08.04.2013 Views

Effects of high pH on a natural marine planktonic community

Effects of high pH on a natural marine planktonic community

Effects of high pH on a natural marine planktonic community

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MARINE ECOLOGY PROGRESS SERIES<br />

Vol. 260: 19–31, 2003 Published September 30<br />

Mar Ecol Prog Ser<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a <strong>natural</strong> <strong>marine</strong> plankt<strong>on</strong>ic<br />

<strong>community</strong><br />

INTRODUCTION<br />

Marine waters have traditi<strong>on</strong>ally been c<strong>on</strong>sidered a<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g>-stable envir<strong>on</strong>ment with a <str<strong>on</strong>g>pH</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 ± 0.5, due<br />

to the <str<strong>on</strong>g>high</str<strong>on</strong>g> buffer capacity found here (e.g. Hinga<br />

1992, 2002). This point <str<strong>on</strong>g>of</str<strong>on</strong>g> view is exemplified by a<br />

quote from Barker (1935b) who wrote: ‘Din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

are by no means as sensitive to small changes in <str<strong>on</strong>g>pH</str<strong>on</strong>g> as<br />

expected for organisms accustomed to such c<strong>on</strong>stant<br />

an envir<strong>on</strong>ment as the ocean’. C<strong>on</strong>sequently, effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> <strong>marine</strong> plankt<strong>on</strong>ic protists are not well documented;<br />

especially studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong><br />

heterotrophic protists are sparse. This is in c<strong>on</strong>trast<br />

to freshwater ecology where the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> as a<br />

*Corresp<strong>on</strong>ding author. Email: pjhansen@zi.ku.dk<br />

Maria Fenger Pedersen, Per Juel Hansen*<br />

Marine Biological Laboratory, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark<br />

ABSTRACT: A <strong>natural</strong> plankt<strong>on</strong>ic <strong>community</strong> was incubated for 2 wk to study its resp<strong>on</strong>se to different<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>, ranging from 8 to 9.5. A general increase in phytoplankt<strong>on</strong> biomass was observed<br />

over time in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, the phytoplankt<strong>on</strong> biomass<br />

decreased close to detecti<strong>on</strong> limit during the first week; however, at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment,<br />

the initial biomass level was regained. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s, the diatoms Cerataulina<br />

pelagica, Cylindrotheca closterium and Leptocylindrus minimus became numerous, whereas in the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s, C. closterium solely made up the diatom biomass at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

experiment. Photosynthetic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates <str<strong>on</strong>g>of</str<strong>on</strong>g> the genus Ceratium, which were initially abundant, did<br />

not grow well in any <str<strong>on</strong>g>of</str<strong>on</strong>g> the incubati<strong>on</strong>s, probably due to the low nutrient c<strong>on</strong>centrati<strong>on</strong>s. The protozooplankt<strong>on</strong><br />

biomass increased over time in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, the<br />

protozooplankt<strong>on</strong> biomass decreased close to detecti<strong>on</strong> limit during the first 3 d <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment<br />

and stayed at that level until the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment. The biomass increase found in the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s was due to an increase in the number <str<strong>on</strong>g>of</str<strong>on</strong>g> ciliates, because the heterotrophic<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate number remained almost c<strong>on</strong>stant. Most protozooplankt<strong>on</strong> species incubated at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

died; however, the ciliate Myri<strong>on</strong>ecta rubra survived at almost the same cell number as in the lower<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s. Overall a species successi<strong>on</strong> occurred am<strong>on</strong>g both phototrophic and heterotrophic<br />

protists when <str<strong>on</strong>g>pH</str<strong>on</strong>g> approached 9. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> different protist taxa was<br />

reduced from 34 at the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment to 10 at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment. In c<strong>on</strong>clusi<strong>on</strong>,<br />

our study indicates that elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> (>9) in nature will affect the entire plankt<strong>on</strong> <strong>community</strong><br />

mainly by reducing the species richness and by favouring algal blooms due to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing.<br />

KEY WORDS: High <str<strong>on</strong>g>pH</str<strong>on</strong>g> · Plankt<strong>on</strong>ic protists · Ciliates · Diatoms · Din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates · Cylindrotheca<br />

closterium · Copepods<br />

Resale or republicati<strong>on</strong> not permitted without written c<strong>on</strong>sent <str<strong>on</strong>g>of</str<strong>on</strong>g> the publisher<br />

forcing factor has been c<strong>on</strong>sidered for decades. Models<br />

for estimating lake <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>pH</str<strong>on</strong>g> optima <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the diatom species present in the lake even have been<br />

made (ter Braak & van Dam 1989).<br />

The view <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>marine</strong> envir<strong>on</strong>ment as c<strong>on</strong>stant with<br />

respect to <str<strong>on</strong>g>pH</str<strong>on</strong>g> fluctuati<strong>on</strong>s has changed recently. This is<br />

mainly due to the anthropogenic nutrient enrichment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many coastal areas, causing phytoplankt<strong>on</strong> blooms,<br />

and thereby <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> values in places like bays,<br />

lago<strong>on</strong>s, salt p<strong>on</strong>ds and tidal pools (e.g. Droop 1959,<br />

Santhanam 1994, Macedo et al. 2001). The bestinvestigated<br />

locati<strong>on</strong> in Denmark where <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> is<br />

found is Mariager Fjord. During the last 10 yr, the average<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> value during summers has been 8.8, but during<br />

© Inter-Research 2003 · www.int-res.com


20<br />

calm sunny periods, <str<strong>on</strong>g>pH</str<strong>on</strong>g> values up to 9.75 have been<br />

measured (Hansen 2002). However, equivalent values<br />

have been recorded in <strong>marine</strong> pools and smaller increases<br />

in <str<strong>on</strong>g>pH</str<strong>on</strong>g> have been measured in the surface<br />

waters <str<strong>on</strong>g>of</str<strong>on</strong>g> the North Sea, where during a Phaeocystis<br />

bloom <str<strong>on</strong>g>pH</str<strong>on</strong>g> increased from 7.9 to 8.7 (Brussaard et al.<br />

1996). The durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> is quite variable; in<br />

a Portuguese coastal lago<strong>on</strong>, <str<strong>on</strong>g>pH</str<strong>on</strong>g> values above 8.5 are<br />

found all year round, whereas in rock pools and sediments,<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> can increase to 10, but <strong>on</strong>ly lasts for days<br />

or hours (Gnaiger et al. 1978, Macedo et al. 2001).<br />

An increase in <str<strong>on</strong>g>pH</str<strong>on</strong>g> in the <strong>marine</strong> envir<strong>on</strong>ment, as in<br />

freshwater, is expected to cause a change in the plankt<strong>on</strong>ic<br />

protist compositi<strong>on</strong>. The most comm<strong>on</strong> <strong>marine</strong><br />

phytoplankt<strong>on</strong> species found to co-occur with <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

in nature are the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates Heterocapsa triquetra,<br />

