07.04.2013 Views

Species composition and patterns of diversity of macroalgal ...

Species composition and patterns of diversity of macroalgal ...

Species composition and patterns of diversity of macroalgal ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Downloaded by [ ] at 01:25 17 October 2011<br />

Journal <strong>of</strong> Natural History<br />

Vol. 44, Nos. 1–2, January 2010, 1–22<br />

TNAH 0022-2933 1464-5262 Journal <strong>of</strong> Natural History History, Vol. 1, No. 1, Oct 2009: pp. 0–0<br />

<strong>Species</strong> <strong>composition</strong> <strong>and</strong> <strong>patterns</strong> <strong>of</strong> <strong>diversity</strong> <strong>of</strong> <strong>macroalgal</strong> coralligenous<br />

assemblages in the north-western Mediterranean Sea<br />

Journal L. Piazzi <strong>of</strong> et Natural al. History<br />

L. Piazzia , D. Balatab *, E. Cecchic , F. Cinellia <strong>and</strong> G. Sartonid a Dipartimento di Biologia, Università di Pisa, Via A. Derna 1, 56126, Pisa, Italy; b School <strong>of</strong><br />

Biological <strong>and</strong> Environmental Sciences, University College Dublin, Science Building West,<br />

Dublin 4, Irel<strong>and</strong>; c ARPAT – Agenzia Regionale per la Protezione Ambientale della Toscana,<br />

Via Marradi 114, 57126 Livorno, Italy; d Dipartimento di Biologia Vegetale, Università di<br />

Firenze, Via La Pira 4, 50121 Firenze, Italy<br />

(Received 17 March 2009; final version received 30 September 2009)<br />

This paper contributes to the knowledge <strong>of</strong> <strong>macroalgal</strong> coralligenous systems. The<br />

species <strong>composition</strong> <strong>of</strong> coralligenous assemblages <strong>of</strong> Tuscany’s coasts <strong>and</strong> isl<strong>and</strong>s<br />

(north-western Mediterranean Sea) was examined <strong>and</strong> different aspects <strong>of</strong> alpha<br />

<strong>and</strong> beta <strong>diversity</strong> were evaluated. The encrusting layer <strong>of</strong> coralligenous habitat in<br />

the study areas mostly comprised the Corallinales Mesophyllum alternans. A total<br />

<strong>of</strong> 187 epiphytic <strong>macroalgal</strong> species was observed, among them 29 Ochrophyta, 14<br />

Chlorophyta <strong>and</strong> 144 Rhodophyta. In the studied area, coralligenous assemblages<br />

show a similar structure across large scales, as 41species were common to all the<br />

studied locations. Multivariate analysis showed that locations along continental<br />

coasts were distinct from isl<strong>and</strong>s. Vertical <strong>and</strong> horizontal substrata were distinct<br />

on isl<strong>and</strong>s, but not in coastal locations. The studied assemblages showed a high<br />

<strong>diversity</strong>, especially in relation to the smaller spatial scales examined.<br />

Keywords: bio<strong>diversity</strong>; coralligenous assemblages; macroalgae; Mediterranean Sea<br />

Introduction<br />

Coralligenous <strong>macroalgal</strong> habitats are a peculiar feature <strong>of</strong> deep subtidal systems in<br />

the Mediterranean Sea, characterized by calcareous structures produced by Corallinales<br />

(Rhodophyta) (Ballesteros 2006).<br />

Coralligenous assemblages can develop on both rocky <strong>and</strong> s<strong>of</strong>t bottoms in<br />

relatively constant conditions <strong>of</strong> temperature, currents, salinity <strong>and</strong> under reduced<br />

irradiance (Garrabou <strong>and</strong> Ballesteros 2000). Corallinales constitute a secondary substrate<br />

that facilitates the settlement <strong>of</strong> a large amount <strong>of</strong> algae <strong>and</strong> sessile invertebrates.<br />

The <strong>composition</strong> <strong>of</strong> animal <strong>and</strong> algal species comprising coralligenous assemblages has<br />

been widely studied (Laborel 1961, 1987; Laubier 1966; Boudouresque 1973; Augier <strong>and</strong><br />

Boudouresque 1975; Hong 1982, 1983; Gili <strong>and</strong> Ros 1985) <strong>and</strong>, recently, many<br />

ecological aspects relating to spatial <strong>and</strong> temporal variability <strong>and</strong> the influence <strong>of</strong><br />

human-induced alterations have been investigated (Ferdeghini et al. 2000; Cocito<br />

et al. 2002; Piazzi, Balata, Perusati et al. 2004; Balata, Piazzi et al. 2005; Balata,<br />

Acunto et al. 2006; Piazzi et al. 2007). However, coralligenous assemblages are less<br />

well known in comparison to shallower assemblages <strong>and</strong> many ecological aspects remain<br />

to be investigated. A fundamental aspect is bio<strong>diversity</strong>. Studies <strong>of</strong> the bio<strong>diversity</strong> <strong>of</strong><br />

*Corresponding author. Email: david.balata@ucd.ie<br />

ISSN 0022-2933 print/ISSN 1464-5262 online<br />

© 2010 Taylor & Francis<br />

DOI: 10.1080/00222930903377547<br />

http://www.informaworld.com


Downloaded by [ ] at 01:25 17 October 2011<br />

2 L. Piazzi et al.<br />

coralligenous assemblages normally refer to a determinate spatial scale, <strong>and</strong> are seldom,<br />

if ever, conducted at scales grater than a few kilometres (Cocito et al. 2002:<br />

Piazzi, Balata, Perusati et al. 2004; Piazzi et al. 2007; Balata et al. 2005; Balata, Piazzi<br />

<strong>and</strong> Cinelli 2007). Bio<strong>diversity</strong> can vary at different spatial <strong>and</strong> temporal scales<br />

(Whittaker 1972; Gray 2000) <strong>and</strong> the correspondence between values <strong>of</strong> <strong>diversity</strong> at<br />

small <strong>and</strong> large spatial scales is not self-evident, but depends on the <strong>patterns</strong> <strong>of</strong><br />

spatial variability <strong>of</strong> each system (Gray 2000; Gering <strong>and</strong> Crist 2002). Thus, high<br />

values <strong>of</strong> <strong>diversity</strong> at a small spatial scale may correspond to low values <strong>of</strong> <strong>diversity</strong> at<br />

a larger spatial scale <strong>and</strong> vice versa, making the <strong>patterns</strong> dependent on the spatial<br />

scale examined.<br />

Moreover, the acknowledgement that environmental changes are expected to<br />

accelerate in this century makes it crucial to underst<strong>and</strong> how distribution limits are<br />

likely to be affected by those alterations (Parmesan et al. 2005). In this context,<br />

underst<strong>and</strong>ing <strong>of</strong> the natural geographical limits <strong>and</strong> distribution <strong>of</strong> species is central<br />

to conserving bio<strong>diversity</strong> <strong>and</strong> managing ecosystems for long-term viability <strong>and</strong><br />

sustainability. In fact, floristic lists are <strong>of</strong>ten an important source <strong>of</strong> botanical<br />

information for a particular area <strong>and</strong> may serve as a useful starting point for more<br />

detailed study. Such lists may be used for general comparisons <strong>of</strong> the vegetation <strong>of</strong><br />

different localities, or that <strong>of</strong> the same locality at different times.<br />

Another important aspect <strong>of</strong> the bio<strong>diversity</strong> <strong>of</strong> a system, though rarely considered,<br />

is the variability in species <strong>composition</strong> <strong>and</strong> abundance among habitats or<br />

along gradients, normally referred to as beta <strong>diversity</strong> (Gray 1997; Legendre et al.<br />

2005). In fact, in coralligenous environments, the slope <strong>of</strong> the substratum plays a<br />

prominent role in the maintenance <strong>of</strong> beta <strong>diversity</strong> (Gaines 1985; Benedetti-Cecchi<br />

et al. 2000, Balata, Piazzi <strong>and</strong> Benedetti-Cecchi 2007). Vertical substrata usually support<br />

distinct assemblages compared with those occurring on horizontal surfaces<br />

owing to differences in light conditions, susceptibility to colonization, <strong>and</strong> retention<br />

<strong>of</strong> sediment (Witman <strong>and</strong> Sebens 1991; Baynes 1999).<br />

The aim <strong>of</strong> this paper is to contribute to the knowledge <strong>of</strong> coralligenous systems<br />

through the assessment <strong>of</strong> the <strong>composition</strong> <strong>and</strong> frequency <strong>of</strong> <strong>macroalgal</strong> species in a<br />

large area <strong>of</strong> the north-western Mediterranean Sea <strong>and</strong> the determining <strong>of</strong> species<br />

richness over different spatial scales (from a few meters to several kilometres).<br />

Moreover, we evaluate <strong>patterns</strong> <strong>of</strong> alpha <strong>and</strong> beta <strong>diversity</strong> comparing assemblages<br />

<strong>of</strong> different habitats (vertical vs. horizontal surfaces) <strong>and</strong> in different environmental<br />

conditions (continent vs. isl<strong>and</strong>).<br />

Material <strong>and</strong> methods<br />

The study area consisted <strong>of</strong> the coasts <strong>and</strong> the isl<strong>and</strong>s <strong>of</strong> Tuscany (north-western<br />

