07.04.2013 Views

Pietro Delogu [modalità compatibilità]

Pietro Delogu [modalità compatibilità]

Pietro Delogu [modalità compatibilità]

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CONTINUOUS FLOW PROCESSES<br />

A MULTIPRODUCT MODULAR<br />

APPROACH<br />

<strong>Pietro</strong> <strong>Delogu</strong><br />

P.Le Marinotti 1, 33050 Torviscosa (UD)


Mappa<br />

Where Serichim is


Chemistry<br />

Technology<br />

Regulations<br />

What Serichim does<br />

New solutions for<br />

our customers<br />

“One Customer” Processes<br />

Multiclient technologies:<br />

continuous flow processes


“CONTINUOUS FLOW PROCESS “<br />

Why it is important<br />

• A “new” tool for European Chemical Industry<br />

to maintain its competitivity<br />

• An emerging technology with big impact on<br />

the Fine Chemicals, Advanced Intermediates<br />

and Pharmaceutical Active Ingredients<br />

manufacturing


(reduced) Standard list of advantages usually claimed<br />

in the literature for “flow chemistry”<br />

Easy scale up<br />

Low<br />

environmental<br />

impact<br />

Safety<br />

Process<br />

intensification<br />

Reliability


Our experience on “process intensification”<br />

advantage: the Project Output<br />

API Productivity improvement<br />

obtained for the main<br />

reaction<br />

(Continuous/Batch)<br />

Monthly required<br />

capacity<br />

Kg/month<br />

Main reactor<br />

volume<br />

litres<br />

Neuroleptic 40 a) 50000 200<br />

Antiviral 90 b) 5800 50<br />

Antidiabetic n.a. 3600 10<br />

a) technology only based<br />

b) chemistry and technology based<br />

π<br />

π<br />

batch<br />

1 ⎡ m ⎤<br />

=<br />

Sτ<br />

⎢Vt<br />

⎥<br />

b ⎣ ⎦<br />

S = dimensional<br />

factor, l (of reactor)/g (of product)<br />

τ =<br />

continuous<br />

batch time,<br />

h<br />

Fc c ⎡vm<br />

m ⎤<br />

= =<br />

⎢<br />

=<br />

V τ ⎣tvv<br />

vt ⎥<br />

⎦<br />

F = overallflowrate,<br />

l/h<br />

c =<br />

V<br />

τ =<br />

=<br />

product concentration,<br />

g (of product)/l (of<br />

reactor volume,<br />

l<br />

residence time, h<br />

solution)


A common synthetic sequence<br />

Solvent A<br />

Quencher/<br />

workup agent<br />

preparation<br />

Raw material<br />

(solid)<br />

Raw material<br />

Dissolution<br />

τ1<br />

Quencher<br />

Reagent/<br />

solvent/<br />

catalyst<br />

Reaction<br />

τ2<br />

Quenching<br />

τ3<br />

Workup<br />

wastes<br />

Co-reagent<br />

Co-reagent<br />

preparation<br />

Solvent B<br />

Antisolvent<br />

Batch<br />

Crystallisation<br />

τ4<br />

Filtration<br />

Drying<br />

Product<br />

Continuous<br />

Mother<br />

liquor<br />

τ = τ + τ + τ +<br />

b<br />

1<br />

τ = τ<br />

2<br />

2<br />

3<br />

( τ 4)


Co-reagent<br />

Plant asset comparison<br />

Batch PFD<br />

Batch<br />

Reactor<br />

Filter<br />

Continuous PFD


Batch<br />

Batch-<br />

Continuous-<br />

Batch<br />

Continuous<br />

Scheduling options<br />

ID Operation<br />

1 Raw material dissolution<br />

2 Co-reagent preparation<br />

3 Reaction<br />

4 Quenching & workup<br />

5 Crystallisation<br />

Lun 12 Set<br />

12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10<br />

Equal productivity<br />

for all equipments


Some conclusions on process<br />

arrangements<br />

• If we look only to the reaction we can get<br />

misleading conclusions.<br />

• Continuous mode has to be used for the<br />

longest operation sequence as possible.<br />

• As a rule, the continuous advantages are<br />

higher when the reaction time is potentially<br />

quite lower than the “service time”.<br />

• Reaction chemistry and process engineering<br />

have to be carried out at the same time!


