07.04.2013 Views

1 Chemistry 4420 Dr. Y. Zhao Topic 8 Pericyclic Reactions

1 Chemistry 4420 Dr. Y. Zhao Topic 8 Pericyclic Reactions

1 Chemistry 4420 Dr. Y. Zhao Topic 8 Pericyclic Reactions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chemistry</strong> <strong>4420</strong> <strong>Dr</strong>. Y. <strong>Zhao</strong><br />

<strong>Topic</strong> 8 <strong>Pericyclic</strong> <strong>Reactions</strong><br />

• Classes of Pericylcic <strong>Reactions</strong><br />

• Electrocyclic <strong>Reactions</strong><br />

• Cylcoaddition and Cycloreversion <strong>Reactions</strong><br />

• Sigmatropic Rearrangements<br />

• Ene <strong>Reactions</strong><br />

1. Classes of <strong>Pericyclic</strong> <strong>Reactions</strong><br />

<strong>Pericyclic</strong> reactions refer to the reactions in which bonds<br />

are formed and broken at the termini of one or more<br />

conjugated π-systems. The electrons move around in a<br />

circle, all bonds are made and broken simultaneously.<br />

There is no intermediates intervene (concertedness).<br />

<strong>Pericyclic</strong> reactions can be classified in four types:<br />

(a) Electrocyclic reactions (ring opening or closing)<br />

(b) Cylcoaddition and Cylcoreversion reactions<br />

(c) Sigmatropic Rearrangement<br />

(d) Ene <strong>Reactions</strong><br />

Examples of various pericylcic reactions<br />

(a) Electrocyclic reactions<br />

R<br />

4π electron ring opening 6π electron ring closing<br />

O<br />

R<br />

2π electron ring closing<br />

O<br />

R R<br />

O<br />

R R<br />

(b) Cycloaddition and Cycloreversion reactions<br />

Note that, there are two conventions to depict cycloaddition<br />

reaction, both using [m + n]; however, the meaning of m and<br />

n are different. In the old rule, m and n denote the number<br />

of atoms in each components. Woodward-Hoffmann later<br />

revised the rule by denoting m and n the number of<br />

electrons in each component. So, be careful with the<br />

different usages in the literature.<br />

O O<br />

Ph<br />

H<br />

[4 + 2] cycloaddition or Diels-Alder reaction [2 + 2] cycloaddition reaction<br />

O COOEt<br />

O<br />

COOEt<br />

Ph N<br />

Ph N<br />

Ph<br />

COOEt<br />

Ph<br />

COOEt<br />

[3 + 2] or 1,3-dipolar cycloaddition reaction<br />

O<br />

C<br />

H<br />

H<br />

H<br />

1<br />

O<br />

Ph


<strong>Chemistry</strong> <strong>4420</strong> <strong>Dr</strong>. Y. <strong>Zhao</strong><br />

