07.04.2013 Views

Full Text-PDF - International Research Journals

Full Text-PDF - International Research Journals

Full Text-PDF - International Research Journals

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>International</strong> <strong>Research</strong> Journal of Plant Science (ISSN: 2141-5447) Vol. 4(2) pp. 33-44, February, 2013<br />

Available online http://www.interesjournals.org/IRJPS<br />

Copyright © 2013 <strong>International</strong> <strong>Research</strong> <strong>Journals</strong><br />

<strong>Full</strong> Length <strong>Research</strong> Paper<br />

Foraging and pollination activity of Apis mellifera<br />

adansonii Latreille (Hymenoptera: Apidae) on flowers of<br />

Gossypium hirsutum L. (Malvaceae) at Maroua,<br />

Cameroon<br />

*1-2 Dounia, 1-2 Chantal Douka, 2 Fernand-Nestor Tchuenguem Fohouo<br />

1 Laboratory of Zoology, Higher Teacher’s Training College, University of Yaoundé I, Yaoundé Cameroon<br />

2 Laboratory of Zoology, Faculty of Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon<br />

Abstract<br />

To evaluate the impact of Apis mellifera adansonii (Hymenoptera: Apoïdae) on boll and seed of<br />

Gossypium hirsutum its foraging and pollinating activities were studied in Maroua, during two years of<br />

flowering (August-October 2010 and 2011). Treatments included unlimited floral access by all visitors,<br />

bagged flowers to avoid all visits and limited visits of A. m. adansonii. Observations were made on 100<br />

flowers per treatment. Determined the activities of this insect, pollination efficiency and the impact of it<br />

on boll and seed yields this Malvaceae. 40 identified species of insects on the flowers of G. hirsutum,<br />

after two years of observations A. m. adansonii shown at first with 32.10% and 40.99% of visits in 2010<br />

and 2011 respectively. This bee gathering pollen flowers almost throughout the day, with a peak<br />

between 6 am and 7am. Its visits are a very good pollen and nectar harvest. The largest number of<br />

workers simultaneously active is one per flower and 514.10 per 1000 flowers. The average duration of a<br />

visit is 5.32 ± 2.93 seconds per flower. The average speed of foraging is 17.56 ± 6.69 flowers per minute.<br />

By comparing the yields of those flowers free flowers isolated insects, it increase the rate of fruiting<br />

31.86 and 28.72% , the percentage of normal seeds 43.29, 38.37% respectively in 2010 and 2011 due to<br />

insects including A. m. adansonii. This improved performance is justified by the positive action of these<br />

arthropods on the pollination of flowers visit. Via its effectiveness pollination, A. m. adansonii caused a<br />

significant increase in the rate of fruiting and 38.00, 33.00% in the percentage of normal seeds 26.22,<br />

23.65% respectively in 2010 and 2011. The installation of beehives in Cotton plantations is<br />

recommended to increase the production of this species.<br />

Keywords: Apis mellifera adansonii, Gossypium hirsutum, flower, pollen, pollination<br />

