07.04.2013 Views

Trigonometric Identities

Trigonometric Identities

Trigonometric Identities

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5<br />

<strong>Trigonometric</strong><br />

<strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.1-1


5 <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.1 Fundamental <strong>Identities</strong><br />

5.2 Verifying <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.3 Sum and Difference <strong>Identities</strong> for Cosine<br />

5.4 Sum and Difference <strong>Identities</strong> for Sine<br />

and Tangent<br />

5.5 Double-Angle <strong>Identities</strong><br />

5.6 Half-Angle <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.1-2


5.1<br />

Fundamental <strong>Identities</strong><br />

Fundamental <strong>Identities</strong> Using the Fundamental <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-3<br />

5.1-3


Fundamental <strong>Identities</strong><br />

Reciprocal <strong>Identities</strong><br />

Quotient <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-4<br />

5.1-4


Fundamental <strong>Identities</strong><br />

Pythagorean <strong>Identities</strong><br />

Negative-Angle <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-5<br />

5.1-5


Note<br />

In trigonometric identities, θ can be<br />

an angle in degrees, an angle in<br />

radians, a real number, or a variable.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-6<br />

5.1-6


Example 1<br />

If and θ is in quadrant II, find each function<br />

value.<br />

(a) sec θ<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-7<br />

FINDING TRIGONOMETRIC FUNCTION<br />

VALUES GIVEN ONE VALUE AND THE<br />

QUADRANT<br />

In quadrant II, sec θ is negative, so<br />

Pythagorean<br />

identity<br />

5.1-7


Example 1<br />

(b) sin θ<br />

from part (a)<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-8<br />

FINDING TRIGONOMETRIC FUNCTION<br />

VALUES GIVEN ONE VALUE AND THE<br />

QUADRANT (continued)<br />

Quotient identity<br />

Reciprocal identity<br />

5.1-8


Example 1<br />

(b) cot(– θ)<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-9<br />

FINDING TRIGONOMETRIC FUNCTION<br />

VALUES GIVEN ONE VALUE AND THE<br />

QUADRANT (continued)<br />

Reciprocal identity<br />

Negative-angle<br />

identity<br />

5.1-9


Caution<br />

To avoid a common error, when<br />

taking the square root, be sure to<br />

choose the sign based on the<br />

quadrant of θ and the function being<br />

evaluated.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-10<br />

5.1-10


Example 2<br />

Express cos x in terms of tan x.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-11<br />

EXPRESSING ONE FUNCITON IN<br />

TERMS OF ANOTHER<br />

Since sec x is related to both cos x and tan x by<br />

identities, start with<br />

Take reciprocals.<br />

Reciprocal identity<br />

Take the square<br />

root of each side.<br />

The sign depends on<br />

the quadrant of x.<br />

5.1-11


Example 3<br />

Write tan θ + cot θ in terms of sin θ and cos θ, and<br />

then simplify the expression.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-12<br />

REWRITING AN EXPRESSION IN<br />

TERMS OF SINE AND COSINE<br />

Quotient identities<br />

Write each fraction<br />

with the LCD.<br />

Pythagorean identity<br />

5.1-12


Caution<br />

When working with trigonometric<br />

expressions and identities, be sure<br />

to write the argument of the function.<br />

For example, we would not write<br />

An argument such as θ<br />

is necessary.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-13<br />

5.1-13


5<br />

<strong>Trigonometric</strong><br />

<strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.2-1


5 <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.1 Fundamental <strong>Identities</strong><br />

5.2 Verifying <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.3 Sum and Difference <strong>Identities</strong> for Cosine<br />

5.4 Sum and Difference <strong>Identities</strong> for Sine<br />

and Tangent<br />

5.5 Double-Angle <strong>Identities</strong><br />

5.6 Half-Angle <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.2-2


5.2<br />

Verifying <strong>Trigonometric</strong><br />

<strong>Identities</strong><br />

Verifying <strong>Identities</strong> by Working With One Side ▪ Verifying<br />

<strong>Identities</strong> by Working With Both Sides<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-3<br />

