08.04.2013 Views

TREATISE ONLINE - College of William and Mary

TREATISE ONLINE - College of William and Mary

TREATISE ONLINE - College of William and Mary

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>TREATISE</strong><br />

<strong>ONLINE</strong><br />

Number 29<br />

Part N, Revised, Volume 1, Chapter 24:<br />

Extinction in the Marine Bivalvia<br />

Paul G. Harnik <strong>and</strong> Rowan Lockwood<br />

2011<br />

Lawrence, Kansas, USA<br />

ISSN 2153-4012 (online)<br />

paleo.ku.edu/treatiseonline


PART N, REVISED, VOLUME 1, CHAPTER 24:<br />

EXTINCTION IN THE MARINE BIVALVIA<br />

Paul G. Harnik <strong>and</strong> rowan lockwood<br />

[Department <strong>of</strong> Geological <strong>and</strong> Environmental Sciences, Stanford University, paulharnik@gmail.com; <strong>and</strong> Department <strong>of</strong> Geology, The <strong>College</strong> <strong>of</strong><br />

<strong>William</strong> <strong>and</strong> <strong>Mary</strong>, rxlock@wm.edu]<br />

Bivalves are diverse <strong>and</strong> abundant constituents<br />

<strong>of</strong> modern marine faunas, <strong>and</strong> they<br />

have a rich fossil record that spans the<br />

Phanerozoic (Hallam & miller, 1988;<br />

mcroberts, 2001; Fraiser & bottjer,<br />

2007). Due to the high quality <strong>of</strong> their<br />

fossil record, they are well suited for investigating<br />

patterns <strong>of</strong> biodiversity change <strong>and</strong><br />

the processes that generate these patterns.<br />

Extinction <strong>and</strong> its influence on patterns <strong>of</strong><br />

diversification in the Bivalvia have figured<br />

prominently in a number <strong>of</strong> previous studies.<br />

Did bivalves diversify exponentially over<br />

geologic time with little long-term influence<br />

<strong>of</strong> mass extinction events (stanley,<br />

1975, 1977), or were catastrophic extinction<br />

events critical in shaping their dramatic post-<br />

Paleozoic radiation (Gould & calloway,<br />

1980)? Extinction is an important process<br />

in the evolutionary history <strong>of</strong> many clades.<br />

Selective or chance survivorship can shape<br />

morphological, ecological, <strong>and</strong> phylogenetic<br />

diversity <strong>and</strong> disparity (roy & Foote, 1997;<br />

jablonski, 2005; erwin, 2008). Extinction<br />

selectivity can also affect the susceptibility<br />

<strong>of</strong> lineages to later periods <strong>of</strong> environmental<br />

change (stanley, 1990a; jackson, 1995;<br />

jablonski, 2001; roy, Hunt, & jablonski,<br />

2009). In addition, extinction can open up<br />

opportunities for diversification through<br />

the removal <strong>of</strong> incumbent taxa (walker &<br />

Valentine, 1984; rosenzweiG & mccord,<br />

1991; bambacH, knoll, & sePkoski, 2002;<br />

jablonski, 2008b). Underst<strong>and</strong>ing how<br />

<strong>and</strong> why some organisms, including many<br />

bivalves, <strong>and</strong> not others became extinct in<br />

the past may prove useful in predicting the<br />

response <strong>of</strong> modern marine ecosystems to<br />

environmental change (dietl & Flessa,<br />

2009).<br />

Here we briefly review those features<br />

<strong>of</strong> the bivalve fossil record that make it<br />

particularly suitable for investigating diversity<br />

dynamics over geologic time. We then<br />

introduce recently developed analytical<br />

methods for estimating rates <strong>of</strong> extinction<br />

<strong>and</strong> origination from paleontological data<br />

that account for temporal variation in the<br />

quality <strong>of</strong> the preserved <strong>and</strong> sampled fossil<br />

record. Applying these methods to data for<br />

marine bivalves, we present a new analysis<br />

<strong>of</strong> extinction, origination, <strong>and</strong> preservation<br />

rates for bivalve genera over the Phanerozoic<br />

<strong>and</strong> examine the effect <strong>of</strong> extinction rate on<br />

subsequent origination rate. We review the<br />

growing literature on extinction risk in fossil<br />

marine bivalves <strong>and</strong> summarize the roles <strong>of</strong><br />

several biological factors that have proven<br />

important in predicting survivorship over<br />

geologic time. Although recent <strong>and</strong> historical<br />

extinction in freshwater mussels has been<br />

well studied (williams & others, 1993;<br />

ricciardi & rasmussen, 1999; lydeard<br />

& others, 2004; strayer & others, 2004;<br />

boGan, 2006), we focus on marine bivalves<br />

due to the quality <strong>of</strong> their fossil record over<br />

long time scales <strong>and</strong> the general congruence<br />

between phylogenetic hypotheses <strong>and</strong><br />

morphologic taxonomies (jablonski &<br />

Finarelli, 2009).<br />

MARINE BIVALVES AS<br />

A MODEL SYSTEM FOR<br />

ECOLOGICAL AND<br />

EVOLUTIONARY ANALYSIS<br />

The marine bivalve fossil record has been<br />

studied intensively by paleontologists <strong>and</strong><br />

malacologists for centuries. This body <strong>of</strong><br />

work has produced a detailed picture <strong>of</strong> the<br />

history <strong>of</strong> the clade <strong>and</strong> has advanced our<br />

general underst<strong>and</strong>ing <strong>of</strong> the processes that<br />

generate <strong>and</strong> maintain biodiversity in marine<br />

systems over time. Data for fossil bivalves<br />

© 2011, The University <strong>of</strong> Kansas, Paleontological Institute, ISSN (online) 2153-4012<br />

Harnik, Paul G., & Rowan Lockwood. 2011. Part N, Revised, Volume 1, Chapter 24: Extinction<br />

in the marine Bivalvia. Treatise Online 29:1–24, 4 fig., 1 table, 1 appendix.


2 Treatise Online, number 29<br />

have been instrumental in informing debates<br />

concerning the roles <strong>of</strong> biological factors in<br />

extinction risk (e.g., stanley, 1986a; rauP<br />

& jablonski, 1993; jablonski, 2005; riVadeneira<br />

& marquet, 2007; cramPton &<br />

others, 2010), the tempo <strong>and</strong> mode <strong>of</strong> evolutionary<br />

change (e.g., kelley, 1983; Geary,<br />

1987; rooPnarine, 1995), the processes<br />

underlying geographic gradients in diversity<br />

(e.g., roy & others, 1998; crame, 2002;<br />

Vermeij, 2005; jablonski, roy, & Valentine,<br />

2006), <strong>and</strong> the role <strong>of</strong> predation in<br />

evolutionary trends (e.g., stanley, 1986b;<br />

kelley, 1989; dietl & others, 2002). This<br />

depth <strong>of</strong> study is due in part to the high<br />

preservation potential <strong>of</strong> bivalve shells in<br />

shallow marine environments.<br />

Marine bivalves are not free from the<br />

taphonomic insults experienced by other<br />

marine invertebrate taxa, but their fossil<br />

record is relatively complete (Valentine,<br />

1989; Foote & rauP, 1996; HarPer, 1998;<br />

Foote & sePkoski, 1999; kidwell, 2005;<br />

Valentine & others, 2006), <strong>and</strong> the taphonomic<br />

biases that affect this record are increasingly<br />

well understood (cooPer & others,<br />

2006; Valentine & others, 2006). Taxa that<br />

have readily soluble shell microstructures, are<br />

small-bodied or thin-shelled, geographically<br />

restricted, commensal or parasitic, epifaunal,<br />

<strong>and</strong>/or occur in deeper water are less likely to<br />

be preserved <strong>and</strong> sampled (cooPer & others,<br />

2006; Valentine & others, 2006). Yet, the<br />

probability <strong>of</strong> being preserved <strong>and</strong> sampled<br />

is relatively high for bivalves living at shelf<br />

to intertidal depths. Approximately 75% <strong>of</strong><br />

all living genera <strong>and</strong> subgenera <strong>of</strong> shallow<br />

marine bivalves are also known from the fossil<br />

record (Valentine & others, 2006). Although<br />

postmortem dissolution <strong>of</strong> primary shell<br />

aragonite has resulted in considerable loss<br />

<strong>of</strong> molluscan skeletal material from the rock<br />

record (cHerns & wriGHt, 2000, 2009), this<br />

taphonomic filter does not appear to have<br />

biased macroevolutionary patterns inferred<br />

from fossil mollusks (kidwell, 2005).<br />

Recent studies have shown significant<br />

agreement between ecological metrics calculated<br />

for molluscan death assemblages <strong>and</strong><br />

the living communities from which they<br />

are derived (kidwell, 2001, 2002, 2005;<br />

lockwood & cHastant, 2006; Valentine<br />

& others, 2006). Notably, instances<br />

in which the ecological agreement between<br />

life <strong>and</strong> death assemblages is poor tend to<br />

be associated with sites affected by recent<br />

<strong>and</strong> pronounced anthropogenic environmental<br />

change (e.g., eutrophication <strong>and</strong><br />

benthic trawling), <strong>and</strong> not postmortem shell<br />

loss (kidwell, 2007). These taphonomic<br />

analyses provide a foundation for examining<br />

ecological shifts in the Bivalvia over geologic<br />

time as well as the susceptibility <strong>of</strong> bivalve<br />

taxa with particular traits to extinction.<br />

ESTIMATING EXTINCTION<br />

AND ORIGINATION FROM<br />

INCOMPLETE DATA<br />

Accurately estimating extinction <strong>and</strong> origination<br />

rates is challenging for all taxa, due to<br />

incomplete observations. In paleontological<br />

studies, the observed stratigraphic distribution<br />

<strong>of</strong> fossil occurrences is affected by preservation<br />

<strong>and</strong> sampling, leading to temporal<br />

<strong>of</strong>fsets between a taxon’s true time <strong>of</strong> origination<br />

<strong>and</strong> extinction <strong>and</strong> its observed first<br />

<strong>and</strong> last occurrences (siGnor & liPPs, 1982;<br />

marsHall, 1990; meldaHl, 1990; Foote,<br />

2000; Holl<strong>and</strong> & Patzkowsky, 2002;<br />

Foote, 2003). Preservation <strong>and</strong> sampling<br />

are biased by a number <strong>of</strong> factors, including<br />

the rarity <strong>and</strong> body size <strong>of</strong> taxa, as well as<br />

the overall quality <strong>and</strong> quantity (completeness)<br />

<strong>of</strong> the fossil record. The completeness<br />

<strong>of</strong> the fossil record varies systematically<br />

through time with tectonic <strong>and</strong>/or climatic<br />

factors (e.g., smitH, Gale, & monks, 2001;<br />

cramPton, Foote, beu, cooPer, & others,<br />

2006; S. Peters, 2006). It is also affected by<br />

the abundance <strong>of</strong> unlithified versus lithified<br />

sediments (Hendy, 2009; sessa, Patzkowsky,<br />

& bralower, 2009). Extinctions that occur<br />

during intervals <strong>of</strong> poor preservation <strong>and</strong><br />

sampling appear to happen earlier in time<br />

(back-smearing), whereas originations in<br />

those same intervals appear to happen later<br />

in time (forward-smearing). This problem<br />

is not unique to studies <strong>of</strong> the fossil record,


ut rather it presents a general challenge to<br />

any attempt to estimate extinction (or origination)<br />

from limited observations (solow,<br />

1993, 2005; riVadeneira, Hunt, & roy,<br />

2009).<br />

The degree <strong>of</strong> discordance between the<br />

timing <strong>of</strong> true extinction <strong>and</strong> origination<br />

<strong>and</strong> the observed stratigraphic ranges <strong>of</strong> taxa<br />

depends on temporal variation in preservation<br />

<strong>and</strong> sampling. Accounting for such variation<br />

can be critical in reconstructing diversity<br />

dynamics over geologic time. Multiple<br />

approaches have been developed to account<br />

for variable preservation <strong>and</strong> sampling<br />

in paleontological studies. The choice <strong>of</strong><br />

method depends on the specific question<br />

being addressed <strong>and</strong> the spatiotemporal<br />

scale <strong>of</strong> sampling. For example, at local or<br />

regional scales, datasets may be partitioned<br />

to examine only samples collected from<br />

comparable taphonomic or stratigraphic<br />

contexts (e.g., scarPoni & kowalewski,<br />

2007; n. Heim, 2009). At the global scale,<br />

two general approaches have been taken<br />

to account for temporal variation in the<br />

completeness <strong>of</strong> the known fossil record:<br />

occurrence-based approaches that rely on<br />

sub- or replicate-sampling methods, such<br />

as rarefaction (e.g., alroy & others, 2001;<br />

busH, markey, & marsHall, 2004; alroy<br />

& others, 2008) <strong>and</strong> capture-mark-recapture<br />

(e.g., connolly & miller, 2002; liow &<br />

others, 2008), <strong>and</strong> modeling approaches<br />

that estimate rates <strong>of</strong> extinction, origination,<br />

<strong>and</strong> preservation simultaneously from the<br />

observed paleontological data (Foote, 2000,<br />

2003, 2005). Preservation rate in this last<br />

approach describes jointly the probability <strong>of</strong><br />

preservation <strong>and</strong> sampling over time.<br />

MARINE BIVALVE<br />

EXTINCTION AND<br />

ORIGINATION DYNAMICS<br />

THROUGH THE<br />

PHANEROZOIC<br />

Here we estimate extinction, origination,<br />

<strong>and</strong> preservation rates simultaneously for<br />

marine bivalve genera through the Phanero-<br />

Extinction in the Marine Bivalvia<br />

3<br />

zoic using a likelihood-based modeling<br />

approach developed by Foote (2003, 2005).<br />

This approach uses numerical optimization<br />

to identify the time series <strong>of</strong> extinction,<br />

origination, <strong>and</strong> preservation rates most<br />

likely to have generated the observed data<br />

(i.e., the matrices <strong>of</strong> forward <strong>and</strong> backward<br />

survivorship frequencies calculated from<br />

the observed temporal distribution <strong>of</strong> first<br />

<strong>and</strong> last occurrences <strong>of</strong> genera) under a<br />

given model <strong>of</strong> evolution <strong>and</strong> preservation.<br />

Our analysis <strong>of</strong> bivalve diversity dynamics<br />

differs from previous studies (e.g., stanley,<br />

1977; Gould & calloway, 1980; kruG,<br />

jablonski, & Valentine, 2009), in that<br />

completeness <strong>of</strong> the preserved <strong>and</strong> sampled<br />

fossil record is explicitly taken into account<br />

in estimating evolutionary rates. Our analysis<br />

also focuses on rates <strong>of</strong> extinction <strong>and</strong><br />

origination rather than diversification rate or<br />

st<strong>and</strong>ing diversity (cf. stanley, 1977; Gould<br />

& calloway, 1980; miller & sePkoski,<br />

1988).<br />

We use a global compilation <strong>of</strong> observed<br />

first <strong>and</strong> last occurrences <strong>of</strong> marine bivalve<br />

genera for rate estimation (sePkoski, 2002).<br />

Data for the 2861 bivalve genera in sePkoski’s<br />

Compendium <strong>of</strong> Fossil Marine Animal<br />

Genera (2002) were compiled primarily from<br />

the first Treatise on Invertebrate Paleontology<br />

devoted to the Bivalvia (cox & others,<br />

1969; stenzel, 1971); data for the revised<br />

Treatise are as yet unavailable. The Paleobiology<br />

Database (alroy & others, 2001,<br />

2008)—a global compilation <strong>of</strong> spatial <strong>and</strong><br />

temporal occurrences <strong>of</strong> fossil taxa through<br />

the Phanerozoic—is another dataset that<br />

could have been used to investigate bivalve<br />

evolutionary rates. Although occurrencebased<br />

data can also be analyzed in such a<br />

way as to account for variable sampling<br />

<strong>and</strong> preservation (see above), we chose to<br />

analyze sePkoski’s Compendium <strong>of</strong> first<br />

<strong>and</strong> last occurrences to provide a benchmark<br />

against which analysis <strong>of</strong> data from<br />

the revised Treatise could be compared in<br />

the future. While we are eager to see how<br />

results differ following the taxonomic revisions<br />

anticipated in the revised Treatise, we


4 Treatise Online, number 29<br />

do not expect substantial changes. Studies<br />

conducted at comparably broad spatial,<br />

temporal, <strong>and</strong> taxonomic scales have shown<br />

that taxonomic errors tend to be r<strong>and</strong>omly<br />

distributed <strong>and</strong> overall macroevolutionary<br />

patterns are surprisingly robust (adrain &<br />

westroP, 2000; ausicH & Peters, 2005;<br />

waGner & others, 2007).<br />

Rates <strong>of</strong> extinction, origination, <strong>and</strong> preservation<br />

for marine bivalve genera were estimated<br />

for 71 time intervals that correspond<br />

roughly to geologic stages. Data for some<br />

stages were combined to minimize temporal<br />

variation in interval duration (median interval<br />

duration = 6.4 million years; interquartile<br />

range, 4.4 to 10.2 million years). Extinction<br />

<strong>and</strong> origination rates were calculated assuming<br />

a pulsed model <strong>of</strong> taxonomic turnover in<br />

which originations cluster at the start <strong>of</strong> each<br />

interval <strong>and</strong> extinctions at the end <strong>of</strong> each<br />

