07.04.2013 Views

Plants and Ecology 2009:7 - Stockholms universitet

Plants and Ecology 2009:7 - Stockholms universitet

Plants and Ecology 2009:7 - Stockholms universitet

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sympatric speciation in Baltic Sea<br />

Fucus populations<br />

Is vegetative reproduction the key for evolution of F. radicans ?<br />

by<br />

Dan Tiderman<br />

<strong>Plants</strong> & <strong>Ecology</strong><br />

Plant <strong>Ecology</strong> <strong>2009</strong>/7<br />

Department of Botany<br />

Stockholm University


Sympatric speciation in Baltic Sea<br />

Fucus populations<br />

Is vegetative reproduction the key for evolution of F. radicans ?<br />

by<br />

Dan Tiderman<br />

Supervisors:<br />

Helena Forslund <strong>and</strong> Lena Kautsky<br />

<strong>Plants</strong> & <strong>Ecology</strong><br />

Plant <strong>Ecology</strong> <strong>2009</strong>/7<br />

Department of Botany<br />

Stockholm University


<strong>Plants</strong> & <strong>Ecology</strong><br />

Plant <strong>Ecology</strong><br />

Department of Botany<br />

Stockholm University<br />

S-106 91 Stockholm<br />

Sweden<br />

© Plant <strong>Ecology</strong><br />

ISSN 1651-9248<br />

Printed by Solna Printcenter<br />

Cover: Adventitious branch from Fucus radicans. Photo by Dan Tiderman.


Summary<br />

Speciation processes are a disputed area of research, <strong>and</strong> subjected to constant review <strong>and</strong><br />

adjustment. The theories of allopatric speciation that are focusing on isolation mechanisms as<br />

the dominating force for speciation have been regarded as the main path for speciation, but<br />

have recently been challenged by several studies indicating different modes of sympatric<br />

speciation. Few of these studies have concerned plants, but a recent identification of the Baltic<br />

Sea seaweed Fucus radicans have highlighted a situation of probable sympatric speciation<br />

under some intricate circumstances. The complex history <strong>and</strong> environment of the brackish<br />

Baltic Sea area, <strong>and</strong> the predominant vegetative reproduction strategy of Swedish F. radicans<br />

raises several questions. The evolutionary forces present while F. radicans arguably split<br />

from the sympatric populations of Fucus vesiculosus seems ambiguous in several ways <strong>and</strong><br />

the evolutionary history is difficult to access. To improve the insight of the domain, a<br />

comparative test of Swedish F. radicans abilities for vegetative reproduction was performed<br />

with the aim to possibly find the forces trigging the emergence of F. radicans <strong>and</strong> the factors<br />

restricting the current spatial occurrence of this species. Adventitious branches from four<br />

different categories of origin/species from Swedish <strong>and</strong> Estonian F. vesiculosus <strong>and</strong> F.<br />

radicans respectively were compared in a controlled experimental setup to evaluate possible<br />

adaptations towards vegetative reproduction.<br />

The results indicate that the vegetatively reproducing Swedish F. radicans have adapted to<br />

develop more extensive branching <strong>and</strong> some other morphological traits possibly linked to<br />

nutrient uptake. The observed differences in morphology, the vegetative reproduction<br />

strategy, <strong>and</strong> the adaptations revealed in this study are proposed to be linked to the northern<br />

boundary of the fundamental niche of these two closely related Fucus species, where the low<br />

salinity environment probably is restricting the success of sexual reproduction. However,<br />

other factors than the reproductive strategy could as well have been triggering the emergence<br />

of F. radicans. When trying to explain the evolutionary history of F. radicans several<br />

scenarios such as polyploidy or relict populations may be suggested as the source for the<br />

emergence of F. radicans in the Baltic Sea. Those are briefly presented <strong>and</strong> discussed as<br />

alternative explanations, but the complexity of the ecologically related adaptations needs<br />

further both genetic <strong>and</strong> ecological studies.<br />

3


Sammanfattning<br />

Artbildningsprocesser är ett omtvistat forskningsområde som ständigt är föremål för<br />

uppdateringar och justeringar. De alloptriska artbildningsteorierna som grundar sig på teorier<br />

om att olika former av isolering mellan populationer är den avgör<strong>and</strong>e faktorn för artbildning<br />

har länge varit dominer<strong>and</strong>e. Men de har på senare tid utmanats av studier som påvisat olika<br />

typer av sympatrisk artbildning. Få av dessa studier har emellertid baserats på växtstudier,<br />

men en nyligen identifierad tångart i Östersjön har lyft fram ett fall av trolig sympatrisk<br />

artbildning under något speciella förhåll<strong>and</strong>en. Den komplicerade evolutionära historien och<br />

miljön i Östersjöns brackvattenmiljö, samt den huvudsakligen vegetativa<br />

reproduktionsstrategin hos de svenska populationerna av den nyligen identifierade arten<br />

Fucus radicans, lyfter fram ett flertal frågeställningar. De evolutionära drivkrafterna som<br />

verkat då F. radicans förmodat uppstått ur Fucus vesiculosus kan uppfattas som mångtydiga<br />

på många sätt och den evolutionära utvecklingen är svår att överblicka. För att skapa mer<br />

förståelse inom området, gjordes en jämför<strong>and</strong>e studie av svensk F. radicans förmåga till<br />

vegetativ förökning med syftet att om möjligt belysa de drivkrafter som legat bakom<br />

uppkomsten av F. radicans samt vilka faktorer som reglerar artens nuvar<strong>and</strong>e utbredning.<br />

Adventivgrenar från fyra kategorier av art/ursprung med svensk och estnisk F. radicans<br />

respektive F. vesiculosus jämfördes i en kontrollerad försöksmiljö för att utvärdera möjliga<br />

anpassningar mot vegetativ reproduktion.<br />

Resultaten påvisar att den vegetativt reproducer<strong>and</strong>e svenska F. radicans har anpassat sig<br />

genom ett mer förgrenat växtsätt samt <strong>and</strong>ra morphologiska egenskaper som möjligen är<br />

förknippade med näringsupptag. De observerade morfologiska skillnaderna, den vegetativa<br />

reproduktionsstrategin och anpassningarna som påvisas i denna studie föreslås vara kopplade<br />

till den nordliga utbredningsgränsen för de två nära besläktade Fucus arterna där den låga<br />

salthalten förmodligen begränsar framgången av sexuell förökning. Det kan emellertid finnas<br />

fler orsaker än reproduktionsstrategier som legat bakom uppkomsten av F. radicans i<br />

Östersjön. Dessa alternativa förklaringar är översiktligt presenterade och diskuterade.<br />

Komplexiteten av dessa ekologiskt betingade anpassningar visar på behov av fler studier,<br />

både inom de genetiska och ekologiska forskningsområdena.<br />

4


Introduction<br />

The emergence of new species were long exclusively regarded as the result of genetic drift in<br />

subpopulations separated by some kind of geographic barrier, <strong>and</strong> the resulting differentiated<br />

populations where commonly classified as separate species if reproductive isolation had<br />

occurred (Mayr 1963; Dobhansky 1970). The definition of species were later on suggested to<br />

comprise populations with uniting attributes such as reproductive period, anatomy <strong>and</strong><br />

reproductive behaviour (Templeton 1989; Paterson 1985). This definition included vegetative<br />

reproducing species which were not considered by the definition of reproductive isolation.<br />

Another view of the species concept is the phylogenetic approach (Cracraft 1983), where<br />

species are regarded as populations with a common ancestor <strong>and</strong> with some new characters<br />

possible to diagnose. Most of these species theories are compromised in that they do not<br />

account for the ever present <strong>and</strong> ambiguous processes of hybridisation <strong>and</strong> the situation of<br />

constant ongoing evolutionary processes. This is still an uncomfortable vagueness in the<br />

speciation concepts <strong>and</strong> was remarked by Buffon already in the 1800 th century (Sörman<br />