Mediterranean Sea). Twelve locations were considered: eight within the Tuscan<br />

Archipelago National Park isl<strong>and</strong>s, two along the continental coasts (Livorno,<br />

Argentario) <strong>and</strong> two on rocky banks (Meloria, Vada) situated a few kilometres <strong>of</strong>f<br />

the coast (Figure 1).<br />

The floristic list was compiled by taking into account published (Piazzi <strong>and</strong><br />

Cinelli 2002; Piazzi, Balata <strong>and</strong> Cinelli 2004; Piazzi, Balata, Perusati et al. 2004;<br />

Piazzi et al. 2007; Balata, Piazzi <strong>and</strong> Cinelli 2007) <strong>and</strong> unpublished data referring to<br />

samples collected from 1990 to 2005. A total <strong>of</strong> 250 samples were gathered from 13<br />

localities. Samples were collected on vertical substrates between 30 <strong>and</strong> 50 m depth;


Downloaded by [ ] at 01:25 17 October 2011<br />

Journal <strong>of</strong> Natural History 3<br />

Figure 1. Map <strong>of</strong> the study area. Notes: L, Livorno; A, Argentario; V, Vada; Me, Meloria;<br />

Go, Gorgona; C, Capraia; E, Elba; P, Pianosa; Mo, Montecristo; F, Formiche di Grosseto;<br />

Gn, Giannutri; Gi, Giglio.<br />

horizontal substrate was sampled in four locations (Table 1). Each sample consisted<br />

<strong>of</strong> all organisms within 400 cm 2 <strong>of</strong> surface, removed using a hammer <strong>and</strong> a chisel.<br />

Taxonomic nomenclature followed Guiry <strong>and</strong> Guiry (2009). The frequency <strong>of</strong> each<br />

species was evaluated as the percentage <strong>of</strong> samples in which the species was found.<br />

Herbarium specimens <strong>and</strong> slide preparations are deposited in the Herbarium<br />

Universitatis Florentinae (FI) (Pr<strong>of</strong>. Sartoni collection).<br />

Alpha <strong>diversity</strong> was evaluated as species richness at four different spatial scales<br />

(Gray 2000): plot <strong>diversity</strong> (each replicate sampling <strong>of</strong> 400 cm 2 <strong>of</strong> surface), sample<br />

<strong>diversity</strong> (surfaces <strong>of</strong> a few square metres where three plots were collected), site <strong>diversity</strong><br />

(sites within 1 km <strong>of</strong> coastline where more sample surfaces were present), location


Downloaded by [ ] at 01:25 17 October 2011<br />

4 L. Piazzi et al.<br />

Table 1. Floristic list <strong>of</strong> coralligenous <strong>macroalgal</strong> assemblages.<br />

L V A Me Go C E Mo Gi P Gn F LH VH GnH GoH F%<br />

Fucophyceae<br />

Arthrocladia villosa (Hudson) Duby − − − − − − − + − − − + − − − + 1.6<br />

Asperococcus bullosus J.V. Lamouroux − − − − − + − + − − + + − + + + 4.0<br />

Carpomitra costata (Stackhouse) Batters − − − − − − − − − − − − − − − + 1.2<br />

Cladosiphon irregularis (Sauvageau) Kylin − + − − − + − − − + − − − + − − 0.8<br />

Cutleria chilosa (Falkenberg) P.C. Silva − + + + + + + + + + + + + + + + 42.8<br />

(sporophyte “Aglaozonia”)<br />

Cystoseira spinosa Sauvageau − − − − − + − + − + − − + − + + 4.0<br />

Cystoseira zosteroides C. Agardh − − − − − − − − − − − − − − + + 2.8<br />

Dictyopteris lucida M.A. Ribera Siguan, − − − − − − − + − − − − − − − − 0.8<br />

A. Gómez Garreta, I. Pérez Ruzafa,<br />

M.C. Barceló Martí <strong>and</strong> J. Rull Lluch<br />

Dictyopteris polypodioides (A.P. De − − + − − − + − − + − + − + + + 10.4<br />

C<strong>and</strong>olle) J.V. Lamouroux<br />

Dictyota dichotoma (Hudson) J.V.<br />

− − − − − − − − − − − − + + + − 1.6<br />

Lamouroux<br />

Dictyota linearis (C. Agardh) Greville + + + + + + + + + + + + + + + + 51.6<br />

Discosporangium mesarthrocarpum<br />

− − − − − + − + − − − − − − + + 0.8<br />

(Meneghini) Hauck<br />

Elachista intermedia P.L. <strong>and</strong> H.M. − − − − − − − − − − − − − − − + 1.2<br />

Crouan<br />

Elachista stellaris Areschough − − − − − − − − − − + − − − − − 0.8<br />

Gontrania lubrica Sauvageau − − − − − − − − − + − − − − − − 0.4<br />

Halopteris filicina (Grateloup) Kützing + + + + + + + + + + + + + + + + 73.6<br />

Nemacystus flexuosus (C. Agardh) Kylin − − − − − − − − − − − − − − − + 0.8<br />

var. giraudyi (J. Agardh) De Jong<br />

Lobophora variegata (J.V. Lamouroux) − − − − − + − − − − − − − − − − 0.4<br />

Womersley ex E.C. Oliveira<br />

Nereia filiformis (J. Agardh) Zanardini + + + + + + + + + + + + + + + + 22.0


Downloaded by [ ] at 01:25 17 October 2011<br />

Journal <strong>of</strong> Natural History 5<br />

Phyllariopsis brevipes (C. Agardh) Henry − − − − − − − − − − − − − − − + 0.8<br />

<strong>and</strong> South<br />

Sargassum hornschuchii C. Agardh − − − − − − − − − − − − − − + + 1.2<br />

Spatoglossum solieri (Chauvin ex<br />

− − − − − − − − − − − − − − − + 0.4<br />

Montagne) Kützing<br />

Spermatochnus paradoxus (P.H. Roth) − − − − − − − − − + − − − − + 1.2<br />

Kützing<br />

Sphacelaria cirrosa (P.H. Roth) C. Agardh + + + + + + + + + + + + + + + + 48.8<br />

Sphacelaria plumula Zanardini − + + + + + + + + + + − − + + + 22.8<br />

Sporochnus pedunculatus (Hudson) C. − − − − − − − + − − + + − − + + 4.8<br />

Agardh<br />

Stictyosiphon adriaticus Kützing − − − − − − − − − + − − − − + − 2.4<br />

Stilophora tenella (Esper) P.C. Silva − − − − − − − + − − − − − − + + 1.6<br />

Zanardinia typus (Nardo) P.C. Silva − − + + − + + − + + − + + + + + 28.0<br />

Chlorophyta<br />

Caulerpa racemosa var. cylindracea − − − − − − + − − − − − + − − − 1.6<br />

(Sonder) Verlaque, Huisman <strong>and</strong><br />

Boudouresque<br />

Caulerpa taxifolia (Vahl) C. Agardh − − − − − − + − − − − − − − − − 0.4<br />

Cladophora coelothrix Kützing − − + + + − + + − − − + − − − − 8.4<br />

Cladophora echinus (Biasoletto) Kützing + + + + + + + + + + + − + + + + 22.0<br />

Cladophora pellucida (Hudson) Kützing − − − − − − − + − − − + − + − − 1.2<br />

Cladophora prolifera (Roth) Kützing + + + + + + + + + + + + + + + + 22.4<br />

Codium coralloides (Kützing) P.C. Silva − − − − − − + + + − − − − − − − 0.8<br />

Derbesia tenuissima (Moris <strong>and</strong> De − − − − − − − + + − − − − − − − 1.2<br />

Notaris) P.L. Crouan <strong>and</strong> H.M. Crouan<br />

Flabellia petiolata (Turra) Nizamuddin + + + + + + + + + + + + + + + + 72.0<br />

Halimeda tuna (J. Ellis <strong>and</strong> Sol<strong>and</strong>er) J.V. + + + + + + + + + + + + + + + + 52.2<br />

Lamouroux<br />

Microdictyon tenuius Decaisne ex J.E. Gray − + − + + + + + + + + + − + + + 6.8<br />

Palmophyllum crassum (Naccari)<br />

+ + + + + + + + + + + + + + + + 34.8<br />

Rabenhorst<br />

(Continued)


Downloaded by [ ] at 01:25 17 October 2011<br />

6 L. Piazzi et al.<br />

Table 1. (Continued).<br />

L V A Me Go C E Mo Gi P Gn F LH VH GnH GoH F%<br />

Pseudochlorodesmis furcellata (Zanardini) + + + + + + + + + + + + + + + + 79.2<br />

Børgesen<br />

Valonia macrophysa Kützing − − + + + + + + + + + + + + + + 45.2<br />

Rhodophyta<br />

Acrodiscus vidovichii (Meneghini)<br />

− − + + + + + + + + + + + + + + 36.8<br />

Zanardini<br />

Acrosorium ciliolatum (Harvey) Kylin + − + + + − − + − − + + − + − − 16.4<br />

Acrothamnion preissii (Sonder) Wollaston + + + + + + + + − + − + + + − + 49.6<br />