INTRODUCTION<br />

Reproduction depends on pollination (McGregor, 1976).<br />

This pollinated by several agents including insects<br />

occupy a prominent place (McGregor 1976, Faegri and<br />

Pijl 1979, Pesson and Louveaux 1984, Philippe 1991,<br />

Tchuenguem Fohouo et al., 2007, 2008 and 2009). In the<br />

natural environment and in agro ecosystems, flowerfeeding<br />

insects in general and in particular Apoidea have<br />

great ecological and economic importance because they<br />

*Corresponding author’s Email: dounia31@yahoo.fr<br />

influence positively on food production (Mutsaers 1991,<br />

Desquesne 1996, Morison and al., 2000a, Tchuenguem<br />

Fohouo et al., 2002). Effective pollination by insects can<br />

increase fruit yield and quality of grain (Philippe 1991,<br />

Vaissière and Izard 1995, Segeren et al., 1996, Morison<br />

et al., 2000a). The lack of pollinating insects in flowering<br />

time can lead to kidney yields fruits and / or seeds for<br />

some crops (McGregor, 1976; Delbrassine and Rasmont<br />

1988, Tchuenguem Fohouo et al., 2009).<br />

The former cotton is perennial (Lagière 1966, David<br />

1971, Ahmed et al., 1989, Philippe 1991), but those<br />

grown today are annual (Fryxell 1979b, 1992, Selanan et<br />

al., 1999, Brubaker et al., 1999a, Brubaker et al., 1999b),


34 Int. Res. J. Plant Sci.<br />

from Nord and Central America (Jakins, 2003), it<br />

domesticated by pre-Columbia people of Yacatan<br />

peninsula (Brubaker and Wendel,1994), heliophilous<br />

whose development cycle is seven months (Lagière<br />

1966, David 1971, Ahmed et al., 1989, Philippe 1991,<br />

Sassenrath-Cole 1995, Wise et al., 2000). It grows on a<br />

wide variety of soils (Jenkins 2003) provided; they are<br />

well drained (Lagière 1966, David 1971, Cotton Australia<br />

2005). The cotton grown in Cameroon belongs to the<br />

species of Gossypium hirsutum (Lagière 1966, David<br />

1971). It is kind of shrub and woody with an average<br />

height of less than 1.5 m (David 1971, Ooterhuis and<br />

Jerntedt 1999, Ritchie et al., 2007). This Malvaceae<br />

consists of vegetative branches and fruiting branches<br />

called sympodes (Lagière 1966, David 1971, Ooterhuis<br />

and Jerntedt 1999, Ritchie et al., 2007). these branches<br />

carry three to eight flowers with five petals white or yellow<br />

orange (Lagière 1966, David 1971). The flower of G.<br />

hirsutum is hermaphrodite (McGregor 1976) with a<br />

fundamentally system of autogamous reproduction<br />

(McGregor 1976, Moffett 1983), the flowers attract highly<br />

insects (Green and Jones 1953) where susceptibility to<br />

cross-pollination by insects is provided (Green and Jones<br />

1953, Oosterhuis and Jernstedt 1999). The fruit is a boll<br />

shaped ovoid or spherical (Lagière 1966, David 1971,<br />

Philippe 1991, Ritchie et al., 2007) containing 29 to 40<br />

grains (Eastick, 2002, Yasuor et al ., 2007) of cotton<br />

fibers are a very important raw material for the textile<br />

industry, as they used in the manufacture of clothing<br />

seeds are rich in oil and food products such as meal<br />

looking for feed (Lagière 1966, David 1971, Cherry and<br />

Lefflter 1984, Philippe 1991). World production in total<br />

are more than 24.5 million tons of which 40% is produced<br />

by the USA, 3rd in Cameroon African Cotton producer<br />

with more than 240 000 tons of seed cotton. Demand for<br />

cotton seed is estimated at over 250 000 tons (MINADER<br />

2010).<br />

The entomofauna floriculture G. hirsutum is very little<br />

studied. The few studies obtained in the literature review<br />

have been out of Cameroon were particularly in Sudan by<br />

Ahmed et al., (1989), Russia (McGregor, 1976), in<br />

Australia (Thomson 1966, Mungomery and Glassop<br />

1969, Richards et al., 2005) in USA by (McGregor 1976,<br />

Umbeck et al., 1987, Van Deynze et al., 2005, Llewellyn<br />

et al., 2007). However, according Roubik (2000),<br />

Tchuenguem (2005) and Gallai et al., (2009), floriculture<br />

entomofauna of a plant species varies from one region to<br />

another. This work was conducted to study the activity of<br />

A. m. adansonii on the flowers of G. hirsutum to assess<br />

the effectiveness of bee pollination that yields this<br />

Malvaceae. A preliminary study on the relationship insect<br />

flowers in Maroua before 2010 (unpublished data)<br />

showed that A. m. adansonii intensely visit the flowers of<br />

G. hirsutum. This insect can be used to pollinate the plant<br />

(Philippe 1991).<br />

MATERIALS AND METHODS<br />

Site and biological materials<br />

The studies were conducted from August to October in<br />