2007).<br />

Using a simplified spatial approach, speciation can be separated in to allopatric speciation<br />

where isolation factors are the keys <strong>and</strong> into sympatric speciation, where speciation occurs<br />

without any apparent isolation between populations. The traditional, <strong>and</strong> still largely<br />

dominating speciation theories that are based on reproductive isolation all fall into the<br />

category of allopatric speciation where the antagonistic forces of spatially dependent<br />

adaptation <strong>and</strong> gene flow makes up the key mechanism of the evolutionary process. The<br />

sympatric speciation theory is more recent <strong>and</strong> suggests that in some circumstances speciation<br />

can occur in populations without the presence of separating barriers, typically in recently<br />

colonized or isolated areas that offer a variety of new niches (Schliewen et al. 2001). An<br />

important mechanism in plants but also known in some animals, are speciation by polyploidy,<br />

where characters can change in relative short periods by chromosome multiplication.<br />

Polyploidy is also suggested to be one of the predominant modes of sympatric speciation in<br />

plants due to the large effects on gene regulation (Otto & Whitton 2000).<br />

Several studies have demonstrated sympatric speciation <strong>and</strong> some examples are:<br />

differentiating to host plant adaptation in flies (Feder et al. 1988), adaptation to different<br />

patterns for sexual selection in African cichlids (Schliewen et al. 2001), <strong>and</strong> adaptive niche<br />

separation in salmons (Lu & Bernatchez 1999). In plants, however some of these adaptive<br />

5


forces do not seem applicable due to the sessile life strategies in plants which inhibit active<br />

choosing among patchy micro niches <strong>and</strong> are excluding the impact from active mating.<br />

However recent studies indicates that sympatric speciation has occurred in the Baltic Sea<br />

seaweed, Fucus radicans (L. Bergström et L. Kautsky sp. nov.). The species has arguably<br />

descended from Fucus vesiculosus (L.) (Pereyra et al. <strong>2009</strong>) <strong>and</strong> has recently attracted<br />

attention, as new research has revealed that this dwarf morph is to be regarded as a species of<br />

its own (Bergström et al. 2005).<br />

The scene of this sympatric speciation, the Baltic Sea, is the largest brackish water body in the<br />

world <strong>and</strong> is intriguing as a scene for speciation processes for several reasons. The<br />

longitudinal extension makes for a varying range of climatic environments. The restricted<br />

influx of marine water to the southwest in conjunction with abundant freshwater supplies<br />

from the northern parts results in a consecutive salinity gradient increasing southwards. The<br />

young <strong>and</strong> complex evolutionary history of approximately 8000 years since the last<br />

glaciations (Björk 1995) entails a flora <strong>and</strong> fauna in transformation (Kautsky et al. 1992;<br />

Johannesson & André 2006). The brackish environment generally present a challenging<br />

environment, optimal neither for organisms from marine or freshwater origin. The<br />

composition of the inhabitants today (Sommer et al. 2008; Schmölke 2008) indicates that the<br />

majority of the current marine species immigrated during the marine Littorina Sea period. The<br />

marine organisms in the area have since then been going through an intensive adaptation <strong>and</strong><br />

extinction phase (Johannesson & André 2006) in a sequence of successive transformation of<br />

the environment towards freshwater conditions.<br />

The fucoids F. radicans <strong>and</strong> F. vesiculosus are the only structural large, long-lived macroalgal<br />

species in the Bothnian Sea where they form the canopy along bedrock <strong>and</strong> gravel shores<br />

making an important foundation for the ecological communities present (Wikström &<br />

Kautsky 2007, Kautsky et al. 1992). Fucus radicans have been found in the Bothnian Sea, <strong>and</strong><br />

along the Estonian coast (Bergström et al. 2005; Pereyra et al. <strong>2009</strong>). Findings of the species<br />

in the Gulf of Finl<strong>and</strong> are difficult to assess due to uncertainties regarding the wide range of<br />

morphological variance found, which is not yet genetically resolved. Just like F. vesiculosus<br />

the Estonian populations of F. radicans are sexually reproducing. Contrary to this, the F.<br />

radicans populations in the Bothnian Sea are predominantly reproducing vegetatively<br />

(Bergström et al. 2005; Tatarenkov et al. 2005) growing adventitious branches that fall off to<br />

generate new clonal individuals (Tatarenkov et al. 2005). This situation of regional vegetative<br />

6


eproduction may cause low genetic variation <strong>and</strong> may consequently lead towards long term<br />

restriction in adaption capabilities. This could possibly make the clonal populations<br />

vulnerable to long term changes in the environment (Spielman et al. 2004).<br />

The situation of an apparent sympatric speciation into the current clonal populations raises<br />

several questions. Why <strong>and</strong> how did the speciation occur <strong>and</strong> why are clonal F. radicans<br />

populations successful in the Bothnian Sea <strong>and</strong> especially in the northern parts where studies<br />

indicate that it is relatively more abundant (Forslund <strong>2009</strong>a). Could the vegetative<br />

reproduction actually be the key for the emergence of F. radicans ? One possible explanation<br />

is that vegetative reproduction is more effective due to the limited efficiency of sexual<br />

reproduction in low salinity environments, where osmosis mechanisms restrict the success<br />

<strong>and</strong> survival of the eggs released (Serrão et al. 1996; Serrão et al. 1999). This could possibly<br />

explain why the vegetatively reproducing F. radicans has evolved in this area, at the margin<br />

of the fundamental niche for fucoids. Also, other factors in these marginal areas could be of<br />

importance as environmental stress factors probably are restricting F. vesiculosus in more<br />

ways than just reproduction, thus possibly relieving some of the overall competitive pressure<br />

for F. radicans (Johannesson & André 2006).<br />

One prerequisite for F. radicans to be superior to F. vesiculosus regarding vegetative repro-<br />

duction is that some new traits enhancing this reproduction strategy have been acquired. I<br />

tested the hypothesis that clonal Fucus populations should use more resources for vegetative<br />

reproduction than sexually reproducing Fucus populations by counting the number of advent-<br />

tious branches per biomass in plants of both F. vesiculosus <strong>and</strong> F. radicans from two regions.<br />

The extent, <strong>and</strong> establishment of released adventitious branches are hypothesised to be more<br />

critical to F. radicans with a reduced ability to establish by sexually produced zygotes. In the<br />

sexually reproducing populations, adventitious branches could possibly serve primary as free<br />

floating individuals improving the ability for long range spreading (Ingólfsson 1995) <strong>and</strong> thus<br />

be assumed to be of less importance. I tested the establishment ability of adventitious<br />

branches by growing adventitious branches from Estonian <strong>and</strong> Swedish F. radicans <strong>and</strong> F.<br />

vesiculosus respectively on a substrate while examining the extent of rhizoid development <strong>and</strong><br />

comparing the ability to adhere to the substrate.<br />

7


The following hypothesis where also defined: Adventitious branches from F. radicans have<br />

more cryptostomata than does F. vesiculosus. The rationale for this is that the narrower thallus<br />

in F. radicans (Bergström et al. 2005) allows for less nutrient uptake, which should be<br />

compensated by a higher density of cryptostomata provided with hyaline hairs possibly<br />

serving as a exp<strong>and</strong>ed surface for nutrient uptake (Deboer & Whoriskey 1983). This was<br />

tested by counting the cryptostomata in adventitious branches from the two species, grown in<br />

the same environmental conditions.<br />

Material & Methods<br />

Study species<br />

The macroalgae F. radicans, <strong>and</strong> F. vesiculosus are two of the three known fucoids in the<br />

Baltic Sea. They are both canopy forming in shallow waters <strong>and</strong> on hard substrate bottoms.<br />

As all fucoids they are perennial <strong>and</strong> produce one type of diploid thallus.<br />

Fucus radicans differs from F. vesiculosus morphologically in having a more shrubbery<br />

appearance, being smaller in size <strong>and</strong> slimmer in the dimensions. It also lacks the vesicles<br />

present in F. vesiculosus. Though being dioecious as is F. vesiculosus, the Bothnian Sea<br />

populations of F. radicans is predominantly vegetative reproducing (Tatarenkov et al. 2005),<br />

while the Estonian populations of F. radicans seems to reproduce predominantly sexually like<br />