Prorocentrum minimum and P. micans, and the<br />

diatom Skelet<strong>on</strong>ema costatum (Macedo et al. 2001,<br />

Hansen 2002). However, many different taxa <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>marine</strong><br />

phytoplankt<strong>on</strong> are found to grow at <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>. Growth<br />

experiments with m<strong>on</strong>ocultures in the laboratory have<br />

shown that some cryptophytes, diatoms, din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

and prymnesiophyte species can grow at <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

above 9, and a few species even above <str<strong>on</strong>g>pH</str<strong>on</strong>g> 10 (Goldman<br />

et al. 1982, Nimer et al. 1994, Elzenga et al. 2000,<br />

Schmidt & Hansen 2001, Hansen 2002).<br />

The knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> how heterotrophic organisms<br />

resp<strong>on</strong>d to <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> is very sparse. While nothing is<br />

known about how copepods are affected by <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>,<br />

we have some knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> protozooplankt<strong>on</strong><br />

to <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>. Droop (1959) found that the<br />

heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate Oxyrrhis marina is <str<strong>on</strong>g>high</str<strong>on</strong>g>ly<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant. (Pedersen & Hansen 2003, this issue)<br />

studied the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> 4 ciliates and 2 heterotrophic<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates in laboratory cultures, and<br />

found that while some species are <str<strong>on</strong>g>high</str<strong>on</strong>g>ly <str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant,<br />

others are quite sensitive to elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> and cannot<br />

survive at <str<strong>on</strong>g>pH</str<strong>on</strong>g> exceeding 8.9.<br />

Due to this very limited knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the <strong>marine</strong> plankt<strong>on</strong> organisms, the aim <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this paper was to m<strong>on</strong>itor the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>natural</strong><br />

plankt<strong>on</strong>ic <strong>community</strong> (>15 µm) to different levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g>, thereby evaluating the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the<br />

species successi<strong>on</strong> and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> both phototrophic<br />

and heterotrophic protists. Because nutrient limitati<strong>on</strong><br />

may affect the successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protists, this was also<br />

taken into account.<br />

MATERIALS AND METHODS<br />

Water samples were collected from the pycnocline<br />

(water depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 m) at a stati<strong>on</strong> located in the Øresund,<br />

Denmark, <strong>on</strong> August 25, 2000. The water (salinity<br />

22 psu) was collected using a Niskin water sampler, im-<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

mediately filtered through a 160 µm filter to remove<br />

large zooplankters and stored in a 25 l c<strong>on</strong>tainer. The<br />

c<strong>on</strong>tainer was brought back to the laboratory and the<br />

water was poured into 4 clear 2.8 l Nalgene ® bottles<br />

(#1 to 4). The <str<strong>on</strong>g>pH</str<strong>on</strong>g> was elevated from the original 7.95 to<br />

8.0 (#1), 8.5 (#2), 9.0 (#3) and 9.5 (#4) by additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1<br />

and 1 M NaOH. For <str<strong>on</strong>g>pH</str<strong>on</strong>g> measurements, a Sentr<strong>on</strong> ®<br />

2001 <str<strong>on</strong>g>pH</str<strong>on</strong>g> meter with a Red Line electrode, sensitivity<br />

0.01, and a 2 point calibrati<strong>on</strong> was used. To minimise<br />

the shock effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>, the <str<strong>on</strong>g>pH</str<strong>on</strong>g> was raised by levels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 units at 12 h intervals until the final value was<br />

reached. The bottles were mounted <strong>on</strong> a plankt<strong>on</strong><br />

wheel (1 rpm) and incubated for 14 d at 15 ± 1°C <strong>on</strong> a<br />

16:8 h light:dark cycle at an irradiance <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 µE m –2 s –1 .<br />

The first sampling was carried out after 24 h; subsequent<br />

samplings were d<strong>on</strong>e every sec<strong>on</strong>d or third day<br />

during the next 14 d.<br />

At each sampling occasi<strong>on</strong>, the temperature and <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

were m<strong>on</strong>itored and the <str<strong>on</strong>g>pH</str<strong>on</strong>g> adjusted. A total water<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 ml was removed; the water was used for<br />

nutrient (3 × 30 ml) and chlorophyll a analyses (chl a;<br />

65 to 95 ml) as well as enumerati<strong>on</strong> and identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protists and copepods (105 to 135 ml was fixed in<br />

acidic Lugol’s iodine [final c<strong>on</strong>centrati<strong>on</strong> 1%] and kept<br />

in the dark and cold until examinati<strong>on</strong>). After sampling,<br />

the bottles were refilled with GF/C-filtered<br />

seawater (taken at the same locati<strong>on</strong> and time as the<br />

experimental water) and adjusted to the given <str<strong>on</strong>g>pH</str<strong>on</strong>g>,<br />

within <str<strong>on</strong>g>pH</str<strong>on</strong>g> 0.01 <str<strong>on</strong>g>of</str<strong>on</strong>g> the given value, before they were<br />

remounted <strong>on</strong> the plankt<strong>on</strong> wheel.<br />

Inorganic nutrients (NO 3 – , NO2 – , NH4 + , PO4 2– , SiO4 – )<br />

were analysed at the Nati<strong>on</strong>al Envir<strong>on</strong>mental Research<br />

Institute, Roskilde, Denmark (Grassh<str<strong>on</strong>g>of</str<strong>on</strong>g>f 1976). Chl a<br />

was measured in triplicate by filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 to 30 ml<br />

samples <strong>on</strong>to GF/C filters immediately after sampling.<br />

Filters were then extracted in 96% ethanol in the<br />

freezer overnight, and the next day centrifuged at<br />

1000 × g for 5 min before the fluorescence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

supernatant was measured with a Turner‚ TD-700<br />

Laboratory Fluorometer.<br />

Lugol-fixed samples for enumerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protists<br />

were, depending <strong>on</strong> cell c<strong>on</strong>centrati<strong>on</strong>s, poured in<br />

triplicates into 10 or 25 ml sedimentati<strong>on</strong> chambers.<br />

The dominant taxa (species or groups <str<strong>on</strong>g>of</str<strong>on</strong>g> species)<br />

were identified and enumerated using an inverted<br />

Olympus ® microscope at a magnificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 to<br />

400×, thereby focussing <strong>on</strong> protists >15 µm. Diatoms,<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates and ciliates dominated the samples and<br />

were identified using Dodge (1985), Hansen & Larsen<br />

(1992), Tomas (1996) and S<strong>on</strong>g et al. (1999). Diatoms<br />

and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates that have chloroplasts <str<strong>on</strong>g>of</str<strong>on</strong>g> their own<br />

were grouped as ‘phytoplankt<strong>on</strong>’. Ciliates and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

that do not have their own chloroplasts<br />

were grouped as ‘protozooplankt<strong>on</strong>’, even though<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> them may c<strong>on</strong>tain functi<strong>on</strong>al chloroplasts.


