07.04.2013 Views

HYL Solutions For Quality DRI Production In India - Tenova

HYL Solutions For Quality DRI Production In India - Tenova

HYL Solutions For Quality DRI Production In India - Tenova

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>HYL</strong> <strong>Solutions</strong> <strong>For</strong> <strong>Quality</strong><br />

<strong>DRI</strong> <strong>Production</strong> in <strong>In</strong>dia<br />

Steel & Metallurgy 3rd <strong>In</strong>ternational<br />

Conference on Raw Materials &<br />

Technology<br />

Bhubaneswar, Orissa, <strong>In</strong>dia<br />

July 2007


About Our New Name and Logo<br />

<strong>HYL</strong> Technologies became part of Techint<br />

Technologies in 2005<br />

Techint Technologies is now called<br />

<strong>Tenova</strong><br />

<strong>HYL</strong> is now <strong>Tenova</strong> <strong>HYL</strong>


Ironmaking Needs <strong>For</strong> <strong>In</strong>dia<br />

<strong>In</strong>dian <strong>DRI</strong> production is chiefly coal-based<br />

•Small plant sizes<br />

•Environmentally problematic<br />

•But low in capital requirements<br />

Gas pipelines will soon make natural gas<br />

available<br />

Coal is still more abundant, so a cleaner<br />

solution is needed for future growth<br />

Iron ore is abundant; value-added product<br />

is needed to increase revenues<br />

The merchant DR market is very large but<br />

HBI production requires added cost and<br />

higher volumes<br />

… what are the best options for <strong>In</strong>dia??


<strong>DRI</strong> vs. HBI<br />

Two different forms of the same<br />

product:<br />

• <strong>DRI</strong> is the traditional form, in<br />

either pellet or lump ore form<br />

• HBI is compressed <strong>DRI</strong><br />

Two different uses (theoretically) :<br />

• <strong>DRI</strong> is for onsite production and<br />

use in EAF meltshops<br />

• HBI is for commercial shipment<br />

to customers worldwide, usually<br />

by sea<br />

HBI is the form adopted for<br />

merchant sale of reduced iron, since<br />

it is deemed safer for shipping and<br />

handling


The Reality: World DR Shipments<br />

Shipments of product historically<br />

includes both <strong>DRI</strong> and HBI<br />

• Shipments tend to average 50%<br />

for either product form<br />

• Shipments by land or sea are<br />

also usually 50% for each<br />

If <strong>DRI</strong> can safely be shipped, then<br />

the cost of producing HBI has to be<br />

justified.<br />

Cost of producing HBI is $6-15 per<br />

ton higher than for <strong>DRI</strong>.


Market Scenario<br />

World HBI/<strong>DRI</strong> shipments for 2006<br />

14.56 M tons<br />

HBI<br />

46%<br />

<strong>DRI</strong><br />

54%<br />

Based on experience from <strong>HYL</strong> and<br />

other producers, <strong>DRI</strong> shipments are<br />

mainly characterized by the<br />

following target markets:<br />

• <strong>For</strong> internal use in mills with own<br />

DR plants.<br />

• <strong>For</strong> regional export - land<br />

transport.<br />

• Particular shipments from own<br />

plants with own harbors to other<br />

own plants with own harbors.<br />

• As merchant product from some<br />

plants.


Metallics for the EAF<br />

Onsite <strong>DRI</strong> production can solve or minimize reliance on fluctuating market<br />

conditions.<br />

Metallics have to be bought on the local and/or foreign market if not produced<br />

onsite.<br />

Until recently, gas-based <strong>DRI</strong> production was only available from 0.5 million<br />

tpy and higher capacity modules.<br />

• Advantage of higher quality <strong>DRI</strong> products<br />

• Disadvantage in capital cost compared to coal-based plants (in <strong>In</strong>dia)


A Technology Solution<br />

The <strong>HYL</strong> Process has always had independent reforming and reduction<br />

sections<br />

By eliminating the external reformer – the reforming, reduction and<br />

carburization occurs within the shaft furnace<br />

This concept, called the ZR Process, has operated succesfully since 1998


Smaller, More Efficient Plant & Process<br />

The <strong>HYL</strong> ZR Process plant is much smaller than a conventional DR plant<br />