F. vesiculosus (H. Forslund pers. comm.). The adventitious branches growing from the thallus<br />

are the main source for vegetative reproduction in both F. radicans <strong>and</strong> F. vesiculosus. These<br />

branches can remain on the thallus extending the branching or detach to serve as propagules<br />

for new individuals. If the rhizoids originating from the base of the adventitious branches,<br />

find a suitable substratum, the branch has the possibility to attach <strong>and</strong> establish a new sessile<br />

plant (Tatarenkov et al. 2005).<br />

Study sites <strong>and</strong> sampling<br />

Individuals from four different combinations of population sites <strong>and</strong> species where used for<br />

the study. Swedish <strong>and</strong> Estonian F. radicans <strong>and</strong> Swedish <strong>and</strong> Estonian F. vesiculosus. The<br />

Swedish individuals of both F. radicans <strong>and</strong> F. vesiculosus where collected in Öregrund the<br />

24 th of April <strong>and</strong> the Estonian plants at Ösel on the 1 st of Maj. The plants where transported in<br />

cool <strong>and</strong> humid conditions <strong>and</strong> placed in tanks after 1-2 days <strong>and</strong> subsequently accommodated<br />

on the bottom of shallow water open cisterns for a period of 7-8 weeks at the Askö marine<br />

laboratory. The cisterns where supplied by continuous incoming sea water with an<br />

approximate temperature of 14ºC <strong>and</strong> 6.5 ‰ salinity <strong>and</strong> natural light. From each of the<br />

8


site/species combinations, 10 plants <strong>and</strong> a couple of reserve plants where r<strong>and</strong>omly picked. It<br />

should be noted that in collecting the Estonian samples of F. vesiculosus some plants where<br />

short in adventitious branches. In these cases a new plant where r<strong>and</strong>omly choosen. Also<br />

notably is that the Estonian samples of F. vesiculosus by visual impression where in slightly<br />

worse condition than the other categories sampled. The number of adventitious branches for<br />

each plant where counted <strong>and</strong> the plants where weighted wet after surplus water was removed.<br />

Ten adventitious branches of 2-5mm in size were detached from each sample plant <strong>and</strong><br />

located on granite discs of 35mm diameter. The discs were encircled by a cylindrical mesh net<br />

of 40mm height attached to the discs perimeter by aquarium silicone. The net served as a<br />

restricting barrier in case of turbulence or accidental movements of the samples. The samples<br />

were placed in a temperature of 15ºC inside oblong plastic containers of approximately 80<br />

liter <strong>and</strong> a water depth of 75mm. The system was continuously fed by sea water in an<br />

approximately rate of 30 l/h with a temperature of 14ºC. The sample discs where r<strong>and</strong>omly<br />

orientated 35 mm below the surface in the drain end of the container. The water were mixed<br />

by air feeding stones in the tap end of the container causing slight surface undulations in the<br />

drain end. Illumination of 3200 Kelvin color temperature were present for 18 hours/day with<br />

an intensity of 87 µmol s - ¹ m² at surface level. Gentle cleaning of the mesh net were executed<br />

at an interval of 4 weeks approximately. After 11 weeks the adventitious branch samples were<br />

examined visually using magnification equipment. The observations made were: occurrence<br />

of rhizoids, if rhizoids where attaching to the disc, the amount of growth <strong>and</strong> the cross section<br />

shape of the thallus, if cryptostomata were present <strong>and</strong> the amount observed. The observations<br />

were either boolean or ordered classifications based on definitions as follows:<br />

Definitions <strong>and</strong> classification for observations:<br />

Occurrence of rhizoids – rhizoids visible or not visible<br />

Rhizoids attached to the substrate – The base of the branch steadily attached by rhizoids <strong>and</strong> not detached by<br />

a slightly movement of the branch in the upper part.<br />

The amount of growth –<br />

No apparent growth<br />

Limited growth, less than or equal to 50%<br />

Substantial growth, more than 50%<br />

Cross section shape of main body –<br />

Circular: width less or equal to 2x the height<br />

Elliptical: width more than 2x, but less or equal to 3x the height<br />

Flattened: width more than 3x the height<br />

Amount of cryptostomata –<br />

No/few: Not visible or less than 4<br />

Normal :4 or more<br />

9


Statistical analyses of the number of adventitious branches were made using one-way<br />

ANOVA. Occurrence of rhizoid <strong>and</strong> cryptostomata were analysed by Fisher's Exact Test <strong>and</strong><br />

the growth <strong>and</strong> cross section shape were analyzed by chi-square methods. All analyses were<br />

made using R version 2.9.0 (R Development Core Team <strong>2009</strong>).<br />

Results<br />

Number of adventitious branches<br />

The vegetative reproducing Swedish F. radicans had significantly more adventitious branches<br />

than the sexually producing categories (F4, 45 = 86.26, p < 0.001,). Swedish F. vesiculosus also<br />

showed significant more branches than the Estonian counterpart. (F4, 45 = 86.26, p < 0.01).<br />

Figure 1<br />

Number of adventitious branches per g measured wet weight in plants from the<br />

four combinations of species/origin. Error bars show confidence interval (n= 10)<br />

10


Rhizoid development by the adventitious branches<br />

Very few of the adventitious branches developed rhizoids. The results showed no differences<br />

between categories (p = 0.34). Only 7 of the total number of branches used(450) where firmly<br />

attached to the platter.<br />

Figure 2<br />

The percentage of adventitious branches that developed rhizoids showed no significant<br />

differencies between the origin/species combinations [ n = 100(Swedish F. radicans);<br />

120(Estonian F. radicans); 120(Swedish F. vesiculosus); 110(Estonian F. vesiculosus) ]<br />

11


The overall thallus growth <strong>and</strong> the cross section shape<br />

The Estonian F. radicans had the highest general growth rate with 88% having substantial<br />

growth, (χ² = 120.6; df=6; p


The amount of Cryptostomata<br />

Although F. vesiculosus developed less cryptostomata overall than did F. radicans, different<br />

patterns were found depending on the origin. In Sweden F. vesiculosus had more<br />

cryptostomata than F. radicans (p < 0.01) but in Estonia the species-cryptostomata relation<br />

was reversed (Fig. 5).<br />

Figure 5<br />

The results indicate that F. radicans in Estonia had slightly more samples with a<br />

higher amount of cryptostomata compared to the F. vesiculosus populations, but<br />

with the opposite relation found in the populations originating from Sweden<br />

(n=100,120,120,110 respectively)<br />

13


Discussion<br />

The results from this study shows that the vegetative reproducing Swedish F. radicans had<br />

significantly more adventitious branches than the predominantly sexually reproducing<br />

populations of F. vesiculosus <strong>and</strong> the F. radicans population originating from Estonia. In line<br />

with the hypothesis stipulated, this could indicate that Swedish F. radicans are allocating<br />

more resources into producing vegetative propagules for new individuals instead of investing<br />

efforts in producing sexual gametes. This could imply that the extent of branch development<br />

in Swedish F. radicans may be a result of adaption towards an amount of branch development<br />

that brings a reproductive advantage in the special circumstances of the Bothnian Sea.<br />

Presuming that the majority of adventitious branches produced are not departed from the<br />

source plant <strong>and</strong> thus brings a more shrubby morphological overall appearance, a second<br />

interpretation of the results is possible. Traits such as extensive branching could potentially be<br />

an advantage in the prevailing conditions by extending the surface area for nutrient uptake<br />

while still keeping an overall size. The more compact morphology could make the plant less<br />

vulnerable to external factors like ice scouring or limitations in nutrient resources. The<br />

extended nutrient uptake capabilities could also imply that the improved vegetative repro-<br />

ductive abilities could be a secondary effect <strong>and</strong> may be the result of an initial morphological<br />

adaption towards extended surface area. Whether or not any of these adaptive forces were<br />

initially driving the adaption towards a more extensive branching is not clear, but the advan-<br />

tages from both of these consequences may be crucial for the fitness of Swedish F. radicans.<br />

One question arising when analysing the amounts of branching is if the morphological<br />

differences are a case of adaption or plasticity. In the case of the two F. radicans populations,<br />

plasticity could not be excluded due to the fact that the spatially split populations initially had<br />

different environmental conditions, even if the recent environment have been the same. This<br />

would however imply that the plasticity is a trait unique for F. radicans because I) the results<br />

comparing the two different sympatric Fucus species from the Swedish coast also show clear<br />

difference in the amount of branching, II) the spatially split F. vesiculosus population does not<br />

show the same obvious difference in branching as the F. radicans populations.<br />