interval (Foote, 2003, 2005). Under this<br />

model, extinction rate equals the number <strong>of</strong><br />

genera last appearing in an interval divided<br />

by the total diversity <strong>of</strong> the interval; origination<br />

rate equals the number <strong>of</strong> new genera<br />

in an interval divided by the number present<br />

at the start <strong>of</strong> the interval; <strong>and</strong> preservation<br />

rate equals the estimated probability <strong>of</strong><br />

being preserved <strong>and</strong> sampled per genus per<br />

interval; see Foote (2003) for additional<br />

methodological details. We have also examined<br />

extinction <strong>and</strong> origination rates generated<br />

under an alternative evolutionary model in<br />

which taxonomic turnover occurs continuously<br />

(Foote, 2003). These models—pulsed<br />

versus continuous turnover—both identify<br />

peaks in origination <strong>and</strong> extinction rates for<br />

marine bivalves through the Phanerozoic, but<br />

the magnitudes <strong>and</strong> timing <strong>of</strong> the peaks differ<br />

somewhat. We restrict our discussion to the<br />

results <strong>of</strong> the pulsed turnover model, as this<br />

model has greater support globally (Foote,<br />

2005) <strong>and</strong> regionally (cramPton, Foote,<br />

beu, maxwell, & others, 2006), <strong>and</strong> also<br />

has the advantage <strong>of</strong> incorporating all genera,<br />

including those confined to a single stage, in<br />

the estimation <strong>of</strong> all three rates (Foote, 2003).<br />

Rates <strong>of</strong> extinction, origination, <strong>and</strong> preservation<br />

estimated for marine bivalve genera<br />

through the Phanerozoic are presented in<br />

Figure 1. Rates <strong>of</strong> preservation vary considerably<br />

over time, spanning nearly the full<br />

range from zero to one, with a median rate<br />

equal to 0.33. The median rate <strong>of</strong> preservation<br />

for bivalves in this analysis is lower than<br />

previous estimates (Foote & sePkoski, 1999;<br />

Valentine & others, 2006). This moderate<br />

rate <strong>of</strong> preservation overall, combined with<br />

its volatility over time, underscores the<br />

importance <strong>of</strong> accounting for temporal<br />

variation in the completeness <strong>of</strong> the fossil<br />

record when estimating extinction <strong>and</strong><br />

origination rates.<br />

In general, bivalves exhibit moderate<br />

rates <strong>of</strong> extinction <strong>and</strong> origination through<br />

the Phanerozoic (median rate <strong>of</strong> extinction<br />

= 0.1; median rate <strong>of</strong> origination = 0.2),<br />

with rare intervals <strong>of</strong> elevated rates (Fig.<br />

1). Prominent peaks in extinction occurred<br />

during the late Cambrian, end-Ordovician,<br />

Late Devonian, end-Permian, end-Triassic,<br />

<strong>and</strong> end-Cretaceous, all times <strong>of</strong> elevated<br />

extinction observed at much broader taxonomic<br />

scales (Foote, 2003). These extinction<br />

peaks have previously been observed<br />

in studies <strong>of</strong> the fossil record that assume<br />

perfect preservation, but it is noteworthy<br />

that they remain after accounting for the<br />

dramatic temporal variation observed in<br />

preservation rate.<br />

A secular decline in bivalve extinction<br />

<strong>and</strong> origination rates over the Phanerozoic<br />

is observed; the Spearman rank order correlation<br />

between extinction <strong>and</strong> origination<br />

rate <strong>and</strong> time is 0.26 <strong>and</strong> 0.25, respectively<br />

(p-value < 0.05 for both correlation tests).<br />

The Phanerozoic-scale decline in rates <strong>of</strong><br />

extinction <strong>and</strong> origination has also been<br />

observed at broader taxonomic scales (rauP<br />

& sePkoski, 1982; Van Valen, 1984; Foote,<br />

2003) <strong>and</strong> may result from the loss <strong>of</strong> extinction-prone<br />

lineages over time (roy, Hunt,<br />

& jablonski, 2009), although other mechanisms<br />

have also been proposed (alroy, 2008<br />

<strong>and</strong> references therein). Differing taxonomic<br />

practice could potentially contribute to the<br />

observed temporal variation in bivalve rates<br />

<strong>of</strong> taxonomic extinction <strong>and</strong> origination.


Extinction rate<br />

0 0.2 0.4 0.6 0.8<br />

Origination rate<br />

0 1.0 2.0 6.0 7.0<br />

Preservation rate<br />

0 0.3 0.6 0.9<br />

However, previous studies conducted at<br />

comparable scales have generally found<br />

taxonomic errors to be r<strong>and</strong>omly distributed<br />

(adrain & westroP, 2000; waGner<br />

& others, 2007), <strong>and</strong> there is little reason<br />

Extinction in the Marine Bivalvia<br />

C O S D C P Tr J K Cz<br />

500 400 300 200 100 0<br />

Geologic time (Ma)<br />

C O S D C P Tr J K Cz<br />

500 400 300 200 100 0<br />

Geologic time (Ma)<br />

C O S D C P Tr J K Cz<br />

500 400 300 200 100 0<br />

Geologic time (Ma)<br />

Extinction rate<br />

0 0.2 0.4 0.6 0.8<br />

Origination rate<br />

0 1.0 2.0 6.0 7.0<br />

Preservation rate<br />

0 0.3 0.6 0.9<br />

0 5 10 15 20 25 30 35<br />

Frequency<br />

0 10 20 30 40 50<br />

Frequency<br />

0 2 4 6 8 10 12 14<br />

Frequency<br />

FiG. 1. Extinction, origination, <strong>and</strong> preservation rates per interval for marine bivalves through the Phanerozoic.<br />

The left panel presents the mean time series <strong>of</strong> rate estimates derived from 100 bootstrap replicate samples <strong>of</strong> the<br />

observed data. The right panel presents the frequency distribution <strong>of</strong> rate magnitudes. Extinction <strong>and</strong> origination<br />

rates were estimated assuming a pulsed model <strong>of</strong> taxonomic turnover. Under this model, extinction rate equals the<br />

number <strong>of</strong> genera last appearing in an interval divided by the total diversity <strong>of</strong> the interval, origination rate equals<br />

the number <strong>of</strong> new genera in an interval divided by the number present at the start <strong>of</strong> an interval, <strong>and</strong> preservation<br />

rate is the estimated probability <strong>of</strong> preservation per genus per interval (new).<br />

5<br />

to expect rates <strong>of</strong> pseudoextinction <strong>and</strong><br />

pseudoorigination to decline toward the<br />

present day.<br />

To identify peaks <strong>of</strong> extinction that st<strong>and</strong><br />

out substantially above the baseline rate for


6 Treatise Online, number 29<br />

Extinction rate residuals<br />

−6 −4 −2 0 2<br />

C O S D C P Tr J K Cz<br />

500 400 300 200 100 0<br />

Geologic time (Ma)<br />

the portion <strong>of</strong> the Phanerozoic in which<br />

they occur, the long-term secular trend in<br />

both evolutionary rates was removed by<br />

fitting a linear regression to the natural<br />

logarithm <strong>of</strong> evolutionary rate against time<br />

(alroy, 2008). When the residual variation<br />

in extinction rate is considered, the<br />

late Cambrian, end-Permian, end-Triassic,<br />

<strong>and</strong> end-Cretaceous are times at which<br />

extinction was particularly severe for marine<br />

bivalves (Fig. 2). Depending on the cut-<strong>of</strong>f<br />

value used to define a severe extinction, the<br />

Eocene–Oligocene <strong>and</strong> Plio–Pleistocene<br />

are also noteworthy. This is consistent with<br />

previous studies that have documented<br />

substantial molluscan extinction, at least<br />

regionally, during these times (e.g., raFFi,<br />

stanley, & marasti, 1985; stanley, 1986a;<br />

allmon & others, 1993; ProtHero, iVany,<br />

& nesbitt, 2002; dockery & lozouet,<br />

2003; Hansen, kelley, & Haasl, 2004).<br />

Global patterns such as these emerge<br />

as the sum <strong>of</strong> processes <strong>of</strong> extinction <strong>and</strong><br />

origination operating at finer spatial scales.<br />

Processes <strong>of</strong> extinction <strong>and</strong> recovery are<br />

biogeographically complex. There are<br />

currently insufficient data to address spatial<br />

variation in extinction <strong>and</strong> recovery in any<br />

detail for many events. Intervals in which<br />

extinction triggers are both pronounced<br />

<strong>and</strong> widespread should result in greater<br />

congruence between patterns <strong>of</strong> taxonomic<br />

Origination rate residuals<br />

C O S D C P Tr J K Cz<br />

500 400 300 200 100 0<br />

Geologic time (Ma)<br />

FiG. 2. Residual variation in extinction <strong>and</strong> origination rates remaining after removing the secular decline in both<br />

rates through the Phanerozoic using linear regression. The so-called Big Five mass extinctions recognized in marine<br />

invertebrates are denoted with large black diamonds (new).<br />

−6 −4 −2 0 2<br />

turnover at global <strong>and</strong> regional scales, but<br />

such large events are relatively uncommon<br />

in the history <strong>of</strong> life. The end-Cretaceous<br />

(K/Pg, formerly K/T) mass extinction <strong>and</strong><br />

recovery is one example <strong>of</strong> a large-scale event<br />

in which the biogeographic fabric <strong>of</strong> diversity<br />

loss <strong>and</strong> rebound has received detailed<br />

study. At this time, regions differed little<br />

in the severity <strong>of</strong> extinction experienced by<br />

marine bivalves, but markedly in the timing<br />

<strong>and</strong> process <strong>of</strong> recovery (rauP & jablonski,<br />

1993; jablonski, 1998). Examples <strong>of</strong> more<br />

biogeographically differentiated intervals <strong>of</strong><br />

extinction <strong>and</strong> recovery for marine bivalves<br />

include the Triassic–Jurassic (e.g., Hallam,<br />

1981; aberHan, 2002) <strong>and</strong> Plio–Pleistocene<br />

(e.g., raFFi, Stanley, & marasti, 1985;<br />

stanley, 1986a; allmon & others, 1993;<br />

todd & others, 2002), among others.<br />

DIVERSITY-DEPENDENT<br />

DYNAMICS IN THE MARINE<br />

BIVALVIA THROUGH THE<br />

PHANEROZOIC<br />

Over their history, marine bivalves have<br />

experienced periods <strong>of</strong> elevated extinction<br />

<strong>and</strong> origination, as well as periods<br />

<strong>of</strong> relative evolutionary quiescence (Fig.<br />

1). To what extent have the dynamics <strong>of</strong><br />

extinction <strong>and</strong> origination been coupled<br />

over time? Extinction may facilitate origi-


nation through the removal <strong>of</strong> incumbent<br />

taxa <strong>and</strong> opening up <strong>of</strong> ecospace. Underst<strong>and</strong>ing<br />

whether extinction <strong>and</strong> origination<br />

rates operate in a diversity-dependent<br />

fashion has important implications for our<br />

underst<strong>and</strong>ing <strong>of</strong> the role <strong>of</strong> biotic interactions<br />

in diversification (sePkoski, 1978;<br />

miller & sePkoski, 1988; kircHner &<br />

weil, 2000a, 2000b; erwin, 2001; lu,<br />

yoGo, & marsHall, 2006; alroy, 2008;<br />

jablonski, 2008a). If diversity-dependent<br />

dynamics have been important for marine<br />

bivalves through the Phanerozoic, then<br />

times <strong>of</strong> limited extinction should have been<br />

followed by times <strong>of</strong> limited origination,<br />

<strong>and</strong> times <strong>of</strong> elevated extinction by times <strong>of</strong><br />

elevated origination. Whether the response<br />

<strong>of</strong> origination to extinction was immediate<br />

or lagged by some period <strong>of</strong> time depends<br />

on the nature <strong>of</strong> the recovery process. If<br />

extinction empties niches, then origination<br />

may respond rapidly to new ecological <strong>and</strong><br />

evolutionary opportunity. However, if niches<br />

depend in part upon diversity <strong>and</strong> need to<br />

be reconstructed following major perturbations,<br />

then temporal lags between extinction<br />

<strong>and</strong> origination peaks are to be expected.<br />

Pseudoextinction—the apparent evolutionary<br />

turnover <strong>of</strong> taxa resulting from<br />

anagenetic morphological evolution <strong>and</strong>/or<br />

variation in taxonomic practice—could also<br />

contribute to a positive relationship between<br />

extinction <strong>and</strong> subsequent origination, if<br />

rates <strong>of</strong> pseudoextinction are elevated over<br />

some intervals relative to others. If true, this<br />

is not necessarily less significant, as pseudoextinction<br />

presumably reflects some amount<br />

<strong>of</strong> morphological change. Thus, temporal<br />

variation in rates <strong>of</strong> pseudoextinction could<br />

<strong>of</strong>fer insight into the evolutionary response<br />

<strong>of</strong> taxa to changes in the biotic <strong>and</strong> abiotic<br />

environment. In practice, pseudoextinction<br />

is probably not a major factor governing<br />

the variation we observe in rates <strong>of</strong> extinction<br />

<strong>and</strong> origination—as well as their association—over<br />

the Phanerozoic history <strong>of</strong><br />

marine bivalves. Previous studies conducted<br />

at comparable spatial, temporal, <strong>and</strong> taxonomic<br />

scales that have compared taxonomi-<br />

Extinction in the Marine Bivalvia<br />

7<br />

cally st<strong>and</strong>ardized data with data aggregated<br />

from the literature without taxonomic st<strong>and</strong>ardization<br />

have generally found taxonomic<br />

errors to be r<strong>and</strong>omly distributed (adrain &<br />

westroP, 2000; waGner & others, 2007),<br />

<strong>and</strong> rate estimates, as a result, to be affected<br />

little by the process <strong>of</strong> taxonomic st<strong>and</strong>ardization<br />

(waGner & others, 2007; but see<br />

ausicH & Peters, 2005). Anagenesis within<br />

genera cannot be fully accounted for until<br />

a comprehensive genus-level phylogenetic<br />

framework exists for the Bivalvia.<br />

To determine whether evolutionary rates<br />

were diversity-dependent among marine<br />

bivalves through the Phanerozoic, we examined<br />

the variation in rates <strong>of</strong> extinction<br />

<strong>and</strong> origination that remains following the<br />

removal <strong>of</strong> the long-term secular decline in<br />

rates noted above. The effect <strong>of</strong> extinction<br />

on origination was evaluated using the slope<br />

<strong>of</strong> a linear regression model relating the rate<br />

<strong>of</strong> extinction in an interval (t) to the rate<br />

<strong>of</strong> origination in the next interval (t + 1).<br />

We evaluated the support for an effect <strong>of</strong><br />

extinction on subsequent origination by<br />

assessing whether the observed regression<br />

slope was significantly greater than zero,<br />

<strong>and</strong> whether it differed from that expected<br />

solely by chance via a permutation test. The<br />

distribution <strong>of</strong> null values against which the<br />

observed slope was compared was generated<br />

by r<strong>and</strong>omly shuffling the detrended rates <strong>of</strong><br />

extinction <strong>and</strong> origination <strong>and</strong> calculating<br />

the slope <strong>of</strong> the extinction versus origination<br />

relationship, <strong>and</strong> repeating this procedure<br />

10,000 times.<br />

A significant positive relationship is<br />

observed, such that periods <strong>of</strong> elevated<br />

extinction are followed by elevated origination,<br />

<strong>and</strong> periods <strong>of</strong> moderate extinction<br />

are followed by moderate origination (Fig.<br />

3; Table 1). The results <strong>of</strong> the permutation<br />

test also indicate that the observed relationship<br />

between extinction rate <strong>and</strong> subsequent<br />

origination rate among marine bivalves is<br />

significantly greater than expected by chance<br />

(Fig. 4). There is no indication <strong>of</strong> a lag in<br />

the response <strong>of</strong> origination to extinction;<br />

rather, origination responds immediately in


8 Treatise Online, number 29<br />

Origination rate (t+1)<br />

−6 −4 −2 0 2<br />

−6 −4 −2<br />

Extinction rate (t)<br />

0 2<br />

FiG. 3. The effect <strong>of</strong> extinction on origination for marine<br />

bivalve genera through the Phanerozoic. Plotted<br />

are the rates <strong>of</strong> extinction in each interval (t) against<br />

origination in the next interval (t + 1). Rates were logarithmically<br />

transformed <strong>and</strong> detrended prior to analysis;<br />

details provided in text. The dashed line is a linear<br />

regression model fitted to the extinction-origination<br />

relationship. A statistically significant positive relationship<br />

is observed, indicating that diversity-dependent<br />

processes have operated over the evolutionary history<br />

<strong>of</strong> the Bivalvia (new).<br />

the next interval, <strong>and</strong> this effect subsequently<br />

weakens over time. The association between<br />

extinction rate in an interval (t) <strong>and</strong> origination<br />

rate in the next interval (t + 1) was<br />

approximately double that <strong>of</strong> extinction rate<br />

<strong>and</strong> origination rate two intervals later (t + 2)<br />

(i.e., slopes <strong>of</strong> 0.30 <strong>and</strong> 0.16 respectively).<br />