Aglaothamnion tenuissimum<br />

+ + + + + + + + + + + + + + − + 22.8<br />

(Bonnemaison) Feldmann-Mazoyer<br />

Aglaothamnion tripinnatum (C. Agardh) − + − − − − − − − − + − + + − − 1.2<br />

Feldmann-Mazoyer<br />

Amphiroa rubra (Philippi) Woelkerling − − − − − − − + − + − − + − + − 7.6<br />

Antithamnion cruciatum (C. Agardh) + − − + + − + + + − + + + + + + 15.6<br />

Nägeli<br />

Antithamnion heterocladum Funk + − − − + + − + − − − − − + − − 3.2<br />

Anthithamnion piliferum Cormaci <strong>and</strong> − − − − − − − + − − − − + − − − 5.6<br />

G. Furnari<br />

Antithamnion tenuissimum (Hauck) + + + − + + + − + + + + + + + + 20.4<br />

Schiffner<br />

Apoglossum gregarium (Dawson) M.J. − − − − − − − + − − − − − − + − 1.2<br />

Winne<br />

Apoglossum ruscifolium (Turner) J. Agardh + + + + + + + + + + + + − + − − 33.6<br />

Balliella cladoderma (Zanardini)<br />

− − − − − − − − − − + − − − + + 4.4<br />

Athanasiadis<br />

Botryocladia botryoides (Wulfen)<br />

+ + + + + + + + + + + + + + + + 40.0<br />

Feldmann<br />

Botryocladia chiajeana (Meneghini) Kylin − − − − − − + + − − − − − − − − 0.8


Downloaded by [ ] at 01:25 17 October 2011<br />

Journal <strong>of</strong> Natural History 7<br />

Brongniartella byssoides (Goodenough <strong>and</strong> − − − − − − − + − + − − − − − − 1.2<br />

Woodward) F. Schmitz<br />

Ceramium bertholdii Funk + − − − + + + + + + + + + + + + 23.2<br />

Ceramium bisporum Ballantine − − − − − + − − − − − − − − − + 0.8<br />

Ceramium cimbricum H.E. Petersen + + − − + + + − − + + − + + − − 14.8<br />

Ceramium circinatum (Kützing) J. Agardh − − − − − − − − − − − − + − + − 2.4<br />

Ceramium codii (H. Richards) Feldmann- + + + + + + + + + + + + + + + + 49.6<br />

Mazoyer<br />

Ceramium comptum Børgesen − − − − − − + − − − − + − − − 0.8<br />

Ceramium diaphanum (Lightfoot) P.H. + + + − + + + + + + + + − + + + 14.8<br />

Roth<br />

Ceramium flaccidum (Kützing) Ardissone − − + − + + + + + + + + + + − + 17.6<br />

Ceramium giacconei Cormaci <strong>and</strong> G. − − − − − − − + − − − − − − − + 0.8<br />

Furnari<br />

Ceramium graecum Lazaridou <strong>and</strong><br />

− − − − − − + − − − − − − − − − 1.2<br />

Boudouresque<br />

Ceramium tenerrimum (G. Martens) + − + + + − − − + + + + − − − − 9.2<br />

Okamura<br />

Champia parvula (C. Agardh) Harvey − + + − + + + + + + + + + + + + 20.4<br />

Chondria capillaris (Hudson) M.J. Wynne + + + + + + + + + + + + + + + + 26.8<br />

Chondria dasyphylla (Woodward) C. − − + + − + + + + + − + + − − + 16.8<br />

Agardh<br />

Chrysymenia ventricosa (J.V. Lamouroux) − − − − − + − − + + − + − + + + 5.6<br />

J. Agardh<br />

Chylocladia verticillata (Lightfoot) Bliding − − − + + − − − − − − − − − − − 2.8<br />

Contarinia peyssonneliaeformis Zanardini + − + + − + + − − + + − + − − − 12.4<br />

Contarinia squamariae (Meneghini) + + + + + + + + + + + + + + + + 24.8<br />

Denizot<br />

Cottoniella filamentosa var. algeriensis − − − − − − + + − − − − − − + − 1.2<br />

(Schotter) Cormaci <strong>and</strong> G. Furnari<br />

Crouania attenuata (C. Agardh) J. Agardh + + + + + + + + + + + + + + + + 31.2<br />

(Continued)


Downloaded by [ ] at 01:25 17 October 2011<br />

8 L. Piazzi et al.<br />

Table 1. (Continued).<br />

L V A Me Go C E Mo Gi P Gn F LH VH GnH GoH F%<br />

Cruoria cruoriaeformis (P.L. <strong>and</strong> H.M. + + + + − − + + − − − + − − − − 13.6<br />

Crouan) Denizot<br />

Cryptonemia lomation (A. Bertoloni) J. − − + − − + + + − − − + − − + + 2.8<br />

Agardh<br />

Dasya baillouviana (S.G. Gmelin)<br />

− − + − − + + − + + + − − + + + 5.6<br />

Montagne<br />

Dasya corymbifera J. Agardh − − − − + + − + − + + + − − + + 5.2<br />

Dasya ocellata (Grateloup) Harvey + + + − + + + + + − + + + − + + 14.8<br />

Dasya punicea (Zanardini) Meneghini ex − − − − − − − − − − + − − − − − 0.4<br />

Zanardini<br />

Dasya rigidula (Kützing) Ardissone + + + + + + + + + + + + + + + + 26.4<br />

Dasyella gracilis Falkenberg − − + − − − − − − − − − − − − − 0.4<br />

Dipterosiphonia rigens (Schousboe) + − + − + − − + − − + + − − + + 5.6<br />

Falkenberg<br />

Dudresnaya verticillata (Withering) Le − − − − − + − − − + − − − − − + 1.2<br />

Jolis<br />

Erythroglossum s<strong>and</strong>rianum (Kützing) + − + + + − + + − + − + + − − − 11.6<br />

Kylin<br />

Eupogodon planus (C. Agardh) Kützing + + + + + + + + + + + + + + + + 54.4<br />

“Falkenbergia rufolanosa (Harvey) F. + + + − + + − − − − + + + − + + 16.4<br />

Schmitz” stadium sporophyte <strong>of</strong><br />

Asparagopsis armata Harvey<br />

Feldmannophycus rayssiae (Feldmann <strong>and</strong> + + + + + + + + + + − + + + − − 26.4<br />

Feldmann-Mazoyer) Augier <strong>and</strong><br />

Boudouresque<br />

Gelidium bipectinatum G. Furnari − − − − − + + + + + + + + + + + 8.0


Downloaded by [ ] at 01:25 17 October 2011<br />

Journal <strong>of</strong> Natural History 9<br />

Gelidium spinosum (S.G. Gmelin)<br />

− − − − − − + − − − − − − − − − 0.8<br />

P.C. Silva<br />

Gloiocladia furcata (C. Agardh) J. Agardh − − − − − − − + − − − + − − − + 2.4<br />

Gloiocladia repens (C. Agardh) Sánchez − − − − − + − − − + + + − − − − 2.0<br />

<strong>and</strong> Rodriguez-Prieto<br />

Gracilaria bursa-pastoris (S.G. Gmelin) − − − − − − − − − − − − − − + + 1.2<br />

P.C. Silva<br />

Gracilaria corallicola Zanardini − − − − − − − + − − − + − − + − 3.2<br />

Gracilaria dura (C. Agardh) J. Agardh − − − − − − − − − − − − − − − + 0.8<br />

Griffithsia schousboei Montagne − − + + − − − + − − − + − + + − 6.8<br />

Gulsonia nodulosa (Ercegovic) Feldmann − − − − − − + − − + + − − + + − 5.2<br />

<strong>and</strong> Feldmann-Mazoyer<br />

Gymnothamnion elegans (Schousboe ex − − − − − − − − + − − − − − − − 0.8<br />

C. Agardh) J. Agardh<br />

Halopithys incurva (Hudson) Batters − − + − − − + + − − − − + − − − 3.2<br />

Halydyction mirabile Zanardini + + + + + + − + − + + − − + + + 10.8<br />

Halymenia floresia (Clemente <strong>and</strong> Rubio) − − − − − − − − − + − − + − + − 1.2<br />

C. Agardh<br />

Haraldia lenorm<strong>and</strong>ii (Derbès <strong>and</strong> Solier) + − − − + − + + + − + − + − + − 8.4<br />

J. Feldmann<br />

Herposiphonia secunda (C. Agardh) + + + + + + − + − − − + + + − + 13.6<br />

Ambronn<br />

Heterosiphonia crispella (C. Agardh) − − + + − + + + − − − + + − − − 10.4<br />

M.J. Wynne<br />

Hydrolithon farinosum (J.V. Lamouroux) − − − − + + − + + − + − − − + + 6.4<br />

D. Penrose <strong>and</strong> Y.M. Chamberlain<br />

Hypoglossum hypoglossoides (Stackhouse) + + + + + + + + + + + + + + + + 27.6<br />

Collins <strong>and</strong> Harvey<br />

Irvinea boergesenii (Feldmann)<br />

+ + + + + + + + + + + + + + + + 14.8<br />

R.J. Wilkes, L.M. McIvor <strong>and</strong> Guiry<br />

Jania adhaerens J.V. Lamouroux + + + + + + + + + + + + + + + + 55.2<br />

(Continued)