The test of rhizoid development under artificial conditions showed less overall growth of<br />

rhizoids than expected <strong>and</strong> no species/origin combination produced more rhizoids than the<br />

others. As shown by the results the overall growth of the adventitious branches were not low<br />

in general. This signs of a basically sound environmental living conditions should<br />

14


consequently rule out the environment to be the cause for the generally meagre rhizoid<br />

development <strong>and</strong> leads to the suspicion that some key environmental factors controlling<br />

rhizoid growth have been poorly understood, <strong>and</strong> that the trigger inducing rhizoid<br />

development is still to be found. A previous studie (Tatarenkov et al. 2005) has shown<br />

significant differences between the rhizoid development in F. radicans <strong>and</strong> F. vesiculosus <strong>and</strong><br />

a more extensive rhizoid development overall. If further studies are to be performed,<br />

preparatory work is needed to examine the environmental factors trigging the growth of<br />

rhizoids, provided such factors are to be found. The success rate of vegetative propagules in<br />

natural conditions is another issue of interest for underst<strong>and</strong>ing the dynamics of the<br />

evolutionary pathways, this is an area largely yet to be investigated.<br />

To try to answer the question if the vegetative reproduction is the key to the emergence of<br />

sympatric Fucus populations in the Bothnian Sea, it is appropriate to monitor alternative<br />

reasons for the current spatial presence of F. radicans. That is, what are F. radicans merits in<br />

this particular environment compared to its larger sibling species F. vesiculosus? If no<br />

restricting environmental factors are present it is generally a good idea to maximize the<br />

available resources <strong>and</strong> grow big, as this will enhance the competitive ability in several ways,<br />

as for example suppression of competition or greater reproductive ability. On the other h<strong>and</strong> if<br />

resources become sparser, predation increases, different forms of environmental stress factors<br />

are present, a bigger body may not be the best solution <strong>and</strong> could possibly backlash due to<br />

difficulties at maintaining the more abundant biomass <strong>and</strong> coping with temporary harsher<br />

conditions. This generally mean that for F. radicans there may be more benefits than<br />

reproductive advantage alone to favor the species in the northern Bothnia Sea which is<br />

constituting one of the margins of the fundamental niche for Fucus species. Some<br />

environmental factors for further studies are the physiological impact of regional variations in<br />

seasonal salinity due to river outwash in the north, or the consequences from ice scouring <strong>and</strong><br />

the effects of the more extended periods of permanent sea ice in the north.<br />

A puzzling situation is the presence of F. radicans in Estonia. In this area where F. radicans<br />

reproduces sexually the benefits of vegetative reproduction or the possible impact of stress<br />

factors areas are not that obvious. One possible reason for the presence here (L. Kautsky pers.<br />

comm.) is that the sea bed is constituted by coarse gravel over finer sediments. This may be<br />

prohibiting the larger F. vesiculosus from reaching reproductive size. The cause for this could<br />

be that plants of greater size, as F. vesiculosus, established on the relative fine sized gravel is<br />

15


easier moved away by currents or wave action. This is then possibly a lesser problem for the<br />

more slender built F. radicans.<br />

Comparing the two Estonian Fucus species, F. radicans had slightly more cryptostomata than<br />

F. vesiculosus. With the former species having a relatively slimmer thallus cross section,<br />

more cryptostomata <strong>and</strong> thus more hyaline hairs for nutrient uptake could be a way of<br />

compensating for the relative lesser thallus surface area. However it should be noted that the<br />

greater amount of cryptostomata in this study could be an effect of the overall greater growth<br />

noted in the Estonian F. vesiculosus samples. There could also be a lesser need for surface<br />

area in F. radicans due to the geometric laws stating that a smaller body possesses a greater<br />

surface area to volume quota. Contrary to the Estonian populations the Swedish F. radicans<br />

showed less cryptostomata than the Swedish F. vesiculosus. This is opposing the nutrient<br />

theory proposed for the Estonian populations but could be a logic consequence of the<br />

comparably more shrubby appearance <strong>and</strong> more extensive branching in Swedish F. radicans<br />

compared to the Estonian counterpart. This shrubbiness could serve as an alternative mean of<br />

extending the surface area.<br />

Then why do not the Swedish populations use the same strategy with more cryptostomata as<br />

the Estonian populations? The reasons could be twofold. Firstly the branching could serve a<br />

vital secondary purpose as extended capacity for vegetative reproduction in the northern low<br />

salinity environment generally hampering sexual reproduction ( Serrão et al. 1996; Serrão et<br />

al. 1999). Secondary, it could be a way of improving the durability against herbivores by<br />

minimizing the hyaline hairs otherwise needed <strong>and</strong> possibly attractive for herbivores. The<br />

latter would also be in line with the proposal by Forslund (<strong>2009</strong>b) that Swedish F. radicans<br />

has lower levels of chemical defense than F. vesiculosus which consequently could imply that<br />

F. radicans are more vulnerable to herbivores. By concatenating the results from this study<br />

<strong>and</strong> the previous discussion of evolutionary forces, a web can be constructed illustrating the<br />

suggested interacting factors <strong>and</strong> thus possibly explaining the spatial occurrence of Fucus<br />

radicans in the Baltic Sea (Fig 6). In comparing the ability for nutrient uptake in F. radicans<br />

to sympatric populations of F. vesiculosus, it is possible to propose that F. radicans could be<br />

using an alternative strategy for extending the surface area. This strategy may be well suited<br />

to the Bothnian Gulf with implications for reproductive success in the north <strong>and</strong> to herbivore<br />

defense abilities in the south thus delimiting the population to the current spatial range.<br />

16


Figure 6<br />

Comparing the ability for nutrient uptake in F. radicans to sympatric populations of F. vesiculosus with<br />

the Estonian population to the right <strong>and</strong> the Swedish to the left, the ability of F. vesiculosus are used<br />

as a reference level on the line indicating the necessary level of nutrient uptake ability. Divergent<br />

abilities from this norm is represented by arrows indicating traits that are positive(up) or<br />

negative(down). Attached are miniatures of the results from this study, supporting the claims for the<br />

deviations in nutrient uptake ability. To the far left are some proposed derived consequences of the<br />

nutrient deviations influencing the spatial occurrence of the Swedish F. radicans. These traits are<br />

suggested to have implications for reproductive success in the north <strong>and</strong> to herbivore defense abilities<br />

in the south thus limiting the population to the current spatial range.<br />

In contemplating some scenarios describing the sympatric speciation process <strong>and</strong> especially<br />

emphasizing the impact from the vegetative reproduction strategy used by Swedish F.<br />

radicans, it is probable that a few clonal individuals of F. radicans have succeeded in<br />

populating vast spatial areas (Tatarenkov et al. 2005). This could have been made possible<br />

through exploiting this alternative reproduction strategy <strong>and</strong> by doing so tweaking the rules of<br />

speciation. This alternative path is realized by effectively displacing sexual reproduction as<br />

the common framework for the speciation processes <strong>and</strong> thus minimizing the counteracting<br />

forces of hybridization. Maybe these resulting populations are to be regarded as a transitional<br />

form in a temporary abnormal evolutionary situation, with clonal individuals exploiting a<br />

temporary marginal environment to make improved clonal abilities to prosper in a timeframe<br />

17


of limited endurance. The longevity of the genetically restricted populations of clonal F.<br />

radicans will ultimately give the answer.<br />

Even if we are witnessing a turmoil of ongoing speciation processes beginning after the<br />

deglaciation about 8000 years ago, it would be extraordinary to imagine a rapid speciation<br />

with these type of adaption’s realized in a very short time space, even as short as 400 years as<br />

proposed in models by Pereyra et al.(2008) based on microsatellite markers. The parallels to<br />

this would be few worldwide <strong>and</strong> the tendency for F. radicans populations to emerge in some<br />

different areas of the Baltic Sea under slightly different environmental conditions showing<br />

such minor morphological differences is amazing. Although somewhat improbable there is a<br />

possibility that convergent evolution has occurred in the geographically separated areas of the<br />