Other cycloadditions including [8 +2], [4 + 3] and [6 + 4]<br />

cycloadditions are also known. A special class<br />

cycloadditions where one of the component is a single<br />

atom are called cheletropic reactions. For example, [2 +1]<br />

and retro-[4 + 1] cycloadditions.<br />

H<br />

Cl<br />

Cl<br />

C<br />

Cl Cl<br />

H<br />

[2 + 1] cycloaddition or carbene insertion<br />

Ph<br />

Ph<br />

O<br />

Ph<br />

Ph<br />

Ph<br />

Retr o-[4 + 1] cycload dition<br />

Ph<br />

Ph Ph<br />

(c) Sigmatropic Rearrangements<br />

Sigmatropic rearrangements involve the cleavage of a σbond<br />

connecting the end of one fragment with the end of<br />

another, with concerted formation of another σ-bond at the<br />

other ends of the fragments. Like cycloaddition,<br />

sigamtropic rearrangement also uses [m + n] to indicate<br />

the atoms involved in each component.<br />

O<br />

Ph<br />

O<br />

[ 3,3] sigmatropic rearrangement<br />

or Oxy-Cope rearrangement<br />

R O<br />

R O<br />

[3,3] sigmatropic rearrangement<br />

or Claisen rearrangement<br />

OBn<br />

H<br />

H<br />

H<br />

H<br />

[1,5] sigmatropic rearrangement<br />

Ph<br />

H<br />

OBn<br />

Why [3,3]?<br />

O<br />

1 2<br />

bond to be broken 1' 3' Ph bond to be formed<br />

2'<br />

R<br />

HO<br />

H<br />

3<br />

Cl<br />

Cl<br />

H<br />

[1,2] sigmatropic rearrangement<br />

or 1,2-alkyl shift<br />

H<br />

H<br />

H<br />

CH3<br />

H3C<br />

[1,3] sigmatropic rearrangement<br />

(d) Ene <strong>Reactions</strong><br />

H<br />

H<br />

H<br />

O<br />

S<br />

Ph<br />

O<br />

S<br />

Ph<br />

[2,3] sigmatropic rearrangement<br />

The ene reaction is always a 6-electron reaction. It shares<br />

some characteristics with the [4 + 2] cycloaddition and the<br />

[1,5] sigmatropic rearrangement.<br />

H<br />

H<br />

Alder ene reaction<br />

H<br />

O<br />

Se Ph<br />

O<br />

H<br />

H<br />

retro-hetero-ene reaction<br />

O +<br />

Ph<br />

H O<br />

O<br />

Se Ph<br />

Summary of <strong>Pericyclic</strong> <strong>Reactions</strong><br />

electrocyclic reaction<br />

one π bond one σ bond<br />

sigmatropic rearrangement<br />

oneσ bond new σ bond<br />

H<br />

O<br />

Ph<br />

retro-ene reaction<br />

electrocyclic reaction<br />

two π bond two σ bond<br />

H H<br />

ene reaction<br />

oneπ bond one σ bond<br />

andoneσ bond migrate<br />

+<br />

H<br />

O<br />

O<br />

2


<strong>Chemistry</strong> <strong>4420</strong> <strong>Dr</strong>. Y. <strong>Zhao</strong><br />

• Some Features of <strong>Pericyclic</strong> <strong>Reactions</strong><br />

(a) <strong>Pericyclic</strong> reactions are stereospecific<br />

CH3 CH3 175<br />

H<br />

H<br />

oC CH 3<br />

H<br />

H<br />

CH3 CH3 H 175<br />

H<br />

CH3 oC Stereospecificity (stereospecific): A reaction is termed<br />

stereospecific if starting materials differing only in their<br />

configuration are converted into stereoisomeric products.<br />

According to this definition, a stereospecific process is<br />

necessarily stereoselective but not all stereoselective<br />

processes are stereospecific. Stereospecificity may be total<br />

(100%) or partial. The term is also applied to situations where<br />

reaction can be performed with only one stereoisomer. For<br />

example, the exclusive formation of trans-1,2-dibromocyclohexane<br />

upon bromination of cyclohexene is a<br />

stereospecific process, although the analogous reaction with<br />

(E)-cyclohexene has not been performed.<br />

(b) <strong>Pericyclic</strong> reactions are dependent on conditions<br />

CH 3<br />

CH3 H<br />

H<br />

CH 3<br />

H<br />

H<br />

CH 3<br />

2. Electrocylcic <strong>Reactions</strong><br />

hv<br />

CH 3<br />

H<br />

H<br />

CH 3<br />

• Conrotatory and Distrotatory Processes<br />

H 3C CH 3<br />

H<br />

H<br />

CH 3 H<br />

conrotatory (rotate in the same direction)<br />

H<br />

CH 3<br />

H 3C CH 3<br />

H<br />

H<br />

H 3C<br />

CH 3<br />

CH 3<br />

H<br />

H<br />

H H<br />

disrotatory (rotate in different directions)<br />

CH 3<br />

The terms were coined by Woodward and Hoffmann in 1965.<br />

The Woodward-Hoffmann Woodward Hoffmann Rules<br />

4n π e<br />

4n + 2 π e<br />

Ground state<br />

(thermal)<br />

Conrotatory<br />

Disrotatory<br />

Excited state<br />

(photochemical)<br />

Disrotatory<br />

Conrotatory<br />

• Explanations for the Woodward-Hoffmann Rules<br />

(a) FMO Theory (Fukui)<br />

(b) Aromatic Transition States (Dewar-Zimmerman)<br />

(c) Conservation of Orbital Symmetry (Woodward-Hoffmann)<br />

FMO Approach<br />

A<br />

B A<br />

B<br />

disrotatory<br />

Ψ HOMO σ<br />

Lobes with the same phase attract attract each each other other to form form a<br />

new bond; lobes with opposite phases repel repel each other.<br />

A<br />

B A<br />

B<br />

conrotatory<br />

Ψ HOMO σ<br />

A<br />

B<br />

A<br />

B<br />

B<br />

A<br />

A<br />

B<br />

4n + 2 π<br />

4n π<br />

3


<strong>Chemistry</strong> <strong>4420</strong> <strong>Dr</strong>. Y. <strong>Zhao</strong><br />

