine X<br />

DKK-1 X X X<br />

Helical Peptide X X X X X X X X X X X X X X X X<br />

NTX Serum (X) X X X X X X X<br />

NTX Urine X X X X X X X<br />

Osteocalcin Intact X X N X X N X X X X N X X<br />

Osteocalcin Mouse X X X<br />

Osteocalcin<br />

N-MID (1-43/49) X X<br />

Osteocalcin Rat X X X<br />

Osteopontin<br />

Human X X<br />

Osteopontin<br />

Mouse X X<br />

Osteopontin<br />

Rat X X<br />

Osteoprotegerin<br />

(OPG) Human X X N N N X N N N X N N<br />

Osteoprotegerin<br />

(OPG) Human X X X<br />

Pyridinoline (Pyd)<br />

Serum X X X X X X X X X X X<br />

Pyrilinks<br />

(Pyd + Dpd) X X X X X X X X X X X X<br />

Pyrilinks D (Dpd) X X X X X N X X X X X X X X X X<br />

Sclerostin TECO X X N N<br />

sRankl Human<br />

High Sensitive X X X<br />

Total Dpd X X X X X X X X X X X X X X X X<br />

TRAP5b Human X X N N N N N N N N N<br />

TRAP5b Rat X X<br />

KNORPEL METABOLISMUS / CARTILAGE METABOLISM / MÉTABOLISME DU CARTILAGE<br />

C1–2C X X X (X) X (X) X X (X) X (X)<br />

C2C, Serum/Urine X X X X (X) X X (X) X X (X)<br />

COMP X X<br />

CP II/PIICP X X X (X) X (X) X X X X (X)<br />

CS-846 X X X X (X) X X X X X (X)<br />

Hyaluronic Acid<br />

TECO X X X X X X<br />

23


24<br />

Cross reactivity - different species<br />

Produkt<br />

Product<br />

Produit<br />

Zellkultur<br />

Cell culture<br />

Culture cellulaire<br />

Human<br />

Human<br />

Homme<br />

sGAG X<br />

Elefant<br />

Elephant<br />

Eléphant<br />

Eichhörnchen<br />

Squirrel<br />

Ecureuil<br />

Huhn<br />

Chicken<br />

Poulet<br />

Hund<br />

Dog<br />

Chien<br />

Kaninchen<br />

Rabbit<br />

Lapin<br />

Katze<br />

Cat<br />

Chat<br />

Cynomolgus Makake<br />

Cynomolgus Macaque<br />

Macaque<br />

Maus<br />

Mouse<br />

Souris<br />

Meerschweinchen<br />

Guinea pig<br />

Cobaye<br />

Pavian<br />

Baboon<br />

Babouin<br />

Pferd<br />

Horse<br />

Cheval<br />

Rind<br />

Bovine<br />

Bovin<br />

Schwein<br />

Porcine<br />

Porc<br />

Ratte<br />

Rat<br />

Rat<br />

Rhesus Affe<br />

Rhesus macaque<br />

Singe Rhésus<br />

KNORPEL METABOLISMUS / CARTILAGE METABOLISM / MÉTABOLISME DU CARTILAGE<br />

YKL-40 X X X X X<br />

Chemerin X X<br />

hs-CRP X<br />

Myeloperoxidase<br />

(MPO)<br />

X<br />

Progranulin X<br />

ENTZÜNDUNG / INFLAMMATORY / INFLAMMATION<br />

YKL-40 X X X X X<br />

Calcitonin Human X<br />

Truthahn<br />

Turkey<br />

Dinde<br />

KALZIUM METABOLISMUS / CALCIUM METABOLISM / MÉTABOLISME DU CALCIUM<br />

Calcitonin Rat X X X<br />

Fetuin A Human X X<br />

Fetuin A Rat X N X<br />

FGF-23 Intact X X N N<br />

Schaf<br />

Sheep<br />

Mouton<br />

Schimpanse<br />

Chimpanzee<br />

Chimpanzé<br />

FGF-23 Intact<br />

(Kainos) X X X<br />

FGF-23 (C-Term)<br />

2nd Generation X X N N<br />