Downloaded by [ ] at 01:25 17 October 2011<br />

10 L. Piazzi et al.<br />

Table 1. (Continued).<br />

L V A Me Go C E Mo Gi P Gn F LH VH GnH GoH F%<br />

Kallymenia feldmannii Codomier − − − − − − − + − − − − − − + + 3.2<br />

Kallymenia lacerata J. Feldmann − − − − − − − − − − − − − − + − 0.8<br />

Kallymenia patens (J. Agardh) Parkinson − − − − − − − − − − − − − − + − 0.8<br />

Kallymenia reniformis (Turner) J. Agardh − − − − − − − + + − − − − − − − 0.4<br />

Kallymenia requienii J. Agardh − − − − − − − − − − − − − − + − 0.8<br />

Laurencia chondrioides Børgesen + + + − − + + + + − − + + + − − 7.6<br />

Lejolisia mediterranea Born<strong>and</strong> − + + + − + + + + − + − − + + + 5.2<br />

Lophocladia lallem<strong>and</strong>ii (Montagne) − − − − − − − + − − − − − − − − 0.8<br />

F. Schmitz<br />

Lomentaria chylocladiella Funk − + − − + + + + + + + − + − + − 10.8<br />

Lomentaria clavaeformis Ercegovic − − − − + − − + − − + − − − + + 4.8<br />

Lomentaria ercegovicii Verlaque,<br />

− − − − − + − + − − − − − − − − 0.8<br />

Boudouresque, Meinesz, Giraud <strong>and</strong><br />

Marcot Coqueugniot<br />

Lomentaria verticillata Funk − − − − − − − + − − − − − − − − 0.4<br />

Meredithia microphylla (J. Agardh) + + + + + + + + + + + + + + + + 46.4<br />

J. Agardh<br />

Microcladia gl<strong>and</strong>ulosa (Turner) Greville − − − − + − − − − − − − − − − − 0.4<br />

Monosporus pedicellatus (J.E. Smith) Solier + + + + + + + + + + + − + + + + 17.2<br />

Myriogramme distromatica Rodriguez ex − − − − − − + − + − + + − − − − 2.8<br />

Boudouresque<br />

Nemastoma dichotomum J. Agardh − − − − − − − − − + − − − − + − 0.8<br />

Neurocaulon foliosum (Meneghini)<br />

− + + + − + + + − + + + − − + + 7.6<br />

Zanardini<br />

Nitophyllum micropunctatum Funk + + + + + + + + + + + + + + + + 29.6<br />

Osmundea pelagosae (Schiffner) F.W. Nam + + + + + + + + + + + + + + + + 65.6<br />

Osmundaria volubilis (Linnaeus)<br />

− − + − − − + + − + − + − − + + 4.8<br />

R.E. Norris


Downloaded by [ ] at 01:25 17 October 2011<br />

Journal <strong>of</strong> Natural History 11<br />

Parviphycus antipai (Celan) B. Santelices − − − − − − − + − − − − − − − − 0.4<br />

Peyssonnelia armorica (P.L. <strong>and</strong><br />

− − − − + − − − − − − − − − − − 0.4<br />

H.M. Crouan) Weber van Bosse<br />

Peyssonnelia bornetii Boudouresque <strong>and</strong> + + + + + + + + + + + + + + + + 31.6<br />

Denizot<br />

Peyssonnelia crispata Boudouresque <strong>and</strong> − − − − − − + + − − − − − − − − 0.8<br />

Denizot<br />

Peyssonnelia dubyi P.L. <strong>and</strong> H.M. Crouan − − − − − − − − + − + − − − − − 0.8<br />

Peyssonnelia harveyana P.L. <strong>and</strong><br />

− − − − − − − − − − − + − − − − 0.4<br />

H.M. Crouan ex J. Agardh<br />

Peyssonnelia inamoena Pilger − − − − − − − − − − + − − − − − 0.4<br />

Peyssonnelia orientalis (Weber van Bosse) − − − − − + + − − − − − − − − + 1.2<br />

Boudouresque <strong>and</strong> Denizot<br />

Peyssonnelia polymorpha (Zanardini) − + + + − − + + + − − + − − − − 4.8<br />

F. Schmitz<br />

Peyssonnelia rosa-marina Boudouresque − − − − − + − − − − − − − − − + 0.8<br />

<strong>and</strong> Denizot<br />

Peyssonnelia rubra (Greville) J. Agardh + + + + + + + + + + + + + + + + 53.6<br />

Peyssonnelia squamaria (S.G. Gmelin) + + + + + + + + + + + + + + + + 52.4<br />

Decaisne<br />

Peyssonnelia stoechas Boudouresque <strong>and</strong> − − + + + − + − + + + − − − − − 9.2<br />

Denizot<br />

Phyllophora crispa (Hudson) P.S. Dixon − − − − − − + + − + − + − + + + 5.2<br />

Platoma cyclocolpa (Montagne) F. Schmitz − − − − − − − − − − − − − − + − 0.8<br />

Plenosporium borreri (J.E. Smith) Nägeli − − − − − − + − − − − − − − − − 0.4<br />

Plocamium cartilagineum (Linnaeus) + + + + + + + + + + + + + + + + 35.6<br />

P.S. Dixon<br />

Polysiphonia elongata (Hudson) Sprengel − − − + + + + + + + + + − − + + 9.2<br />

Polysiphonia furcellata (C. Agardh) Harvey + + + + + + + + + + + + + + + − 51.6<br />

Polysiphonia perforans Cormaci,<br />

+ + + + − + + + + + + + + + + − 29.2<br />

G. Furnari, Pizzuto <strong>and</strong> Serio<br />

(Continued)


Downloaded by [ ] at 01:25 17 October 2011<br />

12 L. Piazzi et al.<br />

Table 1. (Continued).<br />

L V A Me Go C E Mo Gi P Gn F LH VH GnH GoH F%<br />

Polysiphonia subulifera (C. Agardh) − − + + + + + + + + + + − − + + 15.6<br />

Harvey<br />

Predaea ollivieri J. Feldmann − − − − − − − − − − − − − − + − 0.8<br />

Pterothamnion crispum (Ducluzeau) Nägeli − − − − − − − + − − − − − − − − 0.8<br />

Pterothamnion plumula (J. Ellis) Nägeli + − + − − − − + − + + + − − + + 8.4<br />

Ptilocladiopsis horrida Berthold − − − − − − − − − + + − − + + 2.0<br />

Ptilothamnion pluma (Dillwyn) Thur<strong>and</strong> + + + + + + + + + + + + + + + + 33.6<br />

Radicilingua reptans (Kylin) Papenfuss − − − − + + − + − + + + − − + + 7.6<br />

Rhodophyllis divaricata (Stackhouse) − − + + + + + − + + + + + − + + 20.4<br />

Papenfuss<br />

Rhodymenia ardissonei J. Feldmann − − + + − + + + + + + + − − + + 8.4<br />

Rhodymenia delicatula P.J.L. Dangeard − − − − − − − − − − + − − − − − 0.4<br />

Rhodymenia holmesii Ardissone − − − − − − − − − − + − − − − − 0.4<br />

Rodriguezella pinnata Ercegovic − − + + + − + + + − + − − − + + 3.6<br />

Rodriguezella strafforelloi F. Schmitz + + + + + + + + + + + + + + + − 27.6<br />

Rytiphlaea tinctoria (Clemente) C. Agardh − − − − + − + + − + − − − − − + 3.2<br />

Schmitzia neapolitana (Berthold) P.C. Silva − − − − − − − + − − − − − − − − 0.8<br />

Scinaia furcellata (Turner) J. Agardh − − − − − − − − − − − − − − − + 0.4<br />

Sebdenia dicotoma Berthold − − − − − − − − − − − − − − + + 1.6<br />

Sebdenia monardiana (Montagne) Berthold + − − − − − − − − − + − − − + − 1.2<br />

Sebdenia rodrigueziana (J. Feldmann) − − − − − − − − − − − − − − + − 0.8<br />

Athanasiasis


Downloaded by [ ] at 01:25 17 October 2011<br />

Seirospora apiculata (Meneghini)<br />

− − − − − − − − − − − − − − + − 0.4<br />

J. Feldmann<br />

Seirospora interrupta (J.E. Smith)<br />

− − − − + − + − − − + − − − − + 1.6<br />

F. Schmitz<br />

Seirospora sphaerospora Feldmann − − − − + + − + + − − − − − − + 2.0<br />

Spermothamnion flabellatum Bornet − − − − − − − + − − + − − − − + 2.0<br />

Spermothamnion johannis Feldmann- − − − − − − − + + − + − − − − − 1.2<br />

Mazoyer<br />

Spermothamnion repens (Dillwyn)<br />

− − − − + − − + + − + − − − − − 4.4<br />

Rosenvinge<br />

Sphaerococcus coronopifolius Stackhouse − − + − − − − − − − − − + − − + 1.2<br />

Sphondylothamnion multifidum (Hudson) − + − − − − − − − − − − − − − − 2.0<br />

Nägeli<br />

Spyridia filamentosa (Wulfen) Harvey − − − − − − − + + + + + − − − − 3.2<br />

Stilonema alsidii (Zanardini) K.M. Drew − + − − + − − + − + − + − + − + 13.6<br />

Tricleocarpa fragilis (linnaeus) Huisman − − − + − + + − − − − − + − − − 9.2<br />

<strong>and</strong> R.A. Towsend<br />

Womersleyella setacea (Hollenberg) + + + + + + + + + + + + + + + + 79.6<br />

R.E. Norris<br />

Wrangelia penicillata (C. Agardh)<br />

+ + + − + − − + + − + + + + + + 23.2<br />

C. Agardh<br />

Journal <strong>of</strong> Natural History 13<br />

Notes: L, Livorno; A, Argentario; V, Vada; Me, Meloria; Go, Gorgona; C, Capraia; E, Elba; P, Pianosa; Mo, Montecristo; F, Formiche di Grosseto;<br />

Gn, Giannutri; Gi, Giglio; H, horizontal substrate; F%, frequency, percentage <strong>of</strong> the presence <strong>of</strong> the taxon in the total samples (n = 250).


