06.04.2013 Views

Species boundaries within Saprolegnia (Saprolegniales ... - Mycologia

Species boundaries within Saprolegnia (Saprolegniales ... - Mycologia

Species boundaries within Saprolegnia (Saprolegniales ... - Mycologia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Mycologia</strong>, 99(3), 2007, pp. 421–429.<br />

# 2007 by The Mycological Society of America, Lawrence, KS 66044-8897<br />

<strong>Species</strong> <strong>boundaries</strong> <strong>within</strong> <strong>Saprolegnia</strong> (<strong>Saprolegnia</strong>les, Oomycota) based on<br />

morphological and DNA sequence data<br />

Jonathan P. Hulvey<br />

David E. Padgett<br />

J. Craig Bailey1 Department of Biology and Marine Biology, University<br />

of North Carolina Wilmington, 601 S. College Road,<br />

Wilmington, North Carolina 28403<br />

Abstract: <strong>Saprolegnia</strong> is a common and widespread<br />

genus of Oomycetes, however species identifications<br />

are difficult and uncertain. To test whether keys based<br />

on morphological characters could identify species as<br />

determined by molecular characters we determined<br />

partial DNA sequences for the 28S rRNA gene and<br />

the complete internal transcribed spacer (ITS) region<br />

for 55 isolates belonging to <strong>Saprolegnia</strong> and one<br />

isolate of Protoachlya hypogyna that exhibited saprolegnoid<br />

zoospore discharge in water culture. Phylogenetic<br />

analyses of the combined sequence data<br />

yielded 10 robustly supported clades that probably<br />

represent separate species. Morphological analyses of<br />

all isolates revealed that each DNA-based clade could<br />

be delimited from others by autapomorphic or<br />

unique combinations of morphological character<br />

states but not without employing several features<br />

previously not used at the species level. Taxonomic<br />

implications of these results are discussed and<br />

recommendations for less equivocal characterization<br />

of new <strong>Saprolegnia</strong> species are made.<br />

Key words: morphology, phylogeny, systematics,<br />

watermold<br />

INTRODUCTION<br />

<strong>Species</strong> of the oomycetous family <strong>Saprolegnia</strong>ceae,<br />

commonly referred to as ‘‘watermolds’’ (history of<br />

term recounted in Johnson et al 2002), occur<br />

worldwide and can be isolated from freshwater and<br />

nonsaline soils with relative ease. Representatives are<br />

most notably characterized by the production of<br />

coenocytic, filamentous thalli, biflagellate, heterokont<br />

zoospores, and oogamous sexual structures.<br />

Several genera include significant pathogens of fishes<br />

(Willoughby 1997, Paxton and Willoughby 2000),<br />

crustaceans (Westman 1991, Vennerstrom et al 1998),<br />

midge eggs (Martin 1981), mosquito larvae (Seymour<br />

1984) and at least two important agricultural plants<br />

Accepted for publication 9 January 2006.<br />

1 Corresponding author. E-mail: baileyc@uncw.edu<br />

421<br />

(Wicker et al 2001, Yokosawa et al 1988, Pilet-Nayel et<br />

al 2002, Ramirez et al 1994, Peters and Grau 2002),<br />

but most included species probably are obligate<br />

saprotrophs.<br />

Kützing (1843) formally erected the <strong>Saprolegnia</strong>ceae<br />

but considered representatives to be nonchlorophyllous<br />

algae. The first English language monograph<br />

of the family was published by Humphrey<br />

(1893) and revised by Coker (1923). Subsequently<br />

Moreau and Moreau (1935, 1938), Coker (1935),<br />

Dick (1969, 1972, 1978, 2001), Miller and Ristanović<br />

(1975), Powell and Blackwell (1998) and Padgett et al<br />

(2000) have made observations about watermold<br />

systematic concepts most of which emphasize the<br />

significant morphological plasticity <strong>within</strong> the family.<br />

Johnson et al (2002) offered an extensive systematic<br />

revision of the group recognizing 17 genera and 122<br />

species but agreed that significant species overlap<br />

persists because of this plasticity.<br />

Few investigators worldwide specialize in watermold<br />

systematics although several laboratories have presented<br />

molecular phylogenies of the family or of the<br />

class Peronosporomycetes to which it belongs (e.g.<br />

Dick 1999, Riethmueller et al 1999, Leclerc et al 2000,<br />

Peterson and Rosendahl 2000, Spencer et al 2002,<br />

Daugherty et al 1998, Hudspeth et al 2000, Inaba and<br />

Tokumasu 2002). To our knowledge however there<br />

have been no previous assessments of the degree to<br />

which gene sequence analyses might contribute to<br />

resolving the species overlap problem that has grown<br />

out of the use of morphological features as the sole<br />

basis for species circumscription.<br />

The present contribution focuses exclusively on<br />

isolates belonging to the genus <strong>Saprolegnia</strong> as determined<br />

by zoosporangial discharge pattern. Its sole<br />

objective is to determine whether all isolates of an<br />

inferred phylogenetic genetic clade belong to the<br />

same morphological species as determined by modern<br />

dichotomous keys ( Johnson et al 2002). If the<br />

trees derived from our sequence alignment are<br />

robustly supported, it seems logical to assume that<br />

all isolates belonging to the same clade should be<br />

recognized as a single (or ‘‘good’’) phylogenetic<br />

species. Thus this manuscript tests the congruency<br />

between modern molecular analyses and classical<br />

morphological identification for <strong>Saprolegnia</strong> species.<br />

Partial 28S ribosomal RNA (28S rRNA) gene<br />

sequences and complete ribosomal internal transcribed<br />

spacer (ITS) sequences were determined for


422 MYCOLOGIA<br />

TABLE I. Source and sequence accession numbers of isolates studied. Isolates designated as ‘sp.’ reproduced only asexually<br />

under the present culture conditions. Some ATCC or CBS isolates did not key to the same species as given by the source<br />

organization. For those the original identification is indicated by * and our identification is indicated by **.<br />