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

The dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 cells <str<strong>on</strong>g>of</str<strong>on</strong>g> each taxa were measured<br />

and cell volumes were estimated from linear<br />

dimensi<strong>on</strong>s using simple volumetric formulae. Cellular<br />

carb<strong>on</strong> c<strong>on</strong>tent was then calculated using the following<br />

equati<strong>on</strong>s (Menden-Deuer & Lessard 2000) where V is<br />

the cell volume:<br />

Din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates: pgC cell –1 = 0.760 × V 0.819<br />

Diatoms >3000 µm 3 : pgC cell –1 = 0.288 × V 0.811<br />

Other protists: pgC cell –1 = 0.216 × V 0.939<br />

Although the water was pre-screened through a<br />

plankt<strong>on</strong> net (mesh size 160 µm), some developmental<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> small copepods passed the filter. To evaluate<br />

their grazing impact <strong>on</strong> the protist <strong>community</strong>, the<br />

copepods were identified to species and developmental<br />

stage to estimate the clearance rate <strong>on</strong> potential<br />

prey examined in this paper. Enumerati<strong>on</strong> and identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> copepods in some <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lugol-fixed samples<br />

was c<strong>on</strong>ducted using a dissecti<strong>on</strong> microscope. The<br />

prosome length <str<strong>on</strong>g>of</str<strong>on</strong>g> each species was used for identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the developmental stages. The maximum clearance<br />

was estimated for copepods using the equati<strong>on</strong>s<br />

given in Hansen et al. 1997 and taking size into c<strong>on</strong>siderati<strong>on</strong>.<br />

RESULTS<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> and inorganic nutrients<br />

The <str<strong>on</strong>g>pH</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>natural</strong> seawater samples was adjusted to<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 8, 8.5, 9 and 9.5 respectively, and kept stable by<br />

adjustments at each sampling occasi<strong>on</strong> (Fig. 1). The<br />

incubati<strong>on</strong>s with <str<strong>on</strong>g>pH</str<strong>on</strong>g> levels between 8 and 9 showed a<br />

maximum reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 <str<strong>on</strong>g>pH</str<strong>on</strong>g> units between sampling<br />

days. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 treatment, however, a reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 <str<strong>on</strong>g>pH</str<strong>on</strong>g> units occurred between samplings, with<br />

1 excepti<strong>on</strong> at Day 7, where the reducti<strong>on</strong> was 0.5 <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

units. The nutrient c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4 + , NO3 – ,<br />

NO 2 – and PO4 2– (Fig. 2) remained at the initial level in<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s, with a slight decrease<br />

towards the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment. However, while<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> experienced an increase in<br />

inorganic nutrients from the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment to<br />

the end, an excepti<strong>on</strong> was found for PO 4 2– , which<br />

decreased to the detecti<strong>on</strong> limit after Day 3. The c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> SiO 4 – in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s<br />

remained at a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 to 6 µM throughout<br />

the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment (Fig. 2). In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

incubati<strong>on</strong>, the SiO 4 – c<strong>on</strong>centrati<strong>on</strong> increased to a<br />

maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.5 µM at Day 7, whereafter it<br />

decreased to reach 9 µM at Day 14. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

incubati<strong>on</strong>, the SiO 4 – kept increasing throughout the<br />

experiment to reach a maximum c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

31 µM at Day 14.<br />

Fig. 1. <str<strong>on</strong>g>pH</str<strong>on</strong>g> fluctuati<strong>on</strong>s in the experimental bottles during the<br />

2 wk incubati<strong>on</strong>s. (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0; (m) <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

9.5. <str<strong>on</strong>g>pH</str<strong>on</strong>g> was adjusted at each sampling date to keep the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> c<strong>on</strong>stant<br />

The plankt<strong>on</strong>ic <strong>community</strong><br />

Phytoplankt<strong>on</strong><br />

The phytoplankt<strong>on</strong> <strong>community</strong> was quantified in<br />

bulk using both chl a measurements and direct cell<br />

counts. The initial chl a c<strong>on</strong>centrati<strong>on</strong> was 2.4 µg l –1 in<br />

all treatments (Fig. 3A). In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s,<br />

the chl a c<strong>on</strong>centrati<strong>on</strong> increased 2- to 3-fold during<br />

the first 10 d. During the next 4 d, the chl a c<strong>on</strong>centrati<strong>on</strong><br />

stabilised in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s, whereas<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong> experienced a further 3-fold<br />

increase. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, the chl a c<strong>on</strong>centrati<strong>on</strong><br />

declined more than 90% from Day 0 to 7. However,<br />

at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment, the initial<br />

chl a c<strong>on</strong>centrati<strong>on</strong> was almost regained.<br />

The phytoplankt<strong>on</strong> biomass (estimated from direct<br />

counts) was initially 53 µg C l –1 (Fig. 3B). A general<br />

increase in biomass was observed in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and<br />

8.5 incubati<strong>on</strong>s, increasing 3- and 14-fold, respectively.<br />

In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong>, no increase was observed<br />

during the first week; however, during the last<br />

week, the biomass increased to reach the same level as<br />

found in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5 incubati<strong>on</strong>. Unlike the other incubati<strong>on</strong>s,<br />

a significant decrease was observed in the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> during the first week. However, during<br />

the following week an increase to almost the initial<br />

biomass occurred.<br />

The focus <str<strong>on</strong>g>of</str<strong>on</strong>g> the phytoplankt<strong>on</strong> group was <strong>on</strong><br />

diatoms and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates because they were the<br />

most dominant classes in the present experiment<br />

(Fig. 3C,D). At the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the incubati<strong>on</strong>s, the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

dominated the phytoplankt<strong>on</strong> <strong>community</strong>.<br />

However, during the 2 wk incubati<strong>on</strong>, the relative<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> diatoms increased at all <str<strong>on</strong>g>pH</str<strong>on</strong>g> levels and<br />

they became dominant. At <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5, the diatoms<br />

21


22<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

Fig. 2. Fluctuati<strong>on</strong>s in nutrient<br />

c<strong>on</strong>centrati<strong>on</strong>s measured during<br />

the 2 wk experimental period.<br />

(A) NH 4 + , (B) SiO4 – , (C) NO3 – +<br />

NO 2 – , (D) PO4 2– . (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j)<str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0; (m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5.<br />

Symbols represent means <str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates<br />

± SE<br />

Fig. 3. Phytoplankt<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s<br />

in the 4 incubati<strong>on</strong>s<br />

during the 2 wk experimental<br />

period. (A) Chlorophyll a,<br />

(B) phytoplankt<strong>on</strong> biomass<br />

(µg C l –1 ), (C) diatom biomass,<br />

(D) phototrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate<br />

biomass. (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0;<br />

(j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0; (m) <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

9.5. Symbols represent means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

grew throughout the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment,<br />

whereas the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates <strong>on</strong>ly grew for the first 3 d.<br />

At <str<strong>on</strong>g>high</str<strong>on</strong>g>er <str<strong>on</strong>g>pH</str<strong>on</strong>g>, the biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> both diatoms and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

either remained c<strong>on</strong>stant or declined during<br />

the first week <str<strong>on</strong>g>of</str<strong>on</strong>g> the incubati<strong>on</strong>, and <strong>on</strong>ly growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diatoms was observed during the sec<strong>on</strong>d week <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

incubati<strong>on</strong>s.<br />

The successi<strong>on</strong> am<strong>on</strong>g the species within the studied<br />

phytoplankt<strong>on</strong> groups varied according to the <str<strong>on</strong>g>pH</str<strong>on</strong>g> level<br />

(Figs. 4 & 5). The 2 lowest <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s, <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and<br />

8.5, experienced almost no successi<strong>on</strong> am<strong>on</strong>g species.<br />

Here, all the identified species were present throughout<br />

the experimental period.<br />

In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, a pr<strong>on</strong>ounced successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

species occurred during the incubati<strong>on</strong> period. At the<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment, Cylindrotheca closterium was<br />

the <strong>on</strong>ly species am<strong>on</strong>g the diatoms that thrived. Its<br />

growth rate at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 was similar to the growth rates<br />

obtained in the lower <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s (Fig. 4, Table 1).<br />