Downloaded by [ ] at 01:25 17 October 2011<br />

14 L. Piazzi et al.<br />

<strong>diversity</strong> (each isl<strong>and</strong>, bank or trait <strong>of</strong> continental coast) <strong>and</strong> regional <strong>diversity</strong> (the<br />

whole study zone).<br />

<strong>Species</strong> <strong>composition</strong> between assemblages developing on vertical <strong>and</strong> horizontal<br />

substrates was compared for each location where both orientations were<br />

sampled.<br />

Permutational multivariate analysis <strong>of</strong> variance (PERMANOVA) was performed<br />

in order to discriminate spatial <strong>patterns</strong> in species <strong>composition</strong> within the study zone,<br />

as well as differences between assemblages developing on vertical <strong>and</strong> horizontal<br />

substrata (Anderson 2001). Bray-Curtis dissimilarity for this analysis was calculated<br />

using presence/absence data. The analysis consisted <strong>of</strong> two crossed factors: Inclination<br />

(two levels “vertical vs. horizontal surface”) <strong>and</strong> Condition (two levels “isl<strong>and</strong><br />

vs. coast”) crossed. Multivariate <strong>patterns</strong> were visualized using non-metric multidimensional<br />

scaling (nMDS) inferred from a Bray-Curtis dissimilarity matrix (Clarke<br />

<strong>and</strong> Warwick 1994).<br />

Results<br />

The encrusting layer <strong>of</strong> coralligenous habitat in the study areas mostly comprised the<br />

Corallinales Mesophyllum alternans (Foslie) Cabioch <strong>and</strong> Mendoza <strong>and</strong> secondarily<br />

Lithothamnion philippii Foslie, Mesophyllum macroblastum (Foslie) W.H. Adey,<br />

Lithophyllum pustulatum (J.V. Lamouroux) Foslie <strong>and</strong> Lithophyllum stictaeforme<br />

(Areshough) Hauck.<br />

In total, 187 <strong>macroalgal</strong> epiphytes <strong>of</strong> encrusting Corallinales were observed,<br />

among them 29 Ochrophyta, 14 Chlorophyta <strong>and</strong> 144 Rhodophyta (see Table 1 with<br />

nomenclature authority).<br />

A total <strong>of</strong> 45 <strong>and</strong> 18 species were present at a frequency greater than 20% <strong>and</strong><br />

50%, respectively, while 98 species showed a frequency less than 5%. Among the most<br />

common species were the Ochrophyta Dictyota linearis, Halopteris filicina the<br />

Chlorophyta Flabellia petiolata, Halimeda tuna, Pseudochlorodesmis furcellata, the<br />

Rhodophyta Eupogodon planus, Jania adhaerens, Osmundea pelagosae, Peyssonnelia<br />

rubra, P. squamaria, <strong>and</strong> Womersleyella setacea.<br />

Several species were quite rare or scarcely reported in the study area, including<br />

Ceramium bisporum, C. graecum, Anthithamnion piliferum, Phyllariopsis brevipes,<br />

Polysiphonia perforans, Microcladia gl<strong>and</strong>ulosa Dictyopteris lucida <strong>and</strong> Spatoglosum<br />

solieri.<br />

The mean number <strong>of</strong> species per plot was 28.1 ± 5.1 (mean ± SD) on vertical<br />

substrates <strong>and</strong> 35.1 ± 3.7 on horizontal substrates. Values <strong>of</strong> species number<br />

were higher on horizontal substrates also at sample <strong>and</strong> site level, while values<br />

were similar between the two habitats at the larger spatial scales examined<br />

(Figure 2).<br />

Multivariate analysis applied to samples collected on vertical substrates showed<br />

that locations along continental coasts were distinct from isl<strong>and</strong>s (Figure 3).<br />

PERMANOVA on observational data detected significant differences for both<br />

the factors but not for the interaction between these (Table 2). Multivariate analysis<br />

applied to samples related to different substrate orientation showed that assemblages<br />

<strong>of</strong> vertical <strong>and</strong> horizontal substrata were distinct, even though this pattern was more<br />

evident on isl<strong>and</strong>s than along continental coasts (Figure 4).


Downloaded by [ ] at 01:25 17 October 2011<br />

Journal <strong>of</strong> Natural History 15<br />

Figure 2. Mean number <strong>of</strong> species <strong>of</strong> assemblages developing on vertical <strong>and</strong> horizontal<br />

substrate calculated for plot, sample, site, location <strong>and</strong> region (see the text for explanation <strong>of</strong><br />

these terms).<br />

Discussion<br />

The extensive distribution <strong>of</strong> Mesophyllum alternans in the study area confirms previous<br />

observations that identified this species as the main algal foundation <strong>of</strong> coralligenous<br />

systems in the north-western Mediterranean Sea (Sartoretto 1996; Garrabou<br />

<strong>and</strong> Ballesteros 2000).<br />

Many species found in the present investigation are widely reported by other<br />

studies on the coralligenous habitat in other Mediterranean areas (Augier et al. 1971;<br />

Boudouresque 1973, 1984; Augier <strong>and</strong> Boudouresque 1975; Cinelli et al. 1979; Cormaci<br />

et al. 1997; Serio et al. 2006), supporting the assumption that in pristine conditions,<br />

coralligenous assemblages show similar species <strong>composition</strong> at the largest<br />

scales. A few species deserve further comments.<br />

Ceramium bisporum was reported for the first time in the Mediterranean Sea in<br />

the Tuscan Archipelago, as an epiphyte <strong>of</strong> Peyssonnelia rubra at a depth ranging<br />

between 15 <strong>and</strong> 25 m (Sartoni <strong>and</strong> Boddi 2002); in the present work, it was also found<br />

below 30 m depth at Capraia Isl<strong>and</strong>.<br />

Ceramium graecum was not reported for the flora <strong>of</strong> Tuscany; since its description<br />

from Greece (Lazaridou <strong>and</strong> Boudouresque 1992) this species has been reported<br />

only from Southern Italy (Gómez Garreta et al. 2001).<br />

Phyllariopsis brevipes is a cold temperate species that is reported in a few localities<br />

<strong>of</strong> the western Mediterranean Sea, particularly in deep subtidal habitats characterized<br />

by strong unidirectional currents (Cinelli 1981; Ribera et al. 1992). In the Tuscan<br />

Archipelago it was found along the southern coast <strong>of</strong> Gorgona Isl<strong>and</strong> at depths ranging<br />

between 35 <strong>and</strong> 50 m (Piazzi, Balata <strong>and</strong> Cinelli 2004).<br />

Polysiphonia perforans is rarely reported in the Mediterranean Sea but it was<br />

present in the majority <strong>of</strong> the locations studied; this finding suggests that this species<br />

is much more widespread in the basin than the available records indicate, as also<br />

asserted by Rindi et al. (2002).


Downloaded by [ ] at 01:25 17 October 2011<br />

16 L. Piazzi et al.<br />

Figure 3. Non-metric multidimensional scaling ordination based on Bray Curtis similarity calculated<br />

using presence/absence data. Notes: L, Livorno; A, Argentario; V, Vada; Me, Meloria;<br />

Go, Gorgona; C, Capraia; E, Elba; P, Pianosa; Mo, Montecristo; F, Formiche di Grosseto;<br />

Gn, Giannutri; Gi, Giglio.<br />

Dictyopteris lucida has been recently described <strong>and</strong> reported from Atlantic <strong>and</strong><br />

Mediterranean coasts <strong>of</strong> Spain (Ribera Siguan et al. 2005). At Montecristo Isl<strong>and</strong>,<br />

the species shows invasive characteristics, colonizing wide areas in shallow subtidal<br />

<strong>and</strong> coralligenous habitat.<br />

Microcladia gl<strong>and</strong>ulosa is able to grow on rocks or on other algae or sponges <strong>and</strong> it is<br />

considered an endangered species <strong>of</strong> coralligenous assemblages (Ballesteros 2006).<br />

Spatoglosum solieri has been reported for several localities <strong>of</strong> Southern Italy in<br />

low subtidal habitats (Cossu et al. 1992; Cecere et al. 1996), <strong>and</strong> it is considered rare<br />

in the north-western Mediterranean area.<br />

Among the species that we have identified, Nemastoma dichotonum, Platoma<br />

cyclocolpa, Ptilocladiopsis horrida, Rodriguezella pinnata, Schmitzia neapolitana <strong>and</strong>