UNCW<br />

No.<br />

ATCC or CBS<br />

No. <strong>Species</strong> Collection locale<br />

GenBank accession No.<br />

28S rRNA ITS<br />

105 — S. megasperma Soil, New Hanover County, NC DQ393440 DQ393506<br />

114 — <strong>Saprolegnia</strong> sp. Fish, Pamlico River, NC DQ393441 DQ393507<br />

162 — S. megasperma Carolina Biological Supply DQ393442 DQ393508<br />

170 — <strong>Saprolegnia</strong> sp. Soil, New Hanover County, NC DQ393443 DQ393509<br />

172 — <strong>Saprolegnia</strong> sp. Soil, New Hanover County, NC DQ393444 DQ393510<br />

176 — S. diclina Soil, New Hanover County, NC DQ393445 DQ393511<br />

217 — S. diclina Soil, New Hanover County, NC DQ393447 DQ393513<br />

218 — <strong>Saprolegnia</strong> sp. Soil, New Hanover County, NC DQ393448 DQ393514<br />

219 — <strong>Saprolegnia</strong> sp. Soil, New Hanover County, NC DQ393449 DQ393515<br />

250 — <strong>Saprolegnia</strong> sp. Soil, Croatan Nat. Forest, NC DQ393451 DQ393517<br />

251 — <strong>Saprolegnia</strong> sp. Soil, Croatan Nat. Forest, NC DQ393452 DQ393518<br />

253 — S. terrestris Soil, Croatan Nat. Forest, NC DQ393453 DQ393519<br />

254 — S. megasperma Soil, Croatan Nat. Forest, NC DQ393454 DQ393520<br />

257 — S. megasperma Soil, Croatan Nat. Forest, NC DQ393455 DQ393521<br />

258 — S. megasperma Soil, New Hanover County, NC DQ393456 DQ393522<br />

259 — S. richteri Soil, Great Smoky Mtns. Nat. Pk., NC DQ393457 DQ393523<br />

260 — S. luxurians Soil, Great Smoky Mtns. Nat. Pk., NC DQ393458 DQ393524<br />

263 ATCC 26116 S. ferax* S. litoralis** Pond water, California DQ393460 DQ393527<br />

264 ATCC 22284 S. parasitica* <strong>Saprolegnia</strong> sp.** Catfish, Virginia pond DQ393461 DQ393528<br />

266 ATCC 10396 S. ferax* <strong>Saprolegnia</strong> sp.** DQ393462 DQ393529<br />

269 ATCC 36146 S. ferax* <strong>Saprolegnia</strong> sp. ** Water, England DQ393463 DQ393530<br />

271 ATCC90213 S. parasitica* <strong>Saprolegnia</strong> sp. ** DQ393464 DQ393531<br />

273 ATCC 200013 S. parasitica* <strong>Saprolegnia</strong> sp. ** Fish, Japan DQ393466 DQ393532<br />

277 — <strong>Saprolegnia</strong> sp. Crayfish, Odum, GA DQ393467 DQ393533<br />

278 — <strong>Saprolegnia</strong> sp. Pet store fish, Wilmington, NC DQ393468 DQ393525<br />

280 — S. itoana Soil, Fayetteville, NC DQ393469 DQ393534<br />

283 — S. megasperma Creek bank, Wayne County, GA DQ393470 DQ393535<br />

284 — S. megasperma Water, Wayne County, GA DQ393471 DQ393536<br />

286 — S. megasperma Water, Wayne County, GA DQ393473 DQ393536<br />

288 — <strong>Saprolegnia</strong> sp. Water, Wayne County, GA DQ393474 DQ393537<br />

289 — <strong>Saprolegnia</strong> sp. Soil, Okefenokee Swamp, GA DQ393475 DQ393538<br />

290 — <strong>Saprolegnia</strong> sp. Water, Wayne County, GA DQ393476 DQ393539<br />

291 — <strong>Saprolegnia</strong> sp. Soil, Okefenokee Swamp, GA DQ393488 DQ393550<br />

292 — <strong>Saprolegnia</strong> sp. Soil, Okefenokee Swamp, GA DQ393477 DQ393540<br />

295 ATCC 36144 S. diclina* <strong>Saprolegnia</strong> sp. ** Water, England DQ393478 DQ393541<br />

298 — <strong>Saprolegnia</strong> sp. Soil, Okefenokee Swamp, GA DQ393479 DQ393542<br />

299 — <strong>Saprolegnia</strong> sp. Soil, Okefenokee Swamp, GA DQ393480 DQ393543<br />

300 — <strong>Saprolegnia</strong> sp. Soil, Italy DQ393489 DQ393551<br />

301 CBS 261.34 Pythiopsis cymosa United Kingdom DQ393490 DQ393552<br />

309 CBS 158.45 Protoachlya paradoxa* Water, Netherlands DQ393491 DQ393553<br />

312 — <strong>Saprolegnia</strong> sp. Soil, Richmond, VA DQ393481 DQ393544<br />