Bothnian Sea <strong>and</strong> of Ösel. Somewhat more probable is an initial evolution in one area <strong>and</strong><br />

subsequent spreading <strong>and</strong> readapting into another. Maybe clonality in the Swedish/Finnish<br />

population is such a secondary trait recently emerging. The high heterozygosity found among<br />

clonal populations (Johanson 2008) could support this. If this trait of clonality commonly<br />

known in marginal areas is indeed a recent evolution we can expect further loss of sexual<br />

reproductive abilities in the future, based on indications that environmental suppression of<br />

sexual recruitment may lead towards sterility (Eckert 2002). Provided these populations of F.<br />

radicans emerged suddenly <strong>and</strong> maybe even separately, some traits already inherent may<br />

suddenly have prospered perhaps due to a change in the environmental conditions. One<br />

possibility is that a suppressed relict population of F. radicans has been present in the Baltic<br />

Sea. Another possible scenario supported by the fast <strong>and</strong> simultaneous evolution of the F.<br />

radicans populations <strong>and</strong> the morphologic relationship between F. vesiculosus <strong>and</strong> F.<br />

radicans is polyploidy. If a species resembling F. radicans once was the now extinct ancestor<br />

to the current F. vesiculosus we could maybe be witnessing a retreat from polyploidy<br />

triggered by the prevailing environmental conditions. Regardless the specific history, the<br />

evolutionary history of F. radicans is probably a scenario consisting of a mix of punctuated<br />

equilibrium phases <strong>and</strong> intermediate gradualism where the former pattern have been realized<br />

through evolutionary opportunism in situations of sudden environmental changes.<br />

18


To conclude the experiences from this study, several adaptations of possible importance are<br />

found in the Swedish populations of F. radicans. These adaptations are: the more extensive<br />

branching, the vegetative reproduction, the possibly adapted levels of cryptostomata, <strong>and</strong> the<br />

morphological traits general to F. radicans. It would probably be unwise to view these<br />

adaptions as singular individual traits, but instead as a web of intricate combined <strong>and</strong><br />

coordinated adaptations resulting in populations well suited to the very special marginal<br />

environment of the Bothnian Sea. It is not obvious that vegetative reproduction ability is the<br />

key for the evolution of Fucus radicans, but regardless of whether the clonality was an<br />

original trait <strong>and</strong> a key for the speciation to occur, or was a secondary adaption <strong>and</strong> maybe<br />

ultimately an evolutionary dead end, it is very likely to have been of great importance for the<br />

species present success in the Bothnian Sea.<br />

Acknowledgements<br />

Many thanks for the general support to the Plant <strong>Ecology</strong> people in the department of Botany<br />

at the University of Stockholm. Also thanks to the staff at the Askö Marine Laboratories for<br />

facilitating the practical parts of this work. Very special thanks to my supervisors Helena<br />

Forslund <strong>and</strong> Lena Kautsky for sharing their knowledge <strong>and</strong> supporting me with invaluable<br />

guidance <strong>and</strong> advice.<br />

19


References<br />

Bergström, L., Tatarenkov, A., Johannesson, K., Jönsson, R.B. & Kautsky, L. (2005) Genetic<br />

<strong>and</strong> morphological identification of Fucus radicans sp Nov (Fucales, Phaeophyceae) in the<br />

brackish Baltic Sea - Journal of Phycology 41:1025-1038.<br />

Björk, S. (1995) A review of the history of the Baltic Sea, 13.0 -8.0 ka BP 1995 –<br />

Quarternary International 27:19-40.<br />

Cracraft, J. (1983) Species concepts <strong>and</strong> speciation analysis. - Current Ornithology 1:159-<br />

187.<br />

DeBoer, J.A. & Whoriskey, F. G. (1983) Production <strong>and</strong> role of hyaline hairs in Ceramium<br />

rubrum. - Marine Biology 77:229-234.<br />

Dobhansky, T. (1970) Patterns of Species Formation, Genetics of the Evolutionary Process.<br />

Columbia University Press, New York.<br />

Eckert, C. G. (2002) The loss of sex in clonal plants. Evolutionary <strong>Ecology</strong> 15:501-520<br />

Feder, J. L., Chilcote C. A.& Bush, G. L., (1988) Genetic differentiation between sympatric<br />

host races of Rhagoletis pomonella. - Nature 366:61-64.<br />

Forslund, H. (<strong>2009</strong>a) Grazing <strong>and</strong> the geographic range of the recently described Fucus<br />

radicans (Phaeopyceae). – <strong>Plants</strong> & <strong>Ecology</strong> 5:II.<br />

Forslund, H. (<strong>2009</strong>b) Grazing <strong>and</strong> the geographic range of seaweeds, The introduced Fucus<br />

evanescens <strong>and</strong> the newly described Fucus radicans. – <strong>Plants</strong> & <strong>Ecology</strong> 5.<br />

Ingólfsson, A. (1995) Floating clumps of seaweed around Icel<strong>and</strong>: natural microcosms <strong>and</strong> a<br />

means of dispersal for shore fauna. – Marine Biology 122:13-21.<br />

Johansson, D. (2008) Genetic variation is maintained in populations with low clonal diversity.<br />

Master Thesis in Marine <strong>Ecology</strong>, Dep. Of Marine <strong>Ecology</strong>, University of Gothenburg<br />

Johannesson, K. & André, C. (2006) Life on the margin: genetic isolation <strong>and</strong> diversity loss in<br />

a peripheral marine ecosystem, the Baltic Sea. – Molecular <strong>Ecology</strong> 15:2013-2029.<br />

Kautsky, H., Kautsky, L., Kautsky, N., Kautsky, U., & Lindblad, C. (1992) Studies on the<br />

Fucus vesiculosus community in the Baltic Sea – Acta Phytogeogr. Suec. 78, Uppsala ISBN<br />

91-7210-078-8.<br />

Lu, G., Bernatchez, L. (1999) Correlated Trophic Specialization <strong>and</strong> Genetic Divergence in<br />

Sympatric Lake Whitefish Ecotypes - Evolution 53:1491-1505<br />

Mayr, E. (1963) Animal Species <strong>and</strong> Evolution. Harvard University Press. Cambridge.<br />

Otto, S. P. & Whitton, J. (2000) Polyploid incidence <strong>and</strong> evolution. – Annual Review of<br />

genetics 34: 401-437.<br />

20


Paterson, H.E.H. (1985) The recognition concept of species. In Vrba, E. S. (eds.) Species <strong>and</strong><br />

speciation. Transvaal Museum Monograph No. 4, Pretoria, pp 21-29.<br />

Pereyra, R. T., Bergström, L., Kautsky, L. & Johannesson, K. (<strong>2009</strong>) Rapid speciation in a<br />

newley opened postglacial marine environment, the Baltic Sea. – BMC Evolutionary Biology<br />

9:7.<br />

R Development Core Team (<strong>2009</strong>) R: A language <strong>and</strong> environment for statistical computing.<br />

R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL<br />

http://www.R-project.org.<br />

Schliewen, U., Rassmann, K., Markmann, M., Markert, J., Kocher, T., Tautz, D. (2001)<br />

Genetic <strong>and</strong> ecological divergence of a monophyletic cichlid species pair under fully<br />

sympatric conditions in Lake Ejagham, Cameroon. - Molecular <strong>Ecology</strong> 10:1471-1488.<br />

Schmölcke, U. (2008), Holocene environmental changes <strong>and</strong> the seal (Phocidae) fauna<br />

of the Baltic Sea: coming, going <strong>and</strong> staying Mammal Review 38:231–246.<br />

Serrao. E.A., Brawley, S.H. & Hedman J. (1999) Reproductive success of Fucus vesiculosus<br />

(Phaeophyceae) in the Baltic Sea - Journal of Phycology 35: 254-269.<br />

Serrao, E.A., Kautsky, L. & Brawley, S.H. (1996) Distributional success of the marine<br />

seaweed Fucus vesiculosus L. in the brackish Baltic Sea correlates with osmotic capabilities<br />

of Baltic gametes - Oecologia 107:1-12.<br />

Sommer, R. S., Pasold, J. & Schmolcke, U. 2008 : Post-Glacial immigration of the harbour<br />

porpoise(Phocoena phocoena) into the Baltic Sea. Boreas 37:458–464.<br />

Spielman, D., Brook, B. W. & Frankham, R. (2004) Most species are not driven to extinction<br />

before genetic factors impact them - Proceedings of the National Academy of Sciences of the<br />