Downloaded by [ ] at 01:25 17 October 2011<br />

Journal <strong>of</strong> Natural History 17<br />

Table 2. Permutational multivariate analysis <strong>of</strong> variance examining differences<br />

between horizontal <strong>and</strong> vertical surfaces <strong>and</strong> between isl<strong>and</strong> <strong>and</strong> coastal conditions.<br />

The mean square (MS) <strong>of</strong> the residual was used as denominator for each<br />

source <strong>of</strong> variability.<br />

Source df MS Pseudo-F p<br />

In 1 1016.31 2.81 0.023*<br />

Co 1 1322.82 3.65 0.011*<br />

In × Co 1 344.36 0.95 0.455<br />

Residual 6 361.97<br />

Total 9<br />

Notes: In, inclination; Co, condition; *significant effects.<br />

the above mentioned M. gl<strong>and</strong>ulosa are considered endangered species (Ballesteros<br />

2006). All these species, except R. pinnata, are found only along the smallest <strong>and</strong> least<br />

urbanized isl<strong>and</strong>s <strong>of</strong> the study area (Giannutri, Pianosa <strong>and</strong> Montecristo) supporting<br />

the hypothesis that these are very sensitive to pollution <strong>and</strong> increased sedimentation<br />

rates.<br />

Five introduced species were found in coralligenous assemblages: the Rhodophyta<br />

Womersleyella setacea, Acrothamnion preissii <strong>and</strong> Lophocladia lallem<strong>and</strong>ii <strong>and</strong><br />

the Chlorophyta Caulerpa taxifolia <strong>and</strong> C. racemosa var. cylindracea. Caulerpa taxifolia<br />

<strong>and</strong> L. lallem<strong>and</strong>ii were quite rare, being present only at Elba Isl<strong>and</strong> <strong>and</strong> Montecristo<br />

Isl<strong>and</strong> respectively. The spread <strong>of</strong> C. racemosa var. cylindracea in coralligenous<br />

habitat has already been reported <strong>and</strong> the effects <strong>of</strong> its colonization on benthic<br />

assemblages have been described (Piazzi et al. 2007). Although widespread in the<br />

study area (Piazzi et al. 2005), the alga was found in coralligenous habitat only in<br />

three localities (Elba isl<strong>and</strong>, Capraia Isl<strong>and</strong> <strong>and</strong> Livorno). On the contrary, W. setacea<br />

<strong>and</strong> A. preissii were present at all the studied locations. The spread <strong>of</strong> W. setacea<br />

<strong>and</strong> C. racemosa var. cylindracea may affect bio<strong>diversity</strong> <strong>and</strong> the natural structure <strong>of</strong><br />

coralligenous assemblages (Piazzi et al. 2007), thus the presence <strong>of</strong> these two species<br />

in many localities <strong>of</strong> the study area represents an important ecological aspect to be<br />

monitored, especially in the protected isl<strong>and</strong>s <strong>of</strong> the Tuscan Archipelago National<br />

Park.<br />

In the studied area, coralligenous assemblages showed a similar structure at large<br />

scales, as 41 species were common to all the studied locations. Among the most common<br />

species we can find species considered characteristic <strong>of</strong> this habitat (Sphacelaria<br />

plumula, Palmophyllum crassum, Acrodiscus vidovichii, Ceramium bertholdii, Eupogodon<br />

planus, Osmundea pelagosae, Polysiphonia elongata, P. subulifera, Rodriguezella<br />

strafforelloi) <strong>and</strong> generalist species also reported for other Mediterranean habitats<br />

(Cutleria chilosa, Dictyota linearis, Halopteris filicina, Sphacelaria cirrosa, Flabellia<br />

petiolata, Halimeda tuna, Valonia macrophysa, Botryocladia botryoides, Ceramium<br />

codii, Jania adhaerens, Meredithia microphylla, Peyssonnelia rubra, P. squamaria)<br />

(Boudouresque 1984). The structure <strong>of</strong> <strong>macroalgal</strong> assemblages related to coralligenous<br />

habitat depends on light intensity: shallower assemblages are characterized by<br />

the dominance <strong>of</strong> Udoteaceae <strong>and</strong> deeper assemblages are characterized by the<br />

dominance <strong>of</strong> Peyssonneliaceae <strong>and</strong> laminar Rhodophyta (Ballesteros 2006). The


Downloaded by [ ] at 01:25 17 October 2011<br />

18 L. Piazzi et al.<br />

Figure 4. Non-metric multidimensional scaling ordination based on Bray Curtis similarity calculated<br />

using presence/absence data. Notes: H, horizontal substrate; L, Livorno; A, Argentario;<br />

V, Vada; Me, Meloria; Go, Gorgona; C, Capraia; E, Elba; P, Pianosa; Mo, Montecristo;<br />

F, Formiche di Grosseto; Gn, Giannutri; Gi, Giglio.<br />

generalist algae reported in the present study may be referred to the shallower assemblage.<br />

The depth at which we can observe the shift between the two assemblages is<br />

variable <strong>and</strong> related to the local characteristics <strong>of</strong> the water. This aspect was not<br />

examined in the present study, but it represents an interesting topic that deserves further<br />

investigations. In fact, the separation between coastal localities <strong>and</strong> isl<strong>and</strong>s<br />

detected by multivariate analysis may also be linked to different depth-related environmental<br />

gradients. Coastal locations are subjected to higher sedimentation rates in<br />

the studied areas (Airoldi, Rindi et al. 1995; Airoldi, Fabiano et al. 1996; Balata et al.<br />

2005) compared with the small isl<strong>and</strong>s <strong>of</strong> the Tuscan Archipelago that are far from<br />

sources <strong>of</strong> sediment flow. Under high levels <strong>of</strong> water turbidity <strong>and</strong> sedimentation,


Downloaded by [ ] at 01:25 17 October 2011<br />

Journal <strong>of</strong> Natural History 19<br />

two effects may be possible. First, the shift between shallow <strong>and</strong> deep <strong>macroalgal</strong><br />

assemblages may occur at a shallower depth (Balata et al. 2006); second, species less<br />

sensitive to disturbance may be dominant, while species more sensitive may decrease<br />

(Balata, Piazzi <strong>and</strong> Benedetti-Cecchi 2007; Balata, Piazzi <strong>and</strong> Cinelli 2007). Both <strong>of</strong><br />

these effects can determine the structure <strong>of</strong> assemblages, creating differences between<br />

assemblages developing at the same depth.<br />

Analyses detected differences in species <strong>composition</strong> between assemblages developing<br />

on horizontal <strong>and</strong> vertical substrates both on isl<strong>and</strong>s <strong>and</strong> along the continental<br />

coasts. These results showed that beta <strong>diversity</strong> related to substrate orientation is<br />

relevant in coralligenous habitat overall larger spatial scales, highlighting the importance<br />

<strong>of</strong> this aspect in ecological surveys. Results <strong>of</strong> the present study also showed that<br />

differences between assemblages <strong>of</strong> different substrate inclination are more evident<br />

on isl<strong>and</strong>s than along the continental coasts. In fact, assemblages <strong>of</strong> horizontal<br />

substrates on small isl<strong>and</strong>s were characterized by rheophilous species such as the<br />

Ochrophyta Cystoseira spinosa, C. zosteroides, Dictyopteris polypodioides, Sargassum<br />

hornschuchii <strong>and</strong> Zanardinia typus <strong>and</strong> the Rhodophyta Osmundaria volubilis <strong>and</strong><br />

Phyllophora crispa. This kind <strong>of</strong> assemblage is considered characteristic <strong>of</strong> deepwater<br />

Mediterranean rocky reefs subjected to strong unidirectional currents (Ballesteros<br />

1990; Ballesteros et al. 1998), in agreement with environmental conditions <strong>of</strong><br />

the small isl<strong>and</strong>s <strong>of</strong> the Tuscan Archipelago. Along the coasts, assemblages developing<br />

on horizontal <strong>and</strong> vertical substrates were still separated in the analysis, but were<br />

closer to each other than their isl<strong>and</strong> counterparts. Patterns <strong>of</strong> coralligenous assemblages<br />

in relation to the inclination <strong>of</strong> substrate have already been investigated along<br />

the coasts <strong>of</strong> Tuscany. Studies sampling sessile animals (Virgilio et al. 2006) also<br />

highlighted differences between assemblages that were not evident in the structure <strong>of</strong><br />

<strong>macroalgal</strong> assemblages (Piazzi, Balata, Perusati et al. 2004). The absence <strong>of</strong> deepwater<br />

Fucales along the Tuscan coasts reduced the differences between horizontal<br />

<strong>and</strong> vertical assemblages. The lack <strong>of</strong> canopy species along continental coasts may be<br />

related to differences <strong>of</strong> hydrodynamism, but other causes may be possible. In fact,<br />

C. spinosa <strong>and</strong> other deep-water Fucales are considered sensitive to disturbance <strong>and</strong><br />

their populations decrease in areas subjected to human pressure (Ballesteros et al.<br />

1998). It is plausible that under stress conditions the differences in <strong>composition</strong><br />

among assemblages <strong>of</strong> different habitats (beta <strong>diversity</strong>) are eroded, even if they are<br />

still present; moreover, in terms <strong>of</strong> structure, few species present in both habitats<br />

become dominant (Balata, Piazzi <strong>and</strong> Benedetti-Cecchi 2007).<br />