314 — <strong>Saprolegnia</strong> sp. Soil, Richmond, VA DQ393482 DQ393545<br />

315 — <strong>Saprolegnia</strong> sp. Soil, Richmond, VA DQ393483 DQ393546<br />

320 — S. megasperma Soil, Great Smoky Mtns. Nat. Pk., NC DQ393485 DQ393547<br />

328 — <strong>Saprolegnia</strong> sp. Pet store goldfish, Wilmington, NC DQ393486 DQ393548<br />

329 — <strong>Saprolegnia</strong> sp. Frog, Wilmington, NC DQ393487 DQ393549<br />

336 ATCC 28092 Protoachlya polysporus* Water, New Jersey DQ393492 DQ393554<br />

337 ATCC 44892 Protoachyla paradoxa* Pond water, Netherlands DQ393493 DQ393555<br />

372 CBS 551.62 S. eccentrica* S. richteri** Soil, England DQ393494 DQ393556<br />

373 — S. diclina Soil, Wilmington, NC DQ393495 DQ393557<br />

374 CBS 535.67 S. litoralis* <strong>Saprolegnia</strong> sp. ** Soil, England DQ393496 DQ393558<br />

375 CBS 213.35 S. unispora* <strong>Saprolegnia</strong> sp. ** United Kingdom DQ393497 DQ393559


TABLE I. Continued<br />

UNCW<br />

No.<br />

56 isolates referable to <strong>Saprolegnia</strong>. The combined<br />

data were analyzed yielding phylogenetic trees onto<br />

which we mapped sequence divergence values and<br />

morphological character states. Results suggest that<br />

the DNA-based phylogenetic hypothesis provides<br />

a useful framework for re-interpreting the taxonomic<br />

utility of vegetative and reproductive characters for<br />

distinguishing among <strong>Saprolegnia</strong> species. This more<br />

objective approach, in which both molecular and<br />

morphological data are employed, may provide<br />

a method for ultimately establishing nonoverlapping<br />

generic and species descriptions (and keys) for other<br />

watermold taxa as well.<br />

MATERIALS AND METHODS<br />

Culture propagation and morphological analyses.—Isolates<br />

employed in this study were derived from nonsaline<br />

soils collected principally from the southeastern United<br />

States or were purchased from the American Type<br />

Culture collection (ATCC) or the Centraalbureau voor<br />

Schimmelcultures (CBS) (TABLE I). Before morphological<br />

analysis or DNA extraction was attempted all isolates were<br />

processed to derive axenic, single spore or single hyphal tip<br />

cultures.<br />

Replicate cultures (10 for each isolate) used for morphological<br />

identifications were initiated by placing autoclaved,<br />

shelled hemp seeds on the growing edge of colonies<br />

propagated on Difco cornmeal agar (CMA). After a 24 h<br />

infestation period, single hemp seeds were transferred to<br />

disposable plastic Petri dishes filled with 25 mL of sterile<br />

distilled water. Water culture dishes were wrapped individually<br />

in Parafilm TM to prevent contamination during<br />

room temperature incubation and maintained until sacrificed<br />

to observe morphological characters. Wherever<br />

possible identifications were based on 50 replicate determinations<br />

of all morphological features studied ( Johnson et al<br />

2002).<br />

To preclude the possibility that individual primary<br />

sporangia might exhibit different patterns of sporangial<br />

dehiscence (Padgett and Johnson 2004), zoospore discharge<br />

was observed (and videotaped) from 10 separate<br />

HULVEY ET AL: SPECIES BOUNDARIES WITHIN SAPROLEGNIA 423<br />

ATCC or CBS<br />

No. <strong>Species</strong> Collection locale<br />

GenBank accession No.<br />

28S rRNA ITS<br />

377 CBS 618.97 S. polymorpha* <strong>Saprolegnia</strong> sp. ** Fish DQ393498 DQ393560<br />

380 CBS 542.67 S. furcata* <strong>Saprolegnia</strong> sp.** United Kingdom DQ393499 DQ393561<br />

381 CBS 386.52 S. megasperma * <strong>Saprolegnia</strong> sp. ** Soil, New York DQ393500 DQ393562<br />

382 CBS 109568 S. semi-hypogyna* S. luxurians** DQ393501 DQ393563<br />

383 CBS 278.52 S. subterranea* S. itoana** Mud, New York DQ393502 DQ393564<br />

384 CBS 305.37 S. ferax* <strong>Saprolegnia</strong> sp. ** France DQ393503 DQ393565<br />

345 CBS 534.67 S. ferax* <strong>Saprolegnia</strong> sp. ** Lake water, England DQ393504 DQ393566<br />