The FMO approach is very useful and simple; however, it is<br />

not satisfactory and exact theoretically as only the FMOs are<br />

considered.<br />

Aromatic Transition States (the Dewar-Zimmerman Dewar Zimmerman model)<br />

Hückel transition state: the p orbitals around a ring have<br />

zero or an even number of phase inversions.<br />

Möbius transition state: the p orbitals around a ring have<br />

an odd number of phase inversions.<br />

In a Hückel system, 4n +2 electrons, aromatic; 4n<br />

electrons, antiaromatic.<br />

In a Möbius system, 4n electrons, aromatic; 4n + 2<br />

electrons, antiaromatic.<br />

Hence, the Woodward-Hoffmann rules can also be<br />

phrased as: <strong>Reactions</strong> are allowed if they proceed by<br />

aromatic transition states and are forbidden if they<br />

proceed by antiaromatic transition states. states<br />

How to apply the Dewar-Zimmerman model?<br />

A B A B<br />

A B A B<br />

A<br />

B<br />

disrotatory<br />

A<br />

B<br />

Zero phase inversion<br />

Hückel topology<br />

4 e, antiaromatic<br />

Forbidden<br />

A B A B<br />

A B A B<br />

A<br />

B<br />

conrotatory<br />

A<br />

B<br />

One phase inversion<br />

Möbius topology<br />

4 e, aromatic<br />

Allowed<br />

(1) <strong>Dr</strong>aw all the p, s and sp 3<br />

hybridized orbitals (orbital<br />

phases can be assigned<br />

arbitrarily).<br />

(2) Connect all the orbitals that<br />

interact in the starting materials<br />

before the reaction begins.<br />

(3) Allow the reaction proceed<br />

to a postulated transition state.<br />

(4) Connect the lobes that<br />

begin to interact.<br />

(5) Determine the aromatic or<br />

antiaromatic transition state.<br />

Note: the Dewar-Zimmerman is probably the easiest model used<br />

to explain pericyclic reactions. For further reading, see. H. E.<br />

Zimmerman, Acc. Chem. Res. 1971, 4, 272.<br />

Conservation of Orbital Symmetry–Correlation Symmetry Correlation Diagrams<br />

The correlation diagram approach was first propsed by Longuet-<br />

Higgins and Abrahamson a few years after the original paer by<br />

Woodward and Hoffmann. [JACS, 1965, 87, 2045]<br />

The principle of conservation of orbital symmetry says each<br />

orbital of the starting material must be converted to an orbital<br />

with the same symmetry.<br />

4


<strong>Chemistry</strong> <strong>4420</strong> <strong>Dr</strong>. Y. <strong>Zhao</strong><br />

Take the ring closing of butadiene under thermal conditions<br />

as an example,<br />

[2 + 2]<br />

C2 Transition state for a conrotatory<br />

reaction. Symmetry around the<br />

mirror plan is not maintained, but<br />

symmetry around the axis of<br />

rotation is maintained.<br />

Orbital symmetry<br />

σ<br />

Transition state for a disrotatory<br />

reaction. Symmetry around the<br />

mirror plan is maintained, but<br />

symmetry around the axis of<br />

rotation is not maintained.<br />

σ 2 *<br />

π 2 *<br />

π 1<br />

σ 1<br />

Conrotatory interconversion<br />

Thermally allowed<br />

5<br />

π 4 *<br />

π 3 *<br />

π 2<br />

π 1


<strong>Chemistry</strong> <strong>4420</strong> <strong>Dr</strong>. Y. <strong>Zhao</strong><br />

Disrotatory interconversion<br />

Thermally forbidden<br />

Correlation diagram for the conrotatory pathway<br />

Correlation diagram for the disrotatory pathway<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!