2010 and 2011 respectively in the locality of Mayel-Ibbé<br />

(Latitude 10 ° 62 'N, Longitude 14 ° 33' E and altitude 400<br />

m), region of the Far North Cameroon. This region<br />

belongs to the ecological zone three phytogeographical<br />

areas: Sahel-Sudanian, Sahelian and Sudanian altitude<br />

periodically flooded, with unimodal rainfall (Letouzey<br />

1985). It has a Sahel-Sudanian type of climate,<br />

characterized by the existence of two annual seasons: a<br />

long dry season (November to May) and a short rainy<br />

season (June to October); August is the wettest month of<br />

the year (Kuete et al., 1993). Annual rainfall varies from<br />

400 to 1100 mm (Kuete et al., 1993). The annual average<br />

temperature varies between 29 and 38° C and a daily<br />

temperature range between 6 and 7°C (Kuete et al.,<br />

1993). The experimental plot is an area of 440 m 2 . The<br />

animal material was represented by insects naturally<br />

present in the environment and a colony of Apis mellifera<br />

adansonii Latreilles (Hymenoptera: Apidae), housed in a<br />

tree located 900 m from the experimental plot. Vegetation<br />

was represented by wild species and cultivated plants.<br />

The plant material was represented by the seeds of G.<br />

hirsutum provided by SODECOTON.<br />

Planting and maintenance of culture<br />

On May 31 st , 2010 and 2011, the experimental plots<br />

having been previously plowed and divided into six sub -<br />

plots of 6.5 x 5 m 2 each, with a row of two meters<br />

between the left and subplots to turn around the field.<br />

This field has received seedlings of 6 lines per sub - plot.<br />

The seeds are sown in holes at the rate of 10 grains per<br />

hill. The spacing is 25 cm rows and 80 cm between rows<br />

and 4 cm depth (Lagière 1966, David 1971, Cotton<br />

Australia 2002, MINADER 2010). Two weeks after<br />

germination (occurred July 17, 2010 and July 24, 2011),<br />

the plants were thinned leaving the foot stronger.<br />

Thinning of the opening of the first flower, which occurred<br />

August 6, 2010 and August 16, 2011, weeding was done<br />

with a hoe every three weeks. Manual weeding is<br />

performed regularly at the beginning of flowering until<br />

harvest, which ended November 28, 2010 for the first<br />

growing season and December 05, 2011 for the second<br />

growing season.<br />

Determining the mode of reproduction<br />

July 29, 2010 and August 30, 2011, 200 flowers in bud<br />

were labeled 100 feet G. hirsutum for each period and


Dounia et al. 35<br />

Table 1. Diversity of floral insects on G. hirsutum flowers in 2010 and 2011, number and percentage of visits of<br />

different insects<br />

Insects 2010 2011<br />

Genus, species, Sub -<br />

Order Family species n1 p1% n2 p2%<br />

Hymenoptera Apidae Apis mellifera adansonii NP 183 31,2 264 40,99<br />

Allodap sp. P 18 3,07 7 1,09<br />

Amegilla sp. 1 P 15 2,56 11 1,71<br />

Amegilla sp. 2 P 7 1,19 27 4,19<br />

Thyrus sp. P 7 1,19 1 0,16<br />

Xylocopa sp. 1 P 35 5,96 31 4,81<br />

Xylocopa sp. 2 P 17 2,9 2 0,31<br />

Formicidae Polyrachis sp. 1 P 13 2,21 26 4,04<br />

Halictidae Lipotriches collaris P 37 6,3 31 4,81<br />

Macronomia vulpina P 44 7,5 42 6,52<br />

Megachilidae Chalicodoma sp.1 P 11 1,87 7 1,09<br />

Chalicodoma sp.2 P 2 0,34 0 0,00<br />

Creightonella sp. P 1 0,17 0 0,00<br />

Megachile sp. 1 P 3 0,51 1 0,16<br />

Megachile sp. 2 P 6 1,02 2 0,31<br />

Megachile sp. 3 P 7 1,19 0 0,00<br />

Sphecidae Philanthus triangulum Pr 9 1,53 4 0,62<br />

(1sp.) Pr 1 0,17 0 0,00<br />

Vespidae Synagris cornuta N 3 0,51 5 0,78<br />

(1sp.) N 4 0,68 1 0,16<br />

Eumenidae Delta sp. N 1 0,17 3 0,47<br />

Diptera Calliphoridae (sp. 1) P 13 2,21 8 1,24<br />

(sp. 2) P 9 1,53 3 0,47<br />

Stratiomyiidae Hermetia sp. P 3 0,51 1 0,16<br />

Syrphidae (1sp.) P 4 0,68 1 0,16<br />

Coleoptera Scarabeidae (sp. 1) P 34 5,79 41 6,37<br />

(sp. 2) P 7 1,19 4 0,62<br />

Meloidae Coryna sp. P 2 0,34 1 0,16<br />

Hemiptera Coreidae Anoplocnemis curvipes P 12 2,04 9 1,40<br />

Pyrrhocoridae Dysdercus voelkeri P 7 1,19 6 0,93<br />

Lepidoptera Acraeidae Acraea acerata N 33 5,62 52 8,07<br />

Nymphalidae (1sp.) N 12 2,04 3 0,47<br />

Pieridae Catopsilia florella N 8 1,36 11 1,71<br />

Pieridae (sp. 1) N 2 0,34 3 0,47<br />

Pieridae (sp. 2) N 2 0,34 7 1,09<br />

Orthroptera (1sp.) p 6 1,02 9 1,40<br />

(2sp.) p 4 0,68 13 2,02<br />

Dythioptera Mantodae (sp.1) Pr 0 0 2 0,31<br />

Nevroptera (sp.1) Pr 5 0,85 3 0,47<br />

(sp. 2) Pr 0 0 2 0,31<br />

Total 40 species 587 100 644 100<br />

Comparison of percentages of Apis mellifera adansonii visits for two years: χ 2 = 18.80 ([ddl = 1; P < 0.001]).<br />