386 CBS 110064 S. torulosa* S. asterophora ** Soil, Japan DQ393505 DQ393567<br />

primary sporangia for each isolate. Discharges were<br />

observed on 24–48 h old, intact colonies floating in<br />

Parafilm-sealed culture dishes with an Olympus SZX 12<br />

stereo microscope equipped with a fiber-optic illuminator<br />

and an Hitachi CE digital camera.<br />

Subsequent to zoospore discharge determination, all<br />

replicate water cultures were individually sacrificed through<br />

time (over 14 d) for observing diagnostic sexual characters<br />

as per Johnson (1956) and Seymour (1970). These<br />

observations were made with an Olympus BX 41 phase<br />

contrast microscope and derived data recorded in specially<br />

designed MS Excel TM electronic spreadsheets (Ferner<br />

unpublished) for later analysis. Measurements of various<br />

quantitative features (e.g. zoospore cyst diameter, oogonial<br />

and oospore diameters) were made with ImagePro TM<br />

computer software.<br />

DNA isolation, PCR amplification and sequencing.—Mycelia<br />

for DNA extraction were propagated in glucose, yeast<br />

extract (GY) broth containing Difco D-glucose<br />

(10.0 g L 21 ) and Difco Yeast Extract (2.5 g L 21 ). Log phase<br />

cultures were harvested aseptically, blotted on sterile filter<br />

paper, transferred to sterile Whirl Paks TM and immediately<br />

frozen at 220 C.<br />

Frozen mycelia were ground with a mortar and pestle or<br />

disrupted via sonification in 2 3 CTAB buffer and total<br />

cellular DNA extracted as described in Bailey et al (1998). A<br />

portion of the 28S rRNA gene, including hypervariable stem<br />

and loop regions between helices C1 and D2 (Ben Ali et al<br />

1999), was amplified with primers C1 (59-ACCCGCTGATT-<br />

TAAGCAT-39) and D2 (59-TCCGTGTTTCAAGACGG-39)<br />

(Leclerc et al 2000). The entire ITS region was amplified<br />

with primers ITS1 (59-TCCGTAGGTGAACCTGCGG-39) and<br />

ITS4 (59-TCCTCCGCTTATTGATATGC-39) (White et al<br />

1990). The thermocycling profile included an initial<br />

denaturation step at 94 C for 3 min, followed by 35 cycles<br />

of denaturation at 94 C for 30 s, primer annealing at 50 C<br />

for 30 s and primer extension at 72 C for 1.5 min, a final<br />

extension step for 7 min at 72 C and a 4 C soak. Amplified<br />

products were checked for correct length and yield on 0.8%<br />

ethidium bromide-stained agarose gels and purified with<br />

the GeneClean II Kit (Qbiogene, Carlsbad, California). PCR<br />

products were sequenced on both strands with the<br />

amplification primers and BigDye Terminator cycle se-


424 MYCOLOGIA<br />

quencing kit (v. 2, Applied Biosystems, Foster City,<br />

California) according to the manufacturer’s specifications.<br />

Sequences were determined on an ABI3100 automated<br />

DNA sequencer (Applied Biosystems, Foster City, California)<br />

and electropherograms were edited and assembled<br />

with Sequence Analysis (v. 1.0.1) and Sequence Navigator<br />

(v. 3.4.1) programs (Applied Biosystems, Foster City,<br />

California).<br />

Phylogenetic analyses.—Sequences were aligned by eye in<br />

SeqApp (Gilbert 1994). The model of nucleotide substitution<br />

that best fit our data was determined with<br />

Modeltest (v. 3.06, Posada and Crandall 1998) and a general<br />

time reversible model with invariant sites and rates of<br />

substitution among sites approximated by a gamma distribution<br />

(5GTR + I + G) was selected. This substitution<br />

model and neighbor joining (NJ), parsimony (MP), and<br />

maximum likelihood (ML) algorithms were used to<br />

construct trees in PAUP (v. 4.0b10, Swofford 2001).<br />

Heuristic parsimony searches were conducted with TBR<br />

branch swapping with gaps treated as missing data and<br />

random orders of sequence addition (5100). The ML tree<br />

was inferred with the heuristic search option and random<br />

orders of sequence addition (510).<br />

Pythiopsis had been resolved as sister of <strong>Saprolegnia</strong> based<br />