5.2-3


Hints for Verifying <strong>Identities</strong><br />

Learn the fundamental identities.<br />

Whenever you see either side of a<br />

fundamental identity, the other side should<br />

come to mind. Also, be aware of equivalent<br />

forms of the fundamental identities.<br />

Try to rewrite the more complicated<br />

side of the equation so that it is<br />

identical to the simpler side.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-4<br />

5.2-4


Hints for Verifying <strong>Identities</strong><br />

It is sometimes helpful to express all<br />

trigonometric functions in the<br />

equation in terms of sine and cosine<br />

and then simplify the result.<br />

Usually, any factoring or indicated<br />

algebraic operations should be<br />

performed.<br />

For example, the expression<br />

can be factored as<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-5<br />

5.2-5


Hints for Verifying <strong>Identities</strong><br />

The sum or difference of two trigonometric<br />

expressions such as can be<br />

added or subtracted in the same way as<br />

any other rational expression.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-6<br />

5.2-6


Hints for Verifying <strong>Identities</strong><br />

As you select substitutions, keep in<br />

mind the side you are not changing,<br />

because it represents your goal.<br />

For example, to verify the identity<br />

find an identity that relates tan x to cos x.<br />

Since and<br />

the secant function is the best link between<br />

the two sides.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-7<br />

5.2-7


Hints for Verifying <strong>Identities</strong><br />

If an expression contains 1 + sin x,<br />

multiplying both the numerator and<br />

denominator by 1 – sin x would give<br />

1 – sin2 x, which could be replaced<br />

with cos2x.<br />

Similar results for 1 – sin x, 1 + cos x, and<br />

1 – cos x may be useful.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-8<br />

5.2-8


Caution<br />

Verifying identities is not the same a<br />

solving equations.<br />

Techniques used in solving equations,<br />

such as adding the same terms to both<br />

sides, should not be used when<br />

working with identities since you are<br />

starting with a statement that may not<br />

be true.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-9<br />

5.2-9


Verifying <strong>Identities</strong> by Working<br />

with One Side<br />

To avoid the temptation to use algebraic properties<br />

of equations to verify identities, one strategy is to<br />

work with only one side and rewrite it to match<br />

the other side.<br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.2-10


Example 1<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-11<br />

VERIFYING AN IDENTITY (WORKING<br />

WITH ONE SIDE)<br />

Verify that is an identity.<br />

Work with the right side since it is more complicated.<br />

Right side of given<br />

equation<br />

Left side of given<br />

equation<br />

Distributive<br />

property<br />

5.2-11


Example 2<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-12<br />

VERIFYING AN IDENTITY (WORKING<br />

WITH ONE SIDE)<br />

Verify that is an identity.<br />

Left side<br />

Right side<br />

Distributive<br />

property<br />

5.2-12


Example 3<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-13<br />

VERIFYING AN IDENTITY (WORKING<br />

WITH ONE SIDE)<br />

Verify that is an identity.<br />

5.2-13


Example 4<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-14<br />

VERIFYING AN IDENTITY (WORKING<br />

WITH ONE SIDE)<br />

Verify that is an identity.<br />

Multiply by 1<br />

in the form<br />

5.2-14


Verifying <strong>Identities</strong> by Working<br />

with Both Sides<br />

If both sides of an identity appear to be equally<br />

complex, the identity can be verified by working<br />

independently on each side until they are changed<br />

into a common third result.<br />

Each step, on each side, must be reversible.<br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.2-15


Example 5<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-16<br />

VERIFYING AN IDENTITY (WORKING<br />

WITH BOTH SIDES)<br />

Verify that is an<br />

identity.<br />

Working with the left side:<br />

Multiply by 1<br />

in the form<br />

Distributive<br />

property<br />

5.2-16


Example 5<br />

Working with the right side:<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-17<br />