n1: number of visits on 100 flowers in 10 days.<br />

n2: number of visits on 100 flowers in 10 days.<br />

p1 et p2: percentages of visits.<br />

p1 = (n1 / 587) x 100.<br />

p2= (n2 / 644) x 100.<br />

NP: Visitor collected nectar and pollen.<br />

N: Visitor collected nectar.<br />

P: Visitor collected pollen.<br />

Pr: Predation.<br />

1 sp.: Undetermined species.


36 Int. Res. J. Plant Sci.<br />

Figure 1. Plant Gossypium hirsutum showing a<br />

flower isolated insects.<br />

made two treatments. Treatments 1 and 3 consist of 100<br />

flowers and each free treatment 2 and 4 made of 100<br />

flowers each protected gently with gauze cloth bags<br />

(Figure 1). For each year, ten days after the wilting of the<br />

last flower, the number of boll formed in each treatment<br />

was counted. For each treatment, the index of fruiting (Ifr)<br />

is calculated using the following formula: Ifr = ( F1/F2 ),<br />

where F1 is the number of boll formed and the number of<br />

flowers F2 initially labeled (Tchuenguem et al., 2004).<br />

The out crossing rate (TC) was calculated using the<br />

formula : TC={[(IfrX - IfrY/IfrX]x100},<br />

Where IfrX and IfrY indices are fruiting means the<br />

free treatment and treatment protected respectively<br />

(Demarly, 1977). The rate of self-pollination in the broad<br />

sense (TA) was calculated using the formula:<br />

TA = (100 - TC).<br />

Study of the activity of insects on the flowers of G.<br />

Hirsutum<br />

On September 02, 2010, 200 flowers of G. hirsutum the<br />

bud stage have been labeled and two treatments:<br />

Treatment 1 consisted of 100 unprotected flowers,<br />

treatment 2 consisting of 100 protected flowers gently<br />

with cloth bags of gauze. On September 07, 2011, 200<br />

flowers of G. hirsutum at bud stage were marked and<br />

made 2 treatments: Treatment 3 consisted of 100 flowers<br />

free; treatment 4 consists of 100 protected flowers gently<br />

with gauze cloth bags. The observations were made<br />

every two days, according to six slots: 7-8 h, 9-10 h, 11-<br />

12 h, 13-14 h, 15-16 h and 17 - 18h. September 3 to 23,<br />

2010 and from September 7 to 27, 2011, the periods<br />

labeled blooming flowers. The insects found on flowers<br />

are counted at each daily time. The data obtained were<br />

used to determine the frequency of (Fx) visits A. m.<br />

adansonii on flowers of G. hirsutum. For each year of<br />

study, Fx = [(Vx / Vi) x 100], Vx is the number of visits to<br />

A. m. adansonii on flowers free treatment (treatments 1<br />

and 3) and Vi visits all these insects on flowers.<br />

The floral products (nectar and / or pollen) collected<br />

by the bee were recorded for the same dates and time<br />

slots that count insects. The study of this parameter<br />

indicates whether A. m. adansonii is strictly Pollinivorous,<br />

or nectarivore Pollinivorous and nectarivore. This can<br />

give an idea about his involvement in the pollination of<br />

this plant. The duration of visits and foraging speed<br />

(number of flowers visited per minute) (Tchuenguem et<br />

al., 2004) were timed to the same dates and in six time<br />

slots. Abundances (larger numbers of individuals<br />

simultaneously active) per flower and flower 1000<br />

(A1000) were recorded on the same dates and time slots<br />

that the registration of the duration of visits. The first<br />

parameter was recorded as a result of direct counts. By<br />

1000 for plenty flowers, A. m. adansonii were counted on<br />

a known number of open flowers; A1000 = [(Ax / Fx) x<br />

1000], where Fx and Ax are respectively the number of<br />

flowers and the number of A. m. adansonii actually<br />

counted on Fx (Tchuenguem et al., 2004).<br />

The influence of the surrounding flora was assessed<br />

by direct observation: the number of times the bee went<br />

of G. hirsutum flowers of another plant species and vice<br />

versa was noted throughout the period of investigation.<br />

Measuring the temperature and humidity of the<br />

experimental site<br />

During the days of investigation, the temperature and<br />

humidity of the study site were recorded every 30 min, 7-


-18 h, using a thermo hygrometer installed in the shade.<br />

Evaluation of the impact of flower-feeding insects on<br />

the yield of G. hirsutum<br />

A boll maturity, harvesting is done in 1-4 treatments. For<br />

each year of study, the digital input (Pf) of insects fruiting<br />

is Pf = {[(fx-fy) / fx] x 100}, where fx and fy are the fruiting<br />

rate in treatments x (treatments 1 and 3) and y<br />

(treatments 2 and 4). For treatment, the rate of fruiting<br />

(Tfr) is Tfr = [(number of boll / number of flowers) x 100].<br />

The digital input (Pf) insects (Pg) the number of seeds is<br />

Pg = {[(gx-gy) / gx]} x 100 where gx and gy are the<br />

average number of seeds per pod in treatments x and y.<br />

The digital input (Pgn) insects in grain is normal Pgn =<br />

{[(gnx-gny) / gnx]} x 100 where gnx and gny are the<br />

percentages of normal seed treatments in x and y.<br />

Measuring the effectiveness of pollination A. m.<br />

adansonii on G. Hirsutum<br />

Along with the development of treatments 1 and 2,<br />

treatment 5 is formed of 100 flowers isolated and labeled<br />

as those of treatment 2. Along with the development of<br />

treatments 3 and 4, the treatment 6 consists of 100<br />

flowers isolated and labeled as those of treatment 4.<br />

Between 7- 9 am, the gauze fabric is gently removed<br />

from each newly bloomed flower and observed during a<br />

recent twenty minutes. Flowers visited by A. m. adansonii<br />

are marked and open flowers visited but not being<br />

eliminated as a result of the study. After this<br />

manipulation, the flowers are protected again.<br />

A boll maturity, harvesting is done in treatments 5 and 6.<br />