on analyses of 28S rRNA + ITS data (Leclerc et al 2000) and<br />

mitochondrial cox2 gene sequences (Hudspeth et al 2000)<br />

and therefore was used to root the saprolegnialean trees.<br />

Support for nodes of the trees was assessed by calculating<br />

bootstrap proportion values (Felsenstein 1985). Bootstrap<br />

values for the NJ and MP trees were based on analyses of<br />

10 000 pseudoreplicate datasets whereas the ML values were<br />

derived from 60 replicates.<br />

RESULTS<br />

Nucleotide sequences determined in this study have<br />

been submitted to GenBank (TABLE I). The combined<br />

sequence data matrix (28S rRNA + ITS) included 1678<br />

characters. All saprolegnialean sequences analyzed<br />

differed from one another by at least one substitution;<br />

the maximum number of substitutions between any<br />

two ingroup isolates was 153. Neighbor joining<br />

resulted in a single tree whereas the MP analysis<br />

yielded 7206 equally parsimonious trees of 728 steps<br />

(CI 5 0.64, RI 5 0.86). Of 1678 total characters 278<br />

(16.6%) were found to be parsimony informative. The<br />

50% majority rule parsimony consensus tree, the NJ<br />

tree and the ML tree were consistent with one another<br />

differing only with respect to relationships inferred<br />

among some terminal taxa <strong>within</strong> clades. However the<br />

number of clades resolved, the composition of the<br />

clades and their branching order were identical in all<br />

three analyses; for these reasons only the ML tree is<br />

presented (FIG 1).<br />

<strong>Saprolegnia</strong> isolates were divided among 10 clades<br />

each supported by robust bootstrap values (FIG. 1)<br />

although the branching order among clades 1, 2, 3<br />

and 4 could not be resolved. While the bootstrap<br />

value for one clade in the ML analysis was 78%, the<br />

remaining values were above 92% and all values for<br />

the 10 clades in the distance analysis were 100%<br />

(FIG. 1). No correlation was found between the<br />

number of isolates placed in a clade and the number<br />

of pairwise substitutions observed among those<br />

isolates (r 2 520.02437, p , 0.4012). The maximum<br />

mean number of substitutions observed among<br />

isolates <strong>within</strong> any of the 10 terminal clades was 10.7<br />

(clade 4) whereas a single substitution distinguished<br />

isolates SAP280 and SAP383 (clade 6). These data<br />

(FIG. 1) together with morphological information<br />

were used to justify separate recognition of clades<br />

7 vs. 8 as well as 9 vs. 10. For example mean<br />

numbers of substitutions between members of<br />

clades 7 and 8 (520.7) are nearly twice that observed<br />

among isolates placed in the most heterogeneous<br />

terminal clade (clade 4) (510.7). Similarly the mean<br />

number of substitutions between members of<br />

clades 9 and 10 was nearly three times that observed<br />

in clade 4.<br />

Two isolates (SAP 374 and SAP 380) did not fit<br />

<strong>within</strong> other bi- or multi-isolate clades thus are<br />

assumed to represent unique taxa. In addition unique<br />

(autapomorphic) morphological characters circumscribed<br />

clades 4, 8 and 9.<br />

Inspection (TABLE II) clearly reveals that, for<br />

almost all clades, included isolates did not all key to<br />

the same morphological species when identified by<br />

the keys presented in Johnson et al (2002). Furthermore<br />

in several instances the isolates did not key to<br />

the same species as indicated by the original culture<br />

source. Thus the assumption of complete congruency<br />

between gene sequence analysis and morphological<br />

identification must be rejected. Furthermore identification<br />

of species corresponding to each genetic<br />

clade using compiled morphological characters of all<br />

clade members does not yield different names for<br />

each clade (TABLE II).<br />

We analyzed our morphological data considering<br />

not only traditional sexual characters but also some<br />

zoosporangial characters in an effort to determine<br />

whether clades could be resolved from one another<br />

with a combination of morphological features. Results<br />

of this analysis are presented (FIG 2). We found that if<br />

we first separated species by what kind of discharge<br />

papilla formed on the zoosporangia we could remove<br />

clade 8. It is noteworthy that both members of clade 8<br />

exhibited long and prominently flared zoosporangial<br />

discharge papillae (FIG. 3) that were unique to this<br />

clade. The fact that resolution of numbered clades<br />

could not be accomplished without use of this and<br />

other zoosporangial characteristics (FIG. 2) represents<br />

a new finding for this genus.


HULVEY ET AL: SPECIES BOUNDARIES WITHIN SAPROLEGNIA 425<br />

FIG. 1. Maximum likelihood phylogram depicting phylogenetic relationships inferred among 56 saprolegnoid isolates,<br />

based on combined analysis of 28S rRNA and ITS DNA sequence data. The 10 terminal clades are numbered and denoted by<br />

dots. Bootstrap values (.70%, L5 maximum likelihood, P 5 parsimony, D 5 distance) are presented to the right of each<br />

numbered clade and above corresponding internal nodes.


426 MYCOLOGIA<br />

TABLE II. Best fit identifications of sexually reproducing clade members based on sexual morphological characteristics only<br />