These results are consistent with studies <strong>of</strong><br />

the relationship between extinction <strong>and</strong> origination<br />

for skeletonized marine invertebrates<br />

as a whole (lu, yoGo, & marsHall, 2006;<br />

alroy, 2008), <strong>and</strong> corroborate previous<br />

work on marine bivalves that documented<br />

hyperexponential bursts <strong>of</strong> diversification<br />

following mass extinction events (miller &<br />

sePkoski, 1988; kruG, jablonski, & Valentine,<br />

2009). It is important to note, however,<br />

that the diversity-dependent relationship<br />

between rates <strong>of</strong> extinction <strong>and</strong> origination<br />

for marine bivalves is not limited to mass<br />

extinctions <strong>and</strong> their associated recoveries.<br />

While removing the most extreme extinction<br />

events from the analysis somewhat<br />

weakens the relationship between extinction<br />

<strong>and</strong> subsequent origination, intervals char-<br />

table 1. Effect <strong>of</strong> extinction on origination for<br />

marine bivalve genera through the Phanerozoic.<br />

Effect was measured as the slope <strong>of</strong> the<br />

linear regression <strong>of</strong> extinction rate in an interval<br />

(t) on origination rate in the next interval<br />

(t + 1). Rates were detrended prior to analysis;<br />

details provided in text. A significant positive<br />

relationship is observed; intervals <strong>of</strong> elevated<br />

extinction are followed by intervals <strong>of</strong> elevated<br />

origination, <strong>and</strong> intervals <strong>of</strong> moderate extinction<br />

followed by intervals <strong>of</strong> moderate origination.<br />

This diversity-dependent relationship between<br />

extinction <strong>and</strong> origination is not driven<br />

simply by mass extinctions <strong>and</strong> their associated<br />

recovery intervals. Excluding intervals characterized<br />

by elevated extinction (e.g., the top<br />

5% <strong>of</strong> extinctions, top 10%) does not markedly<br />

weaken the overall relationship (new).<br />

Data Effect p-value<br />

All 0.3 0.02<br />

excluding top 5% 0.25 0.07<br />

excluding top 10% 0.22 0.12<br />

excluding top 20% 0.26 0.09<br />

excluding top 30% 0.33 0.04<br />

acterized by relatively low extinction rates<br />

also exhibit diversity dependence (Table 1).<br />

Extinction has been an important evolutionary<br />

process throughout the history <strong>of</strong><br />

marine bivalves, varying considerably in<br />

intensity over time, but contributing consistently<br />

to bivalve diversification, in part,<br />

through its effect on rates <strong>of</strong> origination.<br />

INFLUENCE OF BIOLOGICAL<br />

FACTORS ON EXTINCTION<br />

RISK AMONG MARINE<br />

BIVALVES<br />

Extinction selectivity, or the selective<br />

removal <strong>of</strong> taxa that possess particular<br />

ecological or evolutionary traits, also plays<br />

an important role in shaping macroevolutionary<br />

<strong>and</strong> macroecological patterns<br />

through time. Extinction selectivity can<br />

contribute to ecosystem reorganization by<br />

eliminating dominant taxa <strong>and</strong> allowing<br />

subordinate ones to diversify (Gould &<br />

calloway, 1980; jablonski, 1986, 1989;<br />

droser, bottjer, & sHeeHan, 1997); it can


edirect evolutionary or ecological trends by<br />

eliminating important innovations (Pojeta<br />

& Palmer, 1976; FürsicH & jablonski,<br />

1984; jablonski, 1986); <strong>and</strong> it can limit the<br />

potential evolution <strong>of</strong> clades by reducing<br />

variability (norris, 1991; liu & olsson,<br />

1992). By studying extinction selectivity<br />

over long time scales, one can assess not<br />

only which taxa went extinct, but potentially<br />

how <strong>and</strong> why they did so. This link<br />

between extinction pattern <strong>and</strong> process can<br />

help to bridge the gap between paleontology<br />

<strong>and</strong> conservation biology (see papers in<br />

dietl & Flessa, 2009). If we can determine<br />

which traits have influenced susceptibility to<br />

extinction during periods <strong>of</strong> past environmental<br />

change, then we may be better able<br />

to predict which organisms are most likely<br />

to go extinct or persist in the present day.<br />

Extinction selectivity is thought to have<br />

significantly influenced the evolutionary<br />

trajectory <strong>of</strong> marine invertebrates <strong>and</strong> the<br />

ecological structure <strong>of</strong> marine ecosystems<br />

through geologic time. Bivalves are no<br />

exception; indeed, several classic studies<br />

<strong>of</strong> extinction selectivity have focused on<br />

the long <strong>and</strong> relatively well-preserved fossil<br />

record <strong>of</strong> marine bivalves (e.g., bretsky,<br />

1973; kauFFman, 1978; jablonski, 1986;<br />

stanley, 1986a; jablonski, 2005). This<br />

is in part because bivalves display sufficient<br />

variation among taxa in traits such as<br />

morphology, feeding mode, life habit, larval<br />

type, geographic range, <strong>and</strong> stratigraphic<br />

range to allow workers to independently<br />

test the extent to which these traits relate to<br />

taxon survivorship.<br />

A review <strong>of</strong> the literature on extinction<br />

selectivity in fossil marine bivalves published<br />

in 2010 <strong>and</strong> before (see Appendix, p. 20)<br />

demonstrates that selectivity among taxa<br />

has been explored with respect to a wide<br />

variety <strong>of</strong> traits, such as abundance, feeding<br />

mode, life habit, geographic range, body<br />

size, temperature tolerance, species richness,<br />

<strong>and</strong> habitat breadth, among many others<br />

(33 traits in total). This review includes 170<br />

tests <strong>of</strong> extinction selectivity published in<br />

69 studies. The vast majority <strong>of</strong> selectivity<br />

studies have focused on Mesozoic (120<br />

Extinction in the Marine Bivalvia<br />

Frequency<br />

0 500 1000 1500<br />

−0.6 −0.3 0.0 0.3 0.6<br />

Effect <strong>of</strong> extinction (t) on origination (t+1)<br />

9<br />

FiG. 4. The effect <strong>of</strong> extinction on subsequent origination<br />

for marine bivalve genera through the Phanerozoic.<br />

Effect was measured using the slope <strong>of</strong> the linear regression<br />

<strong>of</strong> extinction rate in an interval (t) on origination<br />

rate in the next interval (t + 1). The gray frequency<br />

distribution presents the r<strong>and</strong>omized values, the solid<br />

arrow denotes the observed effect, <strong>and</strong> the dashed line<br />

indicates the 95th quantile <strong>of</strong> r<strong>and</strong>omized values. The<br />

observed effect is significantly greater than expected by<br />

chance (new).<br />

tests) <strong>and</strong> Cenozoic (114 tests) bivalves,<br />

with the Paleozoic receiving considerably<br />

less attention (18 tests). The extinctions<br />

represented in our database range from the<br />

largest <strong>and</strong> most catastrophic mass extinctions<br />

(including all <strong>of</strong> the so-called Big Five),<br />

to six smaller, possibly regional-scale, events<br />

(e.g., Eocene/Oligocene <strong>and</strong> Plio/Pleistocene)<br />

<strong>and</strong> background intervals. Selectivity<br />

has been examined at both the species (98<br />

tests) <strong>and</strong> genus (80 tests) levels. Examining<br />

the specific traits tested for selectivity, four<br />

traits have received the most attention:<br />

geographic range (27 tests), life habit (28<br />

tests), body size (21 tests), <strong>and</strong> feeding mode<br />

(15 tests).<br />

If extinction is defined as the point in<br />

time at which a taxon’s geographic range<br />

<strong>and</strong> abundance decrease to zero, taxa<br />

with broader geographic ranges should<br />

be less prone to extinction. The primary<br />

role that geographic distribution plays in<br />

determining survivorship has long been<br />

recognized for both modern <strong>and</strong> fossil taxa<br />

(see references in Gaston, 1994; rosenzweiG,<br />

1995; Payne & FinneGan, 2007).<br />

An early assessment <strong>of</strong> global survivorship


10 Treatise Online, number 29<br />

across four mass extinctions—the end-<br />

Ordovician, Late Devonian, end-Permian,<br />

<strong>and</strong> end-Triassic events—concluded that<br />

geographically widespread bivalve genera<br />

were more likely to survive, at least in the<br />

initial stages <strong>of</strong> an extinction event, before<br />

drastic deterioration <strong>of</strong> the physical environment<br />

(bretsky, 1973). The event that<br />

has been most thoroughly examined for<br />

geographic range selectivity is the K/Pg mass<br />

extinction, in conjunction with the interval<br />

<strong>of</strong> background extinction leading up to it.<br />

K/Pg survivorship patterns in bivalves <strong>and</strong><br />

gastropods, along the United States Gulf<br />

<strong>and</strong> Atlantic Coastal Plain <strong>and</strong> globally,<br />

suggest that the only trait reliably associated<br />

with genus survivorship is geographic<br />

range, whereas several traits are associated<br />

with genus- <strong>and</strong> species-level survivorship<br />

during the preceding background interval<br />

(jablonski, 1986, 1987, 1989; rauP &<br />

jablonski, 1993; jablonski & rauP, 1995;<br />

jablonski, 2005; jablonski & Hunt, 2006).<br />

Data for Southern Hemisphere bivalves<br />

across the K/Pg, also compiled at the genus<br />

level, support this general pattern (stilwell,<br />

2003). In contrast, during the end-Triassic<br />

extinction, European bivalve species with<br />

broader distributions appear no more likely<br />

to have survived this event than narrowly<br />

distributed taxa (mcroberts & newton,<br />

1995; mcroberts, newton, & allasinaz,<br />

1995). When the spatial scale <strong>of</strong><br />

analysis is exp<strong>and</strong>ed to global coverage, the<br />

same nonsignificant species-level pattern is<br />

observed for the end-Triassic (kiesslinG &<br />

aberHan, 2007).<br />

Taxonomic level <strong>and</strong> the intensity<br />

<strong>of</strong> extinction complicate the pattern <strong>of</strong><br />

geographic range selectivity. The data<br />

compiled here strongly suggest that widespread<br />

bivalve species were significantly more<br />

likely to survive background (jablonski,<br />

1986, 1987; jablonski & Hunt, 2006;<br />

kiesslinG & aberHan, 2007; cramPton<br />

& others, 2010; Harnik, 2011), but not<br />

mass extinction events (jablonski, 1986;<br />

Hansen & others, 1993; mcroberts &<br />

newton, 1995; mcroberts, newton, &<br />

allasinaz, 1995; jablonski, 2005; kiesslinG<br />

& aberHan, 2007; for exceptions, see rode<br />

& lieberman, 2004, for the Late Devonian,<br />

<strong>and</strong> stilwell, 2003, for the K/Pg). Late<br />

Neogene extinctions, intermediate in scale<br />

between the Big Five events <strong>and</strong> background<br />

extinction, differ in the effects <strong>of</strong> geographic<br />

range on selectivity among regions.<br />

Narrowly distributed species were more<br />

likely to become extinct in western South<br />

America (riVadeneira & marquet, 2007)<br />

<strong>and</strong> tropical America (rooPnarine, 1997),<br />

but not in western North America, where<br />

there is no evidence <strong>of</strong> selective extinction<br />

(stanley, 1986b). These complex patterns<br />

highlight the importance <strong>of</strong> assessing selectivity<br />

across a range <strong>of</strong> extinctions that differ<br />

in magnitude, as well as across a range <strong>of</strong><br />

taxonomic levels. It is possible that thresholds<br />

exist, such that geographic range no<br />

longer ensures the survival <strong>of</strong> a species, when<br />

the scale <strong>of</strong> environmental perturbation<br />

<strong>and</strong> extinction exceed a critical magnitude.<br />

If true, this has enormous implications for<br />

assessment <strong>of</strong> extinction risk <strong>and</strong> development<br />

<strong>of</strong> effective management strategies in<br />

modern ecosystems.<br />

Bivalve life habit, specifically the sites the<br />

animals occupy relative to the sedimentwater<br />

interface, is another ecological trait<br />

that is thought to affect survivorship.<br />

Which life habit favors survival probably<br />

depends on the mechanism <strong>of</strong> extinction.<br />

For example, epifaunal taxa are thought to<br />

be more vulnerable to predation pressure<br />

(stanley, 1977, 1982, 1986b; Vermeij,<br />

1987), which could lead to decreased population<br />

size <strong>and</strong> an increase in extinction risk.<br />

In contrast, an epifaunal life habit may be<br />

advantageous in escaping sudden changes in<br />

bottom water chemistry <strong>and</strong>/or oxygenation.<br />

Of the studies compiled here, 14 suggested<br />

that epifaunal taxa were more likely to<br />

become extinct than infaunal, 5 suggested<br />

the opposite, <strong>and</strong> 8 found no evidence <strong>of</strong><br />

selectivity either way. When these results are<br />

parsed according to the size <strong>of</strong> the extinction<br />

event, an interesting pattern emerges. The<br />

majority <strong>of</strong> background intervals studied<br />

(8 out <strong>of</strong> 10) suggest that infaunal bivalves<br />

were less likely to go extinct, while mass


extinctions yield contradictory results (4<br />

negative, 5 positive, 6 nonsignificant). When<br />

the mass extinction events are broken down<br />

by specific event, the results remain mixed.<br />

For example, while bivalve genera globally<br />

did not exhibit differential survival<br />

with respect to life habit across the end-<br />

Permian mass extinction (jablonski, 2005),<br />

regional patterns from China suggested<br />

greater losses <strong>of</strong> epifaunal than infaunal<br />

bivalve genera (knoll & others, 2007).<br />

Perhaps these differences reflect the extent<br />

to which different geographic regions were<br />

affected by environmental deterioration. In<br />

another example, preferential extinction <strong>of</strong><br />

infaunal bivalve species was documented<br />

across the K/Pg boundary in New Jersey<br />

<strong>and</strong> the Delmarva Peninsula <strong>of</strong> the United<br />

States (GallaGHer, 1991), but subsequent<br />

work found the opposite pattern for bivalve<br />

species in Denmark (HeinberG, 1999) <strong>and</strong><br />

the Southern Hemisphere (stilwell, 2003).<br />

Although global analyses <strong>of</strong> selectivity<br />

can be very useful in seeking possible causes<br />

<strong>of</strong> extinction, they can obscure regional<br />

patterns that may be less predictable <strong>and</strong> yet<br />

likely to provide more information about<br />

the interacting effects <strong>of</strong> biotic <strong>and</strong> abiotic<br />

factors on survivorship. Spatial variation in<br />

environmental change, coupled with spatial<br />

heterogeneity in the distributions <strong>of</strong> taxa <strong>and</strong><br />

associated biological traits, effectively ensure<br />

that patterns <strong>of</strong> selectivity will vary regionally<br />

(see Fritz, bininda-emonds, & PurVis,<br />

2009, for an example <strong>of</strong> geographic variation<br />

in extinction risk among extant mammals).<br />

Spatial variation may provide useful information<br />

about gradients <strong>of</strong> environmental change<br />

<strong>and</strong> the existence <strong>of</strong> environmental thresholds<br />

affecting taxon survivorship. Despite the<br />

clear importance <strong>of</strong> regional-scale studies in<br />

modern conservation biology, paleontological<br />

examples are few <strong>and</strong> far between.<br />

Although large body size is widely thought<br />

to increase extinction risk in vertebrates,<br />

the link between size <strong>and</strong> extinction risk in<br />

marine invertebrates is considerably more<br />

ambiguous (Hallam, 1975; stanley, 1986b;<br />

budd & joHnson, 1991; jablonski, 1996b;<br />

smitH & roy, 2006). Among invertebrates,<br />

Extinction in the Marine Bivalvia<br />

11<br />

increased body size is <strong>of</strong>ten associated<br />

with increased fecundity, broader environmental<br />

tolerance, <strong>and</strong> wider geographic<br />

range (stanley, 1986b; mckinney, 1990;<br />

rosenzweiG, 1995; Hildrew, raFFaelli, &<br />

edmonds-brown, 2007), which suggests<br />

that larger taxa should have increased rates<br />

<strong>of</strong> survivorship. Among marine bivalves,<br />

however, large body size is not generally associated<br />

with either extinction risk or survivorship.<br />

Body size <strong>and</strong> extinction are positively<br />

linked in only 7 <strong>and</strong> negatively linked in only<br />

2 (out <strong>of</strong> a total <strong>of</strong> 21) studies. Four <strong>of</strong> the 7<br />