VERIFYING AN IDENTITY (WORKING<br />

WITH BOTH SIDES) (continued)<br />

Factor the numerator.<br />

Factor the<br />

denominator.<br />

5.2-17


Example 5<br />

Right side of given<br />

equation<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-18<br />

VERIFYING AN IDENTITY (WORKING<br />

WITH BOTH SIDES) (continued)<br />

Common third<br />

expression<br />

So, the identity is verified.<br />

Left side of given<br />

equation<br />

5.2-18


Example 6<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-19<br />

APPLYING A PYTHAGOREAN IDENTITY<br />

TO RADIOS<br />

Tuners in radios select a radio station by adjusting<br />

the frequency. A tuner may contain an inductor L and<br />

a capacitor. The energy stored in the inductor at time<br />

t is given by<br />

and the energy in the capacitor is given by<br />

where f is the frequency of the radio station and k is a<br />

constant.<br />

5.2-19


Example 6<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-20<br />

APPLYING A PYTHAGOREAN IDENTITY<br />

TO RADIOS (continued)<br />

The total energy in the circuit is given by<br />

Show that E is a constant function.*<br />

*(Source: Weidner, R. and R. Sells, Elementary Classical Physics, Vol. 2,<br />

Allyn & Bacon, 1973.)<br />

5.2-20


Example 6<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-21<br />

APPLYING A PYTHAGOREAN IDENTITY<br />

TO RADIOS (continued)<br />

Factor.<br />

5.2-21


5<br />

<strong>Trigonometric</strong><br />

<strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.2-1


5 <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.1 Fundamental <strong>Identities</strong><br />

5.2 Verifying <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.3 Sum and Difference <strong>Identities</strong> for Cosine<br />

5.4 Sum and Difference <strong>Identities</strong> for Sine<br />

and Tangent<br />

5.5 Double-Angle <strong>Identities</strong><br />

5.6 Half-Angle <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.2-2


5.3<br />

Sum and Difference<br />

Identitites for Cosine<br />

Difference Identity for Cosine ▪ Sum Identity for Cosine ▪<br />

Cofunction <strong>Identities</strong> ▪ Applying the Sum and Difference <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-3<br />

5.2-3


Difference Identity for Cosine<br />

Point Q is on the unit<br />

circle, so the coordinates<br />

of Q are (cos B, sin B).<br />

The coordinates of S are<br />

(cos A, sin A).<br />

The coordinates of R are (cos(A – B), sin (A – B)).<br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.2-4


Difference Identity for Cosine<br />

Since the central angles<br />

SOQ and POR are<br />

equal, PR = SQ.<br />

Using the distance formula,<br />

we have<br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.2-5


Difference Identity for Cosine<br />

Square both sides and clear parentheses:<br />

Rearrange the terms:<br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.2-6


Difference Identity for Cosine<br />

Subtract 2, then divide by –2:<br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.2-7


Copyright © 2009 Pearson Addison-Wesley<br />

Sum Identity for Cosine<br />

To find a similar expression for cos(A + B) rewrite<br />

A + B as A – (–B) and use the identity for<br />

cos(A – B).<br />

Cosine difference identity<br />

Negative angle identities<br />

5.2-8


Cosine of a Sum or Difference<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-9<br />

5.2-9


Example 1(a)<br />

Find the exact value of cos 15 .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-10<br />

FINDING EXACT COSINE FUNCTION<br />

VALUES<br />

5.2-10


Example 1(b)<br />

Find the exact value of<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-11<br />

