07.04.2013 Views

The Collapsar Model

The Collapsar Model

The Collapsar Model

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A. MacFadyen<br />

(Caltech)<br />

W. Zhang, S. Woosley (UCSC), A. Heger (LANL)<br />

R. Blandford (Stanford)<br />

D. Proga (Colorado)<br />

“Supernovae & Gamma-ray Bursts”, Seattle (INT-04-2) July 14, 2004


• central engine<br />

requirements<br />

• 1 st collapsar<br />

simulations<br />

– disks, jets, winds<br />

• fallback<br />

• relativistic flow<br />

• magnetic fields<br />

• PPM hydrodynamics<br />

• MHD ZEUS<br />

• SRHD w/ AMR<br />

• Force-Free<br />

Relativistic Plasma<br />

Dynamics<br />

(Pseudospectral)


GRB Light Curve<br />

ms variability + non-thermal spectrum<br />

Compactness Г 100<br />

Superbowl Burst<br />

M = E/ c 2 ~ 10 -6 M <br />

Ultrarelativistic<br />

Ultra-clean


• Relativity (SR & GR)<br />

• Rotation<br />

• Magnetic Fields<br />

• Nuclear Physics<br />

• Neutrinos<br />

• EOS<br />

• Turbulence<br />

• 2D/3D<br />

• Range of Lengthscales


Burrows (2001)<br />

“Delayed” SN Explosion<br />

Accretion vs. Neutrino heating<br />

a<br />

c<br />

Muller (1999)


Pre-Supernova Density Structure<br />

Woosley & Weaver (1995)<br />

Bigger<br />

stars:<br />

Higher<br />

entropy<br />

Shallower<br />

density<br />

gradients


Stellar Rotation<br />

Mass loss<br />

no mass loss<br />

Fukuda<br />

(1982)<br />

Heger<br />

(2000)<br />

No B<br />

fields


IF Two conditions occur (sometimes):<br />

1. Failure of neutrino powered<br />

SN explosion<br />

a. complete<br />

b. partial (fallback)<br />

2. Rotating stellar cores<br />

j 3 x 10 16 cm 2 /s<br />

THEN<br />

Rapidly accreting black hole, (M~0.1 M /s)<br />

fed by collapsing star (t dyn ~ 446 s/ ½ ~ 10 s)<br />

Disk formation<br />

COLLAPSAR


st<br />

• pre-SN 15 Msun Helium star<br />

• Newtonian Hydrodynamics (PPM)<br />

• alpha viscosity<br />

• rotation<br />

• photodisintegration (NSE alpha, n, p)<br />

• neutrino cooling, thermal + URCA optically thin<br />

• Ideal nucleons, radiation, relativistic degenerate<br />

electrons, positions<br />

• 2D axisymmetric, spherical grid<br />

• self gravity<br />

• R in = 9 R s R out = 9000 R s<br />

MacFadyen & Woosley (1999):


= 0.1 = 0.07 M sun /s = 1.3 x 10 53 erg/s


spin<br />

mass<br />

Use 1D<br />

neutrino<br />

cooled<br />

“slim” GR<br />

disk models<br />

from<br />

Popham et<br />

al (1999).


<strong>The</strong>rmal<br />

energy<br />

deposition<br />

focused by<br />

toroidal<br />

funnel<br />

structure<br />

T = 5.7 ms<br />

E = 5 x 10 50 erg/s<br />

E dep = 2.8 x 10 48 erg<br />

Jet Birth<br />

. .<br />

E jet = f M acc c 2<br />

MHD <br />

f max ~ .06 - .4


Zhang, Woosley & MacFadyen (2003, ApJ)


What made SN1998bw+GRB980425?<br />

1. Accretion powered<br />

hypernova w/ Nickel wind<br />

MacFadyen (2002)<br />

E~ 10 52 erg, M(Ni)~0.5 M <br />

2. “Brief” jet t engine t jet<br />

Engine dies before jet breakout.<br />

Mildly relativistic shock breakout<br />

=> cosmo. GRB = 980425-like GRB + jet GRB<br />

GRB from ~3 shock breakout<br />

(Tan et al 2001, Perna & Vietri 2002)<br />

MacFadyen (1999)


GRB030329/SN2003dh<br />

SN1998bw M(Ni-56) ~ 0.5-0.6 M <br />

SN2003dh M(Ni-56) ~ 0.35 M <br />

see also: Hjorth et al , Fox et<br />

al Nature, Stanek et al<br />

(2003)


t=7.598s<br />

t=7.540s<br />

.<br />

M in<br />

. ~ 1/2<br />

M out<br />

=> Outflows<br />

MacFadyen & Woosley (1999)