• High pressure operation requires smaller equipment<br />

• No reformer means significant savings<br />

• Efficiencies in fabrication and construction further reduce plant investment<br />

cost<br />

• Equipment and structure redesign made possible the <strong>HYL</strong> Micro-Module


<strong>HYL</strong> Micro-Module DR Plant<br />

200,000 mtpy plant size<br />

• Advanced <strong>HYL</strong> ZR technology<br />

• Low investment cost<br />

• High quality, high carbon <strong>DRI</strong>


Why a Micro-Module?<br />

<strong>For</strong> steel mills, a <strong>DRI</strong> integrated facility presents the following advantages:<br />

• <strong>DRI</strong> would be available on site<br />

• Liquid Steel quality is improved by using <strong>DRI</strong><br />

• <strong>DRI</strong> production rate can be tailored to meet the requirements of the<br />

Minimill<br />

<strong>For</strong> merchant suppliers:<br />

• High carbon <strong>DRI</strong> can be produced at lower capex and operating expense<br />

than for HBI<br />

• High carbon <strong>DRI</strong> can be safely transported to steel mills<br />

• Small plants can more easily satisfy local markets


Why a Micro-Module?<br />

Simple and compact plant:<br />

• Low maintenance cost<br />

• Minimum manpower<br />

requirements<br />

Easy operation<br />

Low operating cost:<br />

• Flexibility in processing<br />

wide range of cheaper<br />

iron ores (pellets/lumps)<br />

Uniform and flexible high <strong>DRI</strong><br />

quality adjusted to meet any steel<br />

specification:<br />

≥ 93% metallization & 2-5%<br />

Carbon<br />

The total absence of residual<br />

elements makes it ideal for the<br />

EAF:<br />

To dilute the residuals found in<br />

scrap.<br />

<strong>For</strong> up to 100% of the furnace<br />

charge.<br />

It is also a metallic charge for<br />

blast furnaces and foundries.