studies that documented selective extinction<br />

<strong>of</strong> large taxa focused on regional patterns<br />

during intervals characterized by background<br />

rates <strong>of</strong> extinction; these include the Jurassic<br />

(Hallam, 1975), Miocene (<strong>and</strong>erson &<br />

rooPnarine, 2003, for the Western Atlantic<br />

<strong>and</strong> Caribbean, but not the Eastern Pacific),<br />

<strong>and</strong> Pleistocene (stanley, 1986a, 1990b).<br />

Interestingly, not a single one <strong>of</strong> the 10<br />

studies that considered size across a mass<br />

extinction event found a strong, conclusive<br />

link between body size <strong>and</strong> extinction,<br />

although the only 2 events investigated<br />

thus far are the end-Triassic (mcroberts &<br />

newton, 1995; mcroberts, newton, &<br />

allasinaz, 1995; mcroberts, krystyn, &<br />

sHea, 2008) <strong>and</strong> K/Pg (Hansen & others,<br />

1987; rauP & jablonski, 1993; jablonski<br />

& rauP, 1995; mcclure & boHonak,<br />

1995; jablonski, 1996a; lockwood, 2005;<br />

aberHan & others, 2007) events. Three<br />

<strong>of</strong> these 10 studies documented a decrease<br />

in bivalve size across a mass extinction<br />

boundary (Norian–Rhaetian: mcroberts,<br />

krystyn, & sHea, 2008; K/Pg: Hansen &<br />

others, 1987; aberHan & others, 2007),<br />

but it is unclear in each case whether these<br />

patterns were driven by extinction selectivity,<br />

within lineage size change, or size-biased<br />

origination.<br />

One <strong>of</strong> the few instances in which a<br />

connection between large body size <strong>and</strong><br />

survivorship has been documented convincingly<br />

focused on scallops across the Plio–<br />

Pleistocene extinction in California (smitH<br />

& roy, 2006). This positive relationship was<br />

not apparent until phylogenetic relationships


12 Treatise Online, number 29<br />

were considered. This emphasizes an underappreciated<br />

problem that may affect many<br />

selectivity studies. Patterns <strong>of</strong> selectivity can<br />

sometimes be masked or artificially exaggerated<br />

when phylogenetic relationships are not<br />

taken into account (PurVis, 2008). Taxa may<br />

share a particular trait <strong>and</strong> similar pattern<br />

<strong>of</strong> survivorship because they are related<br />

to each other <strong>and</strong> not necessarily because<br />

the trait under consideration, by itself,<br />

confers survivorship. A recent analysis (roy,<br />

Hunt, & jablonski, 2009) <strong>of</strong> Jurassic to<br />

Recent bivalves demonstrated conclusively<br />

that phylogenetic clustering <strong>of</strong> extinction<br />

occurs. Phylogenetic relationships do not<br />

always affect patterns <strong>of</strong> selectivity, however;<br />

for example, patterns <strong>of</strong> selectivity among<br />

Cenozoic mollusks from New Zeal<strong>and</strong> did<br />

not change appreciably after accounting<br />

for phylogeny (Foote & others, 2008;<br />

cramPton & others, 2010). The fact that<br />

taxa in some clades are significantly more<br />

extinction-prone than others does strongly<br />

suggest that future paleontological studies<br />

<strong>of</strong> selectivity should explicitly account for<br />

phylogenetic effects.<br />

In general, deposit feeding is thought<br />

to represent a more generalized dietary<br />

mode than suspension feeding <strong>and</strong> could<br />

promote survivorship, especially across<br />

events that involve a collapse in primary<br />

productivity. leVinton’s (1974) observation<br />

that genera <strong>of</strong> deposit-feeding bivalves were<br />

geologically longer-lived than suspensionfeeders,<br />

has inspired an ongoing debate<br />

over whether bivalves with different feeding<br />

modes experience different extinction trajectories.<br />

Building on this work, a qualitative<br />

examination <strong>of</strong> background extinction in<br />

Cretaceous bivalve species documented<br />

particularly slow rates <strong>of</strong> evolution <strong>and</strong> long<br />

stratigraphic durations in deposit-feeders<br />

relative to suspension-feeders (kauFFman,<br />

1978). The majority <strong>of</strong> studies that have<br />

explicitly tested for extinction selectivity<br />

according to feeding mode have focused on<br />

the K/Pg event, with mixed results. Seven<br />

out <strong>of</strong> 11 studies have reported selective<br />

extinction <strong>of</strong> suspension-feeding genera<br />

(e.g., sHeeHan & Hansen, 1986; rHodes<br />

& tHayer, 1991; rauP & jablonski, 1993;<br />

jablonski & rauP, 1995; jablonski, 1996a;<br />

stilwell, 2003; aberHan & others, 2007).<br />

There is preliminary evidence to suggest<br />

that the strength <strong>of</strong> the selectivity may<br />

have increased with distance away from the<br />

United States Gulf Coastal Plain, which<br />

raises the question as to whether proximity<br />

to the killing agent, in this case the K/Pg<br />

bolide impact that occurred in the Yucatan,<br />

has an effect on selectivity patterns. Studies<br />

limited to eastern Texas (Hansen & others,<br />

1987; Hansen, Farrell, & uPsHaw, 1993;<br />

Hansen & others, 1993, for exception see<br />

sHeeHan & Hansen, 1986) or the United<br />

States Gulf <strong>and</strong> Atlantic Coastal Plain<br />

(mcclure & boHonak, 1995), have yielded<br />

either weak or no evidence for selectivity.<br />

On the other h<strong>and</strong>, regional studies in the<br />

Southern Hemisphere (e.g., stilwell, 2003)<br />

<strong>and</strong> Argentina (aberHan & others, 2007)<br />

have suggested that proximity matters, as<br />

they have shown strong evidence for selectivity.<br />

Although jablonski’s work (rauP &<br />

jablonski, 1993; jablonski & rauP, 1995;<br />

jablonski, 1996a) clearly supports a global<br />

pattern <strong>of</strong> selective extinction <strong>of</strong> suspensionfeeding<br />

bivalves at the K/Pg, he has argued<br />

that this was driven by taxonomic factors,<br />

rather than selectivity according to feeding<br />

mode. He <strong>and</strong> his colleagues pointed to<br />

anomalously low rates <strong>of</strong> extinction in the<br />

two bivalve orders Nuculoida <strong>and</strong> Lucinoida<br />

<strong>and</strong> argued that other attributes <strong>of</strong> these two<br />

clades helped to promote their survivorship.<br />

sHeeHan <strong>and</strong> Hansen (1986), Hansen <strong>and</strong><br />

others (1987, 1993), <strong>and</strong> Hansen, Farrell,<br />

<strong>and</strong> uPsHaw (1993) emphasized the shift<br />

from molluscan communities dominated by<br />

suspension-feeders to those dominated by<br />

deposit-feeders across the K/Pg boundary, a<br />

pattern that could have been caused by selective<br />

extinction against suspension-feeders,<br />

preferential recovery <strong>of</strong> deposit-feeders,<br />

or some combination <strong>of</strong> the two. Explicit<br />

evaluation <strong>of</strong> this possibility, in addition to<br />

detailed tracking <strong>of</strong> feeding mode across the<br />

recovery interval, is still lacking. Although<br />

early studies heralded the usefulness <strong>of</strong><br />

patterns <strong>of</strong> extinction selectivity based on


feeding habits in differentiating among<br />

possible extinction mechanisms, this potential<br />

has seldom been realized (but see knoll<br />

& others, 1996, 2007, for exceptions). As<br />

our underst<strong>and</strong>ing <strong>of</strong> changes in primary<br />

productivity associated with mass extinctions<br />

deepens, aided by geochemical proxies,<br />

it should be possible to further refine <strong>and</strong><br />

test hypotheses bearing on the relationship<br />

between feeding mode <strong>and</strong> extinction risk<br />

across an array <strong>of</strong> marine environments.<br />

Most <strong>of</strong> the studies outlined above focus<br />

on the selectivity <strong>of</strong> single traits <strong>and</strong> do not<br />

consider the potential interactions among<br />

multiple traits. We have every reason to<br />

believe, based on ecological studies <strong>of</strong> extant<br />

bivalves <strong>and</strong> many other clades, that several<br />

<strong>of</strong> these traits, for example, body size <strong>and</strong><br />

geographic range (jablonski & roy, 2003;<br />

cramPton & others, 2010; Harnik, 2011),<br />

are linked to one another. This raises the<br />

question—to what extent do these interactions<br />

influence patterns <strong>of</strong> selectivity? A<br />

h<strong>and</strong>ful <strong>of</strong> recent studies have tackled this<br />

question for marine bivalves (jablonski &<br />

Hunt, 2006; riVadeneira & marquet,<br />

2007; jablonski, 2008a; cramPton &<br />

others, 2010; Harnik, 2011). Almost all<br />

<strong>of</strong> them have found that geographic range<br />

played a more important role in survivorship<br />

than any other ecological trait. For example,<br />

in a genus-level analysis <strong>of</strong> selectivity across<br />

the K/Pg mass extinction, jablonski (2008a)<br />

independently tested the effects <strong>of</strong> body<br />

size, geographic range, <strong>and</strong> species richness,<br />

<strong>and</strong> found that the last two traits were both<br />

statistically significantly correlated with<br />

survivorship. However, once the covariation<br />

among these three traits was controlled for,<br />

geographic range yielded the only significant<br />

evidence for selectivity. In what is perhaps<br />

the most extensive multivariate selectivity<br />

study to date, cramPton <strong>and</strong> others (2010)<br />

assessed the relative importance <strong>of</strong> several<br />

traits, including geographic range, body size,<br />

feeding mode, life habit, <strong>and</strong> larval type, in<br />

promoting survivorship among Cenozoic<br />

bivalve species from New Zeal<strong>and</strong>. Once<br />

again, in a multivariate framework, the<br />

only trait to show demonstrable selectivity<br />

Extinction in the Marine Bivalvia<br />

13<br />

was geographic range. Such multivariate<br />

approaches are crucial to studies <strong>of</strong> selectivity,<br />

<strong>of</strong>fering considerable insight into the<br />

direct <strong>and</strong> indirect effects <strong>of</strong> extinction on<br />

the evolution <strong>of</strong> correlated traits. A clear<br />

underst<strong>and</strong>ing as to how traits interact,<br />

influencing extinction risk across a range <strong>of</strong><br />

past events, is needed, if bivalve workers are<br />

to make such patterns relevant to managers<br />

predicting biotic response to current extinction<br />

pressures.<br />

CONCLUSIONS<br />

One <strong>of</strong> the major insights <strong>of</strong> paleontology<br />

is the importance <strong>of</strong> extinction in shaping<br />

the diversity <strong>of</strong> life through time. The<br />

effects <strong>of</strong> extinction on diversity dynamics<br />

have been intensively studied in the marine<br />

Bivalvia because <strong>of</strong> their relatively complete<br />

fossil record, the considerable biological<br />

variation that exists among taxa, <strong>and</strong> their<br />

diversity <strong>and</strong> abundance in shallow marine<br />

environments today <strong>and</strong> in the past. In this<br />

contribution, we provide new estimates <strong>of</strong><br />

global extinction <strong>and</strong> origination rates for<br />

marine bivalve genera through the Phanerozoic<br />

that explicitly account for temporal<br />

variation in preservation. These analyses,<br />

using data compiled primarily from the first<br />

Treatise on Invertebrate Paleontology (Part<br />

N: cox & otHers, 1969; stenzel, 1971),<br />

underscore the important contributions <strong>of</strong><br />

the Treatise to our underst<strong>and</strong>ing <strong>of</strong> bivalve<br />

macroevolutionary history. While rates <strong>of</strong><br />

extinction <strong>and</strong> origination are moderate<br />

for marine bivalves overall, times <strong>of</strong> severe<br />

extinction <strong>and</strong> times <strong>of</strong> general quiescence<br />

are observed through the Phanerozoic. Intervals<br />

<strong>of</strong> elevated global extinction for marine<br />

bivalves correspond to intervals <strong>of</strong> elevated<br />

extinction for marine invertebrates more<br />

broadly, <strong>and</strong> bivalves exhibit secular declines<br />

in rates <strong>of</strong> extinction <strong>and</strong> origination over<br />

the Phanerozoic that are also observed at<br />

much broader taxonomic scales. Throughout<br />

their history, marine bivalves exhibited<br />

coupled dynamics <strong>of</strong> extinction <strong>and</strong> origination,<br />

with periods <strong>of</strong> elevated extinction<br />

followed by periods <strong>of</strong> elevated origination,<br />

<strong>and</strong> moderate extinction by moderate origi-


14 Treatise Online, number 29<br />

nation. This diversity-dependent process is<br />

most pronounced following mass extinctions,<br />

but operated consistently throughout<br />

the history <strong>of</strong> the clade. Studies <strong>of</strong> marine<br />

bivalves have yielded important insights into<br />

extinction selectivity, <strong>and</strong> specifically, the<br />

effects <strong>of</strong> biological traits on survivorship.<br />

We review this literature, focusing on four<br />

traits that have received the most attention.<br />

Geographic range size is the most consistent<br />

predictor <strong>of</strong> bivalve survivorship considered<br />

to date. Traits like feeding mode <strong>and</strong> life<br />

habit may also be important, but these are<br />

probably more dependent on the particular<br />

context <strong>of</strong> environmental change. Body<br />

size is largely decoupled from extinction<br />

risk despite reasons to expect otherwise.<br />

The growing paleontological literature on<br />

selectivity underscores the major contribution<br />

<strong>of</strong> fossil bivalves to our underst<strong>and</strong>ing<br />

<strong>of</strong> the factors that influence extinction risk.<br />

It highlights a fruitful area for collaboration<br />

between researchers studying the effects <strong>of</strong><br />

extinction on marine systems today <strong>and</strong> in<br />

the past.<br />

ACKNOWLEDGMENTS<br />

Michael Foote generously provided the<br />

rate estimates presented in Figure 1, <strong>and</strong><br />

his assistance throughout the preparation<br />

<strong>of</strong> this manuscript was invaluable.<br />

Thank you to Heather Richardson at the<br />

<strong>College</strong> <strong>of</strong> <strong>William</strong> <strong>and</strong> <strong>Mary</strong> for her help<br />

in compiling the bibliography. The quality<br />

<strong>of</strong> this manuscript was greatly improved by<br />

the comments <strong>of</strong> Martin Aberhan, Joseph<br />

Carter, James Crampton, Patricia Kelley,<br />

Roger Thomas, <strong>and</strong> members <strong>of</strong> Jonathan<br />

Payne’s lab at Stanford University. A portion<br />

<strong>of</strong> this work was conducted while Rowan<br />

Lockwood was a Sabbatical Fellow at the<br />

National Center for Ecological Analysis <strong>and</strong><br />

Synthesis, a Center funded by NSF (Grant<br />

#EF-0553768), the University <strong>of</strong> California,<br />

Santa Barbara, <strong>and</strong> the State <strong>of</strong> California.<br />

This material is based upon work supported<br />

by the National Science Foundation under<br />

Grant No. EAR-0718745 to Rowan Lockwood<br />

<strong>and</strong> collaborators.<br />

REFERENCES<br />

Aberhan, Martin. 2002. Origins <strong>of</strong> the Hispanic Corridor<br />

<strong>and</strong> Early Jurassic bivalve biodiversity. In J. A.<br />

Crame & A. W. Owen, eds., Palaeobiogeography<br />

<strong>and</strong> Biodiversity Change: The Ordovician <strong>and</strong><br />

Mesozoic–Cenozoic Radiations. Geological Society.<br />

London. p. 127–139.<br />

Aberhan, Martin, & T. K. Baumiller. 2003. Selective extinction<br />

among early Jurassic bivalves: A consequence<br />

<strong>of</strong> anoxia. Geology 31(12):1077–1080.<br />

Aberhan, Martin, & F. T. Fürsich. 1997. Diversity<br />

analysis <strong>of</strong> Lower Jurassic bivalves <strong>of</strong> the Andean<br />

Basin <strong>and</strong> the Pliensbachian–Toarcian mass extinction.<br />

Lethaia 29:181–195.<br />

Aberhan, Martin, & F. T. Fürsich. 2000. Mass origination<br />

versus mass extinction: The biological contribution to<br />

the Pliensbachian–Toarcian extinction event. Journal <strong>of</strong><br />

the Geological Society <strong>of</strong> London 157:55–60.<br />

Aberhan, Martin, S. Weidemeyer, W. Kiessling, R. A.<br />

Scasso, & F. A. Medina. 2007. Faunal evidence for<br />

reduced productivity <strong>and</strong> uncoordinated recovery in<br />

Southern Hemisphere Cretaceous/Paleogene boundary<br />

sections. Geology 35:227–230.<br />

Adrain, Jonathan M., & S. R. Westrop. 2000. An<br />

empirical assessment <strong>of</strong> taxic paleobiology. Science<br />

289(5476):110–112.<br />

Allmon, Warren D., G. Rosenberg, R. W. Portell,<br />

& K. S. Schindler. 1993. Diversity <strong>of</strong> Atlantic<br />

coastal plain mollusks since the Pliocene. Science<br />

260(5114):1626–1629.<br />

Alroy, John. 2008. Dynamics <strong>of</strong> origination <strong>and</strong> extinction<br />

in the marine fossil record. Proceedings <strong>of</strong> the<br />

National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong><br />

America 105(Supplement 1):11,536–11,542.<br />

Alroy, John, M. Aberhan, D. J. Bottjer, M. Foote,<br />

F. T. Fursich, P. J. Harries, A. J. W. Hendy, S. M.<br />

Holl<strong>and</strong>, L. C. Ivany, W. Kiessling, M. A. Kosnik,<br />

C. R. Marshall, A. J. McGowan, A. I. Miller, T. D.<br />

Olszewski, M. E. Patzkowsky, S. E. Peters, L. Villier,<br />

P. J. Wagner, N. Bonuso, P. S. Borkow, B. Brenneis,<br />

M. E. Clapham, L. M. Fall, C. A. Ferguson, V. L.<br />

Hanson, A. Z. Krug, K. M. Layou, E. H. Leckey, S.<br />

Nurnberg, C. M. Powers, J. A. Sessa, C. Simpson,<br />

A. Tomasovych, & C. C. Visaggi. 2008. Phanerozoic<br />

trends in the global diversity <strong>of</strong> marine invertebrates.<br />

Science 321(5885):97–100.<br />

Alroy, John, C. R. Marshall, R. K. Bambach, K.<br />

Bezusko, M. Foote, F. T. Fürsich, T. A. Hansen,<br />

S. M. Holl<strong>and</strong>, L. C. Ivany, D. Jablonski, D. K.<br />

Jacobs, D. C. Jones, M. A. Kosnik, S. Lidgard, S.<br />

Low, A. I. Miller, P. M. Novack-Gottshall, T. D.<br />

Olszewski, M. E. Patzkowsky, D. M. Raup, K. Roy,<br />

J. J. Sepkoski, Jr., M. G. Sommers, P. J. Wagner,<br />

& A. Webber. 2001. Effects <strong>of</strong> sampling st<strong>and</strong>ardization<br />

on estimates <strong>of</strong> Phanerozoic marine<br />

diversification. Proceedings <strong>of</strong> the National Academy<br />

<strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America<br />

98(11):6261–6266.<br />

Anderson, Laurie C., & P. D. Roopnarine. 2003. Evolution<br />

<strong>and</strong> phylogenetic relationships <strong>of</strong> Neogene<br />

Corbulidae (Bivalvia; Myoidea) <strong>of</strong> tropical America.<br />

Journal <strong>of</strong> Paleontology 77(6):1086–1102.