The studied assemblages showed a high number <strong>of</strong> species, especially in relation<br />

to the smaller spatial scales examined (plot, sample), when compared with shallower<br />

assemblages in the same geographic area (24.5 ± 0.7 in Balata <strong>and</strong> Piazzi 2008).<br />

Coralligenous assemblages are characterized by high bio<strong>diversity</strong> mostly due to a<br />

higher abundance <strong>of</strong> sessile animals if compared to other Mediterranean habitats<br />

(Laubier 1966; Hong 1982). Results <strong>of</strong> this study confirm previous observations also<br />

showing high values <strong>of</strong> <strong>diversity</strong> for algal species (Balata <strong>and</strong> Piazzi 2008). This<br />

pattern is mostly evident at small spatial scales, while a high percentage <strong>of</strong> common<br />

species throughout the study area showed moderate levels <strong>of</strong> <strong>diversity</strong> at macroscales.<br />

A high number <strong>of</strong> species per sampling unit in coralligenous habitat has been attributed<br />

both to the heterogeneity <strong>of</strong> the substrate constituted by bioconstruction, which<br />

creates a high number <strong>of</strong> microhabitats with different characteristics, <strong>and</strong> to low<br />

physical disturbance that enhance the development <strong>of</strong> biotic interactions (Cocito


Downloaded by [ ] at 01:25 17 October 2011<br />

20 L. Piazzi et al.<br />

2004; Piazzi, Balata, Perusati et al. 2004; Ballesteros 2006). In fact, in subtidal marine<br />

environments, topographical heterogeneity creates refuges from consumers, <strong>of</strong>fers<br />

suitable habitat to species with varying physiological requirements, <strong>and</strong> effects<br />

<strong>patterns</strong> <strong>of</strong> recruitment (Walters <strong>and</strong> Wethey 1986; Archambault <strong>and</strong> Bourget 1996).<br />

The present study, examined many data sampled over a large area, allowing us to<br />

uncover several floristic features <strong>of</strong> coralligenous assemblages, which would be difficult<br />

to pinpoint through small-scale investigations. Results also raise new important questions<br />

to be addressed in future investigations on one <strong>of</strong> the key benthic assemblages <strong>of</strong><br />

the Mediterranean Sea.<br />

References<br />

Airoldi L, Rindi F, Cinelli F. 1995. Structure, seasonal dynamics <strong>and</strong> reproductive phenology<br />

<strong>of</strong> a filamentous turf assemblage on a sediment influenced, rocky subtidal shore. Bot Mar.<br />

38(3):227–237.<br />

Airoldi L, Fabiano M, Cinelli F. 1996. Sediment deposition <strong>and</strong> movement over a turf assemblage<br />

in a shallow rocky coastal area <strong>of</strong> the Ligurian Sea. Mar Ecol-Prog Ser. 133: 241–251.<br />

Anderson MJ. 2001. A new method for a non-parametric multivariate analysis <strong>of</strong> variance.<br />

Austr Ecol. 26:32–46.<br />

Archambault P, Bourget E. 1996. Scales <strong>of</strong> coastal heterogeneity <strong>and</strong> benthic intertidal species<br />

richness, <strong>diversity</strong> <strong>and</strong> abundance. Mar Ecol-Prog Ser. 136(1–3):111–121.<br />

Augier H, Boudouresque CF. 1975. Dix ans de recherches dans a zone du Parc National de<br />

Port-Cros (France). Troisième partie. Ann Soc Sci Nat Archeol Toulon Var. 27:131–170.<br />

Augier H, Boudouresque CF, Laborel J. 1971. Végétation marine de l’Île de Port-Cros (Parc<br />

National). II : le peuplements sciaphiles pr<strong>of</strong>ond sur substrat dur. Bull Mus Hist Nat<br />

Marseille. 31:149–168.<br />

Balata D, Piazzi L. 2008. Patterns <strong>of</strong> <strong>diversity</strong> in rocky subtidal <strong>macroalgal</strong> assemblages in<br />

relation to depth. Bot Mar. 51(6):464–471.<br />

Balata D, Piazzi L, Cecchi E, Cinelli F. 2005. Variability <strong>of</strong> Mediterranean coralligenous assemblages<br />

subject to local variation in sediment deposits. Mar Environ Res. 60(4):403–421.<br />

Balata D, Acunto S, Cinelli F. 2006. Spatio-temporal variability <strong>and</strong> vertical distribution <strong>of</strong> a<br />

low rocky subtidal assemblage in the north-west Mediterranean. Estuar Coast Shelf Sci.<br />

67(4):553–561.<br />

Balata D, Piazzi L, Benedetti-Cecchi L. 2007. Sediment disturbance <strong>and</strong> loss <strong>of</strong> beta <strong>diversity</strong><br />

on subtidal rocky reefs. Ecology. 88:2455–2461.<br />

Balata D, Piazzi L, Cinelli L. 2007. Increase <strong>of</strong> sedimentation in a subtidal system: effects on the<br />

structure <strong>and</strong> <strong>diversity</strong> <strong>of</strong> <strong>macroalgal</strong> assemblages. J Exp Mar Biol Ecol. 351(1–2):73–82.<br />

Ballesteros E. 1990. Structure <strong>and</strong> dynamics <strong>of</strong> the community <strong>of</strong> Cystoseira zosteroides (Turner) C.<br />

Agardh (Fucales, Phaeophyceae) in the northwestern Mediterranean. Sci Mar. 54(2):217–229.<br />

Ballesteros E. 2006. Mediterranean coralligenous assemblages: a synthesis <strong>of</strong> present knowledge.<br />

Oceanogr Mar Biol Annu Rev. 44:123–195.<br />

Ballesteros E, Sala E, Garrabou J, Zabala M. 1998. Community structure <strong>and</strong> frond size distribution<br />

<strong>of</strong> a deep water st<strong>and</strong> <strong>of</strong> Cystoseira spinosa (Phaeophyta) in the northwestern<br />

Mediterranean. Eur J Phycol. 33(2):121–128.<br />

Baynes TW. 1999. Factors structuring a subtidal encrusting community in the southern Gulf <strong>of</strong><br />

California. Bull Mar Sci. 64(3):419–450.<br />

Benedetti-Cecchi L, Bulleri F, Cinelli F. 2000. The interplay <strong>of</strong> physical <strong>and</strong> biological factors<br />

in maintaining mid-shore <strong>and</strong> low-shore assemblages on rocky coasts in the northwest<br />

Mediterranean. Oecologia. 123(2):406–417.<br />

Boudouresque CF. 1973. Recherche de bionomie analytique structurale et expérimentale sur<br />

les peuplements benthiques sciaphiles de Méditerranée occidentale (fraction algale). Les


Downloaded by [ ] at 01:25 17 October 2011<br />

Journal <strong>of</strong> Natural History 21<br />

peuplements sciaphiles de mode relativement calme sur substrats durs. Bull Mus Hist Nat<br />

Marseille. 33:147–225.<br />

Boudouresque CF. 1984. Groupes écologiques d’algues marines et phytocoenoses benthiques<br />

en Méditerranée nord-occidentale: une revue. G Bot Ital. 118:12–42.<br />

Cecere E, Cormaci M, Furnari G, Petrocelli A, Saracino O, Serio D. 1996. Benthic algal flora <strong>of</strong><br />

Cheradi Isl<strong>and</strong>s (Gulf <strong>of</strong> Taranto, Mediterranean Sea). Nova Hedwigia. 62(1–2):191–214.<br />

Cinelli F. 1981. Biogeography <strong>and</strong> ecology <strong>of</strong> the Sicily Channel. I. The algae <strong>of</strong> the Banks. In:<br />

Tore Levring, editor. 10th international seaweed symposium. Berlin (Germany): Walter<br />

de Gruyter. p. 235–240.<br />

Cinelli F, Fresi E, Mazzella L, Ponticelli MP. 1979. Deep algal vegetation <strong>of</strong> the western<br />

Mediterranean. G Bot Ital. 113: 173–188.<br />

Clarke KR, Warwick RM. 1994. Changes in marine communities: an approach to statistical<br />

analysis <strong>and</strong> interpretation. Plymouth (UK): Natural Environment Research Council.<br />

Cocito S. 2004. Bioconstruction <strong>and</strong> bio<strong>diversity</strong>: their mutual influence. Sci Mar. 68:137–144.<br />

Cocito S, Bedulli D, Sgorbini S. 2002. Distribution <strong>patterns</strong> <strong>of</strong> the sublittoral epibenthic<br />

assemblages on a rocky shoal in the Ligurian Sea (NW Mediterranean). Sci Mar. 66(2):<br />

175–181.<br />

Cormaci M, Lanfranco E, Borg JA, Buttigieg S, Furnari G, Micallef SA, Mifsud C, Pizzuto F,<br />

Scamacca B, Serio D. 1997. Contribution to the knowledge <strong>of</strong> benthic marine algae on<br />

rocky substrata <strong>of</strong> Maltese Isl<strong>and</strong>s (Mediterranean Sea). Bot Mar. 40(3):203–215.<br />