<strong>HYL</strong> ZR Process Description<br />

The <strong>HYL</strong> ZR process includes the<br />

following features which, when<br />

combined, eliminate<br />

the need for a reformer:<br />

• Partial combustion of the<br />

reducing gas.<br />

CO 2<br />

• “<strong>In</strong> situ” reforming in the lower<br />

part of the reactor’s reduction<br />

zone.<br />

• Adjustable composition of the<br />

reducing gas.<br />

Natural<br />

Gas<br />

Humidifier<br />

Fuel<br />

H 2 O<br />

Oxygen<br />

Iron<br />

Ore<br />

<strong>DRI</strong>


Micro-Module Process Scheme<br />

PG<br />

Compressor<br />

NG<br />

CO 2<br />

H 2 O<br />

Humidifier<br />

Heat<br />

Recuperator<br />

Iron Ore<br />

PG Heater<br />

Fuel<br />

Oxygen<br />

<strong>DRI</strong><br />

<strong>HYL</strong><br />

Reactor<br />

Quench<br />

Tower<br />

<strong>In</strong>-situ <strong>In</strong> situ Reforming<br />

CH4 + H2O CO + 3H2 CH4 + CO2 2CO + 2H2 Reduction<br />

Fe2O3 +3CO 2Fe Fe° + 3CO2 Fe2O3 +3H2 2Fe Fe° + 3H2O 3Fe° + CH 4<br />

Carburization<br />

Fe 3C+ 2H2


Basis of Design<br />

Product: Cold <strong>DRI</strong><br />

Metallization: 93%<br />

Carbon: 3.5%<br />

Hourly nominal capacity: 26 t /hr<br />

Annual Capacity 200,000 t /year<br />

Operating hours per year: 7,800


Expected Consumption Figures<br />

Product Type<br />

Cold <strong>DRI</strong><br />

Metallization ≥ 93%<br />

Carbon 3.50%<br />

Item unit<br />

Specific<br />

Consumption<br />

Iron ore (t/t) 1.38<br />

Natural gas (Gcal/t) 2.25<br />

Electricity (kWh/t) 90<br />

Oxygen (Nm 3 /t) 60<br />

Water (m 3 /t) 1.0<br />

Nitrogen (Nm 3 /t) 14<br />

Labour (m-m/t) 0.15<br />

Maintenance & supplies ($US/t) 3.0<br />

Others ($US/t) 0.4


Plant Concept & Battery Limits<br />

Utilities<br />

Nat.Gas, Oxygen, Nitrogen,<br />

Electricity, <strong>In</strong>dustrial water,<br />

Potable water<br />

DR Plant Boundary<br />

DR Plant Boundary<br />

Reduction circuit Raw Material Handling<br />

Reactor<br />

Cooling circuit<br />

Iron Ore Pellet Stockyard<br />

Product Handling<br />

Meltshop


<strong>HYL</strong> Micro-Module: Plant Layout<br />

52 m.<br />

67000<br />

SULPHURIC<br />

ACID ADDITION<br />

SYSTEM<br />

WS 546-U<br />

PCW PUMP<br />

CWS<br />

533-J2<br />

PCW PUMP<br />

C WS 533-J1<br />

RACK<br />

C<br />

SETTLING POND<br />

WS 544-G1/2<br />

PCW HOT WELL<br />

WS 339-G<br />

CLARIFIER<br />

WS 545-G<br />

C<br />

WATER FILTERING<br />

SOFTENING<br />

C<br />

WS 549-U<br />

C SYSTEM<br />

WS 553-U CO 333-E<br />

ECW PUMPS L.P.<br />

WS 535-J<br />

OVERFLOWING<br />

PUMP INSTRUMENT<br />

WS 540-J<br />

AIR DRYER<br />

CUT<br />

453-U1/2<br />

AIR STORAGE TANK<br />

C UT 456-F<br />

AIR COMPRESSOR<br />

C UT 451-J<br />

QUENCHING<br />

COOLING WATER<br />

PUMPS<br />

WS 536-J1/2<br />

ECW PUMPS<br />

SELECTED<br />

SERVICES<br />

WS 546-J1/2<br />

FILTERED WATER<br />

PUMPS<br />

WS 549-U<br />

CHEMICAL ADDING<br />

SYSTEM<br />

WS 522-U<br />

EQUIPMENT/QUENCHING COOLING TOWER<br />

WS 547-U<br />

C<br />

PROCESS GAS<br />

COMPRESSOR<br />

PG 436-J<br />

70 90000 m.<br />

CO 350-J<br />

NATURAL GAS<br />

K.O DRUM<br />

C RG 611-F<br />

INSTRUMENT AIR<br />

K.O. DRUM<br />

C UT 454-F<br />

NITROGEN<br />

C STORAGE TANK<br />

UT 429-F<br />

CO 331-J<br />

CO 318-J<br />

CO 317-F<br />

CO 349-F<br />

CO 336-C<br />

W.C.<br />

SWITCH GEAR<br />

FIRST LEVEL<br />

CO 323-E<br />

PROCESS GAS<br />