Ausich, <strong>William</strong> I., & S. E. Peters. 2005. A revised macroevolutionary<br />

history for Ordovician–Early Silurian<br />

crinoids. Paleobiology 31(3):538–551.<br />

Bambach, Richard K., A. H. Knoll, & J. J. Sepkoski.<br />

2002. Anatomical <strong>and</strong> ecological constraints on<br />

Phanerozoic animal diversity in the marine realm.<br />

Proceedings <strong>of</strong> the National Academy <strong>of</strong> Sciences<br />

<strong>of</strong> the United States <strong>of</strong> America 99(10):6854–6859.<br />

Bogan, Arthur E. 2006. Conservation <strong>and</strong> extinction<br />

<strong>of</strong> the freshwater molluscan fauna <strong>of</strong> North America.<br />

In C. F. Sturm, T. A. Pearce, & A. Valdes, eds., The<br />

Mollusks: A Guide to Their Study, Collection, <strong>and</strong><br />

Preservation. American Malacological Society. Boca<br />

Raton, Florida. p. 373–383.<br />

Bottjer, David J., M. E. Clapham, M. L. Fraiser, & C.<br />

M. Powers. 2008. Underst<strong>and</strong>ing mechanisms for the<br />

end-Permian mass extinction <strong>and</strong> the protracted early<br />

Triassic aftermath <strong>and</strong> recovery. GSA Today 18(9):4–10.<br />

Bretsky, Peter W. 1973. Evolutionary patterns in the<br />

Paleozoic Bivalvia: Documentation <strong>and</strong> some theoretical<br />

considerations. Geological Society <strong>of</strong> America<br />

Bulletin 84:2079–2096.<br />

Budd, Ann F., & K. G. Johnson. 1991. Size-related evolutionary<br />

patterns among species <strong>and</strong> subgenera in<br />

the Strombina group (Gastropoda: Columbellidae).<br />

Journal <strong>of</strong> Paleontology 65:417–434.<br />

Bush, Andrew M., M. J. Markey, & C. R. Marshall.<br />

2004. Removing bias from diversity curves: The effects<br />

<strong>of</strong> spatially organized biodiversity on samplingst<strong>and</strong>ardization.<br />

Paleobiology 30(4):666–686.<br />

Cherns, Lesley, & V. P. Wright. 2000. Missing molluscs<br />

as evidence <strong>of</strong> large-scale, early skeletal aragonite dissolution<br />

in a Silurian sea. Geology 28(9):791–794.<br />

Cherns, Lesley, & V. P. Wright. 2009. Quantifying the<br />

impacts <strong>of</strong> early diagenetic aragonite dissolution on<br />

the fossil record. PALAIOS 24(11–12):756–771.<br />

Clapham, Matthew E., & D. J. Bottjer. 2007. Permian<br />

marine paleoecology <strong>and</strong> its implications for<br />

large-scale decoupling <strong>of</strong> brachiopod <strong>and</strong> bivalve<br />

abundance <strong>and</strong> diversity during the Lopingian (Late<br />

Permian). Palaeogeography, Palaeoclimatology, Palaeoecology<br />

249:283–301.<br />

Connolly, Sean R., & A. I. Miller. 2002. Global Ordovician<br />

faunal transitions in the marine benthos:<br />

Ultimate causes. Paleobiology 28(1):26–40.<br />

Cooper, Roger A., P. A. Maxwell, J. S. Crampton, A.<br />

G. Beu, C. M. Jones, & B. A. Marshall. 2006. Completeness<br />

<strong>of</strong> the fossil record: Estimating losses due to<br />

small body size. Geology 34(4):241–244.<br />

Cope, John C. W. 2002. Diversification <strong>and</strong> biogeography<br />

<strong>of</strong> bivalves during the Ordovician Period. In J.<br />

A. Crame & A. W. Owen, eds., Palaeogeography <strong>and</strong><br />

Biodiversity Change: The Ordovician <strong>and</strong> Mesozoic–<br />

Cenozoic Radiations. Geological Society, London,<br />

Special Publication 194:25–52.<br />

Cox, L. R., N. D. Newell, D. W. Boyd, C. C. Branson,<br />

R. Casey, A. Chavan, A. H. Coogan, C. Dechaseaux,<br />

C. A. Fleming, F. Haas, L. G. Hertlein, E. G. Kauffman,<br />

A. Myra Keen, A. LaRocque, A. L. McAlester,<br />

R. C. Moore, C. P. Nuttall, B. F. Perkins, H. S. Puri,<br />

L. A. Smith, T. Soot-Ryen, H. B. Stenzel, E. R. Trueman,<br />

R. D. Turner, & J. Weir. 1969. In R. C. Moore,<br />

ed., Treatise on Invertebrate Paleontology. Part N,<br />

Extinction in the Marine Bivalvia<br />

15<br />

Mollusca 6, Bivalvia, vol. 1–2. Geological Society <strong>of</strong><br />

America & University <strong>of</strong> Kansas Press. Boulder &<br />

Lawrence. xxviii + p. 1–952.<br />

Crame, J. Alistair. 2002. Evolution <strong>of</strong> taxonomic diversity<br />

gradients in the marine realm: A comparison <strong>of</strong><br />

Late Jurassic <strong>and</strong> Recent bivalve faunas. Paleobiology<br />

28(2):184–207.<br />

Crampton, James S., R. A. Cooper, A. G. Beu, M.<br />

Foote, & B. A. Marshall. 2010. Biotic influences<br />

on species duration: Interactions between traits in<br />

marine molluscs. Paleobiology 36(2):204–223.<br />

Crampton, James S., M. Foote, A. G. Beu, R. A. Cooper,<br />

I. Matcham, C. M. Jones, P. A. Maxwell, & B. A.<br />

Marshall. 2006. Second-order sequence stratigraphic<br />

controls on the quality <strong>of</strong> the fossil record at an active<br />

margin: New Zeal<strong>and</strong> Eocene to Recent shelf molluscs.<br />

PALAIOS 21:86–105.<br />

Crampton, James S., M. Foote, A. G. Beu, P. A. Maxwell,<br />

R. A. Cooper, I. Matcham, B. A. Marshall, & C.M.<br />

Jones. 2006. The ark was full! Constant to declining<br />

Cenozoic shallow marine biodiversity on an isolated<br />

mid-latitude continent. Paleobiology 32:509–532.<br />

Dietl, Gregory P., & K. W. Flessa. 2009. Conservation<br />

Paleobiology: Using the Past to Manage for the<br />

Future. Paleontological Society Papers 15:1–285.<br />

Dietl, Gregory P., P. H. Kelley, R. Barrick, & W. Showers.<br />

2002. Escalation <strong>and</strong> extinction selectivity:<br />

Morphology versus isotopic reconstruction <strong>of</strong> bivalve<br />

metabolism. Evolution 56(2):284–291.<br />

Dockery, David T., III, & P. Lozouet. 2003. Molluscan<br />

faunas across the Eocene/Oligocene boundary in the<br />

North American Gulf Coastal Plain, with comparisons<br />

to those <strong>of</strong> the Eocene <strong>and</strong> Oligocene <strong>of</strong> France.<br />

In D. R. Prothero, L. C. Ivany, & E. A. Nesbitt,<br />

eds., From Greenhouse to Icehouse: The Marine<br />

Eocene–Oligocene Transition. Columbia University<br />

Press. New York. p. 303–340.<br />

Droser, <strong>Mary</strong> L., D. J. Bottjer, & P. M. Sheehan. 1997.<br />

Evaluating the ecological architecture <strong>of</strong> major events<br />

in the Phanerozoic history <strong>of</strong> marine invertebrate life.<br />

Geology 25(2):167–170.<br />

Erwin, Douglas H. 2001. Lessons from the past: Biotic<br />

recoveries from mass extinctions. Proceedings <strong>of</strong> the<br />

National Academy <strong>of</strong> Sciences <strong>of</strong> the United States<br />

<strong>of</strong> America 98(10):5399–5403.<br />

Erwin, Douglas H. 2008. Extinction as the loss <strong>of</strong><br />

evolutionary history. Proceedings <strong>of</strong> the National<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America<br />

105:11,520–11,527.<br />

Foote, Mike. 2000. Origination <strong>and</strong> extinction components<br />

<strong>of</strong> taxonomic diversity: General problems.<br />

In D. H. Erwin & S. L. Wing, eds., Deep time:<br />

Paleobiology’s perspective. Paleobiology 26(Suppl.<br />

to no. 4):74–102.<br />

Foote, Michael. 2003. Origination <strong>and</strong> extinction<br />

through the Phanerozoic: A new approach. Journal<br />

<strong>of</strong> Geology 111(2):125–148.<br />

Foote, Michael. 2005. Pulsed origination <strong>and</strong> extinction<br />

in the marine realm. Paleobiology 31(1):6–20.<br />

Foote, Michael, J. S. Crampton, A. G. Beu, & R. A.<br />

Cooper. 2008. On the bidirectional relationship<br />

between geographic range <strong>and</strong> taxonomic duration.<br />

Paleobiology 34:421–433.


16 Treatise Online, number 29<br />

Foote, Michael, J. S. Crampton, A. G. Beu, B.<br />

A. Marshall, R. A. Cooper, P. A. Maxwell, &<br />

I. Matcham. 2007. Rise <strong>and</strong> fall <strong>of</strong> species occupancy<br />

in Cenozoic fossil mollusks. Science<br />

318(5853):1131–1134.<br />

Foote, Mike, & D. M. Raup. 1996. Fossil preservation<br />

<strong>and</strong> the stratigraphic ranges <strong>of</strong> taxa. Paleobiology<br />

22:121–140.<br />

Foote, Mike, & J. J. Sepkoski, Jr. 1999. Absolute measures<br />

<strong>of</strong> the completeness <strong>of</strong> the fossil record. Nature<br />

398:415–417.<br />

Fraiser, Margaret L., & D. J. Bottjer. 2007. When bivalves<br />

took over the world. Paleobiology 33(3):397–413.<br />

Fritz, Susanne A., O. R. P. Bininda-Emonds, & A.<br />

Purvis. 2009. Geographical variation in predictors <strong>of</strong><br />

mammalian extinction risk: Big is bad, but only in<br />

the tropics. Ecology Letters 12:538–549.<br />

Fürsich, Franz T., & D. Jablonski. 1984. Late Triassic<br />

naticid drillholes: Carnivorous gastropods gain<br />

a major adaptation but fail to radiate. Science<br />

224:78–80.<br />

Gallagher, <strong>William</strong> B. 1991. Selective extinction <strong>and</strong><br />

survival across the Cretaceous/Tertiary boundary<br />

in the northern Atlantic Coastal Plain. Geology<br />

19:967–970.<br />

Gaston, Kevin J. 1994. Rarity. Chapman <strong>and</strong> Hall.<br />

London. 216 p.<br />

Geary, Dana H. 1987. Evolutionary tempo <strong>and</strong> mode<br />

in a sequence <strong>of</strong> the Upper Cretaceous bivalve Pleuriocardia.<br />

Paleobiology 13(2):140–151.<br />

Gould, Stephen J., & C. B. Calloway. 1980. Clams <strong>and</strong><br />

brachiopods—Ships that pass in the night. Paleobiology<br />

6(4):383–396.<br />

Hallam, Anthony. 1975. Evolutionary size increase <strong>and</strong><br />

longevity in Jurassic bivalves <strong>and</strong> ammonites. Nature<br />

258:493–496.<br />

Hallam, Anthony. 1981. The end-Triassic bivalve extinction<br />

event. Palaeogeography, Palaeoclimatology,<br />

Palaeoecology 35:1–44.<br />

Hallam, Anthony, & A. I. Miller. 1988. Extinction <strong>and</strong><br />

survival in the Bivalvia. In G. P. Larwood, ed., Extinction<br />

<strong>and</strong> Survival in the Fossil Record. Clarendon<br />

Press. Oxford. p. 121–138.<br />

Hallam, Anthony, & P. B. Wignall. 1997. Mass Extinctions<br />

<strong>and</strong> Their Aftermath. Oxford University Press.<br />

Oxford. p. 1–320.<br />

Hansen, Thor A., R. B. Farr<strong>and</strong>, H. A. Montgomery, H.<br />

G. Billman, & G. Blechschmidt. 1987. Sedimentology<br />

<strong>and</strong> extinction patterns across the Cretaceous–<br />

Tertiary boundary interval in east Texas. Cretaceous<br />

Research 8:229–252.<br />

Hansen, Thor A., B. R. Farrell, & B. Upshaw. 1993.<br />

The first 2 million years after the Cretaceous–Tertiary<br />

boundary in east Texas: Rate <strong>and</strong> paleoecology <strong>of</strong> the<br />

molluscan recovery. Paleobiology 19(2):251–265.<br />

Hansen, Thor A., P. H. Kelley, & D. M. Haasl. 2004.<br />

Paleoecological patterns in molluscan extinctions<br />

<strong>and</strong> recoveries: Comparison <strong>of</strong> the Cretaceous–<br />

Paleogene <strong>and</strong> Eocene–Oligocene extinctions in<br />

North America. Palaeogeography, Palaeoclimatology,<br />

Palaeoecology 214(3):233–242.<br />

Hansen, Thor A., P. H. Kelley, V. D. Mell<strong>and</strong>, & S.<br />

E. Graham. 1999. Effect <strong>of</strong> climate-related mass<br />

extinctions on escalation in molluscs. Geology<br />

27(12):1139–1142.<br />

Hansen, Thor A., B. Upshaw, III, E. G. Kauffman, &<br />

W. Gose. 1993. Patterns <strong>of</strong> molluscan extinction <strong>and</strong><br />

recovery across the Cretaceous–Tertiary boundary<br />

in east Texas: Report on new outcrops. Cretaceous<br />

Research 14(6):685–706.<br />

Harnik, Paul G. 2011. Direct <strong>and</strong> indirect effects <strong>of</strong><br />

biological factors on extinction risk in fossil bivalves.<br />

Proceedings <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong><br />

the United States <strong>of</strong> America 108(33):13,594–13,599.<br />

Harper, Elizabeth M. 1998. The fossil record <strong>of</strong> bivalve<br />

molluscs. In S. K. Donovan & C. R. C. Paul, eds.,<br />

The Adequacy <strong>of</strong> the Fossil Record. Wiley. Chichester,<br />

U.K. p. 243–267.<br />

Hautmann, Michael, F. Stiller, Cai Hua-wei, & Sha<br />

Jin-geng. 2008. Extinction-recovery pattern <strong>of</strong> levelbottom<br />

faunas across the Triassic–Jurassic boundary<br />

in Tibet: Implications for potential killing mechanisms.<br />

PALAIOS 23(9–10):711–718.<br />

Heim, Noel. 2009. Stability <strong>of</strong> regional brachiopod<br />

diversity structure across the Mississippian/<br />

Pennsylvanian boundary. Paleobiology 35:393–412.<br />

Heinberg, Claus. 1999. Lower Danian bivalves, Stevns<br />

Klint, Denmark; continuity across the K/T boundary.<br />

Palaeogeography, Palaeoclimatology, Palaeoecology<br />

154:87–106.<br />

Hendy, Austin J. W. 2009. The influence <strong>of</strong> lithification<br />

on Cenozoic marine biodiversity trends. Paleobiology<br />

35:51–62.<br />

Hildrew, Alan G., D. G. Raffaelli, & R. Edmonds-<br />

Brown. 2007. Body Size: The Structure <strong>and</strong> Function<br />

<strong>of</strong> Aquatic Ecosystems. Cambridge University Press.<br />

Cambridge. xii + 343 p.<br />

H<strong>of</strong>fman, Antoni. 1986. Neutral model <strong>of</strong> Phanerozoic<br />

diversification: Implications for macroevolution.<br />

Neues Jahrbuch für Geologie und Paläontologie–<br />

Abh<strong>and</strong>lungen 172:219–244.<br />

Holl<strong>and</strong>, Steven M., & M. E. Patzkowsky. 2002.<br />

Stratigraphic variation in the timing <strong>of</strong> first <strong>and</strong> last<br />

occurrences. PALAIOS 17(2):134–146.<br />

Jablonski, David. 1986. Background <strong>and</strong> mass extinctions:<br />

The alternation <strong>of</strong> macroevolutionary regimes.<br />

Science 231(4734):129–133.<br />

Jablonski, David. 1987. Heritability at the species level:<br />

Analysis <strong>of</strong> geographic ranges <strong>of</strong> Cretaceous mollusks.<br />