Am<strong>on</strong>g the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates, Prorocentrum micans, P.<br />

minimum and Heterocapsa triquetra all survived at<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5, whereas the initial dominant species, Ceratium<br />

furca, C. fusus and C. tripos, died out (Fig. 5).<br />

In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong>, the successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species was<br />

less pr<strong>on</strong>ounced, and <strong>on</strong>ly a few species died out. It<br />

was interesting to note however that some species<br />

apparently grew faster in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong> compared<br />

to in the incubati<strong>on</strong>s at lower <str<strong>on</strong>g>pH</str<strong>on</strong>g> (Figs. 4 & 5).<br />

Protozooplankt<strong>on</strong><br />

At the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment, the protozooplankt<strong>on</strong><br />

biomass was 20 µg C l –1 in all incubati<strong>on</strong>s (Fig. 6A). In<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8, 8.5 and 9 incubati<strong>on</strong>s, a general increase in<br />

biomass was found over time. An 8-fold increase in<br />

biomass was observed at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment<br />

in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 9 incubati<strong>on</strong>s, whereas <strong>on</strong>ly a<br />

3-fold increase in biomass was found in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5<br />

incubati<strong>on</strong>. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, the biomass<br />

decreased about 5-fold during the first 3 d and stayed<br />

at that level until the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment.<br />

The increase in biomass in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8, 8.5 and 9 incubati<strong>on</strong>s<br />

was mainly caused by ciliates, because the<br />

heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates were found to be relatively<br />

c<strong>on</strong>stant throughout the experiment. In the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, both ciliates and heterotrophic<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates declined in biomass throughout the<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment (Fig. 6B,C).<br />

The successi<strong>on</strong> am<strong>on</strong>g the species within the studied<br />

protozooplankt<strong>on</strong> groups varied according to the <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

level (Figs. 7 & 8). The 2 lowest <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s, <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8<br />

and 8.5, experienced almost no successi<strong>on</strong> am<strong>on</strong>g<br />

species. Here, all the identified species were present<br />

throughout the experimental period. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

Fig. 4. Cell c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some selected diatoms in the 4 incubati<strong>on</strong>s<br />

during the 2 wk experimental period. (A) Cylindrotheca<br />

closterium, (B) Cerataulina pelagica, (C) Leptocylindrus<br />

minimus. (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0; (m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5.<br />

Symbols represent means <str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE<br />

incubati<strong>on</strong>, some species died out, whereas the remaining<br />

species were alive at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

experiment. However, unlike in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the phytoplankt<strong>on</strong>,<br />

n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the protozooplankt<strong>on</strong> species took<br />

over.<br />

In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong>, the successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species was<br />

less pr<strong>on</strong>ounced, and <strong>on</strong>ly a few species died out<br />

(Figs. 7 & 8). It was interesting to note however that<br />

some ciliate species apparently grew faster in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

incubati<strong>on</strong> compared to in the incubati<strong>on</strong>s at lower <str<strong>on</strong>g>pH</str<strong>on</strong>g>.<br />

23


24<br />

Copepods<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers, the copepod <strong>community</strong> in the<br />

incubati<strong>on</strong>s c<strong>on</strong>sisted mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> small Oith<strong>on</strong>a spp.<br />

and <strong>on</strong>ly a few much larger copepods <str<strong>on</strong>g>of</str<strong>on</strong>g> the genera<br />

Pseudo-/Paracalanus spp. were found in the sample<br />

volumes studied. At the initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment, a<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 84 copepods per litre were found,<br />

including all developmental stages. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 incubati<strong>on</strong>,<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> copepods increased slightly<br />

during the experimental period, whereas a slight<br />

decrease was found at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5. No copepods were<br />

found in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s after Days 5<br />

and 0, respectively (data not shown). Thus, the aver-<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

Fig. 5. Cell c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> selected phototrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates in the 4 incubati<strong>on</strong>s during the 2 wk experimental period.<br />

(A) Prorocentrum micans, (B) P. minimum, (C) Heterocapsa triquetra, (D) Ceratium tripos, (E) Ceratium furca, (F) C. fusus.<br />

(y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0; (m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5. Symbols represent means <str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE<br />

Table 1. Cylindrotheca closterium. Growth rate (d –1 ) for the<br />

incubati<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0, 8.5, 9.0 and 9.5<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> Growth rate (d –1 )<br />

Days 0 to 7 Days 7 to 14 Days 0 to 14<br />

8.0 0.54 ± 0.07 0.53 ± 0.05 0.54 ± 0.05<br />

8.5 0.62 ± 0.09 0.56 ± 0.003 0.56 ± 0.04<br />

9.0 0.65 ± 0.07 0.97 ± 0.04 0.81 ± 0.02<br />

9.5 0.48 ± 0.06 0.93 ± 0.04 0.70 ± 0.05<br />

age length and total calculated biomass increased<br />

over time <strong>on</strong>ly in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s (Figs. 9<br />

& 10).<br />

The calculated maximum clearance for the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and<br />

8.5 incubati<strong>on</strong>s revealed that about 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> the water<br />

was cleared daily at the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment. C<strong>on</strong>siderable<br />

variati<strong>on</strong> in calculated clearance was found<br />

and no c<strong>on</strong>sistent increase was observed during the<br />

experiment, probably due to the small sample sizes<br />

used. However, taking all data <strong>on</strong> clearance from the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s into c<strong>on</strong>siderati<strong>on</strong>, the maximum<br />

and the average rate corresp<strong>on</strong>ded to a removal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 38 and 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> the prey populati<strong>on</strong>s per day,<br />

respectively (Table 2).<br />

DISCUSSION<br />

How did elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> affect the phytoplankt<strong>on</strong><br />

<strong>community</strong>?<br />

The phytoplankt<strong>on</strong> communities incubated at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

and 9.5 clearly developed differently from those<br />

incubated at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5, with the most pr<strong>on</strong>ounced<br />

differences found at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 (Fig. 3). In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incu-


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

bati<strong>on</strong>, a 75% decline in total phytoplankt<strong>on</strong> biomass<br />

occurred during the first week. However, the effect<br />

was <strong>on</strong>ly transient, because the phytoplankt<strong>on</strong> biomass<br />

increased again during the sec<strong>on</strong>d week <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong><br />

to 2 /3 <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial phytoplankt<strong>on</strong> biomass. The<br />

reas<strong>on</strong> for this reducti<strong>on</strong> in biomass was that some species<br />

declined in numbers or totally disappeared (Figs. 4<br />

& 5). This resulted in a decline in the total number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

algal taxa from 21 at the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment to a<br />

total <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 5 at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment,<br />

with <strong>on</strong>ly 1 species making up for 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> the algal<br />

biomass (Figs. 3, 4 & 11).<br />

How do these results compare with laboratory data<br />

<strong>on</strong> single species? In a recent review, Hansen (2002)<br />

found that in laboratory cultures, <strong>on</strong>ly 7 out <str<strong>on</strong>g>of</str<strong>on</strong>g> a total <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