CCOMP.<br />

AFTERCOOLER<br />

PG 671-F<br />

TRANSFORMERS<br />

(SECOND LEVEL)<br />

CO 341-F<br />

CONTROL ROOM<br />

CO 320-C<br />

ROOM OF<br />

UPS<br />

CO 322-J<br />

CO 341-C<br />

OFFICE<br />

KITCHEN<br />

C<br />

CO 324-E<br />

CO 338-G<br />

CO 337-G<br />

CO 327-G<br />

HUMIDIFIER<br />

PG 622-E<br />

PROCESS GAS<br />

CQUENCH<br />

TOWER<br />

PG 231-E<br />

CO 336-J<br />

COOLING<br />

C GAS QUENCH<br />

TOWER CG 433-E<br />

CO 316-C<br />

CO 348-B CO 325-F<br />

CO 325-J<br />

CO 313-F CO 315-C<br />

RACK<br />

C<br />

HUMIDIFIER<br />

WATER PUMPS<br />

PG 631-J 1/2<br />

C PROCESS<br />

GAS<br />

HEATER<br />

PG 302-B<br />

REACTOR<br />

C RE 221-D<br />

<strong>DRI</strong> CONVEYOR


Reactor Charging & Tower<br />

EL. 4.400<br />

C<br />

Simplified reactor tower arrangement<br />

consisting of single-leg discharge<br />

system and small reactor of 2.5 m ID.<br />

CONVEYOR TO<br />

IRON ORE BIN<br />

11^<br />

EL. 65.890<br />

C<br />

C<br />

M.R.<br />

M.R.<br />

M.R.<br />

M.R.<br />

C<br />

C<br />

B A B A<br />

C REACTOR<br />

TOWER<br />

C<br />

A B<br />

EL. 17.885<br />

C<br />

N.P.T. 0.000


High-C <strong>DRI</strong> vs. HBI <strong>Production</strong> Costs<br />

Metallization %<br />

Carbon %<br />

High-Carbon <strong>DRI</strong> vs. HBI <strong>Production</strong> Cost Analysis<br />

Total <strong>DRI</strong>/Saleable ratio 1.054<br />

based on published data<br />

1.016<br />

Price Consump. Cost Consump. Cost<br />

Unit<br />

US$/unit<br />

ENERGIRON-ZR<br />

High-Carbon <strong>DRI</strong><br />

94%<br />

4.0%<br />

Unit/t Saleable<br />

<strong>DRI</strong><br />

US$/t<br />

Saleable <strong>DRI</strong><br />

Unit/t<br />

Saleable HBI<br />

US$/t<br />

Saleable HBI<br />

DR Plant<br />

Iron ore pellets t 80.00 1.45 116.00 1.47 117.87<br />

Lump ore t 0.00 0.00 0.00 0.00 0.00<br />

Natural gas Gcal 3.00 2.44 7.33 2.40 7.19<br />

Electricity kWh 0.035 121 4.24 117 4.09<br />

Oxygen kWh 0.042 included 0.00 12.2 0.51<br />

Water m 3<br />

1.60 1.21 1.94 1.55 2.48<br />

Other consumables US$ 1.14 1.70<br />

Maintenance US$ 3.3 7.1<br />

Labour m-h 8.00 0.12 0.95 0.15 1.20<br />

Capital cost difference US$ 4.20<br />

Total Saleable <strong>DRI</strong>/HBI cost FOB US$/t 134.87 146.36<br />

Transport-<strong>In</strong>surance cost diff. US$/t 3.00<br />

<strong>In</strong>cluding transport losses CIF US$/t 2% losses 140.63 0.5% losses 147.09<br />

Note: All Consumption figures are affected by the ratio of Total <strong>DRI</strong>/Saleable Product<br />

Conventional<br />

HBI Plant<br />

93%<br />

1.5%


High-Carbon <strong>DRI</strong><br />

100*Combined Carbon/Total Carbon<br />

Combined Carbon (cementite or iron carbide - Fe3C) in<br />

Energiron High Carbide Iron<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

2 3 4 5 6 7<br />

% Total Carbon in <strong>DRI</strong><br />

A <strong>DRI</strong> with 4% Carbon contains more than 50% of<br />

Fe3C. The high percentage of Fe3C in the <strong>DRI</strong> of the 4M<br />

plant makes the product very stable.<br />

<strong>DRI</strong> Analysis – 4M Plant:<br />

Metallisation 94%<br />

Carbon 4%<br />

Fe° 83.0%<br />

Fe Total 88.3%<br />

Fe 3 C 55.1%<br />

Gangue 6.2%<br />

Most of the Carbon in the <strong>DRI</strong> is present as Fe3C, for a Carbon content of 4% approx. 95% of it is<br />

present as Fe3C. Every 1% of combined Carbon corresponds to<br />

13.5% of Fe3C.