United States of America 101:15261-15264.<br />

Sörman, R. (2007) Fransk rival heligt vred på Linné - SVD Kultur & Nöje,<br />

Publicerad: 2 maj 2007, 12.02.<br />

Tatarenkov, A., Bergstrom, L., Jönsson, R.B., Serrao, E.A., Kautsky, L. & Johannesson, K.<br />

(2005) Intriguing asexual life in marginal populations of the brown seaweed Fucus<br />

vesiculosus - Molecular ecology 14:647-651.<br />

Templeton, A. R. (1989) The meaning of species <strong>and</strong> speciation: A genetic perspective. In<br />

Otte, D. & Endler, J. A. (eds.) Speciation <strong>and</strong> its Consequences. Sinauer Associates,<br />

Sunderl<strong>and</strong>, pp 3-27.<br />

Wikström, S. A. & Kautsky, L. (2007) Structure <strong>and</strong> diversity of invertebrate communities in<br />

the presence <strong>and</strong> absence of canopy-forming Fucus vesiculosus in the Baltic Sea - Estuarine,<br />

Coastal <strong>and</strong> Shelf Science 72:168-176.<br />

21


Serien <strong>Plants</strong> & <strong>Ecology</strong> (ISSN 1651-9248) har tidigare haft namnen "Meddel<strong>and</strong>en från<br />

Växtekologiska avdelningen, Botaniska institutionen, <strong>Stockholms</strong> Universitet" nummer<br />

1978:1 – 1993:1 samt "Växtekologi". (ISSN 1400-9501) nummer 1994:1 – 2003:3.<br />

Följ<strong>and</strong>e publikationer ingår i utgivningen:<br />

1978:1 Liljelund, Lars-Erik: Kompendium i matematik för ekologer.<br />

1978:2 Carlsson, Lars: Vegetationen på Littejåkkadeltat vid Sitasjaure, Lule Lappmark.<br />

1978:3 Tapper, Per-Göran: Den maritima lövskogen i <strong>Stockholms</strong> skärgård.<br />

1978:4: Forsse, Erik: Vegetationskartans användbarhet vid detaljplanering av<br />

fritidsbebyggelse.<br />

1978:5 Bråv<strong>and</strong>er, Lars-Gunnar och Engelmark, Thorbjörn: Botaniska studier vid<br />

Porjusselets och St. Lulevattens stränder i samb<strong>and</strong> med regleringen 1974.<br />

1979:1 Engström, Peter: Tillväxt, sulfatupptag och omsättning av cellmaterial hos<br />

pelagiska saltvattensbakterier.<br />

1979:2 Eriksson, Sonja: Vegetationsutvecklingen i Husby-Långhundra de senaste<br />

tvåhundra åren.<br />

1979:3 Bråv<strong>and</strong>er, Lars-Gunnar: Vegetation och flora i övre Teusadalen och vid Auta-<br />

och Sitjasjaure; Norra Lule Lappmark. En översiktlig inventering med anledning av<br />

områdets exploatering för vattenkraftsändamål i Ritsemprojektet.<br />

1979:4 Liljelund, Lars-Erik, Emanuelsson, Urban, Florgård, C. och Hofman-Bang,<br />

Vilhelm: Kunskapsöversikt och forskningsbehov rör<strong>and</strong>e mekanisk påverkan på<br />

mark och vegetation.<br />

1979:5 Reinhard, Ylva: Avloppsinfiltration - ett försök till konsekvensbeskrivning.<br />

1980:1 Telenius, Anders och Torstensson, Peter: Populationsstudie på Spergularia marina<br />

och Spergularia media. I Frödimorfism och reproduktion.<br />

1980:2 Hilding, Tuija: Populationsstudier på Spergularia marina och Spergularia media.<br />

II Resursallokering och mortalitet.<br />

1980:3 Eriksson, Ove: Reproduktion och vegetativ spridning hos Potentilla anserina L.<br />

1981:1 Eriksson, Torsten: Aspekter på färgvariation hos Dactylorhiza sambucina.<br />

1983:1 Blom, Göran: Undersökningar av lertäkter i Färentuna, Ekerö kommun.<br />

1984:1 Jerling, Ingemar: Kalkning som motåtgärd till försurningen och dess effekter på<br />

blåbär, Vaccinium myrtillus.<br />

1986:1 Svanberg, Kerstin: En studie av grusbräckans (Saxifraga tridactylites) demografi.<br />

1986:2 Nyberg, Hans: Förändringar i träd- och buskskiktets sammansättning i<br />

ädellövskogen på Tullgarnsnäset 1960-1983.<br />

1987:1 Edenholm, Krister: Undersökningar av vegetationspåverkan av vildsvinsbök i<br />

Tullgarnsområdet.<br />

1987:2 Nilsson, Thomas: Variation i fröstorlek och tillväxthastighet inom släktet Veronica.<br />

1988:1 Ehrlén, Johan: Fröproduktion hos vårärt (Lathyrus vernus L.). - Begränsningar och<br />

reglering.<br />

1988:2 Dinnétz, Patrik: Local variation in degree of gynodioecy <strong>and</strong> protogyny in Plantago<br />

maritima.<br />

1988:3 Blom, Göran och Wincent, Helena: Effekter of kalkning på ängsvegetation.<br />

1989:1 Eriksson, Pia: Täthetsreglering i Littoralvegetation.<br />

1989:2 Kalvas, Arja: Jämför<strong>and</strong>e studier av Fucus-populationer från Östersjön och<br />

västkusten.<br />

1990:1 Kiviniemi, Katariina: Groddplantsetablering och spridning hos smultron, Fragaria<br />

vesca.<br />

1990:2 Idestam-Almquist, Jerker: Transplantationsförsök med Borstnate.<br />

22


1992:1 Malm, Torleif: Allokemisk påverkan från mucus hos åtta bruna makroalger på<br />

epifytiska alger.<br />

1992:2 Pontis, Cristina: Om groddknoppar och t<strong>and</strong>rötter. Funderingar kring en klonal<br />

växt: Dentaria bulbifera.<br />

1992:3 Agartz, Susanne: Optimal utkorsning hos Primula farinosa.<br />

1992:4 Berglund, Anita: Ekologiska effekter av en parasitsvamp - Uromyces lineolatus på<br />

Glaux maritima (Str<strong>and</strong>krypa).<br />

1992:5 Ehn, Maria: Distribution <strong>and</strong> tetrasporophytes in populations of Chondrus crispus<br />

Stackhouse (Gigartinaceae, Rhodophyta) on the west coast of Sweden.<br />

1992:6 Peterson, Torbjörn: Mollusc herbivory.<br />

1993:1 Klásterská-Hedenberg, Martina: The influence of pH, N:P ratio <strong>and</strong> zooplankton<br />

on the phytoplanctic composition in hypertrophic ponds in the Trebon-region, Czech<br />

Republic.<br />

1994:1 Fröborg, Heléne: Pollination <strong>and</strong> seed set in Vaccinium <strong>and</strong> Andromeda.<br />

1994:2 Eriksson, Åsa: Makrofossilanalys av förekomst och populationsdynamik hos Najas<br />

flexilis i Sörml<strong>and</strong>.<br />

1994:3 Klee, Irene: Effekter av kvävetillförsel på 6 vanliga arter i gran- och tallskog.<br />

1995:1 Holm, Martin: Beståndshistorik - vad 492 träd på Fagerön i Uppl<strong>and</strong> kan berätta.<br />

1995:2 Löfgren, Anders: Distribution patterns <strong>and</strong> population structure of an economically<br />

important Amazon palm, Jessenia bataua (Mart.) Burret ssp. bataua in Bolivia.<br />

1995:3 Norberg, Ylva: Morphological variation in the reduced, free floating Fucus<br />

vesiculosus, in the Baltic Proper.<br />

1995:4 Hyl<strong>and</strong>er, Kristoffer & Hyl<strong>and</strong>er, Eva: Mount Zuquala - an upl<strong>and</strong> forest of<br />