35 phytoplankt<strong>on</strong> species were able to grow at <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

exceeding 9.5. Am<strong>on</strong>g species that had the capability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> growing at <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> were the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates Prorocentrum<br />

minimum and P. micans, which also were<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>es growing in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> in<br />

the present experiment. Likewise, some <str<strong>on</strong>g>of</str<strong>on</strong>g> the species<br />

which during the incubati<strong>on</strong> period disappeared or<br />

decreased in numbers in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s<br />

have been reported to be unable to grow at this <str<strong>on</strong>g>high</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g>. This is for instance the case for Ceratium tripos<br />

and C. lineatum, which are known for their sensitivity<br />

to <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>, being unable to grow at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.4 and 8.7,<br />

respectively. The diatom Cylindrotheca closterium was<br />

the <strong>on</strong>ly species found to obtain a <str<strong>on</strong>g>high</str<strong>on</strong>g> growth rate in<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> (Fig. 4, Table 1). This diatom is<br />

known as a <str<strong>on</strong>g>high</str<strong>on</strong>g>ly <str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant species, which is able to<br />

sustain maximum growth up to <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.2 in laboratory<br />

cultures (Barker 1935a, Grant et al. 1967, Humphrey &<br />

Subba Rao 1967). Thus, in c<strong>on</strong>clusi<strong>on</strong>, there is good<br />

accordance between the observati<strong>on</strong>s made in the present<br />

study and the literature found <strong>on</strong> laboratory experiments<br />

c<strong>on</strong>cerning <str<strong>on</strong>g>pH</str<strong>on</strong>g> tolerances <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>.<br />

How did elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> affect the heterotrophic<br />

<strong>community</strong>?<br />

Elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> had a marked effect <strong>on</strong> both the protozooplankt<strong>on</strong><br />

and the copepod <strong>community</strong>. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

and 9.5 incubati<strong>on</strong>s, the development in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

biomass and species compositi<strong>on</strong> differed from the<br />

lower <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s. Many protozooplankt<strong>on</strong> survived<br />

and even grew in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong>, whereas <strong>on</strong>ly a<br />

few species survived the 2 wk exposure to <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

(Figs. 6 & 9). N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the copepod species was found to<br />

survive in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s for more than<br />

5 and 1 d, respectively, indicating that copepods are<br />

more sensitive to <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> than protozooplankt<strong>on</strong>.<br />

Our knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> how elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> affects the<br />

growth and survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>marine</strong> protozooplankt<strong>on</strong> and<br />

Fig. 6. C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> protozooplankt<strong>on</strong> in the 4 incubati<strong>on</strong>s<br />

during the 2 wk experimental period. (A) Total protozooplankt<strong>on</strong><br />

biomass, (B) ciliate biomass, (C) heterotrophic<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates biomass. (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0;<br />

(m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5. Symbols represent means <str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE<br />

copepods is limited to a couple <str<strong>on</strong>g>of</str<strong>on</strong>g> laboratory studies <strong>on</strong><br />

heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates and ciliates (Droop 1959,<br />

Pedersen & Hansen 2003). In these studies, it was<br />

found that the heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate Oxyrrhis<br />

marina and the prostomatid ciliate Balani<strong>on</strong> comatum<br />

both were able to grow quite fast at a <str<strong>on</strong>g>pH</str<strong>on</strong>g> above 9.5,<br />

whereas the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates Gyrodinium dominans and<br />

the ciliates Rimostrombidium caudatum, R. veniliae<br />

and Favella ehrenbergii had <str<strong>on</strong>g>pH</str<strong>on</strong>g> growth limits ranging<br />

25


26<br />

from 8.8 to 9.3. When these organisms were exposed to<br />

<str<strong>on</strong>g>high</str<strong>on</strong>g>er <str<strong>on</strong>g>pH</str<strong>on</strong>g>, they died out. Thus, the data we obtained<br />

from the incubati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> field samples are not in c<strong>on</strong>flict<br />

with the laboratory results and they point to the fact<br />

that elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> may cause species successi<strong>on</strong> am<strong>on</strong>g<br />

heterotrophic organisms. The fact that we did not find<br />

any protozooplankt<strong>on</strong> or copepod species that could<br />

resp<strong>on</strong>d to the increase in algal biomass in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

incubati<strong>on</strong> suggests that <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> may result in a<br />

reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the total grazing pressure <strong>on</strong> the <strong>natural</strong><br />

phytoplankt<strong>on</strong> <strong>community</strong>.<br />

Nutrient limitati<strong>on</strong> and grazing effects<br />

The growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the large-celled phototrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

(e.g. Ceratium spp.) stopped after 3 d <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

incubati<strong>on</strong> in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 experiments, whereas<br />

small-celled phototrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates and diatoms<br />

were able to grow throughout the experiment (Fig. 5).<br />

Thus, these large din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates were either subjected<br />

to a heavy grazing pressure or became nutrientlimited.<br />

Substantial grazing by the dominating copepods<br />

(cyclopoids) and ciliates <strong>on</strong> Ceratium spp. seems<br />

unlikely, simply because they cannot handle them<br />

(Hansen et al. 1994, Nielsen & Kiørboe 1994). In the<br />

present study, the <strong>on</strong>ly potential grazers <strong>on</strong> the Ceratium<br />

spp. were the heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates,<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

especially the Protoperidinium spp. (Hansen 1991,<br />

Buskey 1997, Naustvoll 2000), but their growth also<br />

stopped in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 experiments after 3 d <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

incubati<strong>on</strong>, indicating a very limited grazing pressure<br />

(Fig. 8).<br />

The initial c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic nitrogen and<br />

phosphorus in the water in the present experiments<br />

were quite low, but close to Redfield’s ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> N:P 16:1.<br />

At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments, this ratio had changed<br />

towards a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 5:1 in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s, suggesting<br />

an inorganic nitrogen limitati<strong>on</strong>. It is well<br />

known that smaller cells have lower half-saturati<strong>on</strong><br />

c<strong>on</strong>stants for nutrient uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic nitrogen<br />

than large cells (e.g. Hein et al. 1995). This indicates<br />

that the most likely explanati<strong>on</strong> for the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ceratium spp. was nutrient limitati<strong>on</strong>, and that<br />

this apparently also affected their predators (see Lynn<br />

et al. 2000).<br />

The <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> differed in respect to inorganic<br />

nutrient c<strong>on</strong>centrati<strong>on</strong> from the other incubati<strong>on</strong>s<br />

(Fig. 2). At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment, the NH 4 + c<strong>on</strong>centrati<strong>on</strong><br />

had increased 2- to 3-fold, whereas the phosphate<br />

c<strong>on</strong>centrati<strong>on</strong> had decreased to almost detecti<strong>on</strong><br />

level. The reas<strong>on</strong> for the rapid increase in NH 4 + is<br />

undoubtedly due to a quick remineralisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dead<br />

organisms, whereas the decrease in inorganic phosphorus<br />

is due to the much lower solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic<br />

phosphorus at very <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> (Otsuki & Wetzel 1972,<br />

Fig. 7. Cell c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> selected<br />

ciliates in the 4 incubati<strong>on</strong>s during the<br />

2 wk experimental period. (A) Strombidium/Strobilidium<br />

spp. 50 µm, (C) Strombidium/Strobilidium<br />

spp. 25 to 50 µm, (D) Mesodinium<br />

pulex, (E) Myri<strong>on</strong>ecta rubra.<br />

(y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0;<br />

(m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5. Symbols represent means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

Kümmel 1981). This resulted in a potential phosphorus<br />

limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phototrophic organisms, which may<br />

have affected the species compositi<strong>on</strong>. However, it is<br />

noteworthy that the growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Cylindrotheca<br />

closterium was similar or even <str<strong>on</strong>g>high</str<strong>on</strong>g>er in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong><br />

compared to the rates found in lower <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s<br />