Effect of High Carbon<br />

High carbon content in <strong>DRI</strong>, especially in chemically combined form (iron<br />

carbide) has significant advantages:<br />

• <strong>For</strong> steelmaking, it provides a source of chemical energy, reducing<br />

steelmaking costs and improving furnace yields<br />

• As a rule of thumb each 1% C in the <strong>DRI</strong> reduces power needs by about 30<br />

kWh/t liquid steel and the tap-to-tap time by about 2.5 min./heat.<br />

• It increases product quality<br />

• It is more stable than conventional <strong>DRI</strong>, making it easier to store and<br />

transport


High Carbide Iron vs. conventional <strong>DRI</strong><br />

<strong>In</strong> general, High Carbide Iron is more stable than conventional <strong>DRI</strong>. This has<br />

been proven through specific tests.<br />

LTS O2/TON HR<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

REACTIVITY OF <strong>DRI</strong> IN CONTACT WITH AIR<br />

<strong>HYL</strong> <strong>DRI</strong> Characteristics:<br />

<strong>DRI</strong> -ZR<br />

Mtz. = 94%, C = 4% (> 90% as Fe3C)<br />

<strong>DRI</strong> -w/Reformer<br />

Mtz. = 94%, C = 2%<br />

0 0.5 1 1.5 2<br />

TIME (DAYS)<br />

<strong>HYL</strong> ZR <strong>HYL</strong> III


High Carbide Iron vs. conventional <strong>DRI</strong><br />

<strong>DRI</strong> samples from Ternium Hylsa 3M5 plant before and after conversion to ZR<br />

Scheme for high carbon <strong>DRI</strong>. Note samples before were 2% - what others<br />

consider to be “high carbon”.<br />

LTS O2/TON HR<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

REACTIVITY OF <strong>DRI</strong> IN CONTACT WITH AIR+WATER<br />

<strong>HYL</strong> <strong>DRI</strong> Characteristics:<br />

<strong>DRI</strong> -ZR<br />

Mtz. = 94%, C = 4% (> 90% as Fe3C)<br />

<strong>DRI</strong> -w/Reformer<br />

Mtz. = 94%, C = 2%<br />

0 0.5 1 1.5 2<br />

TIME (DAYS)<br />

<strong>HYL</strong> ZR <strong>HYL</strong> III


High Carbide Iron vs. conventional <strong>DRI</strong><br />

These test results with salty water are of relevance due to the low risks for<br />

High Carbide <strong>DRI</strong> overseas transportation.<br />

Lts O2/Ton-Hr<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

REACTIVITY OF <strong>DRI</strong> IN CONTACT WITH<br />

SALTY WATER + AIR<br />

<strong>HYL</strong> ZR Salty<br />

Water+Air<br />

<strong>HYL</strong> III<br />

w/Reformer<br />

Salty<br />

Water+Air<br />

0 2 4 6 8 10 12<br />

Time (Hrs)


<strong>HYL</strong> Micro-Module Supply<br />

Electrotherm <strong>In</strong>dia Ltd is the exclusive supplier of the <strong>HYL</strong> Micro-Module<br />

• Joint development of redesigned engineering<br />

• Markets and supplies the Micro-Modules, in a capacity range of 200,000 –<br />

400,000 mtpy<br />

• As EPC Contractor, completes the projects on turnkey basis


Additional Electrotherm Synergy<br />

ET also supplies electric arc and induction furnaces and other steel plant<br />

equipment like Metal Refining Konverters (MRK), DC Plasma Ladle Refining<br />

Furnaces, etc.<br />

Can design and install complete “mini” integrated plants based on <strong>DRI</strong> and<br />

electric furnaces (MF <strong>In</strong>duction Furnaces, Channel <strong>In</strong>duction Furnaces,<br />

Electric Arc Furnaces).<br />

Over 12 million tonnes of steel is produced on ET-supplied <strong>In</strong>duction<br />

Furnaces.


First Efforts<br />

The first Micro-Module has been contracted for Al Nasser <strong>In</strong>dustrial<br />

Enterprises of Abu Dhabi, UAE<br />

• 200,000 tonnes/year<br />

• Basic Engineering completed, Detailed Engineering in progress<br />

• Site Mobilisation started<br />

• Startup during 2008


<strong>HYL</strong> ZR Process<br />

Alternative Configurations


<strong>HYL</strong> ZR Plants: Module Sizes<br />

<strong>HYL</strong> currently offers the following standard single-reactor modules:<br />