For each year of study, the digital input (Pfx) of A. m.<br />

adansonii during fruiting is Pfx = {[(fz-fy) / fz] × 100},<br />

where fz and fy are the fruiting rate in treatment z<br />

(protected flowers and visited exclusively by A. m.<br />

adansonii) and y (protected flowers) (Tchuenguem et al.,<br />

2004). The digital input (PGX) of A. m. adansonii the<br />

number of seeds is PGX = {[(gz-gy) / gz]} x 100 where gz<br />

and gy are the average number of seeds per boll in<br />

treatments z and y (Tchuenguem et al., 2004). The digital<br />

input (PGNX) of A. m. adansonii to seed formation is<br />

normal PGNX = {[(GNZ-gny) / GNZ]} x 100 where gnz<br />

and gny are the percentages of normal seeds in<br />

treatments z and y (Tchuenguem et al., 2004).<br />

Data analysis<br />

SPSS software and Microsoft Excel were used for three<br />

tests: Student's (t) for comparison of means, correlation<br />

coefficient (r) for the study of linear relationship between<br />

two variables, Chi-square (χ2) for the comparison of<br />

percentages.<br />

RESULTS<br />

Reproductive system<br />

Dounia et al. 37<br />

The index of average boll was 0.91, 0.62, 0.94 and 0.67<br />

in treatments 1, 2, 3 and 4 respectively in 2010, the<br />

allogamy rate is 31.87% and the rate of autogamy is<br />

68.13%. In 2011, the corresponding figures are 28.72<br />

and 71.28% rate respectively for allogamy and autogamy.<br />

It appears that G. hirsutum has a mixed mating system<br />

autogamous-allogamous, predominantly allogamy.<br />

Activity A. m. adansonii on the flowers of G. hirsutum<br />

Seasonal frequency of visits<br />

For 21 and 23 days flowering periods in 2010 and 2011,<br />

587 and 644 visits to 38 and 36 species of insects were<br />

counted on 100 and 100 flowers of G. hirsutum<br />

respectively in 2010 and 2011 A. m. adansonii comes<br />

with 183 and 264 visits spread over all periods of<br />

flowering is 31.17 and 40.99% of all visits recorded in<br />

2010 and 2011 respectively, ranked first in whatever year<br />

investigation (Table 1). The difference between these two<br />

percentages is highly significant (χ2 = 12.80 [df = 1, P<br />


38 Int. Res. J. Plant Sci.<br />

Figure 2. Distribution of visits A. m. adansonii on the flowers of G. hirsutum according to<br />

daily time in 2010, 2011.<br />

(philanthus triangulum) the Nevroptera (sp.1 and sp.2)<br />

and Mantodae (sp.1).<br />

Floral substances taken<br />

During each period of flowering of G. hirsutum, A. m.<br />

adansonii harvest exclusively and regularly pollen (Figure<br />

3). The exclusive collection of nectar (Figure 4) and<br />

simultaneous harvest nectar and pollen during a foraging<br />

trip were less frequent (Table 2).<br />

Rate of visits according to the stages of flowering<br />

Overall, visits to A. m. adansonii were more numerous on<br />

treatments 1 and 3 that the number of open flowers was<br />

high (Figures 5). The correlation between the number of<br />

visits to A. m. adansonii was positive and very highly<br />

significant both in 2010 (r = 0.80 [df = 8, P


Figure 3. A. m. adansonii collecting<br />

pollen of G. hirsutum<br />

Figure 4. A. m. adansonii collecting nectar of G.<br />

hirsutum<br />

Table 2. Products harvested by A. m. adansonii on flowers of G. hirsutum in 2010 and 2011.<br />

year<br />

Number of<br />

visits studies<br />

Visits for pollen<br />

harvest<br />

Visits for nectar<br />

harvest<br />

Visits for pollen and nectar<br />

harvest<br />

Number % Number % Number %<br />

2010 183 115 62,84 32 17,48 36 19,67<br />

2011 264 197 74,62 67 25,37 0 0<br />

Jathropha gossipiifolia (Euphorbiaceae, N), Striga<br />

hermonthica (Scrophulariaceae, N), Hibiscus asper<br />

(Malvaceae, N/P), Sesamum indicum (Pedaliaceae, N),<br />

Sorghum bicolor (Poaceae, P). During foraging trips in<br />

2010 of 183 visits, only 13 or 7.10% passage A. m.<br />

adansonii of any of these plants at a level of G. hirsutum<br />

was observed. In 2011, the corresponding values were<br />

264 visits, 24 or 9.09%.<br />

Daily rate of visits<br />

A. m. Adansonii has been active on the flowers of G.<br />

hirsutum 6 h to 18 h, with a peak of visits between 6 and<br />

Dounia et al. 39<br />

7 h in 2010 and 2011. Strong winds disrupted visits A. m.<br />

adansonii on the flowers of G. hirsutum. Thus, of the 183<br />

visits recorded, 7 (3.82%) in 2010 and recorded 264 visits<br />

to 11 (4.14%) were interrupted by such winds. Climatic<br />

conditions have influenced the activity of A. m. adansonii<br />

on the flowers of G. hirsutum in field conditions (Table 3).<br />

The correlation was negative and significant relationship<br />

between the number of visits of A. m. adansonii on the<br />

flowers of G. hirsutum and temperature in 2010 (r = -0.78<br />

[df = 4, P


40 Int. Res. J. Plant Sci.<br />

Table 3. Daily distribution of A. m. adansonii visits on 100 G. hirsutum flowers over 10 days of observation in 2010 and 2011<br />

respectively, mean temperature and mean humidity of the study site<br />

Daily period (hours)<br />

year Parameter registered 6-7 8-9 10-11 12-13 14-15 16-17<br />

Number of visits 61 43 26 9 12 26<br />

2010 Temperature (°c) 29,12 31,95 34,5 37,54 36,14 34,52<br />

Hygrometry (%) 72,4 63,8 59,2 52,4 46,9 48,8<br />

Number of visits 103 77 56 9 7 12<br />

2011 Temperature (°c) 27,2 31,4 34,06 37,21 35,9 34,34<br />

Hygrometry (%) 71,8 63,8 59,79 52,9 47,2 49,11<br />

2010: for temperature et hygrometry, each figure represents the mean of 50 observations.<br />

2011: for temperature et hygrometry, each figure represents the mean of 50 observations.<br />

Figure 5. Variation of number of flowers and number of visits of A. m. adansonii, on the<br />

flowers G. hirsutum in 2010 ; 2011.<br />

Figure 6. Mean daily of temperature and humidity and mean number of visits of A. m.<br />

adansonii, on the flowers of G. hirsutum in 2010, 2011.