Ethiopia. Floristic inventory <strong>and</strong> analysis of the state of conservation.<br />

1996:1 Eriksson, Åsa: Plant species composition <strong>and</strong> diversity in semi-natural grassl<strong>and</strong>s -<br />

with special emphasis on effects of mycorrhiza.<br />

1996:2 Kalvas, Arja: Morphological variation <strong>and</strong> reproduction in Fucus vesiculosus L.<br />

populations.<br />

1996:3 Andersson, Regina: Fågelspridda frukter kemiska och morfologiska egenskaper i<br />

relation till fåglarnas val av frukter.<br />

1996:4 Lindgren, Åsa: Restpopulationer, nykolonisation och diversitet hos växter i<br />

naturbetesmarker i sörmländsk skogsbygd.<br />

1996:5 Kiviniemi, Katariina: The ecological <strong>and</strong> evolutionary significance of the early life<br />

cycle stages in plants, with special emphasis on seed dispersal.<br />

1996:7 Franzén, Daniel: Fältskiktsförändringar i ädellövskog på Fagerön, Uppl<strong>and</strong>,<br />

beroende på igenväxning av gran och skogsavverkning.<br />

1997:1 Wicksell, Maria: Flowering synchronization in the Ericaceae <strong>and</strong> the Empetraceae.<br />

1997:2 Bolmgren, Kjell: A study of asynchrony in phenology - with a little help from<br />

Frangula alnus.<br />

1997:3 Kiviniemi, Katariina: A study of seed dispersal <strong>and</strong> recruitment of plants in a<br />

fragmented habitat.<br />

1997:4 Jakobsson, Anna: Fecundity <strong>and</strong> abundance - a comparative study of grassl<strong>and</strong><br />

species.<br />

1997:5 Löfgren, Per: Population dynamics <strong>and</strong> the influence of disturbance in the Carline<br />

Thistle, Carlina vulgaris.<br />

1998:1 Mattsson, Birgitta: The stress concept, exemplified by low salinity <strong>and</strong> other stress<br />

factors in aquatic systems.<br />

1998:2 Forsslund, Annika & Koffman, Anna: Species diversity of lichens on decaying<br />

wood - A comparison between old-growth <strong>and</strong> managed forest.<br />

23


1998:3 Eriksson, Åsa: Recruitment processes, site history <strong>and</strong> abundance patterns of plants<br />

in semi-natural grassl<strong>and</strong>s.<br />

1998:4 Fröborg, Heléne: Biotic interactions in the recruitment phase of forest field layer<br />

plants.<br />

1998:5 Löfgren, Anders: Spatial <strong>and</strong> temporal structure of genetic variation in plants.<br />

1998:6 Holmén Bränn, Kristina: Limitations of recruitment in Trifolium repens.<br />

1999:1 Mattsson, Birgitta: Salinity effects on different life cycle stages in Baltic <strong>and</strong> North<br />

Sea Fucus vesiculosus L.<br />

1999:2 Johannessen, Åse: Factors influencing vascular epiphyte composition in a lower<br />

montane rain forest in Ecuador. An inventory with aspects of altitudinal distribution,<br />

moisture, dispersal <strong>and</strong> pollination.<br />

1999:3 Fröborg, Heléne: Seedling recruitment in forest field layer plants: seed production,<br />

herbivory <strong>and</strong> local species dynamics.<br />

1999:4 Franzén, Daniel: Processes determining plant species richness at different scales -<br />

examplified by grassl<strong>and</strong> studies.<br />

1999:5 Malm, Torleif: Factors regulating distribution patterns of fucoid seaweeds. A<br />

comparison between marine tidal <strong>and</strong> brackish atidal environments.<br />

1999:6 Iversen, Therese: Flowering dynamics of the tropical tree Jacquinia nervosa.<br />

1999:7 Isæus, Martin: Structuring factors for Fucus vesiculosus L. in Stockholm south<br />

archipelago - a GIS application.<br />

1999:8 Lannek, Joakim: Förändringar i vegetation och flora på öar i Norrtälje skärgård.<br />

2000:1 Jakobsson, Anna: Explaining differences in geographic range size, with focus on<br />

dispersal <strong>and</strong> speciation.<br />

2000:2 Jakobsson, Anna: Comparative studies of colonisation ability <strong>and</strong> abundance in<br />

semi-natural grassl<strong>and</strong> <strong>and</strong> deciduous forest.<br />

2000:3 Franzén, Daniel: Aspects of pattern, process <strong>and</strong> function of species richness in<br />

Swedish seminatural grassl<strong>and</strong>s.<br />

2000:4 Öster, Mathias: The effects of habitat fragmentation on reproduction <strong>and</strong> population<br />

structure in Ranunculus bulbosus.<br />

2001:1 Lindborg, Regina: Projecting extinction risks in plants in a conservation context.<br />

2001:2 Lindgren, Åsa: Herbivory effects at different levels of plant organisation; the<br />

individual <strong>and</strong> the community.<br />

2001:3 Lindborg, Regina: Forecasting the fate of plant species exposed to l<strong>and</strong> use change.<br />

2001:4 Bertilsson, Maria: Effects of habitat fragmentation on fitness components.<br />

2001:5 Ryberg, Britta: Sustainability aspects on Oleoresin extraction from Dipterocarpus<br />

alatus.<br />

2001:6 Dahlgren, Stefan: Undersökning av fem havsvikar i Bergkvara skärgård, östra<br />

egentliga Östersjön.<br />

2001:7 Moen, Jon; Angerbjörn, Anders; Dinnetz, Patrik & Eriksson Ove: Biodiversitet i<br />

fjällen ovan trädgränsen: Bakgrund och kunskapsläge.<br />

2001:8 Vanhoenacker, Didrik: To be short or long. Floral <strong>and</strong> inflorescence traits of Bird`s<br />

eye primrose Primula farinose, <strong>and</strong> interactions with pollinators <strong>and</strong> a seed predator.<br />

2001:9 Wikström, Sofia: Plant invasions: are they possible to predict?<br />

2001:10 von Zeipel, Hugo: Metapopulations <strong>and</strong> plant fitness in a titrophic system – seed<br />

predation <strong>and</strong> population structure in Actaea spicata L. vary with population size.<br />

2001:11 Forsén, Britt: Survival of Hordelymus europaéus <strong>and</strong> Bromus benekenii in a<br />

deciduous forest under influence of forest management.<br />

2001:12 Hedin, Elisabeth: Bedömningsgrunder för restaurering av lövängsrester i Norrtälje<br />

kommun.<br />

24


2002:1 Dahlgren, Stefan & Kautsky, Lena: Distribution <strong>and</strong> recent changes in benthic<br />

macrovegetation in the Baltic Sea basins. – A literature review.<br />

2002:2 Wikström, Sofia: Invasion history of Fucus evanescens C. Ag. in the Baltic Sea<br />

region <strong>and</strong> effects on the native biota.<br />

2002:3 Janson, Emma: The effect of fragment size <strong>and</strong> isolation on the abundance of Viola<br />

tricolor in semi-natural grassl<strong>and</strong>s.<br />

2002:4 Bertilsson, Maria: Population persistance <strong>and</strong> individual fitness in Vicia pisiformis:<br />

the effects of habitat quality, population size <strong>and</strong> isolation.<br />

2002:5 Hedman, Irja: Hävdhistorik och artrikedom av kärlväxter i ängs- och hagmarker på<br />

Singö, Fogdö och norra Väddö.<br />

2002:6 Karlsson, Ann: Analys av florans förändring under de senaste hundra åren, ett<br />

successionsförlopp i Norrtälje kommuns skärgård.<br />

2002:7 Isæus, Martin: Factors affecting the large <strong>and</strong> small scale distribution of fucoids in<br />

the Baltic Sea.<br />

2003:1 Anagrius, Malin: Plant distribution patterns in an urban environment, Södermalm,<br />