The neuroleptic case<br />

A + B<br />

water<br />

C + byproducts + 76.5 kcal/mole<br />

Organic Inorganic Organic Inorganic<br />

Half life time: from minutes to tens of minutes<br />

depending on temperature and reagent concentrations<br />

Batch time about 4 hours


Batch process PFD


Raw material<br />

and solvent<br />

Co-reagent<br />

RE-100/A<br />

Continuous process PFD<br />

RE-100/B<br />

PFR reactor 200 l<br />

Quencher 1<br />

CSTR 1<br />

50 l<br />

Quencher 2<br />

Counterextraction<br />

solvent<br />

CSTR 2<br />

50 l<br />

L-L extractor<br />

Aqueous butanol<br />

Waste Treatment<br />

Solvent<br />

vessel<br />

Batch Units<br />

Continuous reactors<br />

Continuous work up equipments<br />

Process vessels<br />

Evaporator<br />

Crude<br />

vessel


Where intensification was obtained<br />

• In the reaction section intensification is a<br />

consequence of better heat exchange of the<br />

continuous reactor;<br />

• In the extraction section the improvement is<br />

due to the outstanding properties of liquidliquid<br />

continuous countercurrent extraction.


Our proposal: a Multiproduct<br />

Functional Unit


Scaling up of continuous reactors:<br />

is it so simple?


Scaling up main parameters<br />

• Batch reaction:<br />

• Continuous reaction:<br />

Batch reactor scaling up for<br />

homogeneous reaction<br />

Pilot scale<br />

• Surface to volume ratio<br />

• Surface to volume ratio<br />

• Retention time distribution<br />

Production scale


Pilot scale<br />

S<br />

V<br />

Tubular reactor scaling up<br />

2<br />

= r = reactor<br />

r<br />

radius<br />

Production scale<br />

Vi<br />

vi = vp<br />

Vp<br />

v = linear velocity<br />

V<br />

=<br />

reactor volume<br />

p = pilot<br />

i = industrial production


Solutions to scale up problems:<br />

numbering up<br />

Really no scaling up!


T1<br />

T2<br />

Solutions to scale up problems:<br />

T3<br />

T4<br />

T5<br />

T6<br />

CSTR cascade<br />

P(θ)= fraction of feed having less than given<br />

residence time<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Retention time integral distribution<br />

for a series of n equal volume CSTRs<br />

Number of CSTR<br />

0.0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

θ/τ= θ/τ=Residence θ/τ=<br />

time/nominal residence time<br />

1<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18


Examples of RTD distributions of pilot<br />

ηηSiemens<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Series of 10 CSTR<br />

η⎠= 48 min, 10 Hz<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5<br />

F*t/V react = t/η<br />

reactors<br />

mS<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Tubular reactor<br />

0.0<br />

16.4 8.00 17.0 2.24 17 .16.4 8 1 7.31. 12 17.45 .36 18.0 0.00 18. 14.24 18 .28.4 8<br />

Ti me


We can use different PFRs, but we<br />

have to reproduce or to improve RTD<br />

Reactor discretization as<br />

a bundle of ideal PFRs<br />

μμμ μSiemens<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

E(t)<br />

τ τ τ τ = 48 min, 10 Hz<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5<br />

F*t/Vreact = t/ ττ ττ<br />

θ


Fast evaluation of PFR performance<br />

moles/initial moles<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

batch experiment<br />

output<br />

reagent clac<br />

Intermediate calc<br />

Product calc<br />

reagent exp<br />

intermediate exp<br />

product exp<br />

0 20 40 60 80 100 120 140<br />

time, min<br />

Reactor<br />

discretisation<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

reactor<br />

modeling<br />

Expected<br />

PFR outlet<br />

composition<br />

mS<br />

PFR RTD<br />

measure<br />

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00<br />

Time, min


μS/Δμ Δμ ΔμS<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Sensitivity results<br />

10 CSTR cascade<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7<br />

-0.1<br />

θ<br />

Raw material residual contents<br />

CSTR cascade 0.13%<br />

Static mixer 0.10%<br />

Pure batch 0.07%<br />

μS/Δμ Δμ ΔμS<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Tubular static mixer<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9<br />

-0.1<br />

θ


Conclusions<br />

• Plug Flow Reactors are able to operate in conditions<br />

forbidden for batch reactors;<br />

• Scaling up has to observe some fundamental rules;<br />

• Chemical development and reactor engineering can<br />

not be carried out sequentially;<br />

• “Pre-built” units can be of valuable help for a fast<br />

and reliable continuous process development.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!