Value beekeeping G. hirsutum<br />

During the rainy season in Maroua, we noted an activity<br />

developed in workers of A. m. adansonii on G. hirsutum<br />

flowers. In particular, there was very good harvest pollen,<br />

low harvest nectar foragers and fidelity to flowers G.<br />

hirsutum. These data highlight the attractiveness of<br />

pollen and nectar of that Malvaceae vis-à-vis A. m.<br />

adansonii. They allow you to place G. hirsutum plants<br />

from beekeeping strongly and weakly Pollinivorous plant.<br />

Impact of flower-feeding insects in pollination and<br />

yields G. hirsutum<br />

During pollen and/or nectar harvest, flower-feeding<br />

insects of G. hirsutum are in regular contact with the<br />

anthers and stigma (Figure 3). These flower-feeding<br />

insects therefore increase the possibilities of this<br />

Malvaceae pollination. Table 4 presents the results on<br />

the rate of fruit, number of seeds per pod and percentage<br />

of normal seeds in different treatments, It is clear from<br />

this table that:<br />

a) Comparison of rates of fruiting shows that the<br />

differences are very highly significant between treatments<br />

1 and 2 (χ2 = 23.39 [df = 1, P


42 Int. Res. J. Plant Sci.<br />

Table 4. G. hirsutum yields under pollination treatments.<br />

Seeds / boll<br />

%<br />

Fruiting<br />

Total Normal normal<br />

Treatment year Flowers boll rate Mean sd Seeds Seeds seeds.<br />

Unlimited visits 2010 100 91 91,00 31,16 10,43 3116 2878 92,36<br />

Bagged flowers 2010 100 62 62,00 17,67 14,39 1767 1229 69,55<br />

Unlimited visits 2011 100 94 94,00 32,68 9,68 3268 2959 90,54<br />

Bagged flowers 2011 100 67 67,00 20,14 15,09 2014 1450 71,99<br />

A. m. adansonii 2010 30 30 100 34,9 2,35 1087 987 94,26<br />

A. m. adansonii 2011 30 30 100 36,9 3,78 1107 1044 94,3<br />

flowers of G. hirsutum in West Africa (Ahmend et al,<br />

1989), Australia (Thomson, 1966; Mungomery and<br />

Glossop 1969), India, Russia (McGregor, 1976). A. m.<br />

adansonii have been reported as the main floral visitor of<br />

the crop. The significant difference between the<br />

percentage visits of A. m. adansonii within studied years<br />

could be attributed to the experimental site variation in<br />

2010 and 2011. The insect fauna of floriculture plant<br />

varies over time (Moffett et al., 1975; Elfawal et al., 1976,<br />

Moffet et al., 1976; Tchuenguem Fohouo, 2005).<br />

The activity peak of A. m. adansonii on the flowers of was<br />

in the morning, which correlated to the period of this<br />

attractiveness is high due to the fact that pollen is<br />

produced in large quantities or 20,000 pollen grains per<br />

flower (Ter Avanesian, 1978) and is easily accessible to<br />

insects (Green and Jones, 1953; McGregor, 1976;<br />

Oosterhuis and Jonestedt 1999), because the flower has<br />

a large diameter (5-9 cm) (Ter Avanesian 1978, Maffett<br />

1983),<br />

However, this decreased activity at 11.00 to 13.00 h<br />

could be related to increased temperature in the<br />

experimental field. Although, foragers preferred warm or<br />

sunny days for good floral activity (Kasper et al., 2008),<br />

the enhanced temperature positively influenced the insect<br />

activity on foraged flowers. Similarly, rainfall has been<br />

documented as an environmental factor that can disrupt<br />

the floral insect activity (McGregor, 1976).<br />

The abundance of A. m. adansonii foragers on 1000<br />

flowers and the positive and highly significant correlation<br />

between the number of G. hirsutum flowers at bloom, as<br />

well as, the number of A. m. adansonii visits indicates the<br />

attractiveness of G. hirsutum pollen with respect to this<br />

bee. In fact, weather during bloom was demonstrated to<br />

affect the abundance and foraging of pollinator insects<br />

(Bramel et al., 2004, Julianna and Rufus, 2010). Among<br />

the 40 insect species visiting G. hirsutum flowers, A. m.<br />

adansonii was the most abundant (36.85%), followed by<br />

Lipotriches collaris (5.55%).<br />

The significant difference between the duration of<br />

visits in 2010 and 2011 could be attributed to the<br />

availability of floral products or the variation of diversity of<br />

flowering insects from one year to another. During each<br />

of the two flowering periods of G. hirsutum, A. m.<br />

adansonii intensely and regularly harvested pollen. This<br />

could be attributed to the needs of individuals at flowering<br />

period. The disruptions of visits by other insects reduced<br />

the time frame visits of certain A. m. adansonii. This<br />

obliged some carpenter bees to visit more flowers for a<br />

foraging trip in order to maximize their pollen loads.<br />

Similar observations were made for A. mellifera adansonii<br />

workers foraging on Entada africana (Fabaceae) flowers,<br />

P. guajava (Myrtaceae) flowers (Tchuenguem et al.,<br />

2007), Croton macrostachyus (Euphorbiaceae) flowers,<br />

Syzygium guineense var. guineense (Myrtaceae) flowers<br />

(Tchuenguem et al., 2008a), Persea americana<br />

(Lauraceae) flowers, Vitellaria paradoxa (Sapotaceae)<br />

flowers (Tchuenguem et al., 2008b), V. unguiculata (L.)<br />

(Fabaceae) flowers (Tchuenguem et al., 2009b),<br />

Combretum nigricans, Erythrina sigmoidea, Lannea<br />

kerstingii, Vernonia amygdalina flowers (Tchuenguem et<br />

al., 2010) and for Chalicodoma cincta (Hymenoptera:<br />

Megachilidae) foraging on C. cajan (Fabaceae) flowers<br />

(Pando et al., 2011b) Xylocopa olivacea workers foraging<br />

P. vulgaris flowers (Kingha et al., 2012), Xylocopa calens<br />

on the flowers of P. coccineus (Pando et al 2011a).<br />

The bee foragers had a high affinity with respect to<br />

G. hirsutum when compared to the neighboring plant<br />

species, indicating their faithfulness to this Malvaceae, a<br />

phenomenon known as “floral constancy” (Louveaux,<br />

1984; Backhaus, 1993; Basualdo et al., 2000). Flower<br />

constancy is an important aspect in the management of<br />

pollination. For this research, it indicates that A. m.<br />

adansonii can provide benefits to pollination management<br />

of G. hirsutum.<br />

During the collection of pollen on each flower, A. m.<br />

adansonii foragers regularly come into contact with the<br />

stigma. They were also able to carry pollen with their<br />

hairs, legs and mouth accessories from a flower of one<br />

plant to stigma of another flower of the same plant<br />

(geitonogamy), to the same flower (autogamy) or to that<br />

of another plant (xenogamy). The workers can be<br />

deposited on the stigma is positively influence and selfpollination<br />

and cross-pollination (Moffett et al., 1975; Rao<br />

et al., 1969).<br />

The significant contribution of A. m. adansonii in boll<br />

and seed yield of G. hirsutum is in agreement with similar<br />

findings in Australia (Llewellyn et al 2007) and United<br />

State of America (Vam Deynze et al 2005).


This Higher productivity of boll and seeds in unlimited<br />

visits when compared with bagged flowers showed that<br />

insect visits were effective in increasing cross-pollination.<br />

Our results confirmed those of Llewellyn et al. (2007),<br />

Vam Deynze et al. (2005) and Xanthopulos and Kechagia<br />

(2005) who revealed that G. hirsutum flowers set little<br />

pods in the absence of insect pollinators. Similar<br />

experiments in England (Free, 1966) and in Brazil (Free,<br />

1993) have shown that pollination by insects was not<br />

always needed. Darwin (1876) showed that selfpollination<br />

of P. vulgaris flowers produced as many bolls<br />

and seeds as exposed plants. Thus, pollination<br />

requirements may different between plant varieties.<br />

CONCLUSION<br />

This study reveals that G. hirsutum outlets is a highly<br />

polliniferous bee plant that obtained benefits from the<br />

pollination by insects among which A. m. adansonii is of<br />

great importance. The comparison of boll and seeds set<br />

of unprotected flowers with that of flowers visited<br />

exclusively by A. m. adansonii underscores the value of<br />

this bee in increasing pods and seed yields as well as<br />

seed quality. The installation of X. A. m. adansonii hive at<br />

the proximity of G. hirsutum fields should be<br />

recommended for the increase of boll and seed yields of<br />

this valuable crop.<br />

REFERENCES<br />

Ahmed HMH, Sidding MA, El-Sarrag MSA (1989). Honeybee pollination<br />

of some cultivated crops in . “Proc. 4 th Int. Conf. Apic. Trop.<br />

Climates”, Cairo, pp 100-10.<br />

Backhaus W (1993). Colour vision and colour choice behaviour of the<br />

honey bee. Apidologie, 24: 309-331.<br />

Basualdo M, Bedascarrasbure E, De JD (2000). Africanized honey<br />

bees (Hymenoptera: Apidae) have a greater fidelity to sunflowers<br />

than European bees. J. Econ. Entomol., 2: 304-307.<br />

Bramel J, Kiran S, Reddy J, Ford-Lloyd B, Chancra S (2004). Degree<br />

and distribution of pigeon pea landrace morphological diversity in<br />

traditional cropping systems in Andhra Pradesh. In: Bramel PJ,<br />

editor. Assessing the risk of losses of biodiversity in traditional<br />

cropping systems: A case study of pigeon pea in Andhra Pradesh.<br />

<strong>International</strong> Crop <strong>Research</strong> Institute for the semi-arid Tropics, 1-45.<br />