FGF-23 Mouse<br />

(C-Term) X X X<br />

PTH 1-34 Anti-<br />

Human Antibody X X<br />

PTH 1-34 Human<br />

High Sensitive X X<br />

PTH 1-84 Bioactive<br />

Human X X X X X X X<br />

PTH 1-84 Bioactive<br />

Rat X N X N X<br />

PTH 1-84 Bovine X X (X) (X) (X) X (X) (X) (X) (X)<br />

PTH 1-84 Intact<br />

Dog X X<br />

PTH 1-84 Intact<br />

Human<br />

X<br />

PTH 1-84 Intact<br />

Mouse X N X N X<br />

PTH 1-84 Intact<br />

Rat X N (X) X N X<br />

PTH 1-84 Porcine X X X (X) X X (X)<br />

PTH C-Terminal<br />

Human X X<br />

PTH C-Terminal Rat X X<br />

PTH Horse X X X X X<br />

PTH Rat X X (X) X X X X X X<br />

25 OH Vitamin D<br />

direct X X<br />

Ziege<br />

Goat<br />

Chèvre<br />

Hamster<br />

Hamser<br />

Hamster<br />

Alle Spezies<br />

All species<br />

Toutes espèces


Cross reactivity - different species<br />

Produkt<br />

Product<br />

Produit<br />

Zellkultur<br />

Cell culture<br />

Culture cellulaire<br />

Human<br />

Human<br />

Homme<br />

Myostatin X<br />

BMP 7 X<br />

Adiponectin Human<br />

TECO X X<br />

Adiponectin<br />

Mouse<br />

Adiponectin<br />

Rat<br />

Chemerin X X<br />

Fetuin A Human X X<br />

Elefant<br />

Elephant<br />

Eléphant<br />

Eichhörnchen<br />

Squirrel<br />

Ecureuil<br />

Huhn<br />

Chicken<br />

Poulet<br />

Hund<br />

Dog<br />

Chien<br />

Kaninchen<br />

Rabbit<br />

Lapin<br />

Katze<br />

Cat<br />

Chat<br />

Cynomolgus Makake<br />

Cynomolgus Macaque<br />

Macaque<br />

Maus<br />

Mouse<br />

Souris<br />

Meerschweinchen<br />

Guinea pig<br />

Cobaye<br />

Pavian<br />

Baboon<br />

Babouin<br />

Pferd<br />

Horse<br />

Cheval<br />

Rind<br />

Bovine<br />

Bovin<br />

Schwein<br />

Porcine<br />

Porc<br />

Ratte<br />

Rat<br />

Rat<br />

Rhesus Affe<br />

Rhesus macaque<br />

Singe Rhésus<br />

MUSKEL – SKELETT / MUSCLE – SKELETON / MUSCLE - SQUELETTE<br />

DIABETES & ADIPOSITAS / DIABETES & OBESITY / DIABÈTE & OBÉSITÉ<br />

X<br />

X<br />

Truthahn<br />

Turkey<br />

Dinde<br />

Schaf<br />

Sheep<br />

Mouton<br />

Schimpanse<br />

Chimpanzee<br />

Chimpanzé<br />

Ziege<br />

Goat<br />

Chèvre<br />

Hamster<br />

Hamser<br />

Hamster<br />

Alle Spezies<br />

All species<br />

Toutes espèces<br />

Ghrelin X X X X X X X X X X X X X<br />

GLP-1 Active<br />

(7-36) Human X X X X<br />

GLP-1 Active<br />

(7-36) Mouse / Rat X X<br />

GLP-1 Total X<br />

Intact ProInsulin<br />

TECO X X (X) (X) (X)<br />

Leptin Human<br />

TECO X X<br />

Leptin Mouse/Rat X X X<br />

Resistin X X N<br />

YKL-40 X X X X X<br />

LEBERERKRANKUNG / LIVER DISEASE / MALADIES DU FOIE<br />

Hyaluronic Acid<br />

TECO X X X X X X<br />

M30-Apoptosense<br />

Chronic Liver Disease<br />

X<br />

hGH / High Sensitive X X<br />

IGFBP-1 X X<br />