FINDING EXACT COSINE FUNCTION<br />

VALUES<br />

5.2-11


Example 1(c)<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-12<br />

FINDING EXACT COSINE FUNCTION<br />

VALUES<br />

Find the exact value of cos 87 cos 93 – sin 87 sin 93 .<br />

5.2-12


Cofunction <strong>Identities</strong><br />

Similar identities can be obtained for a<br />

real number domain by replacing 90<br />

with<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-13<br />

5.2-13


Example 2<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-14<br />

USING COFUNCTION IDENTITIES TO<br />

FIND θ<br />

Find an angle that satisfies each of the following:<br />

(a) cot θ = tan 25<br />

(b) sin θ = cos (–30 )<br />

5.2-14


Example 2<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-15<br />

USING COFUNCTION IDENTITIES TO<br />

FIND θ<br />

Find an angle that satisfies each of the following:<br />

(c)<br />

5.2-15


Note<br />

Because trigonometric (circular)<br />

functions are periodic, the solutions<br />

in Example 2 are not unique. Only<br />

one of infinitely many possiblities<br />

are given.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-16<br />

5.2-16


Applying the Sum and Difference<br />

Copyright © 2009 Pearson Addison-Wesley<br />

<strong>Identities</strong><br />

If one of the angles A or B in the identities for<br />

cos(A + B) and cos(A – B) is a quadrantal angle,<br />

then the identity allows us to write the expression<br />

in terms of a single function of A or B.<br />

5.2-17


Example 3<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-18<br />

REDUCING cos (A – B) TO A FUNCTION<br />

OF A SINGLE VARIABLE<br />

Write cos(90 + θ) as a trigonometric function of θ<br />

alone.<br />

5.2-18


Example 4<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-19<br />

FINDING cos (s + t) GIVEN<br />

INFORMATION ABOUT s AND t<br />

Suppose that and both s and t<br />

are in quadrant II. Find cos(s + t).<br />

Sketch an angle s in quadrant II<br />

such that Since<br />

let y = 3 and r = 5.<br />

The Pythagorean theorem gives<br />

Since s is in quadrant II, x = –4 and<br />

5.2-19


Example 4<br />

Sketch an angle t in quadrant II<br />

such that Since<br />

r = 5.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-20<br />

FINDING cos (s + t) GIVEN<br />

INFORMATION ABOUT s AND t (cont.)<br />

let x = –12 and<br />

The Pythagorean theorem gives<br />

Since t is in quadrant II, y = 5 and<br />

5.2-20


Example 4<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-21<br />

FINDING cos (s + t) GIVEN<br />

INFORMATION ABOUT s AND t (cont.)<br />

5.2-21


Note<br />

The values of cos s and sin t could<br />

also be found by using the<br />

Pythagorean identities.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-22<br />

5.2-22


Example 5<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-23<br />

APPLYING THE COSINE DIFFERENCE<br />

IDENTITY TO VOLTAGE<br />

Common household current is called alternating<br />

current because the current alternates direction<br />

within the wires. The voltage V in a typical 115-volt<br />

outlet can be expressed by the function<br />

where ω is the angular speed (in radians per second)<br />

of the rotating generator at the electrical plant, and t<br />

is time measured in seconds.*<br />

*(Source: Bell, D., Fundamentals of Electric Circuits, Fourth Edition,<br />

Prentice-Hall, 1988.)<br />

5.2-23


Example 5<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-24<br />

APPLYING THE COSINE DIFFERENCE<br />

IDENTITY TO VOLTAGE (continued)<br />

(a) It is essential for electric generators to rotate at<br />

precisely 60 cycles per second so household<br />

appliances and computers will function properly.<br />

Determine ω for these electric generators.<br />

Each cycle is 2π radians at 60 cycles per second, so<br />

the angular speed is ω = 60(2π) = 120π radians per<br />

second.<br />

5.2-24


Example 5<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-25<br />

APPLYING THE COSINE DIFFERENCE<br />

IDENTITY TO VOLTAGE (continued)<br />

(b) Graph V in the window [0, .05] by [–200, 200].<br />

5.2-25


Example 5<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-26<br />

APPLYING THE COSINE DIFFERENCE<br />

IDENTITY TO VOLTAGE (continued)<br />

(c) Determine a value of so that the graph of<br />

is the same as the graph of<br />

Using the negative-angle identity for cosine and a<br />

cofunction identity gives<br />

Therefore, if<br />

5.2-26


5<br />

<strong>Trigonometric</strong><br />

<strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.4-1


5 <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.1 Fundamental <strong>Identities</strong><br />

5.2 Verifying <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.3 Sum and Difference <strong>Identities</strong> for Cosine<br />

5.4 Sum and Difference <strong>Identities</strong> for Sine<br />

and Tangent<br />

5.5 Double-Angle <strong>Identities</strong><br />

5.6 Half-Angle <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.4-2


5.4<br />

Sum and Difference <strong>Identities</strong><br />

for Sine and Tangent<br />

Sum and Difference <strong>Identities</strong> for Sine ▪ Sum and Difference<br />

<strong>Identities</strong> for Tangent ▪ Applying the Sum and Difference <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-3<br />