• Micro-Module: 200,000 tpy<br />

• Mini-Module: 500,000 tpy<br />

• Midi-Module: 800,000 tpy<br />

• Mega-Module: 1,200,000 tpy<br />

• Macro-Module: 1,600,000 tpy


Flexibility for Other Reducing Gases<br />

Conventional reformed gas<br />

Coke oven gas<br />

Gases from coal gasification processes<br />

Gases from hydrocarbon gasification<br />

Gases from smelter gasifiers<br />

Hydrogen<br />

Others…


Use of Syngas from Coal Gasification<br />

Coal Oxygen Iron Ore<br />

Coal Gasifier<br />

CxHy + O 2 = CO 2 + H 2O O +<br />

H2 + CO<br />

<strong>HYL</strong> DR Plant<br />

Fe 2O3 + 3H2 = 2Fe + 3H2O Fe2O3 + 3CO = 2Fe + 3CO 2<br />

<strong>DRI</strong>


<strong>HYL</strong> Process Scheme for Syngas<br />

Coal<br />

Gasifier<br />

WHB &<br />

Cooling<br />

Gas<br />

Conditioning<br />

Cooler<br />

CO 2<br />

Removal<br />

Gas conditioning<br />

Sulphur<br />

removal Plant<br />

P. Gas<br />

Compressor<br />

CO 2<br />

Expander or<br />

compressor<br />

H 2O<br />

Humidifier<br />

Fuel<br />

<strong>HYL</strong> Module<br />

PG Heater<br />

Oxygen<br />

Iron<br />

Ore<br />

<strong>DRI</strong><br />

DR<br />

Reactor


Plant configuration with Syngas from coal gasification<br />

Lurgi Coal<br />

Gasifier<br />

WHB &<br />

Cooling<br />

Gas<br />

Conditioning<br />

(Shifter)<br />

Cooler<br />

Stream 1 2 3 4<br />

Concept Syngas Decarbonated<br />

Syngas<br />

Sulphur<br />

removal Plant<br />

1 2<br />

CO 2<br />

Absorber<br />

Syngas<br />

to DR<br />

P. Gas<br />

Compressor<br />

CO 2<br />

Absorber<br />

Expander<br />

Decarbonated<br />

Recycling Gas<br />

Flow-Nm 3 /t 849 632 632 1,126<br />

Temp.-°C 40 42 15 42<br />

Press.-kg/cm 2 g 27.5 27.0 8.5 7.7<br />

Energy-GCal/t 2.21 2.21 2.21 ---<br />

H 2 55 55 49<br />

CO 25 25 16<br />

CO 2 2 2 12<br />

CH 4 16 16 17<br />

N 2 1 1 5<br />

H 2O 1 1 1<br />

3<br />

4<br />

H 2O<br />

Humidifier<br />

Fuel<br />

PG Heater<br />

Iron Ore<br />

<strong>DRI</strong><br />

DR<br />

Reactor


Syngas requirements for <strong>DRI</strong> <strong>Production</strong><br />

Comparative Reduction Gas Analysis<br />

Item (%<br />

volume)<br />

Syngas<br />

Make-up<br />

Syngas to<br />

Reactor<br />

Reduc. gas in<br />

<strong>HYL</strong> ZR Scheme<br />

using natural<br />

gas with 100% insitu<br />

reforming<br />

H 2 39 54 50<br />

CO 24 20 15<br />

CH 4 + C nH m 10 18 25<br />

CO 2 26 2 3<br />

H 2O 0.3 4 4<br />

(H 2+CO)/<br />

(CO 2+H 2O) 13.3 9.3<br />

N 2 0.2 4 3<br />

Similarity of reducing gases at reactor inlet.<br />

There are no technological risks because of<br />

this similarity.<br />

Syngas<br />

Process<br />

+ Fuel<br />

9.5 GJ/t<br />

Pellets/Lump ore<br />

1,38 t<br />

DR - Plant<br />

<strong>DRI</strong><br />

1,0 t<br />

Tail Gas<br />

0 GJ/t


Consumption Figures<br />

Syngas from coal gasification – Lurgi gasifier<br />

Item ENERGIRON<br />

Unit Scheme<br />

<strong>DRI</strong> <strong>Quality</strong><br />

- Metallization ≥ 93%<br />

- Carbon ≥ 2.5%<br />

Gas quality H 2/CO<br />

Consumption Figures<br />

2.21<br />

- Syngas make-up Nm 3 /t <strong>DRI</strong> 632<br />

equivalent to: Gcal/t <strong>DRI</strong> 2.2<br />

- Iron ore t/t <strong>DRI</strong> 1.4<br />

- Electricity incl. Syngas expander kWh/t <strong>DRI</strong> 67<br />

- Electricity excl. Syngas expander kWh/t <strong>DRI</strong> 88<br />

- Oxygen (only for Lurgi-type gasifier,<br />

which presents CH 4)<br />

Nm 3 /t <strong>DRI</strong> 5<br />