WACHSTUMSSTOFFWECHSEL / GROWTH METABOLISM / MÉTABOLISME DE LA CROISSANCE<br />

IGFBP-2 X X X X X X<br />

IGFBP-2 Mouse / Rat X X X X X<br />

ALS (Acid Labile<br />

Subunit)<br />

X<br />

hGH X N<br />

IGFBP-3 X X<br />

IGFBP-3<br />

Functional X X<br />

IGFBP-3<br />

Mouse/Rat X X<br />

IGF-I (BP blocked) X X X X X X X X X X X X X<br />

IGF-I Mouse/Rat X X<br />

IGF-II X X<br />

IGF-II X X X<br />

25


26<br />

Cross reactivity - different species<br />

Produkt<br />

Product<br />

Produit<br />

Zellkultur<br />

Cell culture<br />

Culture cellulaire<br />

Human<br />

Human<br />

Homme<br />

Elefant<br />

Elephant<br />

Eléphant<br />

Eichhörnchen<br />

Squirrel<br />

Ecureuil<br />

Huhn<br />

Chicken<br />

Poulet<br />

Hund<br />

Dog<br />

Chien<br />

Kaninchen<br />

Rabbit<br />

Lapin<br />

Katze<br />

Cat<br />

Chat<br />

Cynomolgus Makake<br />

Cynomolgus Macaque<br />

Macaque<br />

Maus<br />

Mouse<br />

Souris<br />

Meerschweinchen<br />

Guinea pig<br />

Cobaye<br />

Pavian<br />

Baboon<br />

Babouin<br />

Pferd<br />

Horse<br />

Cheval<br />

Rind<br />

Bovine<br />

Bovin<br />

Schwein<br />

Porcine<br />

Porc<br />

Ratte<br />

Rat<br />

Rat<br />

Rhesus Affe<br />

Rhesus macaque<br />

Singe Rhésus<br />

Truthahn<br />

Turkey<br />

Dinde<br />

Schaf<br />

Sheep<br />

Mouton<br />

Schimpanse<br />

Chimpanzee<br />

Chimpanzé<br />

KARDIOVASKULÄRE MARKER / CARDIOVASCULAR MARKER / MARQUEUR CARDIOVASCULAIRE<br />

Big Endothelin X X N N N<br />

BNP Fragment X X N N N N N N N N N N N N N<br />

Endothelin X X X X N X X X<br />

NT-proANP X X X X<br />

NT-proCNP X X X X X X X X X<br />

OXIDATIVE STRESS MARKER / OXIDATIVE STRESS MARKER / MARQUEUR DU STRESS OXYDATIF<br />

oLAB X N N N N N N N N N N N N N<br />

Oxidized LDL X<br />

OxyStat X<br />

EZ4U X<br />

CELL PROLIFERATION & CYTOTOXICITY ASSAY<br />

APOPTOSE / APOPTOSIS / APOPTOSE<br />

M30-<br />

Apoptosense X X X X X X<br />

M30-CytoDeath X X X X X X<br />

M65-EpiDeath X X X A* X X A* X X<br />

ANDERE PARAMETER / OTHER PARAMETERS / AUTRES PARAMÈTRES<br />

ACTH X X X<br />

Erythropoetin X<br />

Fecal Calprotectin X<br />

Prekallikrein Activator<br />

Assay (PKA)<br />

X<br />

TPMT X<br />

TSH Receptor Antibody<br />

2 Gen. TECO<br />

X<br />

Ziege<br />

Goat<br />

Chèvre<br />

Hamster<br />

Hamser<br />

Hamster<br />

Alle Spezies<br />

All species<br />

Toutes espèces


Cross reactivity - different species<br />

Produkt<br />

Product<br />

Produit<br />

Zellkultur<br />

Cell culture<br />

Culture cellulaire<br />

Human<br />

Human<br />

Homme<br />

AH50 Eq X<br />

Elefant<br />

Elephant<br />

Eléphant<br />

Eichhörnchen<br />

Squirrel<br />

Ecureuil<br />

Huhn<br />

Chicken<br />

Poulet<br />

Hund<br />

Dog<br />