“Nickel Wind”<br />

T > 5 x 10 9 K


Si 28<br />

He 4<br />

O 16<br />

T = 10 10 K<br />

C 12<br />

Outflow<br />

- 10 19 erg/gm<br />

"afterburner"<br />

"Nickel Wind"<br />

BH or NS<br />

n, p<br />

10 19 erg/gm<br />

Ni 56<br />

He 4<br />

R (j) = j<br />

kep 2 7 2<br />

/GM = 2.5 x 10 (j17 /m3 ) cm<br />

Disk is replenished by collapsing star<br />

t accrete = t collapse or t fallback<br />

t accrete t drain = m disk/ m


Exploding star Supernovae<br />

• Radioactive decay of Ni56<br />

• tail of Type II, ALL of Type I<br />

• Type I compact star WD or W-R<br />

•E exp -> adiabatic expansion not light<br />

• no Ni56 -> no Supernova<br />

• SN 1998bw & 2003dh need 0.5 M sun


Do all collapsars make observable<br />

supernovae<br />

No.<br />

If Nickel is made,<br />

It depends on angular momentum of star.<br />

1. j isco < j < j efficient cooling GRB only<br />

2. j < j < j semi-efficient cooling GRB + supernova<br />

3. j > j inefficient cooling supernova only<br />

j < j isco nothing


Fallback in weak SN explosions<br />

Shock<br />

reaches<br />

surface of<br />

star but<br />

parts of<br />

star are not<br />

ejected to<br />

infinity.<br />

MacFadyen, Woosley & Heger (2001)


Fallback accretion<br />

Same star<br />

exploded with a<br />

range of<br />

explosion<br />

energies.<br />

Significant<br />

accretion for<br />

thousands of<br />

seconds to days.


Principle Results<br />

• Sustained accretion .1 Msun/s for>10s<br />

• “Relativistic” Jet formation and collimation<br />

• Sufficient energy for cosmo. GRB<br />

• Neutrino cooling & photodissociation allows<br />

accretion<br />

• Massive bi-conical outflows develop<br />

• Time-scale set by He core collapse<br />

• Fallback -> v. long GRB in WR star or<br />

asymmetric SN in SG


Ultrarelativistic Outflows<br />

•GRBs<br />

•Massive star death (Eta Car?)<br />

•micro-quasars<br />

•Pulsar Wind Nebulae<br />

•AGN Jets<br />

1.RAM - Relativistic Hydrodynamics w/<br />

Adaptive Mesh<br />

2.Force-Free Electodynamics SR GR<br />

Pseudo-Spectral


Blandford & McKee (1976)<br />

n = 1000 cm^-3<br />

P = 10^-4 rho<br />

10^54 erg<br />

eta = E/m = 100


density<br />

need R R/2Г 2<br />

Lorentz Factor


progenitor:<br />

15 Msun MS<br />

HE15B3<br />

1/10 solar<br />

no B<br />

Heger et al<br />

(03,in prep)


R star ~ 10 11 cm (3 lt-s) R hole ~ 10 6 cm (3e-5 lt-s)


Early Collapse with j = 3e16 cm 2 /s


Zoom into inner disk


Free Nucleon fraction in disk and early jet


Early Jet Propogation


lower viscosity higher viscosity<br />

= 10 -3 = 10 -1


st<br />

Proga & MacFadyen, Armitage & Begelman (ApJL, 2004)


Proga, MacFadyen, Armitage & Begelman (ApJL, submitted)


Proga et al (2003)


B 2 /8π > ρc 2 for B 10 12 G


Force-Free Relativistic<br />

Electrodynamics<br />

ρ m Dv/Dt = -P + ρE + JxB<br />

if<br />

P


EM stress accelerates EM energy<br />

density<br />

∂ t ((E 2 +B 2 )/2) + ·(ExB) = 0<br />

∂ t (ExB) – ·(E i E j +B i B j - ij (E 2 +B 2 )/2) = 0<br />

Flows are ultrarelativistic but “subsonic”


FORM<br />

FOrce-free Relativistic MHD<br />

• Pseudospectral<br />

– Fourier, Chebyshev, Legendre<br />

• 1,2,3 Dimensional<br />

• Arbitrary coordinates<br />

• Periodic, fixed bc (PML)<br />

• Parallel<br />

–MPI,OpenMP


Colliding Alfven packets<br />

S<br />

E<br />

E S


Conclusions<br />

• long GRBs from rotating WR stars. t engine >t escape<br />

• Need SN failure & angular momentum<br />

– Low metallicity, binary can help<br />

• SN IF nickel is made. GRB/SN association. Type<br />

Ibc.<br />

• SN/GRB ratio may depend on angular momentum.<br />

• “Nickel wind” can explode star -> hypernova<br />

– H env. Type II (no GRB), no H Type I + GRB<br />

• Relativity important for death of stars like Eta<br />

Car. – needs high resolution.<br />

• Magnetic processes may power jet/explosion.<br />

• Fallback -> asymmetric SN, very long GRBs.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!