(Table 1). In fact, the <str<strong>on</strong>g>high</str<strong>on</strong>g>est growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

diatom was found in the sec<strong>on</strong>d week in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

Fig. 8. Cell c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> selected heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

in the 4 incubati<strong>on</strong>s during the 2 wk experimental<br />

period. (A) Protoperidinium divergens, (B) P. pellucidum,<br />

(C) Katodinium glaucum. (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0;<br />

(m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5. Symbols represent means <str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE<br />

Fig. 9. Biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> copepods (Oith<strong>on</strong>a and Pseudo-/Paracalanus)<br />

in the 4 incubati<strong>on</strong>s during the 2 wk experimental<br />

period. (A) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0, (B) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5, (C) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0, (D) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

27


28<br />

Fig. 10. Average size <str<strong>on</strong>g>of</str<strong>on</strong>g> the copepod Oith<strong>on</strong>a in the 4 incubati<strong>on</strong>s<br />

during the 2 wk experimental period. (A) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0,<br />

(B) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5. Symbols represent means ± SE<br />

incubati<strong>on</strong>, where the phosphorus limitati<strong>on</strong> should<br />

also have been the str<strong>on</strong>gest (Fig. 2).<br />

The silicate c<strong>on</strong>centrati<strong>on</strong> was c<strong>on</strong>stant in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8<br />

and 8.5 incubati<strong>on</strong>s throughout the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment,<br />

and thus silicate does not seem to be limiting<br />

in these incubati<strong>on</strong>s (Fig. 2B). Dramatic increases in<br />

silicate c<strong>on</strong>centrati<strong>on</strong> were however observed in the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s mainly during the first 3 d <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the experiment. The largest increase in silicate c<strong>on</strong>centrati<strong>on</strong><br />

was found in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, which<br />

reached a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ~30 µM silicate at the terminati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the incubati<strong>on</strong>. This c<strong>on</strong>centrati<strong>on</strong> is ~3 times<br />

<str<strong>on</strong>g>high</str<strong>on</strong>g>er than the maximum c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silicate typ-<br />

Table 2. Estimated copepod clearance in percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total<br />

water volume per day for the incubati<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0, 8.5, 9.0<br />

and 9.5<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> Water volume cleared by the copepod <strong>community</strong><br />

Day 0 Day 5 Day 10 Day 12<br />

8.0 5.8 1.2 6.1 37.9<br />

8.5 5.8 9.6 13.0 2.3<br />

9.0 5.8 0.5 0.0 0.0<br />

9.5 5.8 0.0 0.0 0.0<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

ically found in the spring before the diatom bloom has<br />

started (Richards<strong>on</strong> & Christ<str<strong>on</strong>g>of</str<strong>on</strong>g>fersen 1991). The largest<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> adjustments were d<strong>on</strong>e in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s,<br />

both at the initiati<strong>on</strong> and during the experiment.<br />

It is therefore likely that we have added silicate al<strong>on</strong>g<br />

with the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NaOH, because the NaOH soluti<strong>on</strong><br />

was stored in glass bottles and it is well known that<br />

silicate is <str<strong>on</strong>g>high</str<strong>on</strong>g>ly soluble at <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>. The silicate c<strong>on</strong>centrati<strong>on</strong><br />

in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> was, however, still<br />

much lower than what typically is added to ordinary<br />

algal growth media, like the f/2 medium (final c<strong>on</strong>centrati<strong>on</strong><br />

100 to 200 µM; Guillard 1972). Thus, it does not<br />

seem likely that these <str<strong>on</strong>g>high</str<strong>on</strong>g> silicate c<strong>on</strong>centrati<strong>on</strong>s<br />

should have had any negative impact <strong>on</strong> the algal<br />

species compositi<strong>on</strong> in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s.<br />

The <str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant species (Prorocentrum micans, P.<br />

minimum, Heterocapsa triquetra and Cylindrotheca<br />

closterium) did better in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> growth in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

incubati<strong>on</strong> compared to the lower <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s<br />

(Figs. 4A & 5A,B,C). This is in c<strong>on</strong>trast to laboratory<br />

studies, which indicate that the growth rates <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

species are reduced at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 compared to at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8<br />

(Schmidt & Hansen 2001, Hansen 2002). Thus, the reas<strong>on</strong><br />

for the better growth <str<strong>on</strong>g>of</str<strong>on</strong>g> these species in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

could instead be reduced grazing.<br />

Am<strong>on</strong>g the potential grazers, <strong>on</strong>ly ciliates and copepods<br />

occur in such numbers that they potentially may<br />

play a role as grazers <strong>on</strong> the 4 <str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant species. Significant<br />

predati<strong>on</strong> due to the ciliates can however be<br />

ruled out. First, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> them can ingest the l<strong>on</strong>g<br />

diatom Cylindrotheca closterium, and <strong>on</strong>ly the large<br />

(>50 µm) ciliates can ingest din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates as large<br />

as Heterocapsa triquetra and Prorocentrum minimum<br />

(e.g. Hansen et al. 1994). Sec<strong>on</strong>d, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Fig. 11. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> taxa (species or size groups) found at<br />

Day 14 in c<strong>on</strong>centrati<strong>on</strong>s >0.1 cells ml –1


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

large ciliates was actually <str<strong>on</strong>g>high</str<strong>on</strong>g>est in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong>,<br />

compared to the incubati<strong>on</strong>s at lower <str<strong>on</strong>g>pH</str<strong>on</strong>g>, and<br />

thus the grazing loss due to these ciliates should have<br />

been the largest in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong> (Fig. 7).<br />

The dominant copepods (cyclopids) found in the<br />

incubati<strong>on</strong>s have the potential to feed <strong>on</strong> all the <str<strong>on</strong>g>pH</str<strong>on</strong>g>tolerant<br />

phytoplankt<strong>on</strong> (Hansen et al. 1994, Nielsen &<br />

Kiørboe 1994). Therefore, a significant grazing impact<br />

by the copepods <strong>on</strong> these algal populati<strong>on</strong>s may have<br />

occurred in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s. Our estimates<br />

suggest that the copepods may have been able<br />

to remove about 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> the standing phytoplankt<strong>on</strong><br />

stock per day (Table 2). Thus, the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing by<br />

copepods in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong> is a likely explanati<strong>on</strong><br />

for the observed better net growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>pH</str<strong>on</strong>g>-dominant<br />

phytoplankt<strong>on</strong>, but the remineralisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dying <str<strong>on</strong>g>pH</str<strong>on</strong>g>sensitive<br />

phytoplankt<strong>on</strong> has probably also c<strong>on</strong>tributed.<br />

Copepods including cyclopoids can also easily feed<br />

<strong>on</strong> ciliates (Stoecker & Capuzzo 1990, Nielsen &<br />

Sabatini 1996, Nakamura & Turner 1997), and thus it<br />

is <str<strong>on</strong>g>high</str<strong>on</strong>g>ly likely that the better net growth <str<strong>on</strong>g>of</str<strong>on</strong>g> ciliates<br />

at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 can be explained, at least partly, by copepod<br />

grazing <strong>on</strong> the ciliates in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s<br />