Science 238(4825):360–363.<br />

Jablonski, David. 1989. The biology <strong>of</strong> mass extinction:<br />

A paleontological view. Philosophical Transactions<br />

<strong>of</strong> the Royal Society <strong>of</strong> London B (325):357–368.<br />

Jablonski, David. 1996a. Mass extinctions: Persistent<br />

problems <strong>and</strong> new directions. In G. Ryder, D. Fastovsky,<br />

& S. Gartner, eds., The Cretaceous–Tertiary<br />

Event <strong>and</strong> Other Catastrophes in Earth History<br />

(Snowbird III). Geological Society <strong>of</strong> America Special<br />

Paper 307:1–11.<br />

Jablonski, David. 1996b. Body size <strong>and</strong> macroevolution.<br />

In D. Jablonski, D. H. Erwin, & J. H. Lipps,<br />

eds., Evolutionary Paleobiology. University <strong>of</strong> Chicago<br />

Press. Chicago. p. 256–289.<br />

Jablonski, David. 1998. Geographic variation in the<br />

molluscan recovery from the end-Cretaceous extinction.<br />

Science 279(5355):1327–1330.


Jablonski, David. 2001. Lessons from the past: Evolutionary<br />

impacts <strong>of</strong> mass extinctions. Proceedings<br />

<strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United<br />

States <strong>of</strong> America 98(10):5393–5398.<br />

Jablonski, David. 2005. Mass extinctions <strong>and</strong> macroevolution.<br />

Paleobiology 31(2):192–210.<br />

Jablonski, David. 2008a. Extinction <strong>and</strong> the spatial<br />

dynamics <strong>of</strong> biodiversity. Proceedings <strong>of</strong> the National<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America<br />

105(Supplement 1):11,528–11,535.<br />

Jablonski, David. 2008b. Biotic interactions <strong>and</strong> macroevolution:<br />

Extensions <strong>and</strong> mismatches across scales<br />

<strong>and</strong> levels. Evolution 62:715–739.<br />

Jablonski, David, & J. A. Finarelli. 2009. Congruence<br />

<strong>of</strong> morphologically defined genera with molecular<br />

phylogenies. Proceedings <strong>of</strong> the National Academy<br />

<strong>of</strong> Sciences <strong>of</strong> the Unites States <strong>of</strong> America<br />

106(20):8262–8266.<br />

Jablonski, David, & G. Hunt. 2006. Larval ecology,<br />

geographic range, <strong>and</strong> species survivorship in Cretaceous<br />

mollusks: Organismic versus species-level<br />

explanations. American Naturalist 168(4):556–564.<br />

Jablonski, David, & D. M. Raup. 1995. Selectivity <strong>of</strong><br />

end-Cretaceous marine bivalve extinctions. Science<br />

268(5209):389–391.<br />

Jablonski, David, & K. Roy. 2003. Geographical range<br />

<strong>and</strong> speciation in fossil <strong>and</strong> living molluscs. Proceedings<br />

<strong>of</strong> the Royal Society <strong>of</strong> London (Series B)<br />

Biological Sciences 270(1513):401–406.<br />

Jablonski, David, K. Roy, & J. W. Valentine. 2006. Out<br />

<strong>of</strong> the tropics: Evolutionary dynamics <strong>of</strong> the latitudinal<br />

diversity gradient. Science 314(5796):102–106.<br />

Jackson, Jeremy B. C. 1995. Constancy <strong>and</strong> change <strong>of</strong> life<br />

in the sea. In J. H. Lawton & R. M. May, eds., Extinction<br />

Rates. Oxford University Press. Oxford. p. 45–54.<br />

Kauffman, Erle G. 1977. Evolutionary rates <strong>and</strong> biostratigraphy.<br />

In E. G. Kauffman & J. E. Hazel, eds.,<br />

Concepts <strong>and</strong> Methods <strong>of</strong> Biostratigraphy. Dowden,<br />

Hutchinson, & Ross, Inc. Stroudsburg, Pennsylvania.<br />

p. 109–141.<br />

Kauffman, Erle G. 1978. Evolutionary rates <strong>and</strong> patterns<br />

among Cretaceous Bivalvia. Philosophical<br />

Transactions <strong>of</strong> the Royal Society <strong>of</strong> London (series<br />

B) (284):277–304.<br />

Kelley, Patricia H. 1983. Evolutionary patterns <strong>of</strong> eight<br />

Chesapeake Group molluscs: Evidence for the model<br />

<strong>of</strong> punctuated equilibria. Journal <strong>of</strong> Paleontology<br />

57(3):581–598.<br />

Kelley, Patricia H. 1989. Evolutionary trends within<br />

bivalve prey <strong>of</strong> Chesapeake Group naticid gastropods.<br />

Historical Biology 2(2):139–156.<br />

Kidwell, Susan M. 2001. Preservation <strong>of</strong> species<br />

abundance in marine death assemblages. Science<br />

294(5544):1091–1094.<br />

Kidwell, Susan M. 2002. Time-averaged molluscan<br />

death assemblages: Palimpsests <strong>of</strong> richness, snapshots<br />

<strong>of</strong> abundance. Geology 30(9):803–806.<br />

Kidwell, Susan M. 2005. Shell composition has no net<br />

impact on large-scale evolutionary patterns in mollusks.<br />

Science 307(5711):914–917.<br />

Kidwell, Susan M. 2007. Discordance between living<br />

<strong>and</strong> death assemblages as evidence for anthropogenic<br />

ecological change. Proceedings <strong>of</strong> the National<br />

Extinction in the Marine Bivalvia<br />

17<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America<br />

104(45):17,701–17,706.<br />

Kiessling, Wolfgang, & M. Aberhan. 2007. Geographical<br />

distribution <strong>and</strong> extinction risk: Lessons from<br />

Triassic–Jurassic marine benthic organisms. Journal<br />

<strong>of</strong> Biogeography 34(9):1473–1489.<br />

Kirchner, James W., & A. Weil. 2000a. Correlations in<br />

fossil extinction <strong>and</strong> origination rates through geological<br />

time. Proceedings <strong>of</strong> the Royal Society <strong>of</strong> London<br />

(Series B) Biological Sciences 267(1450):1301–1309.<br />

Kirchner, James W., & A. Weil. 2000b. Delayed biological<br />

recovery from extinctions throughout the fossil<br />

record. Nature 404(6774):177–180.<br />

Knoll, Andrew H., R. K. Bambach, D. E. Canfield, & J.<br />

P. Grotzinger. 1996. Comparative Earth history <strong>and</strong><br />

Late Permian mass extinction. Science 273:452–457.<br />

Knoll, Andrew H., R. K. Bambach, J. L. Payne, S.<br />

Pruss, & W. W. Fischer. 2007. A paleophysiological<br />

perspective on the end-Permian mass extinction <strong>and</strong><br />

its aftermath. Earth <strong>and</strong> Planetary Science Letters<br />

256(3–4):295–313.<br />

Kolbe, Sarah E., R. Lockwood, & G. Hunt. 2011. Does<br />

morphological variation buffer against extinction? A<br />

test using veneroid bivalves from the Plio-Pleistocene<br />

<strong>of</strong> Florida. Paleobiology 37:355–368.<br />

Krug, Andrew Z., D. Jablonski, & J. W. Valentine. 2009.<br />

Signature <strong>of</strong> the end-Cretaceous mass extinction in the<br />

modern biota. Science 323(5915):767–771.<br />

Levinton, Jeffrey S. 1973. Genetic variation in a gradient<br />

<strong>of</strong> environmental variability: Marine Bivalvia<br />

(Mollusca). Science 180(4081):75–76.<br />

Levinton, Jeffrey S. 1974. Trophic group <strong>and</strong> evolution<br />

in the Bivalvia. Palaeontology 17:579–585.<br />

Liow, Lee Hsiang, M. Fortelius, E. Bingham, K. Lintulaakso,<br />

H. Mannila, L. Flynn, & N. C. Stenseth.<br />

2008. Higher origination <strong>and</strong> extinction rates in<br />

larger mammals. Proceedings <strong>of</strong> the National Academy<br />

<strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America<br />

105(16):6097–6102.<br />

Liu, Chengjie, & R. K. Olsson. 1992. Evolutionary<br />

radiation <strong>of</strong> microperforate planktonic Foraminifera<br />

following the K/T mass extinction event. Journal <strong>of</strong><br />

Foraminiferal Research 22(4):328–346.<br />

Lockwood, Rowan. 2003. Abundance not linked to<br />

survival across the end-Cretaceous mass extinction:<br />

Patterns in North American bivalves. Proceedings<br />

<strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United<br />

States <strong>of</strong> America 100(5):2478–2482.<br />

Lockwood, Rowan. 2004. The K/T event <strong>and</strong> infaunality:<br />

Morphological <strong>and</strong> ecological patterns <strong>of</strong> extinction<br />

<strong>and</strong> recovery in veneroid bivalves. Paleobiology<br />

30(4):507–521.<br />

Lockwood, Rowan. 2005. Body size, extinction events,<br />

<strong>and</strong> the early Cenozoic record <strong>of</strong> veneroid bivalves: A<br />

new role for recoveries? Paleobiology 31(4):578–590.<br />

Lockwood, Rowan, & L. R. Chastant. 2006. Quantifying<br />

taphonomic bias <strong>of</strong> compositional fidelity,<br />

species richness, <strong>and</strong> rank abundance in molluscan<br />

death assemblages from the upper Chesapeake Bay.<br />

PALAIOS 21(4):376–383.<br />

Lu, Peter J., M. Yogo, & C. R. Marshall. 2006. Phanerozoic<br />

marine biodiversity dynamics in light <strong>of</strong><br />

the incompleteness <strong>of</strong> the fossil record. Proceedings


18 Treatise Online, number 29<br />

<strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United<br />

States <strong>of</strong> America 103(8):2736–2739.<br />

Lydeard, Charles, R. H. Cowie, W. F. Ponder, A. E. Bogan,<br />

P. Bouchet, S. A. Clark, K. S. Cummings, T. J.<br />

Frest, O. Gargominy, D. G. Herbert, R. Hershler, K.<br />

E. Perez, B. Roth, M. Seddon, E. E. Strong, & F. G.<br />

Thompson. 2004. The global decline <strong>of</strong> nonmarine<br />

mollusks. Bioscience 54(4):321–330.<br />

M<strong>and</strong>er, Luke, & R. J. Twitchett. 2008. Quality <strong>of</strong> the<br />

Triassic–Jurassic bivalve fossil record in northwest<br />

Europe. Palaeontology 51(6):1213–1223.<br />

Marshall, Charles R. 1990. Confidence intervals on<br />

stratigraphic ranges. Paleobiology 16(1):1–10.<br />

McClure, M., & A. J. Bohonak. 1995. Nonselectivity<br />

in extinction <strong>of</strong> bivalves in the Late Cretaceous <strong>of</strong> the<br />

Atlantic <strong>and</strong> Gulf Coastal Plain <strong>of</strong> North America.<br />

Journal <strong>of</strong> Evolutionary Biology 8(6):779–794.<br />

McKinney, Michael L. 1990. Trends in body-size evolution.<br />

In K. J. McNamara, ed., Evolutionary Trends.<br />

Belhaven Press. London. p. 75–120.<br />

McRoberts, Christopher A. 2001. Triassic bivalves <strong>and</strong><br />

the initial marine Mesozoic revolution: A role for<br />

predators? Geology 29(4):359–362.<br />

McRoberts, Christopher A., L. Krystyn, & A. Shea.<br />

2008. Rhaetian (late Triassic) Monotis (Bivalvia:<br />

Pectinoida) from the eastern northern calcareous Alps<br />

(Austria) <strong>and</strong> the end-Norian crisis in pelagic faunas.<br />

Palaeontology 51(3):721–735.<br />

McRoberts, Christopher A., & C. R. Newton. 1995.<br />

Selective extinction among end-Triassic European<br />

bivalves. Geology 23:102–104.<br />

McRoberts, Christopher A., C. R. Newton, & A. Allasinaz.<br />

1995. End-Triassic bivalve extinction: Lombardian<br />

Alps, Italy. Historical Biology 9:297–317.<br />

Meldahl, Keith H. 1990. Sampling, species abundance,<br />

<strong>and</strong> the stratigraphic signature <strong>of</strong> mass extinction:<br />

A test using Holocene tidal flat mollusks. Geology<br />

18(9):890–893.<br />

Miller, Arnold I., & J. J. Sepkoski. 1988. Modeling<br />

bivalve diversification: The effect <strong>of</strong> interaction<br />

on a macroevolutionary system. Paleobiology<br />

14(4):364–369.<br />

Norris, Richard D. 1991. Biased extinction <strong>and</strong> evolutionary<br />

trends. Paleobiology 17(4):388–399.<br />

Payne, Jonathan L., & S. Finnegan. 2007. The effect<br />

<strong>of</strong> geographic range on extinction risk during<br />

background <strong>and</strong> mass extinction. Proceedings <strong>of</strong> the<br />

National Academy <strong>of</strong> Sciences <strong>of</strong> the United States<br />

<strong>of</strong> America 104(25):10,506–10,511.<br />

Peters, Shanan E. 2006. Macrostratigraphy <strong>of</strong> North<br />

America. Journal <strong>of</strong> Geology 114:391–412.<br />

Pojeta, John, Jr., & J. Palmer. 1976. The origin <strong>of</strong><br />

rock boring in mytilacean pelecypods. Alcheringa<br />

1(2):167–179.<br />

Posenato, Renato. 2009. Survival patterns <strong>of</strong> macrobenthic<br />

marine assemblages during the end-Permian<br />

mass extinction in the western Tethys (Dolomites,<br />

Italy). Palaeogeography, Palaeoclimatology, Palaeoecology<br />

280(1–2):150–167.<br />

Prothero, Donald R., L. C. Ivany, & E. Nesbitt. 2002.<br />

From Greenhouse to Icehouse: The Marine Eocene–<br />

Oligocene Transition. Columbia University Press.<br />

New York. 560 p.<br />

Purvis, Andy. 2008. Phylogenetic approaches to the<br />

study <strong>of</strong> extinction. Annual Review <strong>of</strong> Ecology,<br />

Evolution, <strong>and</strong> Systematics 39(1):301–319.<br />

Raffi, Sergio, S. M. Stanley, & R. Marasti. 1985. Biogeographic<br />

patterns <strong>and</strong> Plio–Pleistocene extinction<br />

<strong>of</strong> Bivalvia in the Mediterranean <strong>and</strong> southern North<br />

Sea. Paleobiology 11(4):368–388.<br />

Raup, David M., & D. Jablonski. 1993. Geography <strong>of</strong><br />

end-Cretaceous marine bivalve extinctions. Science<br />

260(5110):971–973.<br />

Raup, David M., & J. J. Sepkoski, Jr. 1982. Mass<br />

extinctions in the marine fossil record. Science<br />

215(4539):1501–1503.<br />

Reinhold, Mark E., & P. H. Kelley. 2005. The influence<br />

<strong>of</strong> anti-predatory morphology on survivorship <strong>of</strong> the<br />

Owl Creek Formation molluscan fauna through the<br />

end-Cretaceous extinction. Palaeogeography, Palaeoclimatology,<br />

Palaeoecology 217:143–153.<br />

Rhodes, Melissa C., & C. W. Thayer. 1991. Mass<br />

extinctions: Ecological selectivity <strong>and</strong> primary production.<br />