5.4-3


Sum and Difference <strong>Identities</strong><br />

for Sine<br />

We can use the cosine sum and difference identities<br />

to derive similar identities for sine and tangent.<br />

Copyright © 2009 Pearson Addison-Wesley<br />

Cofunction identity<br />

Cosine difference identity<br />

Cofunction identities<br />

5.4-4


Sum and Difference <strong>Identities</strong><br />

for Sine<br />

Copyright © 2009 Pearson Addison-Wesley<br />

Sine sum identity<br />

Negative-angle identities<br />

5.4-5


Sine of a Sum or Difference<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-6<br />

5.4-6


Sum and Difference <strong>Identities</strong><br />

for Tangent<br />

We can use the cosine sum and difference identities<br />

to derive similar identities for sine and tangent.<br />

Copyright © 2009 Pearson Addison-Wesley<br />

Fundamental identity<br />

Sum identities<br />

Multiply numerator and<br />

denominator by 1.<br />

5.4-7


Sum and Difference <strong>Identities</strong><br />

for Tangent<br />

Copyright © 2009 Pearson Addison-Wesley<br />

Multiply.<br />

Simplify.<br />

Fundamental<br />

identity<br />

5.4-8


Sum and Difference <strong>Identities</strong><br />

for Tangent<br />

Replace B with –B and use the fact that tan(–B) to<br />

obtain the identity for the tangent of the difference of<br />

two angles.<br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.4-9


Tangent of a Sum or Difference<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-10<br />

5.4-10


Example 1(a)<br />

Find the exact value of sin 75 .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-11<br />

FINDING EXACT SINE AND TANGENT<br />

FUNCTION VALUES<br />

5.4-11


Example 1(b)<br />

Find the exact value of<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-12<br />

FINDING EXACT SINE AND TANGENT<br />

FUNCTION VALUES<br />

5.4-12


Example 1(c)<br />

Find the exact value of<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-13<br />

FINDING EXACT SINE AND TANGENT<br />

FUNCTION VALUES<br />

5.4-13


Example 2<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-14<br />

WRITING FUNCTIONS AS EXPRESSIONS<br />

INVOLVING FUNCTIONS OF θ<br />

Write each function as an expression involving<br />

functions of θ.<br />

(a)<br />

(b)<br />

(c)<br />

5.4-14


Example 3<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-15<br />

FINDING FUNCTION VALUES AND THE<br />

QUADRANT OF A + B<br />

Suppose that A and B are angles in standard position<br />

with<br />

Find each of the following.<br />

5.4-15


Example 3<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-16<br />

FINDING FUNCTION VALUES AND THE<br />

QUADRANT OF A + B (continued)<br />

The identity for sin(A + B) requires sin A, cos A, sin B,<br />

and cos B. The identity for tan(A + B) requires tan A<br />

and tan B. We must find cos A, tan A, sin B and tan B.<br />

Because A is in quadrant II, cos A is negative and<br />

tan A is negative.<br />

5.4-16


Example 3<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-17<br />

FINDING FUNCTION VALUES AND THE<br />

QUADRANT OF A + B (continued)<br />

Because B is in quadrant III, sin B is negative and<br />

tan B is positive.<br />

5.4-17


(a)<br />

(b)<br />

Example 3<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-18<br />

FINDING FUNCTION VALUES AND THE<br />

QUADRANT OF A + B (continued)<br />

5.4-18


Example 3<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-19<br />

FINDING FUNCTION VALUES AND THE<br />

QUADRANT OF A + B (continued)<br />

From parts (a) and (b), sin (A + B) > 0 and<br />

tan (A − B) > 0.<br />

The only quadrant in which the values of both the<br />

sine and the tangent are positive is quadrant I, so<br />

(A + B) is in quadrant IV.<br />

5.4-19


Example 4<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-20<br />

VERIFYING AN IDENTITY USING SUM<br />

AND DIFFERENCE IDENTITIES<br />

Verify that the equation is an identity.<br />

5.4-20


5<br />

<strong>Trigonometric</strong><br />

<strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.5-1


5 <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.1 Fundamental <strong>Identities</strong><br />

5.2 Verifying <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.3 Sum and Difference <strong>Identities</strong> for Cosine<br />