(Table 2). However, we did not count the small-sized<br />

protists (


30<br />

mum, the diatom Skelet<strong>on</strong>ema costatum or the cleptoplastidic<br />

ciliate Myri<strong>on</strong>ecta rubra (Fenchel et al. 1995).<br />

During the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the year, the phytoplankt<strong>on</strong> <strong>community</strong><br />

is much more diverse.<br />

In c<strong>on</strong>clusi<strong>on</strong>, the present experiments with the<br />

exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> a plankt<strong>on</strong>ic <strong>community</strong> to a fixed <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

show that an increase in <str<strong>on</strong>g>pH</str<strong>on</strong>g> kills <str<strong>on</strong>g>pH</str<strong>on</strong>g>-sensitive organisms<br />

and causes a decrease in the species richness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both phototrophic and heterotrophic organisms. Our<br />

results indicate that the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> an ecosystem to an<br />

elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> very much depends up<strong>on</strong> the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the exposure. Our results also suggest that copepods<br />

are quite sensitive to elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> compared to protozooplankt<strong>on</strong>.<br />

In their absence, phytoplankt<strong>on</strong> is <strong>on</strong>ly<br />

subjected to grazing from the other protists. This will<br />

favour phytoplankt<strong>on</strong> species that have developed<br />

grazing-resistant mechanisms such as toxin producti<strong>on</strong>,<br />

poor food quality or shape.<br />

Acknowledgements. We are indebted to Christian Marc<br />

Andersen for analyzing the metazooplankt<strong>on</strong> samples and to<br />

Torkel Gissel Nielsen for valuable comments and suggesti<strong>on</strong>s<br />

to the paper. We also thank Benni Winding Hansen for the<br />

kind use <str<strong>on</strong>g>of</str<strong>on</strong>g> his fluorometer. The work was funded by both the<br />

Danish Natural Research Council (project #9801391 & #21-01-<br />

0539) and the European Commissi<strong>on</strong>’s Envir<strong>on</strong>ment & Sustainable<br />

Development (ESD) (FP-V, research into the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sustainable Marine Ecosystems, Key acti<strong>on</strong> 3)<br />

under c<strong>on</strong>tract EVK3-CT-1999-00015 BIOHAB (Biological<br />

C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Harmful Algal Blooms in European coastal waters).<br />

LITERATURE CITED<br />

Barker HA (1935a) Photosynthesis in diatoms. Arch Mikrobiol<br />

6:141–156<br />

Barker HA (1935b) The culture and physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>marine</strong><br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates. Arch Mikrobiol 6:157–181<br />

Brussaard CPD, Gast GJ, van Duyl FC, Riegman R (1996)<br />

Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> bloom magnitude <strong>on</strong> a pelagic<br />

microbial food web. Mar Ecol Prog Ser 144:211–221<br />

Buskey EJ (1997) Behavioral comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding selectivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate Protoperidinium<br />

pellucidum. Mar Ecol Prog Ser 153:77–89<br />

Dodge JD (1985) Marine din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates <str<strong>on</strong>g>of</str<strong>on</strong>g> the British Isles.<br />

Her Majesty’s Stati<strong>on</strong>ary Office, L<strong>on</strong>d<strong>on</strong><br />

Droop MR (1959) A note <strong>on</strong> some physical c<strong>on</strong>diti<strong>on</strong>s for cultivating<br />

Oxyrrhis marina. J Mar Biol Assoc UK 38:599–604<br />

Elzenga JTM, Hidde BA Prins, Stefels J (2000) The role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extracellular carb<strong>on</strong>ic anhydrase activity in inorganic<br />

carb<strong>on</strong> utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Phaeocystis globosa (Prymnesiophyceae):<br />

a comparis<strong>on</strong> with other <strong>marine</strong> phytoplankt<strong>on</strong><br />

using the isotopic disequilibrium technique. Limnol<br />

Oceanogr 45:372–380<br />

Fenchel T (1987) Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> protozoa: the biology <str<strong>on</strong>g>of</str<strong>on</strong>g> freeliving<br />

phagotrophic protists. Springer-Verlag, Berlin<br />

Fenchel T, Bernard C, Esteban G, Finlay BJ, Hansen PJ,<br />

Iversen N (1995) Microbial diversity and activity in a<br />

Danish fjord with anoxic deep water. Ophelia 43:45–100<br />

Gnaiger E, Gluth G, Weiser W (1978) <str<strong>on</strong>g>pH</str<strong>on</strong>g> fluctuati<strong>on</strong>s in an<br />

intertidal beach in Bermuda. Limnol Oceanogr 23:<br />

851–857<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

Goldman JC, Yossef A, Riley CB, Dennett MR (1982) The<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> in intense microalgal cultures. II. Species<br />

competiti<strong>on</strong>. J Exp Mar Ecol 57:15–24<br />

Grant BR, Madgwick J, Dal P<strong>on</strong>t G (1967) Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Cylindrotheca<br />

closterium var. californica (Mereschk.) Reimann<br />

& Lewin <strong>on</strong> nitrate, amm<strong>on</strong>ia and urea. Aust J Mar Freshw<br />

Res 18:129–136<br />

Grassh<str<strong>on</strong>g>of</str<strong>on</strong>g>f K (1976) Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater analysis. Verlag<br />

Chemie, Weinheim<br />

Guillard RRL (1972) Culture <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> for feeding<br />

<strong>marine</strong> invertebrates. In: Smith WL, Chanley MH (eds)<br />

Culture <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>marine</strong> invertebrate animals. Plenum Press,<br />

New York, p 29–60<br />

Hansen B, Bjørnsen PK, Hansen PJ (1994) Prey size selecti<strong>on</strong><br />

in plankt<strong>on</strong>ic zooplankt<strong>on</strong>. Limnol Oceanogr 39:395–403<br />

Hansen G, Larsen J (1992) Din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellater i danske farvande.<br />

In: Thomsen HA (ed) Plankt<strong>on</strong> i de indre danske farvande.<br />

Havforskning fra Miljøstyrelsen Nr. 11. Miljøministeriet,<br />

København, p 45–155<br />

Hansen PJ (1991) Quantitative importance and trophic role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates in a coastal pelagical food<br />

web. Mar Ecol Prog Ser 73:253–261<br />

Hansen PJ (2002) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the growth and<br />

survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>marine</strong> phytoplankt<strong>on</strong>: implicati<strong>on</strong>s for species<br />

successi<strong>on</strong>. Aquat Microb Ecol 28:279–288<br />

Hansen PJ, Hansen B, Bjørnsen PK (1997) Zooplankt<strong>on</strong><br />

grazing and growth: scaling within the size range 2 to<br />

2000 µm. Limnol Oceanogr 42:687–704<br />

Hein M, Pedersen MF, Sand-Jensen K (1995) Size-dependent<br />

nitrogen uptake in micro- and macrophytoplankt<strong>on</strong>. Mar<br />

Ecol Prog Ser 118:247–253<br />

Hinga KR (1992) Co-occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate blooms and<br />

<str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> in <strong>marine</strong> enclosures. Mar Ecol Prog Ser 86:<br />

181–187<br />

Hinga KR (2002) <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> coastal <strong>marine</strong> phytoplankt<strong>on</strong>.<br />

Mar Ecol Prog Ser 238:281–300<br />

Humphrey GF, Subba Rao DV (1967) Photosynthetic rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>marine</strong> diatom Cylindrotheca closterium. Aust J Mar<br />