Geology 19(9):877–880.<br />

Ricciardi, Anthony, & J. B. Rasmussen. 1999. Extinction<br />

rates <strong>of</strong> North American freshwater fauna.<br />

Conservation Biology 13(5):1220–1222.<br />

Rivadeneira, Marcelo M., G. Hunt, & K. Roy. 2009.<br />

The use <strong>of</strong> sighting records to infer species extinctions:<br />

An evaluation <strong>of</strong> different methods. Ecology<br />

90(5):1291–1300.<br />

Rivadeneira, Marcelo M., & P. A. Marquet. 2007.<br />

Selective extinction <strong>of</strong> late Neogene bivalves on the<br />

temperate Pacific coast <strong>of</strong> South America. Paleobiology<br />

33(3):455–468.<br />

Rode, Alycia L., & B. S. Lieberman. 2004. Using GIS<br />

to unlock the interactions between biogeography, environment,<br />

<strong>and</strong> evolution in Middle <strong>and</strong> Late Devonian<br />

brachiopods <strong>and</strong> bivalves. Palaeogeography, Palaeoclimatology,<br />

Palaeoecology 211(3–4):345–359.<br />

Roopnarine, Peter D. 1995. A reevaluation <strong>of</strong> evolutionary<br />

stasis between the bivalve species Chione erosa<br />

<strong>and</strong> Chione cancellata (Bivalvia, Veneridae). Journal<br />

<strong>of</strong> Paleontology 69(2):280–287.<br />

Roopnarine, Peter D. 1997. Endemism <strong>and</strong> extinction<br />

<strong>of</strong> a new genus <strong>of</strong> Chionine (Veneridae: Chioninae)<br />

bivalve from the late Neogene <strong>of</strong> Venezuela. Journal<br />

<strong>of</strong> Paleontology 71(6):1039–1046.<br />

Rosenzweig, Michael L. 1995. Species Diversity in<br />

Space <strong>and</strong> Time. Cambridge University Press. New<br />

York. xxi + 436 p.<br />

Rosenzweig, Michael L., & R. D. McCord. 1991.<br />

Incumbent replacement: Evidence for long-term<br />

evolutionary progress. Paleobiology 17(3):202–<br />

213.<br />

Roy, Kaustuv, & M. Foote. 1997. Morphological approaches<br />

to measuring biodiversity. Trends in Ecology<br />

<strong>and</strong> Evolution 12(7):277–281.<br />

Roy, Kaustuv, G. Hunt, & D. Jablonski. 2009. Phylogenetic<br />

conservatism <strong>of</strong> extinctions in marine bivalves.<br />

Science 325(5941):733–737.<br />

Roy, Kaustuv, D. Jablonski, J. W. Valentine, & G.<br />

Rosenberg. 1998. Marine latitudinal diversity gradients:<br />

Tests <strong>of</strong> causal hypotheses. Proceedings <strong>of</strong> the<br />

National Academy <strong>of</strong> Sciences <strong>of</strong> the United States<br />

<strong>of</strong> America 95(7):3699–3702.


Scarponi, Daniele, & M. Kowalewski. 2007. Sequence<br />

stratigraphic anatomy <strong>of</strong> diversity patterns: Late<br />

Quaternary benthic mollusks <strong>of</strong> the Po Plain, Italy.<br />

PALAIOS 22:296–305.<br />

Sepkoski, J. John, Jr. 1978. A kinetic model <strong>of</strong> Phanerozoic<br />

taxonomic diversity. II. Analysis <strong>of</strong> marine<br />

orders. Paleobiology 4:223–251.<br />

Sepkoski, J. John, Jr. 2002. A compendium <strong>of</strong> fossil<br />

marine animal genera. Bulletins <strong>of</strong> American Paleontology<br />

363:1–560.<br />

Sessa, Jocelyn A., M. E. Patzkowsky, & T. J. Bralower.<br />

2009. The impact <strong>of</strong> lithification on the diversity,<br />

size distribution, <strong>and</strong> recovery dynamics <strong>of</strong> marine<br />

invertebrate assemblages. Geology 37:115–118.<br />

Sheehan, Peter M., & T. A. Hansen. 1986. Detritus<br />

feeding as a buffer to extinction at the end <strong>of</strong> the<br />

Cretaceous. Geology 14:868–870.<br />

Signor, Philip W., III, & J. H. Lipps. 1982. Sampling<br />

bias, gradual extinction patterns, <strong>and</strong> catastrophes<br />

in the fossil record. In L. T. Silver & P. H. Schultz,<br />

eds., Geological Society <strong>of</strong> America Special Paper<br />

190:291–296.<br />

Simpson, Carl, & P. G. Harnik. 2009. Assessing the role<br />

<strong>of</strong> abundance in marine bivalve extinction over the<br />

post-Paleozoic. Paleobiology 35(4):631–647.<br />

Smith, Andrew B., A. S. Gale, & N. E. A. Monks.<br />

2001. Sea-level change <strong>and</strong> rock-record bias in the<br />

Cretaceous: A problem for extinction <strong>and</strong> biodiversity<br />

studies. Paleobiology 27:241–253.<br />

Smith, J. Travis, & K. Roy. 2006. Selectivity during<br />

background extinction: Plio-Pleistocene scallops in<br />

California. Paleobiology 32(3):408–416.<br />

Solow, Andrew R. 1993. Inferring extinction from<br />

sighting data. Ecology 74(3):962–964.<br />

Solow, Andrew R. 2005. Inferring extinction from a<br />

sighting record. Mathematical Biosciences 195:47–55.<br />

Stanley, Steven M. 1975. Adaptive themes in the evolution<br />

<strong>of</strong> the Bivalvia (Mollusca). Annual Review <strong>of</strong><br />

Earth <strong>and</strong> Planetary Sciences 3:361–385.<br />

Stanley, Steven M. 1977. Trends, rates, <strong>and</strong> patterns <strong>of</strong><br />

evolution in the Bivalvia. In A. Hallam, ed., Patterns<br />

<strong>of</strong> Evolution, as Illustrated by the Fossil Record.<br />

Elsevier. Amsterdam. p. 209–250.<br />

Stanley, Steven M. 1982. Species selection involving<br />

alternative character states: An approach to macroevolutionary<br />

analysis. Third North American<br />

Paleontological Convention Proceedings 2:505–510.<br />

Stanley, Steven M. 1986a. Anatomy <strong>of</strong> a regional mass<br />

extinction: Plio–Pleistocene decimation <strong>of</strong> the western<br />

Atlantic bivalve fauna. PALAIOS 1(1):17–36.<br />

Stanley, Steven M. 1986b. Population size, extinction,<br />

<strong>and</strong> speciation: The fission effect in Neogene Bivalvia.<br />

Paleobiology 12(1):89–110.<br />

Stanley, Steven M. 1990a. Delayed recovery <strong>and</strong><br />

the spacing <strong>of</strong> major extinctions. Paleobiology<br />

16(4):401–414.<br />

Stanley, Steven M. 1990b. The general correlation<br />

between rate <strong>of</strong> speciation <strong>and</strong> rate <strong>of</strong> extinction:<br />

Fortuitous causal linkages. In R. M. Ross & W. D.<br />

Allmon, eds., Causes <strong>of</strong> Evolution. University <strong>of</strong><br />

Chicago Press. Chicago. p. 103–172.<br />

Stenzel, H. B. 1971. Oysters. In R. C. Moore, ed., Treatise<br />

on Invertebrate Paleontology. Part N, Mollusca<br />

Extinction in the Marine Bivalvia<br />

19<br />

6, Bivalvia, vol. 3. The Geological Society <strong>of</strong> America<br />

& The University <strong>of</strong> Kansas. Boulder & Lawrence.<br />

iv + p. 953–1224.<br />

Stilwell, Jeffrey D. 2003. Patterns <strong>of</strong> biodiversity <strong>and</strong><br />

faunal rebound following the K–T boundary extinction<br />

event in Austral Palaeocene molluscan faunas.<br />

Palaeogeography, Palaeoclimatology, Palaeoecology<br />

195(3–4):319–356.<br />

Strayer, David L., J. A. Downing, W. R. Haag, T. L.<br />

King, J. B. Layzer, T. J. Newton, & S. J. Nichols.<br />

2004. Changing perspectives on pearly mussels,<br />

North America’s most imperiled animals. Bioscience<br />

54(5):429–439.<br />

Todd, Jonathan A., J. B. C. Jackson, K. G. Johnson,<br />

H. M. Fortunato, A. Heitz, M. Alvarez, & P. Jung.<br />

2002. The ecology <strong>of</strong> extinction: Molluscan feeding<br />

<strong>and</strong> faunal turnover in the Caribbean Neogene.<br />

Proceedings <strong>of</strong> the Royal Society <strong>of</strong> London (Series<br />

B) Biological Sciences 269(1491):571–577.<br />

Valentine, James W. 1989. How good was the fossil<br />

record? Clues from the California Pleistocene. Paleobiology<br />

15(2):83–94.<br />

Valentine, James W., & D. Jablonski. 1986. Mass<br />

extinctions: Sensitivity <strong>of</strong> marine larval types. Proceedings<br />

<strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the<br />

United States <strong>of</strong> America 83(18):6912–6914.<br />

Valentine, James W., & D. Jablonski. 1993. Fossil<br />

communities: Compositional variation at many time<br />

scales. In R. E. Ricklefs & D. Schluter, eds., Species<br />

Diversity in Ecological Communities: Historical <strong>and</strong><br />

Geographical Perspectives. University <strong>of</strong> Chicago<br />

Press. Chicago. p. 341–349.<br />

Valentine, James W., D. Jablonski, S. M. Kidwell, & K.<br />

Roy. 2006. Assessing the fidelity <strong>of</strong> the fossil record<br />

by using marine bivalves. Proceedings <strong>of</strong> the National<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America<br />

103(17):6599–6604.<br />

Van Valen, Leigh M. 1984. A resetting <strong>of</strong> Phanerozoic<br />

community evolution. Nature 307(5946):50–52.<br />

Vermeij, Geerat J. 1986. Survival during biotic crises:<br />

The properties <strong>and</strong> evolutionary significance <strong>of</strong> refuges.<br />

In D. K. Elliot, ed., Dynamics <strong>of</strong> Extinction.<br />

John Wiley <strong>and</strong> Sons. New York. p. 231–246.<br />

Vermeij, Geerat J. 1987. Evolution <strong>and</strong> Escalation. Princeton<br />

University Press. Princeton, New Jersey. 544 p.<br />

Vermeij, Geerat J. 2005. From Europe to America:<br />

Pliocene to recent trans-Atlantic expansion <strong>of</strong> coldwater<br />

North Atlantic molluscs. Proceedings <strong>of</strong><br />

the Royal Society (series B) Biological Sciences<br />

272(1580):2545–2550.<br />

Wagner, Peter J., M. Aberhan, A. Hendy, & W.<br />

Kiessling. 2007. The effects <strong>of</strong> taxonomic st<strong>and</strong>ardization<br />

on sampling-st<strong>and</strong>ardized estimates <strong>of</strong><br />

historical diversity. Proceedings <strong>of</strong> the Royal Society<br />

(series B) Biological Sciences 274(1608):439–444.<br />

Walker, Timothy D., & J. W. Valentine. 1984. Equilibrium<br />

models <strong>of</strong> evolutionary species diversity <strong>and</strong> the<br />

number <strong>of</strong> empty niches. The American Naturalist<br />

124(6):887–899.<br />

<strong>William</strong>s, James D., M. L. Warren, K. S. Cummings,<br />

J. L. Harris, & R. J. Neves. 1993. Conservation<br />

status <strong>of</strong> freshwater mussels <strong>of</strong> the United States <strong>and</strong><br />

Canada. Fisheries 18(9):6–22.


20 Treatise Online, number 29<br />

aPPendix. Database <strong>of</strong> extinction selectivity studies in fossil marine bivalves; please note that the compilation <strong>of</strong> past work summarized here is ongoing<br />

<strong>and</strong> should not be considered exhaustive (new).<br />

Trait Reference Pattern Taxon Taxon Age Location Notes<br />

level<br />

Abundance Harnik, 2011 NS 3 superfm sp Eo US Gulf CP<br />

Abundance Kiessling & Aberhan, 2007 NS biv sp T/J Global<br />

Abundance Kiessling & Aberhan, 2007 Neg biv sp Tri-Jur Global Geo range more important than abundance in determining extinction risk.<br />

Abundance Lockwood, 2003 NS biv gen K/Pg US CP<br />

Abundance McClure & Bohonak, 1995 NS biv gen K/Pg US CP<br />

Abundance Simpson & Harnik, 2009 Nonlinear biv gen post Pz Global Rare <strong>and</strong> abundant genera exhibit elevated extinction rates.<br />

Active locom Aberhan & others, 2007 Pos? moll dom sp K/Pg Argentina Decline <strong>of</strong> individuals with active lifestyles across boundary, excluding<br />

nuculoids <strong>and</strong> lucinids. May or may not be due to extinction selectivity.<br />

Active locom Rhodes & Thayer, 1991 Pos biv gen K/Pg Global<br />

Aragonite Hautmann & others, 2008 Pos biv dom sp T/J Tibet<br />

Bathy range Jablonski & Raup, 1995 NS biv gen K/Pg US CP<br />

Bathy range Jablonski, 1996a NS biv, gast gen K/Pg Global<br />

Bathy range Raup & Jablonski, 1993 NS biv gen K/Pg Global<br />

Body size Aberhan & others, 2007 Pos? moll dom sp K/Pg Argentina Size decrease may or may not be due to extinction selectivity.<br />

Body size Anderson & Roopnarine, 2003 Pos corbulids gen Mio Carib/W Atl<br />

Body size Anderson & Roopnarine, 2003 NS corbulids gen Mio E Pacific<br />

Body size Crampton & others, 2010 NS biv sp Cz NZ<br />

Body size Hallam, 1975 Pos biv, ammon gen, sp Jur W Euro<br />

Body size Hansen & others, 1987 Pos? biv sp K/Pg E Texas Shift to smaller bivalves. May or may not be extinction selectivity.<br />

Body size Harnik, 2011 Varies 3 superfm sp Eo US Gulf CP Correlation between size <strong>and</strong> duration positive in veneroids, negative in<br />

pectinoids, not significant in carditoids<br />

Body size Jablonski & Raup, 1995 NS biv gen K/Pg Global<br />

Body size Jablonski, 1996a NS biv gen K/Pg Global<br />

Body size Jablonski, 1996b NS biv, gast sp Late Cret US CP<br />

Body size Lockwood, 2005 NS 3 groups gen E/O N Am, Euro Large taxa radiate after extinction. Groups include veneroids, arcticoids,<br />

<strong>and</strong> glossoids.<br />

Body size Lockwood, 2005 NS 3 groups gen K/Pg N Am, Euro Small taxa radiate after extinction. Groups include veneroids, arcticoids,<br />

<strong>and</strong> glossoids.<br />

Body size McClure & Bohonak, 1995 NS biv gen K/Pg US CP<br />

Body size McRoberts & Newton, 1995 NS biv sp T/J Euro<br />

Body size McRoberts, Newton, & Allasinaz, 1995 NS biv sp T/J Euro<br />

Body size McRoberts, Krystyn, & Shea, 2008 Pos? Monotis sp Nor/Rhaet Austria Size decrease may or may not be due to extinction selectivity.<br />

Body size Raup & Jablonski, 1993 NS biv gen K/Pg Global<br />

Body size Smith & Roy, 2006 Neg scallops gen Plio/Pleist California Pattern significant only when adjusted for phylogenetic bias.<br />

Body size Stanley, 1986a Neg biv sp Plio/Pleist SE US Siphonate bivalves only.<br />

Body size Stanley, 1986a Pos biv sp Pleist-Rec W N Am, Japan Siphonate bivalves only.<br />

Body size Stanley, 1990b Pos biv sp Pleist-Rec W N Am, Japan<br />

Bur depth Kauffman, 1978 Neg biv sp Cret N Amer Suspension feeders only.<br />

Bur depth Lockwood, 2004 NS 3 groups gen K/Pg N Am, Euro Deeper burrowing taxa radiate during recovery.