Clade Isolate number<br />

DISCUSSION<br />

The robust bootstrap support for all 10 clades (FIG. 1)<br />

supports the conclusion that they represent distinct<br />

species. Our finding that not all members of a given<br />

clade keyed out to the same morphological species<br />

was not unexpected. The latter finding leaves no<br />

alternative to the conclusion that <strong>Saprolegnia</strong> species<br />

cannot be circumscribed solely on the basis of sexual<br />

features.<br />

Probably our most important finding was that,<br />

when we considered the compiled morphological<br />

characteristics for an entire clade, we keyed several<br />

different clades to the same species (TABLE II).<br />

Identifications based on sexual and zoosporangial<br />

characters that were unique to each clade did permit<br />

resolution to species (FIG. 1). This represents a new<br />

finding that should mandate use of unique features<br />

for circumscription not only of newly proposed<br />

species but also recircumscription of currently recognized<br />

species.<br />

This conclusion, that species can be identified only<br />

of isolate<br />

Best fit morphological identification<br />

Based on compiled characteristics of<br />

all clade isolates<br />

1 263 S. litoralis S. megasperma<br />

373 S. diclina<br />

2 283 S. megasperma S. ferax<br />

295 S. asterophora<br />

253 S. terrestris S. megasperma<br />

3 269 S. diclina<br />

284 S. megasperma<br />

105 S. megasperma<br />

162 S. megasperma<br />

254 S. megasperma<br />

251 S. megasperma<br />

176 S. diclina<br />

286 S. megasperma<br />

4 320 S. megasperma S. megasperma<br />

5 217 S. diclina S. diclina<br />

6 280 S. itoana S. itoana<br />

383 S. itoana<br />

257 S. megasperma S. megasperma<br />

7 258 S. megasperma<br />

386 S. asterophora<br />

8 260 S. luxurians S. richteri<br />

259 S. richteri<br />

9 372 S. richteri S. richteri<br />

382 S. luxurians<br />

292 S. megasperma S. megasperma<br />

289 ?<br />

10 291 S. subeccentrica<br />

277 S. megasperma<br />

using a combination of unique sexual and zoosporangial<br />

characters, agrees with Dick’s (1973) contention<br />

that a revised multivariate analytical approach<br />

likely would be needed for meaningful systematic<br />

revision of the watermolds. Indeed he argued that<br />

knowledge of the family could advance only after this<br />

is done.<br />

To aid this daunting task of systematic revision we<br />

offer these suggestions: (i) <strong>Species</strong> circumscription<br />

for <strong>Saprolegnia</strong> can be done best using the compiled<br />

sexual and zoosporangial features for all members of<br />

a clade. This can be done however only after clade<br />

membership is determined on the basis of comparative<br />

sequence analysis (i.e. DNA data for new isolates<br />

first must be compared with those previously deposited<br />

in GenBank [e.g. TABLE I]). This conclusion<br />

necessarily implies that the type species of <strong>Saprolegnia</strong><br />

taxa should be redefined and reference to DNA<br />

sequence data should be included in the new<br />

diagnoses (Bailey et al 1998, Deane et al 1998,<br />

Guillou et al 1999, Andersen et al 2002, Moro et al<br />

2002, Hoef-Emden and Melkonian 2003). With this


FIG. 2. Key based on morphological characters to<br />

phylogenetic clades <strong>within</strong> <strong>Saprolegnia</strong>.<br />

method any new or previously studied isolate can be<br />

described or identified to species regardless of<br />

whether that particular isolate produces characteristic<br />

zoosporangial or sexual features (Lange et al 2002,<br />

Hoef-Emden and Melkonian 2003, Marin et al 2003).<br />

(ii) Whereas replicate character state determinations<br />

for sexual features of <strong>Saprolegnia</strong> isolates often are<br />

not normally distributed (our unpublished data),<br />

sample sizes must be sufficiently large for each<br />

taxonomically significant character (we suggest n 5<br />

50) to render dependable isolate characterization<br />

before new taxa are described. (iii) Whereas historically<br />

descriptions of <strong>Saprolegnia</strong> species have employed<br />

ambiguous terms such as ‘‘predominant’,<br />

‘‘frequent’’, ‘‘occasional’’ and ‘‘rare’’, we propose<br />

that all listing of sexual and zoosporangial features of<br />

a proposed taxon be made using percentage occurrence<br />

values for each morphological feature based on<br />

a minimum of n 5 50 replicate determinations. (iv)<br />

Our analyses of other watermold genera (unpublished)<br />

indicate morphological plasticity equal to or<br />

greater than that presented here for <strong>Saprolegnia</strong>. We<br />

suggest therefore that these guidelines be used for<br />

revising all genera of the family <strong>Saprolegnia</strong>ceae.<br />

Results (TABLE II) suggest to us that assignment of<br />

unequivocal specific epithets to phylogenetic clades at<br />

HULVEY ET AL: SPECIES BOUNDARIES WITHIN SAPROLEGNIA 427<br />

FIG. 3. Micrographs of typical sporangial discharge<br />

papillae. a, b. Prominent, long and flared papillae (arrows)<br />

unique to clade 8. c, d. Typical papillae of other clades.