Stockholm.<br />

2003:2 Persson, Christin: Artantal och abundans av lavar på askstammar – jämförelse<br />

mellan betade och igenvuxna lövängsrester.<br />

2003:3 Isæus, Martin: Wave impact on macroalgal communities.<br />

2003:4 Jansson-Ask, Kristina: Betydelsen av pollen, resurser och ljustillgång för<br />

reproduktiv framgång hos Storrams, Polygonatum multiflorum.<br />

2003:5 Sundblad, Göran: Using GIS to simulate <strong>and</strong> examine effects of wave exposure on<br />

submerged macrophyte vegetation.<br />

2004:1 Strindell, Magnus: Abundansförändringar hos kärlväxter i ädellövskog – en<br />

jämförelse av skötselåtgärder.<br />

2004:2 Dahlgren, Johan P: Are metapopulation dynamics important for aquatic plants?<br />

2004:3 Wahlstr<strong>and</strong>, Anna: Predicting the occurrence of Zostera marina in bays in the<br />

Stockholm archipelago,northern Baltic proper.<br />

2004:4 Råberg, Sonja: Competition from filamentous algae on Fucus vesiculosus –<br />

negative effects <strong>and</strong> the implications on biodiversity of associated flora <strong>and</strong> fauna.<br />

2004:5 Smaal<strong>and</strong>, John: Effects of phosphorous load by water run-off on submersed plant<br />

communities in shallow bays in the Stockholm archipelago.<br />

2004:6 Ramula Satu: Covariation among life history traits: implications for plant<br />

population dynamics.<br />

2004:7 Ramula, Satu: Population viability analysis for plants: Optimizing work effort <strong>and</strong><br />

the precision of estimates.<br />

2004:8 Niklasson, Camilla: Effects of nutrient content <strong>and</strong> polybrominated phenols on the<br />

reproduction of Idotea baltica <strong>and</strong> Gammarus ssp.<br />

2004:9 Lönnberg, Karin: Flowering phenology <strong>and</strong> distribution in fleshy fruited plants.<br />

2004:10 Almlöf, Anette: Miljöfaktorers inverkan på bladmossor i Fagersjöskogen, Farsta,<br />

Stockholm.<br />

2005:1 Hult, Anna: Factors affecting plant species composition on shores - A study made in<br />

the Stockholm archipelago, Sweden.<br />

2005:2 Vanhoenacker, Didrik: The evolutionary pollination ecology of Primula farinosa.<br />

2005:3 von Zeipel, Hugo: The plant-animal interactions of Actea spicata in relation to<br />

spatial context.<br />

2005:4 Arvanitis, Leena T.: Butterfly seed predation.<br />

2005:5 Öster, Mathias: L<strong>and</strong>scape effects on plant species diversity – a case study of<br />

Antennaria dioica.<br />

2005:6 Boalt, Elin: Ecosystem effects of large grazing herbivores: the role of nitrogen.<br />

25


2005:7 Ohlson, Helena: The influence of l<strong>and</strong>scape history, connectivity <strong>and</strong> area on<br />

species diversity in semi-natural grassl<strong>and</strong>s.<br />

2005:8 Schmalholz, Martin: Patterns of variation in abundance <strong>and</strong> fecundity in the<br />

endangered grassl<strong>and</strong> annual Euphrasia rostkovia ssp. Fennica.<br />

2005:9 Knutsson, Linda: Do ants select for larger seeds in Melampyrum nemorosum?<br />

2006:1 Forslund, Helena: A comparison of resistance to herbivory between one exotic <strong>and</strong><br />

one native population of the brown alga Fucus evanescens.<br />

2006:2 Nordqvist, Johanna: Effects of Ceratophyllum demersum L. on lake phytoplankton<br />

composition.<br />

2006:3 Lönnberg, Karin: Recruitment patterns, community assembly, <strong>and</strong> the evolution of<br />

seed size.<br />

2006:4 Mellbr<strong>and</strong>, Kajsa: Food webs across the waterline - Effects of marine subsidies on<br />

coastal predators <strong>and</strong> ecosystems.<br />

2006:5 Enskog, Maria: Effects of eutrophication <strong>and</strong> marine subsidies on terrestrial<br />

invertebrates <strong>and</strong> plants.<br />

2006:6 Dahlgren, Johan: Responses of forest herbs to the environment.<br />

2006:7 Aggemyr, Elsa: The influence of l<strong>and</strong>scape, field size <strong>and</strong> shape on plant species<br />

diversity in grazed former arable fields.<br />

2006:8 Hedlund, Kristina: Flodkräftor (Astacus astacus) i Bornsjön, en omnivors påverkan<br />

på växter och snäckor.<br />

2007:1 Eriksson, Ove: Naturbetesmarkernas växter- ekologi, artrikedom och<br />

bevar<strong>and</strong>ebiologi.<br />

2007:2 Schmalholz, Martin: The occurrence <strong>and</strong> ecological role of refugia at different<br />

spatial scales in a dynamic world.<br />

2007:3 Vikström, Lina: Effects of local <strong>and</strong> regional variables on the flora in the former<br />

semi-natural grassl<strong>and</strong>s on Wäsby Golf club’s course.<br />

2007:4 Hansen, Joakim: The role of submersed angiosperms <strong>and</strong> charophytes for aquatic<br />

fauna communities.<br />

2007:5 Johansson, Lena: Population dynamics of Gentianella campestris, effects of<br />

grassl<strong>and</strong> management, soil conditions <strong>and</strong> the history of the l<strong>and</strong>scape<br />

2007:6 von Euler, Tove: Sex related colour polymorphism in Antennaria dioica.<br />

2007:7 Mellbr<strong>and</strong>, Kajsa: Bechcombers, l<strong>and</strong>lubbers <strong>and</strong> able seemen: Effects of marine<br />

subsidies on the roles of arthropod predators in coastal food webs.<br />

2007:8 Hansen, Joakim: Distribution patterns of macroinvertebrates in vegetated, shallow,<br />

soft-bottom bays of the Baltic Sea.<br />

2007:9 Axemar, Hanna: An experimental study of plant habitat choices by<br />

macroinvertebrates in brackish soft-bottom bays.<br />

2007:10 Johnson, Samuel: The response of bryophytes to wildfire- to what extent do they<br />

survive in-situ?<br />

2007:11 Kolb, Gundula: The effects of cormorants on population dynamics <strong>and</strong> food web<br />

structure on their nesting isl<strong>and</strong>s.<br />

2007:12 Honkakangas, Jessica: Spring succession on shallow rocky shores in northern<br />

Baltic proper.<br />

2008:1 Gunnarsson, Karl: Påverkas Fucus radicans utbredning av Idotea baltica?<br />

2008:2 Fjäder, Mathilda: Anlagda våtmarker i odlingsl<strong>and</strong>skap- Hur påverkas<br />

kärlväxternas diversitet?<br />

2008:3 Schmalholz, Martin: Succession in boreal bryophyte communities – the role of<br />

microtopography <strong>and</strong> post-harvest bottlenecks.<br />

2008:4 Jokinen, Kirsi: Recolonization patterns of boreal forest vegetation following a<br />

severe flash flood.<br />

26


2008:5 Sagerman, Josefin: Effects of macrophyte morphology on the invertebrate fauna in<br />

the Baltic Sea.<br />

<strong>2009</strong>:1 Andersson, Petter: Quantitative aspects of plant-insect interaction in fragmented<br />

l<strong>and</strong>scapes – the role of insect search behaviour.<br />

<strong>2009</strong>:2 Kolb, Gundula: The effects of cormorants on the plant-arthropod food web on their<br />

nesting isl<strong>and</strong>s.<br />

<strong>2009</strong>:3 Johansson, Veronika: Functional traits <strong>and</strong> remnant populations in ab<strong>and</strong>oned<br />

semi-natural grassl<strong>and</strong>s.<br />

<strong>2009</strong>: 4 König, Malin: Phenotypic selection on flowering phenology <strong>and</strong> herbivory in<br />

Cardamine amara.<br />

<strong>2009</strong>:5 Forslund, Helena: Grazing <strong>and</strong> the geographical range of seaweeds –<br />

The introduced Fucus evanescens <strong>and</strong> the newly described Fucus radicans.<br />

<strong>2009</strong>:6 von Euler, Tove: Local adaptation <strong>and</strong> life history differentiation in plant<br />

populations.<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!