aPPendix (Continued).<br />

Extinction in the Marine Bivalvia<br />

Bur depth McClure & Bohonak, 1995 NS biv gen K/Pg US CP<br />

Bur depth Stanley, 1990b Neg biv sp Pleist-Rec W N Am, Japan<br />

Endemicity Aberhan & Fürsich, 1997 Pos biv sp Pliens-Toar Andean basin<br />

Endemicity Aberhan & Fürsich, 2000 Pos biv sp Pliens-Toar Andean basin<br />

Endemicity Hallam, 1981 Neg biv gen T/J Global<br />

Endemicity Stanley, 1986a Pos biv sp Plio/Pleist SE US<br />

Endemicity Vermeij, 1986 Pos moll sp Plio N Atl<br />

Environment Rode & Lieberman, 2004 See notes biv, brach sp F/F N Amer Increased survival for taxa inhabiting middle-outer platform environments,<br />

but not taxa inhabiting open shelf.<br />

Epifaunal Aberhan & Baumiller, 2003 Neg biv sp early Jur NW Euro, Andes<br />

Epifaunal Aberhan & Fürsich, 1997 Pos? biv sp Pliens-Toar Andean basin Long-term increase in infaunal suspension feeders may be due to extinction<br />

selectivity or environmental change. Both infaunal <strong>and</strong> epifaunal<br />

suspension-feeders decrease across boundary.<br />

Epifaunal Clapham & Bottjer, 2007 Pos? biv, gast gen Perm Global Increase in abundance <strong>of</strong> infaunal bivalves may or may not be due to<br />

extinction selectivity.<br />

Epifaunal Cope, 2002 Pos biv gen O/S Global<br />

Epifaunal Crame, 2002 Pos biv gen, sp Cret Global In higher latitudes.<br />

Epifaunal Crampton & others, 2010 NS biv sp Cz NZ<br />

Epifaunal Gallagher, 1991 Neg moll sp K/Pg US Atl CP<br />

Epifaunal Hautmann & others, 2008 Neg biv dom sp T/J Tibet<br />

Epifaunal Heinberg, 1999 Pos? biv sp K/Pg Denmark Within habitat comparison shows increase in infaunal species across<br />

boundary, may or may not be due to extinction selectivity.<br />

Epifaunal Jablonski & Raup, 1995 NS biv gen K/Pg Global Excluding rudists.<br />

Epifaunal Jablonski, 1996a NS biv gen K/Pg Global Excluding rudists.<br />

Epifaunal Jablonski, 2005 NS biv gen K/Pg Global<br />

Epifaunal Jablonski, 2005 NS biv gen P/T Global<br />

Epifaunal Jablonski, 2005 Pos biv gen T/J-K/Pg Global<br />

Epifaunal Kauffman, 1977 Pos biv sp Cret W Interior<br />

Epifaunal Kauffman, 1978 Pos biv sp Cret N Amer<br />

Epifaunal Knoll & others, 2007 Pos biv gen P/T China<br />

Epifaunal Levinton, 1973 Pos 6 species sp Rec New York Slower evolutionary rates among infaunal <strong>and</strong> deep water epifaunal, relative<br />

to shallow water epifaunal taxa.<br />

Epifaunal Levinton, 1974 Pos 4 groups gen Phan Global Comparison <strong>of</strong> mortality rates between selective suspension-feeders<br />

(Pectinacea, Pteriacea, Veneracea) <strong>and</strong> detritus feeders (Nuculoida).<br />

Epifaunal M<strong>and</strong>er & Twitchett, 2008 - biv gen T/J NW Euro Poor preservation <strong>of</strong> early Jurassic infaunal taxa indicates that selectivity<br />

may be artifactual.<br />

Epifaunal McClure & Bohonak, 1995 NS biv gen K/Pg US CP<br />

Epifaunal McRoberts & Newton, 1995 Neg biv sp T/J Euro<br />

Epifaunal McRoberts, 2001 Pos biv gen T/J Global<br />

Epifaunal McRoberts, Newton, & Allasinaz, 1995 Neg biv sp T/J Euro<br />

Epifaunal Raup & Jablonski, 1993 NS biv gen K/Pg Global<br />

Epifaunal Rivadeneira & Marquet, 2007 Pos biv sp Late Ng W S Amer<br />

21


22 Treatise Online, number 29<br />

aPPendix (Continued).<br />

Trait Reference Pattern Taxon Taxon Age Location Notes<br />

level<br />

Epifaunal Stanley, 1986a NS biv sp Plio/Pleist SE US<br />

Epifaunal Stilwell, 2003 Pos moll gen, sp K/Pg S hemis<br />

Escalation Hansen & others, 1999 NS biv, gast sp E/O US CP Used morphology as proxy for escalation.<br />

Escalation Hansen & others, 1999 NS biv, gast sp K/Pg US CP Used morphology as proxy for escalation.<br />

Escalation Hansen & others, 1999 NS biv, gast sp Mio US CP Used morphology as proxy for escalation.<br />

Escalation Hansen & others, 1999 Pos biv, gast sp Plio/Pleist US CP Used morphology as proxy for escalation.<br />

Escalation Reinhold & Kelley, 2005 NS biv, gast gen, sp K/Pg Mississippi Used morphology as proxy for escalation, only one trait (crenulate<br />

margins) associated with higher extinction risk in bivalves.<br />

Geo range Bretsky, 1973 Neg biv gen F/F Global<br />

Geo range Bretsky, 1973 Neg biv gen O/S Global<br />

Geo range Bretsky, 1973 Neg biv gen P/T Global<br />

Geo range Bretsky, 1973 Neg biv gen T/J Global<br />

Geo range Crampton & others, 2010 Neg biv sp Cz NZ<br />

Geo range Hallam & Wignall, 1997 Neg biv gen T/J Global<br />

Geo range Hansen & others, 1993 NS moll sp K/Pg E Texas<br />

Geo range Harnik, 2011 Neg 3 superfm sp Eo US Gulf CP<br />

Geo range Jablonski & Hunt, 2006 Neg moll sp Cret-Cz US CP Geo range is more important than larval mode in predicting extinction risk.<br />

Geo range Jablonski & Raup, 1995 Neg biv gen K/Pg Global<br />

Geo range Jablonski, 1986 NS biv, gast gen K/Pg US CP<br />

Geo range Jablonski, 1986 NS biv, gast sp w/in gen K/Pg US CP<br />

Geo range Jablonski, 1986 Neg biv, gast sp w/in gen Late Cret US CP<br />

Geo range Jablonski, 1987 Neg biv, gast sp Cret US CP<br />

Geo range Jablonski, 1989 Neg biv, gast gen K/Pg N Am<br />

Geo range Jablonski, 2005 NS biv, gast sp w/in gen K/Pg US CP<br />

Geo range Jablonski, 2005 Neg biv, gast sp w/in gen Late Cret US CP Genera containing widespread species more extinction resistant.<br />

Geo range Kiessling & Aberhan, 2007 NS biv sp T/J Global<br />

Geo range Kiessling & Aberhan, 2007 Neg biv sp Tri-Jur Global Geo range more important than abundance in determining extinction risk.<br />

Geo range McRoberts & Newton, 1995 NS biv sp T/J Euro<br />

Geo range McRoberts, Newton, & Allasinaz, 1995 NS biv sp T/J Euro<br />

Geo range Raup & Jablonski, 1993 Neg biv gen K/Pg Global<br />

Geo range Rivadeneira & Marquet, 2007 Neg biv sp Late Ng W S Amer<br />

Geo range Rode & Lieberman, 2004 Neg biv, brach sp F/F N Amer<br />

Geo range Roopnarine, 1997 Neg chionines sp Late Ng trop Amer Regions with higher degrees <strong>of</strong> endemism affected more severely.<br />

Geo range Stanley, 1986b NS biv sp Late Ng W N Amer<br />

Geo range Stilwell, 2003 Neg moll gen, sp K/Pg S hemis<br />

Hypercapnia Bottjer & others, 2008 Pos? biv gen P/T Global 4 cosmopolitan bivalve genera flourish after P/T, probably tolerant <strong>of</strong><br />

H S <strong>and</strong> CO , may or may not be due to extinction selectivity.<br />

2 2<br />

Hypercapnia Knoll & others, 1996 Pos biv gen P/T China<br />

Hypercapnia Knoll & others, 1996 Pos biv gen P/T China<br />

Invaders Rode & Lieberman, 2004 Neg biv, brach sp F/F N Amer


Extinction in the Marine Bivalvia<br />

aPPendix (Continued).<br />

Latitude Crame, 2002 Pos biv gen, sp Cret Global Epifaunal taxa only.<br />

Meta rate Knoll & others, 2007 Neg biv gen P/T China<br />

Morph com Kauffman, 1978 NS biv sp Cret N Amer<br />

Morph var Kolbe, Lockwood, & Hunt, 2011 Neg veneroids sp Late Ng Florida<br />

Multivariate Crampton & others, 2010 See notes biv sp Cz NZ Geographic range significant. Epifaunal, suspension-feeder, body size, <strong>and</strong><br />

planktonic larva not significant.<br />

Multivariate Harnik, 2011 See notes 3 superfm sp Eo US Gulf CP Geographic range strong. Abundance weak. Body size weak overall but<br />

can be as strong as geographic range in specific superfamilies.<br />

Multivariate Jablonski & Hunt, 2006 See notes moll sp Cret-Cz US CP Geographic range more important than larval type.<br />

Multivariate Jablonski, 2008a See notes biv gen K/Pg Global Geographic range significant. Body size <strong>and</strong> species richness nonsignificant.<br />

Multivariate Rivadeneira & Marquet, 2007 See notes biv sp Late Ng W S Amer Epifaunal, geographic range, body size significant.<br />

Occupancy Foote & others, 2007 Neg moll sp Cz NZ Species at greatest risk are those that have already been in decline for a<br />

substantial period <strong>of</strong> time.<br />

Pachyodont Jablonski, 2008a Pos rudists gen K/Pg Global May be example <strong>of</strong> trait hitch-hiking. Geographic range is more important<br />

in determining risk.<br />

Phylogenetic Roy, Hunt, & Jablonski, 2009 Pos biv fam, gen Jur-Rec Global<br />

Plank larva Crampton & others, 2010 NS biv sp Cz NZ<br />

Plank larva Gallagher, 1991 Pos moll sp K/Pg US Atl CP<br />

Plank larva Jablonski & Hunt, 2006 NS moll sp Cret-Cz US CP<br />

Plank larva Jablonski, 1987 NS biv, gast sp Cret US CP<br />

Plank larva Stanley, 1986b NS biv sp Late Ng W N Amer<br />

Plank larva Valentine & Jablonski, 1986 NS biv, gast gen K/Pg US CP<br />

Schizodont Jablonski, 2008a Pos biv gen K/Pg Global May be example <strong>of</strong> trait hitch-hiking. Geographic range is more important<br />

in determining risk.<br />

Shell thick McClure & Bohonak, 1995 NS biv gen K/Pg US CP<br />

Sp richness H<strong>of</strong>fman, 1986 NS biv gen K/Pg Euro<br />

Sp richness Jablonski, 1986 NS biv, gast sp K/Pg US CP<br />

Sp richness Jablonski, 1986 Neg biv, gast sp Late Cret US CP<br />

Sp richness Jablonski, 1989 NS biv, gast gen K/Pg N Am, Euro<br />

Sp richness Jablonski, 2005 NS biv, gast gen K/Pg US CP<br />

Sp richness Jablonski, 2005 Neg biv, gast gen Late Cret US CP<br />

Sp richness McClure & Bohonak, 1995 NS biv gen K/Pg US CP<br />

Sp richness Smith & Roy, 2006 Neg scallops gen Plio/Pleist California<br />

Sp richness Vermeij, 1986 NS moll sp Plio N Atl<br />

Stenohaline Hallam, 1981 Pos biv gen T/J Global<br />

Stenotherm McClure & Bohonak, 1995 NS biv gen K/Pg US CP<br />

Stenotherm Stanley, 1986a Pos biv sp Plio/Pleist SE US<br />

Stenotherm Stanley, 1990a Pos biv sp Late Ng W Atl<br />

Stenotopic Anderson & Roopnarine, 2003 NS corbulids gen Mio E Pacific Examined within phylogenetic framework.<br />

Stenotopic Hansen & others, 1993 NS moll sp K/Pg E Texas Used lith<strong>of</strong>acies tolerance as proxy for stenotopy.<br />

Stenotopic Kauffman, 1977 Pos biv sp Cret W Interior<br />

Stenotopic Kauffman, 1978 Mixed biv sp Cret N Amer<br />

Stenotopic Levinton, 1974 Pos 4 groups gen Phan Global Comparison <strong>of</strong> mortality rates between selective suspension-feeders<br />

(Pectinacea, Pteriacea, Veneracea) <strong>and</strong> detritus feeders (Nuculoida).<br />

23


24 Treatise Online, number 29<br />

aPPendix (Continued).<br />

Trait Reference Pattern Taxon Taxon Age Location Notes<br />

level<br />

Stenotopic Posenato, 2009 Varies biv, brach gen Perm W Tethys Selectivity varies according to site.<br />

Strat range Stilwell, 2003 Neg moll gen, sp K/Pg S hemis<br />

Susp feeding Aberhan & others, 2007 Pos moll dom sp K/Pg Argentina<br />

Susp feeding Crampton & others, 2010 NS biv sp Cz NZ<br />

Susp feeding Hansen & others, 1987 Pos? biv sp K/Pg E Texas Shift from susp to dep feeders. May or may not be extinction selectivity.<br />

Susp feeding Hansen, Farrell, & Upshaw, 1993 Pos? moll sp K/Pg E Texas Shift from susp to dep feeders at one site. May or may not be extinction<br />

selectivity.<br />

Susp feeding Hansen & others, 1993 NS moll sp K/Pg E Texas Long-term shift from susp to dep feeders. Both go extinct at boundary.<br />

Susp feeding Hautmann & others, 2008 Pos biv dom sp T/J Tibet<br />

Susp feeding Jablonski & Raup, 1995 Pos biv gen K/Pg Global Selectivity due to low extinction in Nuculoida <strong>and</strong> Lucinoida.<br />

Susp feeding Jablonski, 1996a Pos biv gen K/Pg Global Argues that this is a taxonomic pattern.<br />

Susp feeding Kauffman, 1978 Pos biv sp Cret N Am<br />

Susp feeding Levinton, 1974 Pos 4 groups gen Phan Global Comparison <strong>of</strong> mortality rates between selective suspension-feeders<br />

(Pectinacea, Pteriacea, Veneracea) <strong>and</strong> detritus feeders (Nuculoida).<br />

Susp feeding McClure & Bohonak, 1995 NS biv gen K/Pg US CP<br />

Susp feeding Raup & Jablonski, 1993 Pos biv gen K/Pg Global Pattern due to low extinction in Nuculoida <strong>and</strong> Lucinoida.<br />

Susp feeding Rhodes & Thayer, 1991 Pos biv gen K/Pg Global<br />

Susp feeding Sheehan & Hansen, 1986 Pos moll sp K/Pg E Texas<br />

Susp feeding Stilwell, 2003 Pos moll gen, sp K/Pg S hemis<br />

Tax structure Rivadeneira & Marquet, 2007 NS biv sp Late Ng W S Amer<br />

Tropical Stanley, 1986a Pos biv sp Plio/Pleist SE US<br />

Water depth Jablonski & Raup, 1995 NS biv gen K/Pg US CP<br />

Water depth Jablonski, 1996a NS biv, gast gen K/Pg Global<br />

Water depth Levinton, 1973 Pos 6 species sp Rec New York Epifaunal taxa only.<br />

Water depth McClure & Bohonak, 1995 NS biv gen K/Pg US CP<br />

Water depth Raup & Jablonski, 1993 NS biv gen K/Pg Global<br />

Water depth Valentine & Jablonski, 1993 Pos moll sp Pleist California<br />

Key:<br />

Traits: Active locom = active locomotion; Aragonite = aragonitic shell composition; Bathy range = bathymetric range; Bur depth = burrowing depth; Escalation = escalated traits; Geo range = geographic range;<br />

Hypercapnia = sensitivity to hypercapnia; Meta rate = metabolic rate; Morph com = morphological complexity; Morph var = morphological variation; Multivariate = multivariate approaches; Plank larva<br />

= planktonic larva; Shell thick = shell thickness; Sp richness = species richness; Stenotherm = Stenothermal; Strat range = stratigraphic range; Susp feeding = suspension feeding; Tax structure = taxonomic<br />

structure.<br />

Pattern: Neg = negative selectivity (i.e., these taxa or taxa with higher levels <strong>of</strong> these traits are less likely to go extinct); NS = not significant; Pos = positive selectivity (i.e., these taxa or taxa with higher levels <strong>of</strong><br />

these traits are more likely to go extinct); ? = unclear whether this pattern is due to extinction selectivity.<br />

Taxon: ammon = ammonites; biv = bivalve; brach = brachiopods; dom = dominated; gast = gastropods; moll = mollusks; superfm = superfamilies.<br />

Taxon level: fam = families; gen = genera; sp = species.<br />

Age: Cret = Cretaceous; Cz = Cenozoic; Eo = Eocene; E/O = end-Eocene extinction; F/F = late Devonian extinction; Jur = Jurassic; K/Pg = end-Cretaceous extinction; Mio = Miocene; Ng = Neogene; Nor =<br />

Norian; O/S = end-Ordovician; Perm = Permian; P/T = end-Permian extinction; Phan = Phanerozoic; Pleist = Pleistocene; Pliens = Pliensbachian; Plio = Pliocene; Pz = Paleozoic; Rec = Recent; Rhaet =<br />

Rhaetian; T/J = end-Triassic extinction; Toar = Toarcian; Tri = Triassic.<br />

Location: Am = America; Atl = Atlantic; Carib = Caribbean; CP = Coastal Plain; E = East; Euro = Europe; hemis = hemisphere; N = North; NZ = New Zeal<strong>and</strong>; S = South; trop = tropical; W = West.<br />

Notes: dep = deposit; susp = suspension.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!