Cossu A, Gazale V, Baroli M. 1992. La flora marina della Sardegna: inventario delle alghe<br />

bentoniche. G Bot Ital.126:651–707.<br />

Ferdeghini F, Acunto S, Cocito S, Cinelli F. 2000. Variability at different spatial scales <strong>of</strong> a<br />

coralligenous assemblage at Giannutri Isl<strong>and</strong> (Tuscan Arcipelago, northwestern Mediterranean).<br />

Hydrobiologia. 440(1–3):27–36.<br />

Gaines SD. 1985. Herbivory <strong>and</strong> between-habitat <strong>diversity</strong>: the differential effectiveness <strong>of</strong><br />

defenses in a marine plant. Ecology. 66(2):473–485.<br />

Garrabou J, Ballesteros E. 2000. Growth <strong>of</strong> Mesophyllum alternans <strong>and</strong> Lithophyllum frondosum<br />

(Corallinales, Rhodophyta) in the northwestern Mediterranean. Eur J Phycol. 35(1):1–10.<br />

Gering JC, Crist TO. 2002. The alpha–beta–regional relationship: providing new insights into<br />

local-regional <strong>patterns</strong> <strong>of</strong> species richness <strong>and</strong> scale dependence <strong>of</strong> <strong>diversity</strong> components.<br />

Ecol Lett. 5(3):433–444.<br />

Gili JM, Ros J. 1985. Study <strong>and</strong> cartography <strong>of</strong> benthic communities <strong>of</strong> Medas Isl<strong>and</strong>s (NE<br />

Spain). PSZNI Mar Ecol. 8(6):219–238.<br />

Gómez Garreta A, Gallardo T, Ribera MA, Cormaci M, Furnari G, Giaccone G, Boudouresque<br />

CF. 2001. Checklist <strong>of</strong> the Mediterranean seaweeds. III. Rhodophyceae Rabenh. 1.<br />

Ceramiales Oltm. Bot Mar. 44(5):425–460.<br />

Gray JS. 1997. Marine Bio<strong>diversity</strong>: <strong>patterns</strong>, threats <strong>and</strong> conservation needs. Bio<strong>diversity</strong><br />

Conserv. 6(1):153–175.<br />

Gray JS. 2000. The measurement <strong>of</strong> marine species <strong>diversity</strong>, with an application to the benthic<br />

fauna <strong>of</strong> the Norwegian continental shelf. J Exp Mar Biol Ecol. 250(1–2):23–49.<br />

Guiry, M.D. & Guiry, G.M. 2009. AlgaeBase. World-wide electronic publication, National<br />

University <strong>of</strong> Irel<strong>and</strong>, Galway. Available at: http://www.algaebase.org.<br />

Hong JS. 1982. Contribution à l’étude des peuplements d’un fond de concrétionnement Coralligène<br />

dans la région marseillaise en Méditerranée nord-occidentale. Bull Kordi. 4: 27–51.<br />

Hong JS. 1983. Impact <strong>of</strong> pollution on the benthic community. Environmental impact <strong>of</strong> pollution<br />

on the benthic coraligenous community in the Gulf <strong>of</strong> Fos, northwestern Mediterranean.<br />

Bull Korean Fish Soc. 16:273–290.<br />

Laborel J. 1961. Le concréctionnement algal “coralligène” et son importance géomorphologique<br />

en Méditerranée. Rec Trav Stat Mar Endoume-Marseille. 23:37–60.<br />

Laborel J. 1987. Marine biogenic constructions in the Mediterranean. Sci Rep Port-Cros Natl<br />

Park. 13:97–126.


Downloaded by [ ] at 01:25 17 October 2011<br />

22 L. Piazzi et al.<br />

Laubier L. 1966. Le coralligène des Albères. Monographie biocenotique. Ann Inst Océan<br />

Paris. 43:137–316.<br />

Lazaridou E, Boudouresque CF. 1992. On a New <strong>Species</strong> <strong>of</strong> Ceramium, C. graecum (Rhodophyta:<br />

Ceramiaceae) from Greece. Bot Mar. 35(6):561–565.<br />

Legendre P, Borcard D, Peres-Neto PR. 2005. Analysing beta <strong>diversity</strong>: partitioning the spatial<br />

variation <strong>of</strong> community <strong>composition</strong> data. Ecol Monogr. 75(4):435–450.<br />

Parmesan C, Gaines S, Gonzalez L, Kaufman DM, Kingsolver J, Peterson AT, Sagarin R.<br />

2005. Empirical perspectives on species borders: from traditional biogeography to global<br />

change. Oikos. 108(1):58–75.<br />

Piazzi L, Cinelli F. 2002. Contributo alla conoscenza dei popolamenti <strong>macroalgal</strong>i dell’Isola di<br />

Giannutri (Arcipelago Toscano). Inf Bot Ital. 34:79–86.<br />

Piazzi L, Pardi G, Balata D, Cecchi E, Cinelli F. 2002. Seasonal dynamics <strong>of</strong> a subtidal northwestern<br />

Mediterranean <strong>macroalgal</strong> community in relation to depth <strong>and</strong> substrate inclination.<br />

Bot Mar. 45(3):243–252.<br />

Piazzi L, Balata D, Cinelli F. 2004. <strong>Species</strong> <strong>composition</strong> <strong>and</strong> morphological groups <strong>of</strong><br />

<strong>macroalgal</strong> assemblages around Gorgona Isl<strong>and</strong> (north-western Mediterranean Sea).<br />

Cryptogam Algol. 25(1):19–38.<br />

Piazzi L, Balata D, Perusati M, Cinelli F. 2004. Spatial <strong>and</strong> temporal variability <strong>of</strong> Mediterranean<br />

<strong>macroalgal</strong> coralligenous assemblages in relation to habitat <strong>and</strong> substrate inclination.<br />

Bot Mar. 47(2):105–115.<br />

Piazzi L, Meinesz A, Verlaque M, Akçali B, Antoli0 B, Argyrou M, Balata D, Ballesteros E,<br />

Calvo S, Cinelli F, Cirik S, Cossu A, D’Archino R, Djellouli SA, Javel F, Lanfranco E,<br />

Mifsud C, Pala D, Panayotidis P, Peirano A, Pergent G, Petrocelli A, Ruitton S, Žuljevi0<br />

A, Ceccherelli G. 2005. Invasion <strong>of</strong> Caulerpa racemosa var. cylindracea (Caulerpales,<br />

Chlorophyta) in the Mediterranean Sea: an assessment <strong>of</strong> the early stages <strong>of</strong> spread.<br />

Cryptogam Algol. 26(2):189–202.<br />

Piazzi L, Balata D, Cinelli F. 2007. Invasions <strong>of</strong> alien macroalgae in Mediterranean coralligenous<br />

assemblages. Cryptogam Algol. 28:289–301.<br />

Ribera MA, Gomez Garreta A, Gallardo T, Cormaci M, Furnari G, Giaccone G. 1992.<br />

Check-list <strong>of</strong> Mediterranean seaweeds. 1. Fucophyceae (Warming, 1884). Bot Mar.<br />

35(2):109–130.<br />

Ribera Siguan MA, Gomez Garreta A, Perez Ruzafa I, Barcelò Marti MC, Rull Lluch J. 2005.<br />

A new species <strong>of</strong> Dictyopteris (Dyctyotales, Phaeophyceae) from Iberian Penisula: Dictyopteris<br />

lucida sp. nov. Phycologia. 44(6):651–657.<br />

Rindi F, Sartoni G, Cinelli F. 2002. A floristic account <strong>of</strong> the benthic marine algae <strong>of</strong> Tuscany<br />

(Western Mediterranean Sea). Nova Hedwigia. 74(1–2):201–250.<br />

Sartoni G, Boddi S. 2002. Ceramium bisporum (Ceramiaceae, Rhodophyta), a new record for<br />

the Mediterranean algal flora. Bot Mar. 45(6):566–570.<br />

Sartoretto S. 1996. Vitesse de croissance et bioérosion des concretionnements “coralligènes” de<br />

Méditerranée nord-occidentale. Rapport avec les variations Holocènes du niveau marin<br />

[PhD thesis]. [Marseille (France)]: Université d’Aix-Marseille.<br />

Serio D, Alongi G, Catra M, Cormaci M, Furnari G. 2006. Changes in the benthic algal flora<br />

<strong>of</strong> Linosa Isl<strong>and</strong> (Straits <strong>of</strong> Sicily, Mediterranean Sea). Bot Mar. 49(2):135–144.<br />

Virgilio M, Airoldi L, Abbiati M. 2006. Spatial <strong>and</strong> temporal variations <strong>of</strong> assemblages in a<br />

Mediterranean coralligenous reef <strong>and</strong> relationships with surface orientation. Coral reefs.<br />

25(2):265–272.<br />

Walters LJ, Wethey DS. 1986. Surface topography influences competitive hierarchies on<br />

marine hard substrata: a field experiment. Bio Bull. 170(3):441–449.<br />

Whittaker RH. 1972. Evolution <strong>and</strong> measurement <strong>of</strong> species <strong>diversity</strong>. Taxon. 21:213–251.<br />

Witman JD, Sebens KP. 1991. Distribution <strong>and</strong> ecology <strong>of</strong> sponges at a subtidal rock ledge in<br />

the central Gulf <strong>of</strong> Maine. In: Rützler K, editor. New perspectives in sponge biology.<br />

Washington (DC): Smithsonian Institution Press. p. 391–396.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!