428 MYCOLOGIA<br />

this date would be unwise. The extreme divergence of<br />

our findings from classically accepted systematic<br />

criteria for <strong>Saprolegnia</strong> suggests that taxonomic<br />

criteria for this genus, and probably all others<br />

belonging to the <strong>Saprolegnia</strong>ceae, must be comprehensively<br />

reevaluated. For these reasons we have<br />

elected not to devise any temporary scheme of<br />

classification at this time.<br />

ACKNOWLEDGMENTS<br />

We gratefully acknowledge financial support provided by<br />

the National Science Foundation grant DEB 0328316<br />

(PEET program). Raymond R. Stone, Maris Durako and<br />

Zhuoer Lin provided assistance with morphological characterizations,<br />

and Melissa Smith assisted with preparation of<br />

FIG. 3. Dr T.W. Johnson Jr. (Duke Univ., retired) kindly<br />

provided advice on the morphological identifications, and<br />

critical comments on the manuscript.<br />

LITERATURE CITED<br />

Andersen RA, Potter D, Bailey JC. 2002. Pinguiococcus<br />

pyrenoidosus gen. et sp. nov. (Pinguiophyceae), a new<br />

marine coccoid alga. Phycol Res 50:57–65.<br />

Bailey JC, Bidigare RR, Christensen SJ, Andersen RA. 1998.<br />

Phaeothamniophyceae classis nova: a new lineage of<br />

chromophytes based upon photosynthetic pigments,<br />

rbcL, sequence analysis and ultrastructure. Protist 149:<br />

245–263.<br />

Ben Ali A, Wuyte J, de Wachter R, Meyer A, van de Peer Y.<br />

1999. Contribution of a variability map for eukaryotic<br />

large subunit ribosomal RNA. Nucleic Acid Res 27:<br />

2825–2831.<br />

Coker WC. 1923. The <strong>Saprolegnia</strong>ceae with notes on other<br />

water molds. Chapel Hill: University of North Carolina<br />

Press. 201 p.<br />

———. 1935. Interrelationships of the <strong>Saprolegnia</strong>les. Proc<br />

6th Int Bot Congr Amsterdam (Zesde Internationaal<br />

Botanisch Congres) 1:268–270.<br />

Daugherty J, Evans TM, Skillom T, Watson LE, Money NP.<br />

1998. Evolution of spore release mechanisms in the<br />

<strong>Saprolegnia</strong>ceae (Oomycetes): evidence from a phylogenetic<br />

analysis of internal transcribed spacer sequences.<br />

Fungal Genet Biol 24:354–363.<br />

Deane JA, Hill DR, Brett SJ, McFadden GI. 1998. Hanusia<br />

phi gen. et sp. nov. (Cryptophyceae): characterization<br />

of ‘Cryptomonas sp’. Eur J Phycol 33:149–154.<br />

Dick MW. 1969. Morphology and taxonomy of the<br />

Oomycetes, with special reference to <strong>Saprolegnia</strong>ceae,<br />

Leptomitaceae and Pythiaceae I. Sexual reproduction.<br />

New Phytol 68:751–775.<br />

———. 1972. Morphology and taxonomy of the Oomycetes,<br />

with special reference to <strong>Saprolegnia</strong>ceae, Leptomitaceae<br />

and Pythiaceae II. Cytogenetic systems. New<br />

Phytol 71:1151–1159.<br />

———. 1973. <strong>Saprolegnia</strong>les. In: Ainsworth GC, et al, eds.<br />

The Fungi, an advanced treatise. Vol. IVB. New York:<br />

Academic Press. p 113–144.<br />

———. 1978. Systematics, taxonomy and phylogeny in the<br />

Oomycetes. In: Subramanian CV, ed. Taxonomy of<br />

Fungi. Proceedings of the International Symposium on<br />

taxonomy of Fungi. Madras, India: University of<br />

Madras. p 82–87.<br />

———. 2001. Stramenipilous fungi: systematics of the<br />

Peronosporomycetes including accounts of the marine<br />

straminipilous protists, the Plasmodiophorids and<br />

similar organisms. Dordrecht: Kluwer Academic Publishers.<br />

670 p.<br />

———, Vick MC, Gibbings JG, Hedderson TA, Lopez-Lastra<br />

CC. 1999. 18S rDNA for species of Leptolegnia and<br />

other Peronosporomycetes: justification for the subclass<br />

taxa Saprolegniomycetidae and Peronosporomycetidae<br />

and division of the <strong>Saprolegnia</strong>ceae sensu lato<br />

into the Leptolegniaceae and <strong>Saprolegnia</strong>ceae. Mycol<br />

Res 103:1119–1125.<br />

Felsenstein J. 1985. Confidence limits on phylogenies: an<br />

approach using the bootstrap. Evolution 39:783–791.<br />

Gilbert DG. 1994. SeqApp: a biosequence editor and<br />

analysis program. Published on the Internet. Available<br />

at ftp.bio.indiana.edu<br />

Guillou L, Chretiennot-Dinet M-J, Medlin LK, Claustre H,<br />

Goer SL, Vaulot D. 1999. Bolidomonas: a new genus<br />

with two species belonging to a new algal class, the<br />

Bolidophyceae (Heterokonta). J Phycol 35:368–381.<br />

Hoef-Emden K, Melkonian M. 2003. Revision of the genus<br />

Cryptomonas (Cryptophyceae): a combination of molecular<br />

phylogeny and morphology provides insights<br />

into a long-hidden dimorphism. Protist 154:371–409.<br />

Hudspeth DSS, Nadler SA, Hudspeth MES. 2000. A COX2<br />

molecular phylogeny of the Peronosporomycetes.<br />

<strong>Mycologia</strong> 92:674–684.<br />

Humphrey JE. 1893. The <strong>Saprolegnia</strong>ceae of the United<br />

States, with notes on other species. Trans Am Phil Soc<br />

(NS) 17:63–148.<br />

Inaba S, Tokumasu S. 2002. Phylogenetic relationships<br />

between the genus <strong>Saprolegnia</strong> and related genera<br />

inferred from ITS sequences. 7th International Mycological<br />

Congress. Oslo, Norway. (Abstract 687)<br />

Johnson TW Jr. 1956. The genus Achlya. Ann Arbor:<br />

University of Michigan Press. 180 p.<br />

———, Seymour RL, Padgett DE. 2002. Biology and<br />