5.4 Sum and Difference <strong>Identities</strong> for Sine<br />

and Tangent<br />

5.5 Double-Angle <strong>Identities</strong><br />

5.6 Half-Angle <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.5-2


5.5<br />

Double-Angle <strong>Identities</strong><br />

Double-Angle <strong>Identities</strong> ▪ An Application ▪ Product-to-Sum and<br />

Sum-to-Product <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-3<br />

5.5-3


Copyright © 2009 Pearson Addison-Wesley<br />

Double-Angle <strong>Identities</strong><br />

We can use the cosine sum identity to derive<br />

double-angle identities for cosine.<br />

Cosine sum identity<br />

5.5-4


Copyright © 2009 Pearson Addison-Wesley<br />

Double-Angle <strong>Identities</strong><br />

There are two alternate forms of this identity.<br />

5.5-5


Copyright © 2009 Pearson Addison-Wesley<br />

Double-Angle <strong>Identities</strong><br />

We can use the sine sum identity to derive a<br />

double-angle identity for sine.<br />

Sine sum identity<br />

5.5-6


Copyright © 2009 Pearson Addison-Wesley<br />

Double-Angle <strong>Identities</strong><br />

We can use the tangent sum identity to derive a<br />

double-angle identity for tangent.<br />

Tangent sum identity<br />

5.5-7


Double-Angle <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-8<br />

5.5-8


Example 1<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-9<br />

FINDING FUNCTION VALUES OF 2θ<br />

GIVEN INFORMATION ABOUT θ<br />

Given and sin θ < 0, find sin 2θ, cos 2θ, and<br />

tan 2θ.<br />

The identity for sin 2θ requires sin θ.<br />

Any of the three<br />

forms may be used.<br />

5.5-9


Example 1<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-10<br />

FINDING FUNCTION VALUES OF 2θ<br />

GIVEN INFORMATION ABOUT θ (cont.)<br />

Now find tan θ and then use the tangent doubleangle<br />

identity.<br />

5.5-10


Example 1<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-11<br />

FINDING FUNCTION VALUES OF 2θ<br />

GIVEN INFORMATION ABOUT θ (cont.)<br />

Alternatively, find tan 2θ by finding the quotient of<br />

sin 2θ and cos 2θ.<br />

5.5-11


Example 2<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-12<br />

FINDING FUNCTION VALUES OF θ<br />

GIVEN INFORMATION ABOUT 2θ<br />

Find the values of the six trigonometric functions of θ if<br />

Use the identity to find sin θ:<br />

θ is in quadrant II, so sin θ is positive.<br />

5.5-12


Example 2<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-13<br />

FINDING FUNCTION VALUES OF θ<br />

GIVEN INFORMATION ABOUT 2θ (cont.)<br />

Use a right triangle in quadrant II to find the values of<br />

cos θ and tan θ.<br />

Use the Pythagorean<br />

theorem to find x.<br />

5.5-13


Example 3 VERIFYING A DOUBLE-ANGLE IDENTITY<br />

Verify that is an identity.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-14<br />

Quotient identity<br />

Double-angle<br />

identity<br />

5.5-14


Example 4<br />

Simplify each expression.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-15<br />

SIMPLIFYING EXPRESSION DOUBLE-<br />

ANGLE IDENTITIES<br />

Multiply by 1.<br />

5.5-15


Example 5<br />

Write sin 3x in terms of sin x.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-16<br />

DERIVING A MULTIPLE-ANGLE<br />

IDENTITY<br />

Sine sum identity<br />

Double-angle identities<br />

5.5-16


Example 6<br />

where V is the voltage and R is a constant that<br />

measure the resistance of the toaster in ohms.*<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-17<br />