- Water m 3 /t <strong>DRI</strong> 1.3<br />

- Nitrogen Nm 3 - Total Steam to integrated gasifier-<br />

/t <strong>DRI</strong> 12<br />

DR CO 2 removal plant (wich can be<br />

partly produced in the gasifier system)<br />

kg/t <strong>DRI</strong> 1000


Use of Syngas<br />

Synergy with coal gasification technologies<br />

Depending on particular applications, optional schemes, which can be<br />

incorporated, are:<br />

1. <strong>In</strong> plant electrical generation<br />

<strong>For</strong> high-pressure gasifiers, it is possible to install a turbo expander in the<br />

treated syngas stream before being fed to the DR module. This allow<br />

potential power savings of about 20-40 kWh/tonne of <strong>DRI</strong> (depending on<br />

gasifier technology), taking advantage of the gasifier high operating<br />

pressure.<br />

2. Carbon dioxide (CO 2 ) recovery<br />

<strong>For</strong> sale as by-product or selective disposal/conversion.


Most Suitable Technology for Using Syngas<br />

Comparing the basic <strong>HYL</strong> Process scheme to the one required for syngas<br />

from coal gasification, the following main aspects related to the <strong>HYL</strong> Process<br />

application can be easily noticed:<br />

General process scheme<br />

No major changes and innovations are required in the basic process<br />

scheme. The reduction section is incorporated as it is in typical <strong>HYL</strong> ZR<br />

plants.<br />

Synergy with the coal gasification unit, sharing common CO 2 removal plant<br />

components, by taking advantages of the <strong>HYL</strong> high operating pressure,<br />

chemical absorption and low CO 2 concentration to the DR plant.<br />

H 2 -rich gases use in DR plants<br />

Syngas is conditioned through shifting and/or CO 2 removal to properly adjust<br />

the H 2 /CO in the reducing gases to the <strong>HYL</strong> Process.<br />

Optimisation of Process syngas consumption<br />

Recycling of reducing gases, through CO 2 removal, minimizes syngas makeup.


Plant Tests<br />

Plant experience with Syngas<br />

<strong>HYL</strong> R & D has<br />

simulated, in the<br />

demonstration plant, the<br />

gas composition of typical<br />

Syngas, and a process<br />

scheme for using this gas<br />

has been developed.<br />

The reduction process is<br />

feasible for producing <strong>DRI</strong><br />

with 93-94% metallization<br />

and ~ 1.5% carbon.<br />

The reducing gas<br />

temperature at the reactor<br />

inlet about 950°C and the<br />

treated Syngas<br />

consumption (make–up)<br />

for PROCESS only is<br />

estimated to be about 625-<br />

650 Nm 3 /ton <strong>DRI</strong>.


Conclusions<br />

The <strong>HYL</strong> Micro-Module is a low cost, high quality option for small steel<br />

producers or merchant suppliers to produce high quality, High Carbide Iron.<br />

The independent operation of the <strong>HYL</strong> ZR Process has enabled this dramatic<br />

reduction in DR plant size, while maintaining quality and reliability.<br />

Through Electrotherm <strong>In</strong>dia Ltd., <strong>HYL</strong> can supply complete Micro-Module<br />

packages.<br />

<strong>HYL</strong> also offers ZR Plants with other reducing gas sources, depending on the<br />

specific market.<br />

<strong>For</strong> the <strong>In</strong>dian Subcontinent, a number of these options such as using Syngas<br />

are viable in addition to the Micro-Module.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!