systematics of the <strong>Saprolegnia</strong>ceae. On-line publication<br />

accessible at http://dl.uncw.edu/digilib/biology/<br />

fungi/taxonomy%20and%20systematics/padgett%20<br />

book/<br />

Kützing FT. 1843. Phycologia generalis oder Anatomie,<br />

Physiologie und Systemkunde der Tange. Leipzig: F.A.<br />

Brockhaus. 458 p.<br />

Lange M, Chen Y-Q, Medlin LK. 2002. Molecular genetic<br />

delineation of Phaeocystis species (Prymnesiophyceae)<br />

using coding and non-coding regions of nuclear and<br />

plasmid genomes. Eur J Phycol 37:77–92.<br />

Leclerc MC, Guillot J, Deville M. 2000. Taxonomic and<br />

phylogenetic analysis of <strong>Saprolegnia</strong>ceae (Oomycetes)<br />

inferred from LSU rDNA and ITS sequence comparisons.<br />

Antonie van Leeuwenhoek 77:369–377.<br />

Marin B, Palm A, Klingberg M, Melkonian M. 2003.<br />

Phylogeny and taxonomic revision of plastid-contain-


ing Euglenophytes based on SSU rDNA sequence<br />

comparisons and synapomorphic signatures in the<br />

SSU rRNA secondary structure. Protist 154:99–145.<br />

Martin WW. 1981. Couchia circumplexa, a water mold<br />

parasitic in midge eggs. <strong>Mycologia</strong> 73:1143–157.<br />

Miller CE, Ristanović B. 1975. Systematic studies on some<br />

taxa of the <strong>Saprolegnia</strong>ceae. Milrobiologija, Acta Biol<br />

Iugoslavica 12:47–58.<br />

Moreau F, MoreauMme.. 1935. Remarques sur la systématique<br />

des Saprolégniacées. Bull Soc Bot France 82:354–<br />

358.<br />

———, ———. 1938. Recherches sur les Saprolégniées.<br />

Ann Sci Nat Bot (11 e sér) 1:221–358.<br />

Moro I, La Rocca N, Dalla Valle L, Pschin E, Negrisolo E,<br />

Andreoli C. 2002. Pyramimonas australis sp. now.<br />

(Prasinophyceae, Chlorophyta) from Antarctica: fine<br />

structure and molecular phylogeny. Eur J Phycol 37:<br />

103–114.<br />

Padgett DE, Johnson TW Jr. 2004. Zoosporangial discharge<br />

in a Protoachlya hypogyna (<strong>Saprolegnia</strong>ceae) isolate<br />

from southeastern North Carolina. <strong>Mycologia</strong> 96:205–<br />

207.<br />

———, Puckett JC, Strickland WM. 2000. Taxonomic<br />

implications of unusual zoospore discharge in an<br />

isolate of <strong>Saprolegnia</strong> unispora. Mycotaxon 76:171–174.<br />

Paxton CGM, Willoughby LG. 2000. Resistance of perch<br />

eggs to attack by aquatic fungi. J Fish Biol 57:562–570.<br />

Peters RD, Grau CR. 2002. Inoculation with nonpathogenic<br />

Fusarium solani increases severity of pea root rot<br />

caused by Aphanomyces euteiches. Plant Dis 86:411–414.<br />

Petersen AB, Rosendahl S. 2000. Phylogeny of the Peronosporomycetes<br />

(Oomycota) based on partial sequences<br />

of the large ribosomal subunit (LSU rDNA).<br />

Mycol Res 104:1295–1303.<br />

Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM,<br />

Baranger A, Coyne CJ. 2002. Quantitative trait loci for<br />

partial resistance to Aphanomyces root rot in pea.<br />

Theoretical Appl Genet 106:28–39.<br />

Posada D, Crandall KA. 1998. Modeltest: testing the model<br />

of DNA substitution. Bioinformatics 14:817–818.<br />

HULVEY ET AL: SPECIES BOUNDARIES WITHIN SAPROLEGNIA 429<br />

Powell MJ, Blackwell WH. 1998. Phenetic analysis of genera<br />

of the <strong>Saprolegnia</strong>ceae (Oomycetes). Mycotaxon 68:<br />

505–516.<br />

Ramirez MC, Raposo R, Mateo-Sagasta E. 1994. Occurrence<br />

of Aphanomyces cochlioides damping-off of sugar beet in<br />

Spain. Plant Dis 78:102.<br />

Riethmueller A, Weiss M, Oberwinkler F. 1999. Phylogenetic<br />

studies of Saprolegniomycetidae and related groups<br />

based on nuclear large subunit ribosomal DNA<br />

sequences. Can J Bot 77:1790–1800.<br />

Seymour RL. 1970. The genus <strong>Saprolegnia</strong>. Nov Hedwig 19:<br />

IV–124.<br />

———. 1984. Leptolegnia chapmanii, an oomycete pathogen<br />

of mosquito larvae. <strong>Mycologia</strong> 76:670–674.<br />

Spencer MA, Vick MC, Dick MW. 2002. Revision of<br />

Aplanopsis, Pythiopsis, and ‘subcentric’ Achlya species<br />

(<strong>Saprolegnia</strong>ceae) using 18S rDNA and morphological<br />

data. Mycol Res 106:549–560.<br />

Swofford DL. 2001. PAUP*: phylogenetic analysis using<br />

parsimony (*and other methods). Version 4. Sunderland,<br />

Massachusetts: Sinauer Associates.<br />

Vennerstrom P, Soderhall K, Cerenius L. 1998. The origin<br />

of two crayfish plague (Aphanomyces astaci) epizootics<br />

in Finland on noble crayfish, Astacus astacus. Ann<br />

Zoolog Fennici 35:43–46.<br />

Westman K. 1991. The crayfish fishery in Finland its past<br />

present and future. Finnish Fish Res 12:187–216.<br />

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and<br />

direct sequencing of fungal ribosomal RNA gene for<br />

phylogenetics. In: Innis., et al, eds. PCR Protocols. San<br />

Diego: Academic Press. p 315–322.<br />

Wicker E, Hulle M, Rouxel F. 2001. Pathogenic characteristics<br />

of isolates of Aphanomyces euteiches from pea in<br />

France. Plant Pathol (Oxford) 50:433–442.<br />

Willoughby LG. 1997. Achlya diffusa (Fungi, Oomycota)<br />

from fish ponds in Thailand. Nov Hedwig 64:467–471.<br />

Yokosawa R, Sekizaki H, Kuninaga S. 1988. Attractants of<br />

Aphanomyces cochlioides zoospores contained in sugar<br />

beet seedlings. Ann Phytopathol Soc Japan 54:133–140.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!