DETERMINING WATTAGE<br />

CONSUMPTION<br />

If a toaster is plugged into a common household<br />

outlet, the wattage consumed is not constant. Instead<br />

it varies at a high frequency according to the model<br />

Graph the wattage W consumed by a typical toaster<br />

with R = 15 and in the window<br />

[0, .05] by [–500, 2000]. How many oscillations are<br />

there?<br />

*(Source: Bell, D., Fundamentals of Electric Circuits, Fourth Edition,<br />

Prentice-Hall, 1988.)<br />

5.5-17


Example 6<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-18<br />

DETERMINING WATTAGE<br />

CONSUMPTION<br />

There are six oscillations.<br />

5.5-18


Copyright © 2009 Pearson Addison-Wesley<br />

Product-to-Sum <strong>Identities</strong><br />

The identities for cos(A + B) and cos(A – B) can be<br />

added to derive a product-to-sum identity for<br />

cosines.<br />

5.5-19


Copyright © 2009 Pearson Addison-Wesley<br />

Product-to-Sum <strong>Identities</strong><br />

Similarly, subtracting cos(A + B) from cos(A – B)<br />

gives a product-to-sum identity for sines.<br />

5.5-20


Copyright © 2009 Pearson Addison-Wesley<br />

Product-to-Sum <strong>Identities</strong><br />

Using the identities for sin(A + B) and sine(A – B)<br />

gives the following product-to-sum identities.<br />

5.5-21


Product-to-Sum <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-22<br />

5.5-22


Example 7<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-23<br />

USING A PRODUCT-TO-SUM IDENTITY<br />

Write 4 cos 75° sin 25° as the sum or difference of<br />

two functions.<br />

5.5-23


Sum-to-Product <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-24<br />

5.5-24


Example 8<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-25<br />

USING A SUM-TO-PRODUCT IDENTITY<br />

Write as a product of two functions.<br />

5.5-25


5<br />

<strong>Trigonometric</strong><br />

<strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.6-1


5 <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.1 Fundamental <strong>Identities</strong><br />

5.2 Verifying <strong>Trigonometric</strong> <strong>Identities</strong><br />

5.3 Sum and Difference <strong>Identities</strong> for Cosine<br />

5.4 Sum and Difference <strong>Identities</strong> for Sine<br />

and Tangent<br />

5.5 Double-Angle <strong>Identities</strong><br />

5.6 Half-Angle <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

5.6-2


5.6<br />

Half-Angle <strong>Identities</strong><br />

Half-Angle <strong>Identities</strong> ▪ Applying the Half-Angle <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-3<br />

5.6-3


Copyright © 2009 Pearson Addison-Wesley<br />

Half-Angle <strong>Identities</strong><br />

We can use the cosine sum identities to derive halfangle<br />

identities.<br />

Choose the appropriate sign depending on the<br />

quadrant of<br />

5.6-4


Copyright © 2009 Pearson Addison-Wesley<br />

Half-Angle <strong>Identities</strong><br />

Choose the appropriate sign depending on the<br />

quadrant of<br />

5.6-5


Copyright © 2009 Pearson Addison-Wesley<br />

Half-Angle <strong>Identities</strong><br />

There are three alternative forms for<br />

5.6-6


Copyright © 2009 Pearson Addison-Wesley<br />

Half-Angle <strong>Identities</strong><br />

5.6-7


Double-Angle <strong>Identities</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-8<br />

5.6-8


Example 1<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-9<br />

USING A HALF-ANGLE IDENTITY TO<br />

FIND AN EXACT VALUE<br />

Find the exact value of cos 15 using the half-angle<br />

identity for cosine.<br />

Choose the positive<br />

square root.<br />

5.6-9


Example 2<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-10<br />

USING A HALF-ANGLE IDENTITY TO<br />

FIND AN EXACT VALUE<br />

Find the exact value of tan 22.5 using the identity<br />

5.6-10


Example 3<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-11<br />

FINDING FUNCTION VALUES OF s/2<br />

GIVEN INFORMATION ABOUT s<br />

The angle associated with lies in quadrant II since<br />

is positive while are negative.<br />

5.6-11


Example 3<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-12<br />

FINDING FUNCTION VALUES OF s/2<br />

GIVEN INFORMATION ABOUT s (cont.)<br />

5.6-12


Example 4<br />

Simplify each expression.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-13<br />

SIMPLIFYING EXPRESSIONS USING<br />

THE HALF-ANGLE IDENTITIES<br />

This matches part of the identity for<br />

Substitute 12x for A:<br />

5.6-13


Example 5 VERIFYING AN IDENTITY<br />

Verify that is an identity.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-14<br />

5.6-14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!