Freshw Res 18:123–127<br />

J<strong>on</strong>ss<strong>on</strong> PR (1986) Particle size selecti<strong>on</strong>, feeding rates and<br />

growth dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>marine</strong> plankt<strong>on</strong>ic oligotrichous ciliates<br />

(Ciliophora: Oligotrichina). Mar Ecol Prog Ser 33:265–277<br />

Kalff J (2002) Inland water ecosystems. Prentice-Hall, Englewood<br />

Cliffs, NJ<br />

Kalff J, Wats<strong>on</strong> S (1986) Phytoplankt<strong>on</strong> and its dynamics<br />

in two tropical lakes: a tropical and temperate z<strong>on</strong>e<br />

comparis<strong>on</strong>. Hydrobiologia 138:161–176<br />

Kümmel R (1981) Zur Phosphateliminierung durch Fällung<br />

mit Calciumi<strong>on</strong>en. Acta Hydrochim Hydrobiol 9:585–588<br />

Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2000) <str<strong>on</strong>g>Effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient availability <strong>on</strong> the biochemical and elemental<br />

stoichiometry in the freshwater diatom Stephanodiscus<br />

minutulus (Bacillariophyceae). J Phycol 36:510–522<br />

Macedo MF, Duarte P, Mendes P, Ferreira G (2001) Annual<br />

variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental variables, phytoplankt<strong>on</strong> species<br />

compositi<strong>on</strong> and photosynthetic parameters in a<br />

coastal lago<strong>on</strong>. J Plankt<strong>on</strong> Res 23:719–732<br />

Menden-Deuer S, Lessard EJ (2000) Carb<strong>on</strong> to volume relati<strong>on</strong>ships<br />

for din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates, diatoms, and other protist<br />

plankt<strong>on</strong>. Limnol Oceanogr 45:569–579<br />

Nakamura Y, Turner JT (1997) Predati<strong>on</strong> and respirati<strong>on</strong> by<br />

the small cyclopoid copepod Oith<strong>on</strong>a similis: how important<br />

is feeding <strong>on</strong> ciliates and heterotrophic flagellates?<br />

J Plankt<strong>on</strong> Res 19:1275–1288<br />

Naustvoll LJ (2000) Prey size spectra and food preferences<br />

in thecate heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates. Phycologia 39:<br />

187–198


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

Nielsen TG, Kiørboe T (1994) Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zooplankt<strong>on</strong><br />

biomass producti<strong>on</strong> in a temperate, coastal ecosystem.<br />

1. Copepods. Limnol Oceanogr 39:493–507<br />

Nielsen TG, Sabatini M (1996) Role <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclopoid copepods<br />

Oith<strong>on</strong>a spp. in North Sea plankt<strong>on</strong> communities. Mar<br />

Ecol Prog Ser 139:79–93<br />

Nimer NA, Brownlee C, Merret MJ (1994) Carb<strong>on</strong> dioxide<br />

availability, intracellular <str<strong>on</strong>g>pH</str<strong>on</strong>g> and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the coccolithophore<br />

Emiliania huxleyi. Mar Ecol Prog Ser 109:257–262<br />

Olesen M (2001) Sedimentati<strong>on</strong> in Mariager Fjord, Denmark:<br />

the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> sinking velocity <strong>on</strong> system productivity.<br />

Ophelia 55:11–26<br />

Otsuki A, Wetzel RG (1972) Coprecipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate<br />

with carb<strong>on</strong>ates in a marl lake. Limnol Oceanogr 17:<br />

763–767<br />

Packr<str<strong>on</strong>g>of</str<strong>on</strong>g>f G (2000) Protozooplankt<strong>on</strong> in acidic mining lakes<br />

with special respect to ciliates. Hydrobiologia 433:157–166<br />

Pedersen MF, Hansen PJ (2003) <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the<br />

growth and survival <str<strong>on</strong>g>of</str<strong>on</strong>g> six <strong>marine</strong> heterotrophic protists.<br />

Mar Ecol Prog Ser 260:33–41<br />

Pedrozo F, Kelly L, Diaz M, Temporetti P and 6 others (2001)<br />

First results <strong>on</strong> the water chemistry, phytoplankt<strong>on</strong> and<br />

trophic status <str<strong>on</strong>g>of</str<strong>on</strong>g> an Andean acidic lake system <str<strong>on</strong>g>of</str<strong>on</strong>g> volcanic<br />

origin in Patag<strong>on</strong>ia (Lake Caviahue). Hydrobiologia 452:<br />

129–137<br />

Richardsen K, Christ<str<strong>on</strong>g>of</str<strong>on</strong>g>fersen A (1991) Seas<strong>on</strong>al distributi<strong>on</strong><br />

and producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> in the southern Kattegat.<br />

Mar Ecol Prog Ser 78:217–227<br />

Editorial resp<strong>on</strong>sibility: Otto Kinne (Editor),<br />

Oldendorf/Luhe, Germany<br />

Santhanam R, Srinivasan A, Ramadhas V, Devaraj M (1994)<br />

Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Trichodesmium bloom <strong>on</strong> the plankt<strong>on</strong> and productivity<br />

in the Tuticorin bay, southeast coast <str<strong>on</strong>g>of</str<strong>on</strong>g> India.<br />

Indian J Mar Sci 23:27–30<br />

Schmidt LE, Hansen PJ (2001) Allelopathy in the prymnesiophyte<br />

Chrysochromulina polylepis: effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cell c<strong>on</strong>centrati<strong>on</strong>,<br />

growth phase and <str<strong>on</strong>g>pH</str<strong>on</strong>g>. Mar Ecol Prog Ser 216:67–81<br />

S<strong>on</strong>g W, Mingzhuang Z, Chen Z (1999) Updating the systematics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the plankt<strong>on</strong>ic oligotrichous ciliates (Ciliophora,<br />

Protozoa) with descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ciliature patterns at generic<br />

level. The Yellow Sea 5:77–85<br />

Stoecker DK, Capuzzo JM (1990) Predati<strong>on</strong> <strong>on</strong> protozoa: its<br />

importance to zooplankt<strong>on</strong>. J Plankt<strong>on</strong> Res 12:891–908<br />

Taylor FJR, Pollingher U (1987) Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates.<br />

In: Taylor FJR (ed) The biology <str<strong>on</strong>g>of</str<strong>on</strong>g> din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates. Botanical<br />

m<strong>on</strong>ographs. Blackwell Scientific Publicati<strong>on</strong>s, Oxford,<br />

p 399–529<br />

ter Braak CJF, van Dam H (1989) Inferring <str<strong>on</strong>g>pH</str<strong>on</strong>g> from diatoms:<br />

a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> old and new calibrati<strong>on</strong> methods. Hydrobiologia<br />

178:209–223<br />

Tomas CR (1996) Identifying <strong>marine</strong> diatoms and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates.<br />

Academic Press, San Diego, CA<br />

Williams WD, Boult<strong>on</strong> AJ, Taaffe RG (1990) Salinity as determinant<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> salt lake fauna: a questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scale. Hydrobiologia<br />

197:257–266<br />

Yoo KI (1991) Populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate <strong>community</strong><br />

in Masan Bay with a note <strong>on</strong> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental parameters. Mar Pollut Bull 23:185–188<br />

Submitted: July 9, 2002; Accepted: June 17, 2003<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s received from author(s): September 15, 2003<br />

31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!