Chien<br />

Kaninchen<br />

Rabbit<br />

Lapin<br />

Katze<br />

Cat<br />

Chat<br />

Cynomolgus Makake<br />

Cynomolgus Macaque<br />

Macaque<br />

Maus<br />

Mouse<br />

Souris<br />

Meerschweinchen<br />

Guinea pig<br />

Cobaye<br />

A* = Humane Xenotransplantate / human xenograft / Hétérogreffe humaine<br />

N = keine Kreuzreaktion / no cross reactivity / pas de réaction croisée<br />

(x) = schwache Kreuzreaktion / low cross reactivity / faible réaction croisée<br />

= Nicht getestet / not tested / pas testé<br />

x = Kreuzreaktion / cross reactivity / réaction croisée<br />

Pavian<br />

Baboon<br />

Babouin<br />

Pferd<br />

Horse<br />

Cheval<br />

Rind<br />

Bovine<br />

Bovin<br />

Schwein<br />

Porcine<br />

Porc<br />

Ratte<br />

Rat<br />

Rat<br />

Rhesus Affe<br />

Rhesus macaque<br />

Singe Rhésus<br />

KOMPLEMENT TEST / COMPLEMENT TEST / TEST DE COMPLÉMENT><br />

Bb Plus X X X X<br />

C1-Inhibitor X<br />

C3a Plus X X X X<br />

C4d X X X X<br />

C5a X<br />

CH50 Eq X X<br />

CIC-C1q X<br />

CIC-C3d (Raji-<br />

Cell-Replacement)<br />

X<br />

iC3b X<br />

SC5b-9 Plus X X X X<br />

Truthahn<br />

Turkey<br />

Dinde<br />

Schaf<br />

Sheep<br />

Mouton<br />

Schimpanse<br />

Chimpanzee<br />

Chimpanzé<br />

Ziege<br />

Goat<br />

Chèvre<br />

Hamster<br />

Hamser<br />

Hamster<br />

Alle Spezies<br />

All species<br />

Toutes espèces<br />

27


The Specialist for Biochemical Markers<br />

For further information please contact: / Für weitere Informationen wenden Sie sich bitte an: / Pour plus d’informations, vous pouvez contacter:<br />

Exclusive Strategic Partnership in Europe:<br />

www.quidel.com<br />

Germany<br />

TECOmedical GmbH<br />

Wasserbreite<br />

32257 Bünde<br />

Germany<br />

phone + 49 (0) 52 23 985 99 99<br />

fax + 49 (0) 52 23 985 99 98<br />

mail info@tecomedical.com<br />

web www.tecomedical.com<br />

TECOmedical Group<br />

Headquarters<br />

Switzerl<strong>and</strong>/International<br />

TECOmedical AG<br />

Gewerbestrasse 10<br />

4450 Sissach<br />

Switzerl<strong>and</strong><br />

phone + 41 (0) 61 985 81 00<br />

fax + 41 (0) 619 85 81 09<br />

mail info@tecomedical.com<br />

web www.tecomedical.com<br />

France<br />

TECOmedical SARL<br />

20 rue du Bois Chal<strong>and</strong><br />

91090 Lisses<br />

France<br />

phone 0800 100 437<br />

fax 0800 100 480<br />

mail chdu@tecomedical.com<br />

web www.tecomedical.com<br />

Benelux<br />

TECOmedical NL<br />

‘t Hazeveld 34<br />

3862 XB Nijkerk<br />

The Netherl<strong>and</strong>s<br />

phone + 31 (0) 33 4951 473<br />

fax + 31 (0) 33 4951 635<br />

mail sbk@tecomedical.com<br />

web www.tecomedical.com<br />

01/2011 © TECOmedical Group

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!