Pantacheru Andhra Pradesh, India.<br />

Brubaker CL, Bourland FM, Wendel JE, (1999a). The origin and<br />

domestication of Cotton. Chapter 1.1 In: CW Smith, JT Cothren, eds<br />

Cotton: origin, History,Technology and Production, Jhon wiley and<br />

Sons Inc. New York. pp.3-31.<br />

Brubaker CL, Brown AHD, Stewart JM, Kilby MJ Grace JP (1999b).<br />

Production of fertile hybrid germplasm with diploid Australian<br />

Gossypium species for Cotton improvement Euphytica 108:199-213.<br />

Brubaker CL, Wendel JF (1993). On the specific status of Gossypium<br />

Lanceolalum todaro genetic Resources and Crop Evolution 40:165-<br />

170.<br />

Cherry JP and Lefflter HR (1984). Seed Chapter 13. In: RJ Kohel, CF<br />

Lewis, eds. Cotton Agrinomy Monograph No. 24 Edition 24. ASA-<br />

CSSA-SSSA, Madison, WI pp. 511-558.<br />

Cotton Australia (2005). Annual Report 2004-05. Cotton Australia.<br />

David J (1971). Le coton et l’industrie cotonnière. Presses<br />

Universitaires de France. Vendôme (France) EDIT. N° 31 746; 127 p.<br />

Dounia et al. 43<br />

Delbrassine S, Rasmont P (1988). Contribution à l’étude de la<br />

pollinisation du colza, Brassica napus L. var oleifera (Moench) Delile,<br />

en Belgique. Bull. Rech. Agron. Gembloux, 23 (2), 123 -152 p.<br />

Dermaly Y (1977). Génétique et amélioration des plantes. Masson,<br />

Paris.<br />

Desquesne PH (1996). Apiculture tropicale en Afrique de l’Ouest In :<br />

L’abeille de France 813 : pp.131-132.<br />

Eastick R (2002). Evolution of the potential weediness of transgenic<br />

cotton in northen Australia. Report No. Technical Bulletin No 305,<br />

Northern territory Government CSIRO and Australian Cotton<br />

Cooperative <strong>Research</strong> centre, Australia.<br />

Elfawal MA, Bishr MA, Hassoub EK (1976). Natural cross pollination in<br />

Egyptian Cotton (Gossypium barbadence L.) journal of Agricultural<br />

Science 86 : 205-209<br />

Faegri K, Pijl LVD (1979). The principle of pollination ecology. 3 rd<br />

revised ed.,Pergamon Press, Oxford, 244 p.<br />

Free JB (1966). The pollination of the beans Phaseolus multiflorus and<br />

Phaseolus vulgaris by honeybees. J. Apicult. Res., 5: 87-91.<br />

Free JB (1993). Insect pollination of crops. Academic Press, London,<br />

UK. pp. 263-270.<br />

Fryell PA (1979b). The origin and spead of the tribe Chapter 4. In : the<br />

natural history of cotton tribe (Malvaceae,tribe Gossypium) Taxas A<br />

and M University Press, College Station, USA. pp. 131 – 218.<br />

Fryell PA (1992). A revised Taxonomic Interpretation of Gossypium L.<br />

(Malvaceae) Rheedea 2 : 186 – 165.<br />

Gallai N, Salles JM, Settele J, Vaissière BE (2009). Economic valuation<br />

of the vulnerability of world agriculture confronted with pollinator<br />

decline. Ecological Economics 68: 810-821.<br />

Green JM, Jones MD (1953). Isolation of Cotton for seed increase<br />

Agronomy journal 45: 366-368.<br />

Green JM, Jones MD (1953). Isolation of Cotton for seed increase.<br />

Agronomy Journal 45 : 366-368.<br />

Jenkins JN (2003). Cotton In: traditional crops breeding practices: an<br />

historical review to serve as a baseline for assessing the role of<br />

modern biotechnology. OECD, pp 61-70.<br />

Julianna KT. Rufus I (2010). Weather during affects pollination and yield<br />

of highbush blueberry. J. Econ. Entomol., 103(3): 557-562.<br />

Kasper ML, Reeson AF, Mackay DA Austin AD (2008). Environmental<br />

factors influencing daily foraging activity of Vespula germanica<br />

(Hymenoptera, Vespidae) in Mediterranean Australia. Insect Soc., 55:<br />

288-296.<br />

Kingha BMT, Tchuenguem FFN, Ngakou A, Brückner D (2012).<br />

Foraging and pollination activities of Xylocopa olivacea<br />

(Hymenoptera, Apidae) on Phaseolus vulgaris (Fabaceae) flowers at<br />

Dang (Ngaoundere-Cameroon) Journal of Agricultural Extension and<br />

Rural Development Vol. 4(6), pp. 330-339.<br />

Kuete M, Melingui A, Mounkam J, Nofiele D (1993). Nouvelle<br />

Géographie du Camroun. EDICEF, 207 p.<br />

Lagière R, (1966). Le Cotonnier. G – P. MAISONNEUVE and LAROSE<br />

11, rue Victor Cousin, 11 PARIS (V e ) EDIT. N° 280 Dépôt légal : 2 e<br />

trimestre 1966; 305 p.<br />

Letouzey R (1985). Notice de la carte phytogéographique du<br />

Cameroun au 1/500000. Inst. Carte Intern. Végétation, Toulouse et<br />

Inst. Rech. Agron., Yaoundé.<br />

Lllewllyn DJ, Tyson C, Constable GA, Duggan B, Beale S, Steel P<br />

(2007). Containment of regulated genetically modified Cotton in the<br />

field. Agriculture Ecosystems and Environment 121: 419-429.<br />

Louveaux J (1984). Les traitements phytosanitaires et les insects<br />

pollinisateurs. In : pollinisation et productions végétales. Pesson P.<br />

and Louveaux J. (éds), Paris, pp. 565 -575.<br />

Mc Gregor SE (1976). Insect pollination of cultivated crop plants. Agric.<br />

Res. Serv. USDA, Agric. Handb., n o 496, 411 p.<br />

MINADER/DESA (2010). Annuaire des Statistiques du Secteur Agricole<br />

Campagnes 2007 and 2008. AGRI-STAT (16): 98.<br />

Moffet JO, Stith LS, Burkhart CC, Shipman CW (1975). Honey bee<br />

visits to cotton flowers. Environmental Entomology 4: 203-206.<br />

Moffet JO, Stith LS, Burkhart CC, Shipman CW (1976). Fluctuation of<br />

wild bee and wasp visits to Cotton flowers Arizona academy of<br />

Science : 11 : 64-68.<br />

Moffett JO (1983). Pollination of Entomophilous hybrid seed parents-


44 Int. Res. J. Plant Sci.<br />

hybrid Cotton. Chapter 8. In CE Jones, RJ Little, eds. Handbook of<br />

esperimental pollination biology. Van Nostrand Reinhold, New York,<br />

pp. 508-514.<br />

Morison N, Vaissière BE, Martin F, Pécaut P, Gambon G (2000a).<br />

Pollinisation de l´artichaut (Cynara scolymus L.) par l´abeille<br />

domestique (Apis mellifera L.) en production de semences hybrides<br />

sous abris grillagés. Apidologie, 31: 115-128.<br />

Mungomery JE, Glassop AJ (1969). Natural cross-polination of cotton in<br />

Central Queensland. Queenland journal of agriculture and Animal<br />

Sciences 26: 69-74.<br />

Mutsaers M (1991). Bees in their natural environment in south<br />

Westhern Nigeria. The Nigerian Field, 56: 3 - 18.<br />

Ooterhuis DM, Jerntedt J (1999). Morphology and anatomy of the<br />

Cotton plant. Chapter 2.1. In : CW Smith, JT Cothren, eds. Cotton :<br />

Origim, History,Technology and Production, John Wiley and Sons,<br />

New York. pp. 175-206.<br />

Pando JB, Tchuenguem FFN, Tamesse JL (2011a). Foraging and<br />

pollination behaviour of Xylocopa calens (Hymenoptera: Apidae) on<br />

Phaseolus coccineus L. (Fabaceae) flowers at Yaoundé (Cameroon).<br />

Entomol. Res., 41: 185-193.<br />

Pando JB, Tchuenguem FFN, Tamesse JL (2011b). Pollination and<br />

yield responses of pigeon pea (Cajanus cajan L. Mill sp.) to the<br />

foraging activity of Chalicodoma cincta cincta (Hymenoptera:<br />

Megachilidae) in Yaoundé (Cameroon). J. Anim. Plant Sci., 11(1):<br />

1346-1357.<br />

Pesson P, Louveaux J (1984). Pollinisation et productions végétales.<br />

INRA, Paris, 663 p.<br />

Philippe JM (1991). La pollinisation par les abeilles : pose des colonies<br />

dans les cultures en floraison en vue d’accroître les rendements des<br />

productions végétales. EDISUD, La calade, Aix-en-Provence, 179 p.<br />

Rao CM, Nadre KR, Suryanarayana MC (1996). Studie on the utility of<br />

honey bees on production of foundation seed of cotton cv NCMHH-<br />

20 Indian Been Journal 58 : 13-15.<br />

Richard JS, Stanley JN, Gregg PC (2005). Viability of cotton and canola<br />

pollen on the proboscis of Helicoverpa armigea: implication for<br />

spread of trangenes and pollination ecology Ecological Entomology<br />

30: 327-333.<br />

Ritchie GL, Bednarz CW, Jost PH, Brown SM (2007). Cotton Growth<br />

and Development. pp. 1-14.<br />

Roubik DW (2000). Pollination system stability in Tropical America.<br />

Conserv. Biol., 14(5): 1235-1236.<br />

Sasserath-Cole (1995) Dependence of canopy light distribution on leaf<br />

and Canopy structure for two (Gossypuim) species Agricultural and<br />

forest Meteorology 77: 55-72.<br />

Seelanan T, Brubaker CL, Stewart JM, Craven LA, Wendel JF (1999).<br />

Molecular Systematic of Australian Gossypium Section Grandicalyx<br />

(malvaceae) Systematic Botany 24 : 183 – 208.<br />

Segeren P, Mulder V, Beetsma J, Sommeijer R (1996). Apiculture sous<br />

les tropiques. Agrodok 32, 5ème ed., Agromisa, Wageningen, 88 p.<br />

Tchuenguem FFN, Djonwangwé D, Brückner D (2008). Foraging<br />

behaviour of the African honey bee (Apis mellifera adansonii) on<br />

Annona senegalensis, Croton macrostachyus, Psorospermum<br />

febrifugum and Syzygium guineense var. guineense at Ngaoundéré<br />

(Cameroun). Pakistan Journal of Biological Sciences. 11: 719 – 725.<br />

Tchuenguem FFN, Djonwangwe D, Brückner D (2008b). Foraging<br />

behaviour of the African honey bee (Apis mellifera adansonii) on<br />

Annona senegalensis, Croton macrostachyus, Psorospermum<br />

febrifugum and Syzygium guineense var. guineense flowers at<br />

Ngaoundéré (Cameroon). Pak. J. Biol. Sci., 11: 719-725.<br />

Tchuenguem FFN, Djonwangwe D, Messi J, and Bruckner D, (2009).<br />

Activité de butinage et de pollinisation d’Apis mellifera adansonii<br />

Latreille (Hymenoptera : Apidae, Apinae) sur les fleurs de Helianthus<br />

annuus (Asteraceae) à Ngaoundéré (Cameroun). Cameroun Journal<br />

of Experimental Biology; 5 (1): 1-9.<br />

Tchuenguem FFN, Djonwangwé D, Messi J, Brückner D (2007).<br />

Exploitation des fleurs de Entada africana, Eucalyptus camaldulensis,<br />

Psidium guajava et Trichillia emetica par Apis mellifera adansonii à<br />

Dang (Ngaoundéré, Cameroun). Cameroon Journal of Experimental<br />

Biology. 3: 50-60.<br />

Tchuenguem FFN, Djonwangwe D, Messi J, Brückner D (2008a).<br />

Exploitation of Dichrostachys cinerea, Vitellaria paradoxa, Persea<br />

americana and Securidaca longepedunculata flowers by Apis<br />

mellifera adansonii Latreille (Hymenoptera: Apidae) at Dang<br />

(Ngaoundéré, Cameroon). Inter. J. Trop. Insect Sci., 28: 225-233.<br />

Tchuenguem FFN, Djonwangwé D, Messi J, Brückner D (2009a).<br />

Foraging and pollination activities of Apis mellifera adansonii<br />

(Hymenoptera: Apidae) at Ngaoundéré (Cameroon). Cameroon J.<br />

Exp. Biol., 5(1): 1-9.<br />

Tchuenguem FFN, Fameni TS, Mbianda PA, Messi J, Brückner D<br />

(2010). Foraging behaviour of Apis mellifera adansonii<br />

(Hymenoptera: Apidae) on Combretum nigricans, Erythrina<br />

sigmoidea, Lannea kerstingii and Vernonia amygdalina flowers at<br />

Dang (Ngaoundéré, Cameroon). Inter. J. Trop. Insect Sci., 1: 40-47.<br />

Tchuenguem FFN, Messi J and Pauly A, (2002). L´activité de butinage<br />

des Apoïdes sauvages (Hymenoptera : Apoidea) sur les fleurs de<br />

maïs à Yaoundé (Cameroun) et réflexion sur la pollinisation des<br />

graminées tropicales. Biotechnol. Agron. Soc. Environ.,6 (2) : 87-98.<br />

Tchuenguem FFN, Messi J, Brückner D, Bouba B, Mbofung G and<br />

Hencthoya Hemo J (2004). Foraging and pollination behaviour of the<br />

African honey bee (Apis mellifera adansonii) on Callistemon rigidus<br />

flowers at Ngaoundéré (Cameroon). Journal of the Cameroon<br />

Academy of Sciences. Vol. 4, N ° 2, 133 – 140.<br />

Tchuenguem Fohouo F.-N., (2005). Activité de butinage et de<br />

pollinisation d’Apis mellifera adansonii Latreille (Hymenoptera :<br />

Apidae , Apinae) sur les fleurs de trois plantes à Ngaoundéré<br />

(Cameroun) : Callistemon rigidus (Myrtaceae), Sygygium guineense<br />

var. macrocarpum (Myrtaceae) et Voacanga africana(Apocynaceae).<br />

Thèse du Doctorat d’Etat, Université de Yaoundé I, 103 p.<br />

Ter Avanesian DV (1978). The effect of warying the number of pollen<br />

grains used in fertilization. Theoretical and Applied Genetics 52: 77-<br />

79.<br />

Thomson NJ (1966). Cotton variety trials in the ord valley, North<br />

western Australia : 4 natural crossing of cotton. Empire cotton<br />

Growing Review 43: 18-21.<br />

Umbeck P, Johnson G, Barton K, Swain W (1987). Genetically<br />

Transformed Cotton (Gossypium hirsutum L.) plant. Biotechnology 5:<br />

263-267.<br />

Vaissières B and Izard D (1995). La pollinisation, un facteur à ne pas<br />

négliger. Fruit et légume, 57 – 60.<br />

Van Deynze AE, Sundstrom FJ, Bradford KJ (2005) Pollen-mediated<br />

gene flow in California Cotton depends on pollinator activity, Crop<br />

science 45: 1565-1570.<br />

Wise RR, Sassenrath-Cole GF, Percy RG (2000). A comparison of leaf<br />

anatomy in field-grown Gossypium hirsutum and G. barbadense<br />

Annals of Botany 86: 731-738.<br />

Yasuor H, Rio VJ, Rubin B (2007). Glyphosate induced male sterility in<br />

glyphosate-resistant cotton (Gossypium hirsutum) is associated with<br />

inhibition of anther dehiscence and reduced pollen viability. Crop<br />

Protectionn 26: 363-369

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!